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In this paper, we study the asymptotic behavior of the extreme eigen-
values and eigenvectors of the high dimensional spiked sample covariance
matrices, in the supercritical case when a reliable detection of spikes is possi-
ble. In particular, we derive the joint distribution of the extreme eigenvalues
and the generalized components of the associated eigenvectors, i.e., the pro-
jections of the eigenvectors onto arbitrary given direction, assuming that the
dimension and sample size are comparably large. In general, the joint dis-
tribution is given in terms of linear combinations of finitely many Gaussian
and Chi-square variables, with parameters depending on the projection direc-
tion and the spikes. Our assumption on the spikes is fully general. First, the
strengths of spikes are only required to be slightly above the critical thresh-
old and no upper bound on the strengths is needed. Second, multiple spikes,
i.e., spikes with the same strength, are allowed. Third, no structural assump-
tion is imposed on the spikes. Thanks to the general setting, we can then
apply the results to various high dimensional statistical hypothesis testing
problems involving both the eigenvalues and eigenvectors. Specifically, we
propose accurate and powerful statistics to conduct hypothesis testing on the
principal components. These statistics are data-dependent and adaptive to the
underlying true spikes. Numerical simulations also confirm the accuracy and
powerfulness of our proposed statistics and illustrate significantly better per-
formance compared to the existing methods in the literature. In particular, our
methods are accurate and powerful even when either the spikes are small or
the dimension is large.

1. Introduction. Covariance matrices play an important role in multivariate analysis and
high dimensional statistics, and find applications in many scientific fields. Moreover, many
statistical methodologies and techniques rely on the knowledge of the structure of the covari-
ance matrix, to name but a few, Principal Component Analysis, Discriminant Analysis and
Cluster Analysis. For detailed discussions of the applications and methodologies, we refer the
readers to the monographs [1, 46, 50] for a review. It is well-known in the high dimensional
setting when the dimension is comparable with or much larger than the sample size, a direct
application of the sample covariance matrix for hypothesis testing may result in untrustful
conclusions. Consequently, a thorough understanding of the distributions of the eigenvalues
and eigenvectors of sample covariance matrices is in demand for high dimensional statistical
inference.

In the literature of high dimensional statistics, a popular and sophisticated model is the
spiked covariance matrix model proposed by Johnstone in [47], where a finite number of
spikes (i.e., eigenvalues detached from the bulk of the spectrum) are added to the spectrum of
the population covariance matrix; see (1.2) and (1.3) below. Throughout the paper, with cer-
tain abuse of terminology, we use the word “spike” to represent either a detached eigenvalue
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1 + di (c.f. (1.2), (1.3)) or the whole rank one matrix corresponding to a detached eigenvalue
(1 + di)viv

∗
i (c.f. (1.2), (1.3)). These spikes can have various practical meanings in differ-

ent fields. For instance, they correspond to the first few important factors in factor models
arising from financial economics [39, 70], the important patterns in genetic variation across
the globe [34], the clusters in gene expression data [51] and the signals in signal detection
[68, 72]. In this paper, we investigate the distributions of the principal components of the
spiked sample covariance matrix, i.e, the sample counterparts of the extreme eigenvalues and
eigenvectors (especially those spikes) of the population covariance matrices. The principal
components of spiked sample covariance matrices play important roles in Principal Compo-
nent Analysis for high dimensional data. A lot of work has been devoted to estimating the
principal components in various settings. For instance, sparse principal component analy-
sis [20, 48] is proposed to estimate the spiked eigenvalues and eigenvectors assuming some
sparsity structure in the population eigenvectors; factor-model based estimators [3, 4, 73] for
the eigenvectors are constructed if the population covariance matrix is of approximate factor-
model type; and some regularization-based methods [62, 81, 89] have been proposed under
various structural assumptions.

Despite the wide applications of the principal components in high dimensional statistics,
most of the literature focus on the estimation part. Much less is known about their distribu-
tions, especially for the leading eigenvectors. As a consequence, a thorough study of the
statistical inference for the population covariance matrix in the high dimensional setting
is still missing, especially for hypothesis testing problems involving both eigenvalues and
eigenvectors. For instance, eigenvectors and eigenspaces play an important role in statistical
learning. However, the existing literature has only been able to test whether the eigenvectors
or eigenspaces of the population covariance matrix are equal to some given ones under the
assumption that the dimension is much smaller than the sample size [42, 56, 69, 82, 83]. For
another example, in Principal Component Analysis, the loadings are transformations of the
original variables to the eigenvectors. They describe how much each variable contributes to
a particular eigenvector and researchers are interested in hypothesis testing and constructing
confidence intervals for them [57, 74, 87]. The loadings are scaled eigenvectors using their
corresponding eigenvalues and therefore, the joint distribution of the extreme eigenvalues
and eigenvectors of the sample covariance matrices will be needed to conduct inference.

