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Abstract—The interplay between timeliness and rate efficiency
is investigated in packet erasure broadcast channels with feed-
back. A scheduling framework is proposed in which coding
actions, as opposed to users, are scheduled to attain desired
tradeoffs between rate and age of information (AoI). This tradeoff
is formalized by an upper bound on AoI as a function of the
target rate constraints and two lower bounds: one as a function
of the communication rate and one as a function of the arrival
rate. Simulation results show that (i) surprisingly, coding can
be beneficial in reducing AoI in the regime of moderate arrival
rates even without rate constraints and the benefit increases with
the number of users, and (ii) AoI increases with both the target
rate constraint and the arrival rate when either is kept fixed, but
decreases with them when they are set to be equal.

I. INTRODUCTION

The technology of Internet of Things (IoT) provides a vision
for integrating intelligence into cyber-physical systems using
real-time applications. Timeliness is key for such applications
and it has therefore emerged as a communication design
criteria. There are, however, tradeoffs between timeliness and
rate which we aim to investigate in broadcast networks.

Timeliness is measured using the metric of Age of In-
formation (AoI), as introduced in [1]. AoI captures, at the
receiving side, how much time has passed since the generation
time of the latest received packet. In the past decade, Age
of information has been extensively investigated for status
update systems [2]–[7]. From the aspect of scheduling, optimal
transmission policies were proposed in [8]–[12] to optimize
the overall age in wireless networks. The reader is referred to
[13], [14] for a survey on the topic.

Rate efficiency is often provided by channel coding schemes
over multiple realizations of the network and it comes at
the cost of large delays. It is, therefore, not clear a-priori
what types of tradeoffs exist between rate and timeliness.
Prior works have mainly studied point to point channels [15]–
[17]. In erasure channels, [18] proves that when the source
alphabet and channel input alphabet have the same size, a Last-
Come First-Serve (LCFS) policy with no coding is optimal.
This is in contrast to channel coding schemes that provide
rate efficiency by block coding. Considering erasure channels
with FCFS M/G/1 queues, [19] finds an optimal block length
for channel coding to minimize the average age and average
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peak age. In the context of broadcast packet erasure channels
(BPECs) with feedback, coding is shown to be beneficial for
age efficiency with two users [20]. In related work, [21],
[22] design optimal precoding schemes to minimize AoI in a
MIMO broadcast channel with multiple senders and receivers
under FIFO channels without packet management. Reference
[23] analyzes AoI in a multicast network with network coding.

In this work, we consider erasure networks and devise
broadcast strategies that are efficient both in AoI and rate.
The inherent tradeoff can be explained as follows. On the one
hand, a higher rate can correspond to a smaller delay/AoI (both
in the sense that queues get emptied faster and that fewer uses
of the network are needed in total to transmit a fixed number
of information bits). On the other hand, to achieve high rates,
we need to wait for the arrival of other packets and change
transmission priorities to facilitate coding, and this can lead
to a larger AoI. To shed light on the above tradeoff, we build
on our previous work [20] and consider an erasure wireless
network with M users.

Motivated by the success of age-based scheduling in wire-
less networks, we propose a scheduling framework where we
schedule various useful coding actions as opposed to the users.
Within this framework, we can capture both rate efficiency and
age efficiency. Coding is known to provide significant benefits
compared to time sharing especially as the number of users
M increases [24]–[27]. Our work shows, for the first time,
that coding also provides benefits in terms of age and the
gain increases by M sharply, especially when the generation
rate is small and/or the channel erasure probability is large.
More generally, we design deterministic coding policies that
minimize the average AoI under given rate constraints.

The contributions of the work are summarized as follows:
(i) We propose a novel framework of network AoI on the
broadcast channels under transmission mechanism with coding
(Section II). (ii) (Near-)optimal coding policies with uncoded
and coded caching are proposed (Section III). Two general
lower bounds and an upper bound are derived on EAoI for any
transmission policy (Section IV, Theorem 2). The bounds are
functions of generation rates, erasure probabilities and target
rate constraints. (iii) Simulation results reveal that (a) coding is
beneficial, and the benefits increase with the number of users;
(b) a good approximation of proposed policies is obtained
based on maximum clique size of information graph; (c) the
tradeoff between rate and AoI exists, which implies that the
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system has to sacrifice AoI to achieve a higher rate.

II. SYSTEM MODEL

The system model extends that of [20, Section VI] to M
users. Transmission occurs in a wireless network which we
model by a BPEC with M users. In the beginning of time slot
k, a packet intended for user i is generated with probability
θi. Let Gi(k) = 1 represent the corresponding event.

Every broadcast packet is received at user i with probability
1 − εi, 0 ≤ εi < 1, and lost with probability εi. Erasure
events at multiple users can be dependent in general. The
transmission delay is assumed fixed and equal to one time slot.
After each transmission, the transmitter receives ACK/NACK
feedback from all receivers and can thus calculate and track
the aging of information at each user. Let di(k) = 1 if user i
decodes a packet of type i in time k, and di(k) = 0 otherwise.

If a packet is not received at its intended user, it can be
cached by other user(s) that have received it. The cached
packets can act as side information. Using the available
feedback, the encoder can track the cached packets and exploit
them as side information to form more efficient coded packets
that are simultaneously useful for multiple users [24]–[27].

We call a packet coded if it is formed by combining more
than one packets; otherwise we call it uncoded. A coded packet
can be fully decoded by user i if user i extracts every uncoded
packets combined within it upon successful delivery.

Depending on the available caching and coding capabilities,
we can consider three class of policies: (i) policies that benefit
from coding by caching uncoded packets, (ii) policies that ben-
efit from coding by caching general (potentially coded) pack-
ets, and (iii) time-sharing policies, which schedule different
users and perform no caching/coding [10], [11]. We investigate
the first class in Section III and refer to them as coding policies
with uncoded caching. The second class, referred to as coding
policies with coded caching, is investigated in the long version
of the work [28]. Time-sharing policies form benchmarks in
our simulations. In this work, we consider coding policies
with uncoded caching and linear network coding through XOR
operations only. Coding over larger finite fields may impose
larger decoding delay and is often practically less desirable.

A. A Virtual Network of Queues

The idea of caching and coding on the fly is to cache
overheard packets at the users and track them using feedback
at the encoder through a network of virtual queues. Let Qi
denote the queue of incoming packets for user i. If a packet
chosen from Qi is transmitted and received by its intended
user, it is removed from the queue. If it is not received by
its intended user i, but received by some other users, then
the packet will be cached in the cache of those users (as side
information) and tracked at a virtual queue at the encoder.
Define Qi,S as the virtual queue that tracks, at the encoder,
uncoded packets for user i that are received only by the users
in S, where S ⊂ [M ]\i. Note that Qi

(
= Qi,∅

)
is some sort

of Qi,S . Queue Qi,S contains two types of packets: packets
from Qi,∅ that are cached (received or decoded) by the users

in S, and/or uncoded packets combined within coded packets
which are fully decoded. The queues Qi,S are defined so that
the set of packets in them are disjoint.

Packets stored in the virtual queues at the encoder can
form efficient coded packets that are simultaneously useful for
multiple users. In this work, we consider linear network coding
through XOR operations only. This is because for broadcast
erasure channel with multiple unicast traffic, using simple
coding operations leads to low decoding delay and is also
practically desirable [29]. For example, consider a packet a in
Q1,{2} and a packet b in Q2,{1}. The XOR packet p = a⊕b is
useful for both users 1 and 2 because user 2 has cached packet
a and user 1 has cached packet b and they can therefore recover
their desired packets by XORing packet p with their respective
cached packet. More generally, consider a set of non-empty
queues {Qτi,Sτi}

`
i=1 where τi is a user index (τi ∈ [M ]) and

Sτi is a subset of [M ]\τi. Suppose the following condition
holds:

Sτi ⊃ {∪`j=1,j 6=iτj} ∀i = 1, . . . `. (1)

XORing packets ai ∈ Qτi,Sτi leads to the coded packet

p =
⊕̀
i=1

ai (2)

which is simultaneously decodable at all users {τ1, . . . , τ`}.
To view condition (1) alternatively, draw a side information
graph G with nodes V = {1, . . . ,M}. Add an edge between
nodes (i, j) if Qi,Si is non-empty for some set Si that has
j as an element. Condition (1) corresponds to the subgraph
induced by nodes {τ1, . . . , τ`} forming a clique of size `.