Driven by these challenges, we study the joint distributions of the extreme eigenvalues and
the generalized components of their associated eigenvectors for the spiked sample covariance
matrices, in the high dimensional setting. Based on these results, we will be able to perform
hypothesis testings with statistics constructed from both eigenvalues and eigenvectors.

Specifically, in this paper, we consider the sample covariance matrices of the form

Q= TXX∗T ∗,(1.1)

where T is aM×M deterministic matrix andX is aM×N random matrix with independent
entries and EXX∗ = IM . Further, we assume that the population covariance matrix Σ :=
TT ∗ admits the following form

Σ = IM + S,(1.2)

where S is a fixed-rank deterministic positive semi-definite matrix. Here we refer to Section
1.2 of [21] for several examples which boil down to this setting. Moreover, we denote the
spectral decomposition of S by

S =

r∑
i=1

diviv
∗
i ,(1.3)
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where r ≥ 1 is a fixed integer. Here d1 ≥ · · · ≥ dr > 0 are the ordered eigenvalues of S,
and vi = (vi1, . . . , viM )∗’s are the associated unit eigenvectors. All di ≡ di(N) may be N -
dependent. Throughout the paper, for simplicity, we will mainly work with the setting

T = Σ
1

2 .(1.4)

We remark that our results hold for much more general T satisfying Σ = TT ∗. We refer to
Section A of [12] for more discussions on the extension along this direction.

1.1. Summary of previous related theoretical results. In this section, we summarize the
results related to the spiked sample covariance matrix from the Random Matrix Theory liter-
ature.

We denote by µ1 ≥ · · · ≥ µM∧N ,M ∧N := min{M,N}, the nontrivial eigenvalues of Q
and ξi the unit eigenvector associated with µi. The primary interest of the sample covari-
ance matrix Q lies in the asymptotic behavior of a few largest µi’s and the associated ξi’s
when N is large, under various assumptions of di’s and vi’s. Significant progress has been
made on this topic in the last few years. It has been well-known since the seminal work of
Baik, Ben Arous and Péché [9] that the largest eigenvalues µi’s undergo a phase transition
(BBP transition) w.r.t. the size of di’s. On the level of the first order limit, when di >

√
y,

the eigenvalue µi jumps out of the support of the Marchenko-Pastur law (MP law) and con-
verges to a limit determined by di, while in the case of di ≤

√
y, it sticks to the right end

of the Marchenko-Pastur (MP) law (1 +
√
y)2. In the former case, we call µi an outlier or

outlying eigenvalue, while in the latter case we call µi a sticking eigenvalue. On the level of
the second order fluctuation, it was revealed in [9] that a phase transition for µi takes place
in the regime di −

√
y ∼ N−

1

3 . Specifically, if di −
√
y � N−

1

3 (subcritical regime), the
eigenvalue µi still admits the Tracy-Widom type distribution; if di −

√
y�N−

1

3 (supercrit-
ical regime), the eigenvalue µi is asymptotically Gaussian; while if di−

√
y ∼N−

1

3 (critical
regime), the limiting distribution of the eigenvalue µi is some interpolation between Tracy-
Widom and Gaussian. On extreme eigenvalues, further study for more generally distributed
covariance matrices can be found in [10, 16, 76, 7, 8, 21, 31, 59]. The limiting behavior of the
extreme eigenvalues has also been studied for various related models, such as the finite-rank
deformation of Wigner matrices [16, 28, 29, 41, 53, 54, 77, 80], the signal-plus-noise model
[17, 60, 30], the general spiked β ensemble [22, 23], and also the finite-rank deformation of
general unitary/orthogonal invariant matrices [18, 14, 15, 32].