The coding actions we consider in this paper correspond to
cliques on the side information graph (which has to be updated
on the fly after each transmission). It is not difficult to see
that maximal cliques are sufficient in this class . Among all
possible maximal cliques (the number of which can generally
be on the order of 3

M
3 [30]), we aim to choose (schedule) one

that leads to a coding action with the most benefit in terms of
age and rate.

B. Age and Rate Efficiency

To capture the freshness of information, we use the metric
of average Age of Information (AoI) defined in [13]. Denote
hi(k) as the age of user i in time slot k. The age function
hi(k) increases linearly in time when no delivery for user i
occurs and drops with every delivery to a value that represents
how old the received packet is. If an outdated packet (for user
i) is received (meaning that a more recently generated packet
is previously received at user i) then the outdated packet does
not offer age reduction and hi(k) keeps increasing linearly.

Definition 1. Denote the generation time of the packet re-
ceived by user i in time slot k as vi(k). Assuming the initial
state hi(0) = 1, the age function hi(k) evolves as follows:

hi(k) =

{
min{hi(k − 1) + 1, k − vi(k)} di(k) = 1
hi(k − 1) + 1 di(k) = 0.
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The expected weighted sum of AoI (EAoI) at the users is
thus given by E[JπK ] where

JπK :=
1

MK

K∑
k=1

M∑
i=1

αih
π
i (k) (3)

and α1, α2, · · · , αM are weights and the superscript π rep-
resents the communication policy. We are interested in min-
imizing EAoI under some constraints on the rate of commu-
nications. We define the communication rate to user i as the
number of decoded packets (intended for user i) per time slot
in the limit of time.

Let qi be a strictly positive real value that represents
the minimum rate requirement of node i. Without loss of
generality, we assume that q = (q1, q2, · · · , qM ) is in the
capacity region. Similar to [9], we define the long-term rate
of node i when policy π is employed as

rπi := lim
K→∞

1

K

K∑
k=1

E
[
dπi (k)

]
. (4)

Then, we express the minimum rate constraint of each indi-
vidual node as

rπi ≥ qi, i = 1, 2, · · · ,M. (5)

Ultimately, we seek to schedule the coding actions in order to
achieve a judicious tradeoff between the EAoI and communi-
cation rate, as outlined below. Combining (3), (4) and (5), the
objective is given by the following optimization problem:

J(q) := min
π

lim
K→∞

E[JπK ]

s.t rπi ≥ qi, i = 1, 2, · · · ,M.
(6)

III. SCHEDULING CODING ACTIONS

In this section, we consider coding policies with uncoded
caching, i.e., all cached packets are uncoded. We develop and
analyze max-weight policies that schedule the coding actions
to optimize (6). Each coding action can be described by a
set of queues, each storing multiple packets. Packets stored at
different queues can form desired coded packets corresponding
to the chosen coding action. We allow packet management in
each queue as it reduces age without impacting the rate.

Recall that Qi,S is the queue that contains those packets
of user i that are decoded only by the users in S. Thus, if
a ∈ Qi,S , for any S ′ ⊂ S and S ′ 6= S, a /∈ Qi,S′ . In addition,
if a ∈ Qi,∅, then a /∈ Qi,S for all S 6= ∅. So the map
from packets to queues is a surjection. From Section II-A,
the encoder decides among the following actions, denoted by
A(k), and defined below:

• A(k) = Qi,∅: a packet is transmitted from Qi,∅;
• A(k) = ⊕lj=1Qτj ,Sτj : a coded packet is transmitted that

is formed by an XOR of l packets, one from each of
the queues Qτ1,Sτ1 , Qτ2,Sτ2 , · · · , Qτl,Sτl , where Sτl 63 τl
and users τ1, τ2, · · · , τl form a maximal clique on the side
information graph.

A. Encoder’s Age of Information

To capture the aging of information at the encoder, we
define the notion of AoI for each virtual queue. The following
Lemma is proved in [28, Appendix B]

Lemma 1. If pj ∈ Qi,S has the generation time kj , j ∈ {1, 2},
and k2 > k1, then (encoding and) transmitting p2 can not be
worse than (encoding and) transmitting p1 in terms of AoI.

If S = ∅, denote the AoI of Qi,∅ by wi,∅(k), and the
generation time of the most recent packet of that queue by k′.
Based on Lemma 1, we define wi,∅(k) = min{k− k′, hi(k)}
and wi,∅(0) = hi(0). This is to capture the fact that if k −
k′ > hi(k), then packets in Qi,∅ are older than the latest
one recovered by user i, so packets in Qi,∅ are obsolete in
terms of AoI in time slot k. The evolution of the AoI at the
queue Qi,∅ is as follows: wi,∅(k) drops to 0 if a new packet
is generated; otherwise it increases by 1. Thus, the recursion
of wi,∅(k) is

wi,∅(k + 1) =

{
0 Gi(k) = 1

min{wi,∅(k) + 1, hi(k) + 1} Gi(k) = 0.
(7)

Before defining the AoI of Qi,S , let ti,S(k) be an indicator
function as follows: ti,S(k) = 1 if the latest packet in Qi,S
is encoded and transmitted in time slot k, and is ti,S(k) = 0
otherwise. Now we consider the AoI of Qi,S with S 6= ∅.
Denote the AoI of Qi,S as wi,S(k). Let the generation time of
the latest packet in Qi,S be k′. We define wi,S(k) = min{k−
k′, hi(k)} and Qi,S(0) = hi(0). Then, wi,S(k) increases by
1 unless Qi,S is updated with a fresher packet. The content
of Qi,S change when packets move in other virtual queues at
the encoder. For example, If packet a ∈ Qi,S is recovered by
other users in I, I ∩ S = ∅, then a ∈ Qi,I∪S and a /∈ Qi,S .
The recursion of wi,S(k) is given in [28, Eqn (14)]. From (7)
and [28, Eqn (14)], the recursion of hi(k) is

hi(k + 1) =

{
wi,S(k) + 1 ti,S(k) = 1, di(k) = 1

hi(k) + 1 otherwise.
(8)

B. Age-Rate Max-Weight Scheduling

It is well established that coding actions can enhance the
communication rate of broadcast channels [24], and may
incur additional delays. To seek efficiency both in AoI and
communication rate, similar to [9], [11], [20], we propose
Age-Rate Max-Weight (ARM) policies to minimize EAoI in
(6) under rate constraints.

We define the age-gain of queue Qi,S (for user i), where
S ⊂ [M ]\i as follows:

δi,S(k) = hi(k)− wi,S(k). (9)

The term δi,S(k) quantifies how much the instantaneous user’s
age of information reduces upon successful delivery from the
encoder’s virtual queue Qi,S . If Qi,S is empty or contains old
packets, then , δi,S(k) = 0 by definition.
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A(k) Weights

Qi,∅ (1− εi)
(
βiδi,∅(k) + λfi(k)

)
⊕u∈[l]Qτu,Sτu

∑l
u=1 βτuδτu,Sτu (k)(1− ετu)

+λ
∑l
u=1(1− ετu)fτu(k)

Fig. 1: Coding actions and their weights.

Let xi(k) be the throughput debt associated with node i at
the beginning of slot k [9]. It evolves as follows:

xi(k + 1) = kqi −
k∑
τ=1

dπi (τ). (10)

The value of kqi is the minimum average number of packets
that node i should have decoded by slot k+1 and

∑k
τ=0 d

π
i (τ)

is the total number of recovered packets in the same interval.
In fact, strong stability of the process x+i (k) is sufficient to
establish that the minimum rate constraint, rπi ≥ qi, is satisfied
[9], [31, Theorem 2.8].

Define the encoder’s state in time slot k as

S(k) =
(
{hi(k)}i, {wi,S(k)}i,S , {xi(k)}i

)
,

and the Lyapunov function L
(
S(k)

)
as

L
(
S(k)

)
=

M∑
i=1

βihi(k) + λ
M∑
i=1

(
x+i (k)

)2 (11)

where βi, λ > 0. Here, the quadratic function for xi(k) is
to maximize the rate [8], [9], [11], and the linear function
for hi(k) is to simplify the derivation. The one-slot Lyapunov
Drift is defined as

Θ(k) = E
[
L
(
S(k + 1)

)
− L

(
S(k)

)
|S(k)

]
. (12)

Define the rate-gain of user i in time slot k as follows:

fi(k) =
((
xi(k) + qi

)+)2 − ((xi(k) + qi − 1
)+)2

. (13)

Definition 2. In each slot k, the ARM policy chooses the
action that has the maximum weight in Table of Fig. 1.

Remark 1. When AoI is the only metric in decision mak-
ing (i.e., qi = 0 for all i), only the latest packets matter
(see Lemma 1). We can thus assume that the buffer size of
every queue is 1 and the stability region is {θi ≤ 1, i =
1, 2, · · · ,M}.