In contrast, the study on the limiting behavior of the eigenvectors associated with the
extreme eigenvalues is much less. On the level of the first order limit, it is known that the ξi’s
are delocalized and purely noisy in the subcritical regime, but has a bias on the direction of
vi in the supercritical regime. We refer to [18, 17, 26, 30, 76, 21, 31] for more details of such
a phenomenon. It was recently noticed in [21] that a di close to the critical point can cause a
bias even for the non-outlier eigenvectors. On the level of the second order fluctuation, it was
proved in [21] that the eigenvectors are asymptotically Gaussian in the subcritical regime, for
the spiked covariance matrices. For a related model, spiked GUE, the eigenvector distribution
in the critical regime was recently obtained in the work [13]. In the supercritical regime, a
non-universality phenomenon was shown in [27] and [11] for the eigenvector distribution for
the finite-rank deformation of Wigner matrices and the signal-plus-noise model, respectively.
The non-universality phenomenon in the supercritical regime has been previously observed
in [28, 53, 54] for the extreme eigenvalues of the finite-rank deformation of Wigner matrices.
Here we also refer to [64, 49, 38] for related study on the extreme eigenstructures of various
finite-rank deformed models from more statistical perspective.
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1.2. An overview of our results. In the theoretical part of this paper, we will primarily fo-
cus on the distribution of the eigenvectors ξi’s associated with the outlying eigenvalues µi’s.
That means, we will focus on the supercritical regime, in contrast to the work [21] and [13]
where the eigenvector distributions in the subcritical and critical regimes were obtained. The
results in the supercritical regime are particularly important for the statistical applications,
since it is well-known that a reliable detection of spikes based on eigenvalues is only possi-
ble in this regime in general; see [65, 66, 67, 78] for instance. Our assumption on the spikes
is fully general (c.f. Assumption 2.4). In particular, we do allow di’s to be divergent and mul-
tiple (i.e. some di’s are identical). In case that the spikes are simple (i.e. di’s are all distinct),
we also establish the joint distribution of the outlying eigenvalues and the associated eigen-
vectors for the spiked covariance matrices. More specifically, in this paper, we are interested
in the distribution of the largest µi’s and the generalized component of the top eigenvectors,
i.e., the projections of those eigenvectors onto a general direction. Let w ∈ SM−1

R be any
deterministic unit vector. We will study the limiting distribution of |〈w,ξi〉|2 in the super-
critical regime under general assumption of the spikes, and also state the joint distribution of
|〈w,ξi〉|2 and µi’s in case that the spikes are simple. We emphasize here that in case that a
spike is multiple, one can also describe the joint distribution of eigenvalues and eigenvectors
using the approach in this paper. But the result does not have a succinct form so we omit it
from the statements of our main theorems; see Remark 2.11 for more details. Nevertheless,
we will describe (in certain equivalent form) and prove an extension of the joint eigenvalue-
eigenvector distribution to the multiple case and present applications of this result in the
supplement [12].

In the application part of this paper, we construct statistics to infer the principal compo-
nents. We mainly focus on two hypothesis testing problems regarding the eigenspaces, (3.2)
and (3.3). To our best knowledge, it is the first time that these problems are tackled for spiked
covariance matrices in the high dimensional regime (2.2) without imposing any structural
assumptions on the spikes. Our proposed statistics make use of some plug-in estimators and
are adaptive to the information of unknown spikes, for instance, their values and multiplicity.
Thanks to the joint distribution of the eigenvalues and eigenvectors, we can easily estab-
lish the asymptotic distributions of our test statistics; see Section 3.1 for more details. Our
methodology is simple, computationally cheap and easily implemented. Extensive numerical
simulations lend strong support to our test statistics. In particular, our proposed statistics are
accurate and powerful regardless of the value of y and magnitude of the spikes. Moreover,
for testing (3.2), our statistic shows better performance compared to the existing methods in
the literature both in terms of accuracy and power. We point out that our methodology can
be used to study other hypothesis testing problems regarding Principal Component Analysis
and this will be discussed in Section 3.

In the sequel, we further highlight some novelties, in contrast to previous works. We first
point out that a related problem has been previously studied in [11] for the so-called matrix
denoising model, where the distribution of the leading singular vectors of this model was
studied. Due to the additive structure of this model, the distribution of the singular vector
may depend on the structure of the deformation and the entire distribution of entries of the
noise matrix (rather than their first 4 moments only), and may not be Gaussian or Chi-square
or linear combinations of them. Such a phenomenon is called non-universality, which exists
in the additive models [11, 27]. However, such a phenomenon does not show up for the spiked
covariance matrix, as one can see from Theorem 2.7 in the sequel, where the distribution has
a Gaussian nature in the sense that it is a polynomial of Gaussian variables. This is essentially
due to the multiplicative structure of the spiked covariance matrix where the structure of the
spikes are smoothed out by the random matrix X .

In addition, we emphasize here that in [11] the assumption of the strengths of the defor-
mation, counterpart of di’s, is much more limited than the assumption here, and the results in
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[11] are stated in much more restricted forms. Our main assumption for this paper is Assump-
tion 2.4 below. In [11], the strengths are assumed to be bounded and thus cannot grow with
N , and also the strengths are away from the critical threshold by a constant order distance.
Further, the strengths in [11] are assumed to be simple, and thus no multiplicity is allowed,
and also distinct strengths are away from each other by a constant order. In Assumption 2.4,
we remove all these restrictions on di’s. In addition, in [11], only the projection of the ran-
dom singular vector onto the directions of the deformations are discussed. Here we consider
the projection onto arbitrary given direction. Finally, no joint distribution of eigenvalue and
eigenvectors is obtained in [11]. Here we establish the joint distribution of eigenvalues and
eigenvectors.

All the theoretical novelties are well motivated by our applications. First, in most of math-
ematical work on spiked models, di is assumed to be bounded. However, in many popular
statistical models such as the factor model [3, 4, 5, 70], di ≡ di(N) could be diverging. We
provide a unified result in the whole supercritical regime, no matter di is close to the thresh-
old or diverging. Practically, that means our results can be applied no matter the spike is
weak or strong. Second, in the application part, we consider two hypothesis testing prob-
lems. The first is to test whether an eigenspace formed by any part of the spikes is equal to
some given subspace, while the second is to test whether it is orthogonal to certain given
subspace. Both questions are significant in the statistics literature. Let I be an index set of
certain (possibly) multiple di’s; see Assumption 2.4 for detailed definition. Our test statistics
for both testing problems are constructed from µi, i ∈ I and the projection 〈w,PIw〉 or its
variants, where PI :=

∑
t∈I ξtξ

∗
t and the choice of w depends on the testing problems. The

limiting distribution of the first statistic relies on our joint eigenvalue-eigenvector distribution
in case w ∈ Span{vt}t∈I, while the limiting distribution of the second statistic relies on the
joint eigenvalue-eigenvector distribution in case w ∈ Span{vj}j∈J1,MK\I. This explains the
necessity for us to derive the distribution of the projection onto general directions. Third, in
two applications, if we construct the test statistics, using the result in Theorem 2.7 solely,
the limiting distribution of the statistics will contain the parameters di’s, which are normally
unknown in real application. Hence, in order to construct adaptive statistics which do not
depend on the unknown parameters di’s, we use a plug-in estimator of di which is given in
terms of µi. Then, in order to derive the distribution of these adaptive statistics, we have to
establish the joint eigenvalue-eigenvector distribution, as what we have in Theorem 2.10, and
its multiple extension in Proposition I.4 of [12].

Organization: The paper is organized as the following: In Section 2, we state our main
results and proof strategy. In Section 3, we discuss several applications of our results and
present the simulation results. In Section 4, we provide a sketch for our proof strategy. Tech-
nical proofs and additional simulation results are deferred to supplement [12].

Notation: Throughout the paper, the sample size N will be the fundamental parameter
which goes to∞. The symbol oN (·) stands for any quantity going to 0 as N goes to∞. We
use c and C to denote positive finite constants that do not depend on N . Their values may
change from line to line. For two positive quantities AN ,BN depending on N we use the
notation AN �BN to denote the relation C−1AN ≤BN ≤ CAN for some constant C > 1.
Further, we write AN

.
=BN if AN =BN (1 + oN (1)).

For vectors v,w ∈ CN , we write v∗w = 〈v,w〉 for their scalar product. We emphasize
here, unless otherwise specified, the vectors in this paper are real vectors and thus v∗w =
v>w. Further, for a matrix A, we denote by ‖A‖op its operator norm, while we use ‖v‖ to
represent the `2 norm for a vector v.

We use double brackets to denote index sets, i.e. for n1, n2 ∈ R, Jn1, n2K := [n1, n2] ∩ Z.
In addition, we use 1n = 1√

n
(1, . . . ,1)∗ to denote the n-dimensional normalized all-1 vector.