Remark 2. We have observed in simulations that a good ap-
proximation of the above ARM policy is obtained by choosing
the maximal clique size l to be 2. This captures most of the
gain with a much reduced complexity. The number of coding
actions reduces from 2M

2

to 2M(M − 1)3.

Theorem 1. The ARM policy defined in Definition 2 minimizes
the one-slot Lyapunov Drift in each slot.

Now we set to obtain an upper bound on AoI under rate
constraints. We consider an upper bound with M = 3 in the

symmetric system (qi = q and εi = ε for i ∈ [M ]), one can
generalize to an upper bound with arbitrary M using the same
idea.

Let Cuncoded be the set of all tuples q = (q, q, q) for which
{x+i (k)}3i=1 is strongly stabilized using the considered coding
actions. We define a (symmetric) stationary randomized policy
in which actions are chosen with probabilities:

Pr(A(k) = Qi,∅) = µi,∅ (14)
Pr{A(k) = ⊕j∈[l]Qτj ,Sτj } = µ(τ1,Sτ1 ,··· ,τl,Sτl ) (15)

where we do not distinguish between different permutations
on {τj ,Sτj}j . By symmetry, let µi,∅ = µ, µτ1,{τ2},τ2,{τ1} =
ζ1, µτ1,{τ2},τ2,{τ1,τ3} = ζ2, µτ1,{τ2,τ3},τ2,{τ1,τ3} = ζ3 and
µτ1,{τ2,τ3},τ2,{τ1,τ3},τ3,{τ1,τ2} = ζ4.

Theorem 2. For any q ∈ Cuncoded, J(q) is bounded by:

min
µ

1
3

∑3
i=1 αi

θ
+

1
3

∑3
i=1 αi

µ(1− ε) + λ

s.t 3µ+ 3ζ1 + 6ζ2 + 3ζ3 + ζ4 = 1

µ(1− ε3) ≥ q
(µ+ ζ2)(1− ε2) + ζ1(1− ε) ≥ q
µ(1− 2ε2 + ε3) + 2ζ1(1− ε) + 2ζ2(1− ε2) ≥ q
(µ+ 2ζ1 + 4ζ2 + 2ζ3 + ζ4

)
(1− ε) ≥ q,

µ ≥ 0, ζj ≥ 0, j = 1, 2, 3, 4.

(16)

Remark 3. The upper bound reveals a tradeoff between the
average AoI and the target rate constraints: as q increases
(the feasible region of the linear program shrinks), our upper
bound on age increases, capturing the tradeoff behavior that
we ALSO observe in the simulations.

IV. LOWER BOUND

In prior works [9], [20], [32], lower bounds were found on
AoI as a function of the communication rate. Similar to [32,
Section III], we derive two lower bounds on the achievable
age. The first lower bound is derived by assuming that there is
always a fresh packet to be delivered. The second one assumes
that all packets are delivered instantaneously upon arrival.

Theorem 3. For any policy π with communication rate rπi ,
we have the following lower bounds on Jπ(q) in (6):

Jπ(q) ≥ M

2
∑M
i=1 r

π
i /αi

+
M∑
i=1

αi
2M

(17)

Jπ(q) ≥ 1

M

M∑
i=1

αi
θi

(18)

In (17), as the communication rate increases, the lower
bound on EAoI decreases. The rate terms rπi in (17) satisfy
rπi ≥ qi, but it is not clear if we can replace them by qi
because (6) may admit its optimal solution at rates larger than
the target values qi. The high rate communication is indeed
useful for age minimization. This is the reason why coding
and caching can ultimately reduce age as shown in our work.
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Lower bound in (17)

(a) EAoI as a function of ε and θ.

0 0.2 0.4 0.6 0.8 1
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θ

EAoI
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(b) EAoI and maximal clique size.

0.2 0.4 0.6 0.8 1
0

0.5

1

θ
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AoIgap when M = 9
AoIgap when M = 6
AoIgap when M = 3

(c) AoIgap vs. θ when ε = 0.6.
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4

ε

AoIgap
AoIgap when M = 9
AoIgap when M = 6
AoIgap when M = 3

(d) AoIgap vs. ε when θ = 0.2.

Fig. 2: EAoI in different cases.

In (18), as θi increases, i.e., more fresh packets are gen-
erated, the lower bound on EAoI decreases capturing the
importance of frequent updating. This bound is active in
regimes where new packets are generated less frequently.

V. NUMERICAL RESULTS AND DISCUSSION

Finally, we seek to answer the questions that we raised in
Section I through simulations. We assume symmetric networks
with εi = ε, qi = q, and θi = θ for i ∈ [M ].

A. Benefits of Coding

We first consider the benefits of coding. The ARM policy
and the time-sharing policy are compared in Figure 2a -
Figure 2d. To eliminate the impact of rate, we consider the case
defined in Remark 1, i.e., the buffer size of every queue is 1
and the stability region is {θ ≤ 1}. In Figure 2a - Figure 2d,
we set λ = 0 and βi = αi = di/2e. Figure 2a plots the
EAoI for M = 6 users under the ARM and time-sharing
policies, and againts the lower bound in (17). We observe that
coding is indeed beneficial when the erasure probability ε is
relatively large (≥ 0.6) and/or the arrival rate θ is relatively
small (≤ 0.5). When θ is fixed, EAoI increases with ε.

Next, we define AoIgap as the gap between the EAoI
under the ARM and time-sharing policies. The relationship
between AoIgap and θ (resp. ε) is provided in Figure 2c (resp.
Figure 2d). In Figure 2c, we set ε = 0.6. We observe that
AoIgap (the benfit of coding) decreases with the arrival rate
θ. This is because the (expected) number of newly incoming
packets increases with θ and the availability of fresh uncoded
packets weakens the impact of coding actions.

In Figure 2d, we set θ = 0.2. AoIgap increases with ε. This
is because erased packets can be cached and provide more
coding opportunities. AoIgap increases slowly when ε is small,
and sharply when ε is large. In addition, from Figure 2c and
Figure 2d, the benefits of coding increase with M .

B. Impact of Maximal Clique Size

The impact of maximal clique size is captured in Figure 2b.
Let the buffer size of all (virtual) queues be 1 and set M = 6,
λ = 0, ε = 0.6 and βi = αi = di/2e. The ARM policy with
maximal clique sizes ` = 2, 3, 4 are compared. We observe
that ` = 2 is a good approximation (see also Remark 2).

C. Tradeoff between Age and Rate

0 4 · 10−2 8 · 10−2 0.12
28

30

32

34

q (q ≤ 0.1368) or λ/1000 (λ ≤ 10)

EAoI
q = 0.1368 θ = 0.14
λ = 10 θ = 0.14

(a) EAoI vs. q or λ.

0.2 0.25 0.3 0.35 0.4 0.45

20

30

40

50

Communication Rate

EAoI The Upper Bound in (16)
Time-sharing

ARM (Uncoded Caching)
ARM (Coded Caching)

(b) EAoI vs. rate.

Fig. 3: Tradeoffs between EAoI and rate.

We finally investigate the tradeoff between the AoI and
rate. Set M = 3. The maximum sum-rate achievable with
time sharing is around 0.4, with uncoded caching is around
0.44, and the channel capacity (with coded caching) is around
0.46. Setting βi = αi = i for i ∈ [M ] and ε = 0.6 in the
ARM policy, we first investigate the relationship between q
and EAoI (the red star curve in Figure 3a). Now set θ = 0.14,
λ = 10, q ∈ [0, 0.1368]. EAoI increases with q implying
that if the minimum required throughput becomes larger, the
system has to sacrifice EAoI to satisfy the rate constraints.
Next, the relationship between λ and EAoI is investigated (the
black circle curve in Figure 3a). Let θ = 0.14, q = 0.1368,
λ ∈ [0, 10]. EAoI increases with λ. In other words, if the rate
constraints become more important, then EAoI increases.

Finally, in Figure 3b, the EAoI is plotted as a function of the
communication rate under the time-sharing policy as well as
the ARM policy with uncoded and coded caching. This plot is
obtained by setting βi = αi = i, θ = q, and λ = 1. We observe
that EAoI decreases as rate increases. From the viewpoint of
expectation, almost all packets are successfully delivered. The
increase in theta implies more fresh packets are generated,
and the increase in q (which equals to θ) implies more fresh
packets are delivered. Thus, the EAoI decreases. The three
policies have similar performances up to the rate they support.
It appears that ARM with coded caching outperforms for rates
close to the boundary of the capacity region.
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