Further, we denote by 1(E) or 1E the indicator function of an event E.
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2. Main results. In this section, we state our main results.

2.1. Notations and assumptions. In this subsection, we introduce some necessary nota-
tions and technical assumptions. For any vectors al = (al(i)) ∈RM , l ∈ Z+, we set

sk1,··· ,kt(a1, · · · ,at) =

M∑
j=1

a1(j)k1 · · ·at(j)kt .(2.1)

For instance, s1,3(a1,a2) =
∑M

j=1 a1(j)a2(j)3. Rewrite the spectral decomposition of Σ as
Σ =

∑M
i=1 σiviv

∗
i = IM +

∑M
i=1 diviv

∗
i ,where dr+1 = · · ·= dM = 0. Further, we emphasize

here that the specific choice of the orthonormal vi’s for i= r+ 1, . . . ,M is irrelevant to our
discussion since only

∑M
j=r+1 viv

∗
i will be involved. In the sequel, we fix an i and consider

a (possibly) multiple di.
We will need the following notion of stochastic domination introduced in [37], which

provides a precise statement of the form “XN is bounded by YN up to a small power of N
with high probability”.

DEFINITION 2.1. (Stochastic domination) Let

X =
(
XN (u) :N ∈N, u ∈ UN

)
, Y =

(
YN (u) :N ∈N, u ∈ UN

)
be two families of random variables, where Y is nonnegative, and UN is a possibly N -
dependent parameter set. We say that X is bounded by Y , uniformly in u, if for all small
% > 0 and large φ > 0, we have

sup
u∈UN

P
(
|XN (u)|>N%YN (u)

)
≤N−φ

for large N ≥N0(%,φ). Throughout the paper, we use the notation X =O≺(Y ) or X ≺ Y
when X is stochastically bounded by Y uniformly in u. Note that in the special case when X
and Y are deterministic, X ≺ Y means for any given % > 0, |XN (u)| ≤N%YN (u) uniformly
in u, for all sufficiently large N ≥N0(%). In addition, we also say that an N -dependent event
E ≡ E(N) holds with high probability if, for any large ϕ> 0,

P(E)≥ 1−N−ϕ,

for sufficiently large N ≥N0(ϕ).

To ease our statements, we will need the following definition.

DEFINITION 2.2. Two sequences of random vectors, XN ∈ Rk and YN ∈ Rk, N ≥ 1,
are asymptotically equal in distribution, denoted by XN ' YN , if they are tight (i.e., for any
ε > 0, there exists a D> 0 such that supN P(‖XN‖ ≥D)≤ ε ) and satisfy

lim
N→∞

(
Ef(XN )−Ef(YN )

)
= 0

for any bounded continuous function f : Rk→R.

Next, we impose the necessary technical assumptions.

ASSUMPTION 2.3. Throughout the paper, we suppose the following assumptions hold.
(i)(On dimensionality ): We assume that M ≡M(N) and N are comparable and there exist
constants τ2 > τ1 > 0 such that

y ≡ yN =M/N ∈ (τ1, τ2).(2.2)
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(ii)(On X): For the matrix X = (xij), we assume that the entries xij ≡ xij(N) are real
random variables satisfying

Exij = 0, Ex2
ij = 1/N.

Moreover, we assume the existence of large moments, i.e., for any integer p≥ 3, there exists
a constant Cp > 0, such that

E|
√
Nxij |p ≤Cp <∞.(2.3)

We further assume that all
√
Nxij’s possess the same 3rd and 4th cumulants, which are

denoted by κ3 and κ4 respectively.

We mention that the moment assumption (2.3) can be relaxed using some truncation tech-
niques. Moreover, we can extend our results to allow different third and fourth cumulants.
We do not pursue these generalizations in the current paper. For more discussions on these
directions, we refer to Section A of our supplement [12]. Further, since we will focus on the
supercritical regime, we make the following assumption.

ASSUMPTION 2.4. Let ε > 0 be any small but fixed constant. Let di ≡ di(N), i ∈ J1, rK
be the eigenvalues of S in (1.3). There exists a maximum integer r0 ≡ r0(ε) ∈ J1, rK, such
that for any i ∈ J1, r0K,

di − y1/2 >N−
1

3
+ε(2.4)

for all sufficiently large N ≥N0(ε). Moreover, for a fixed i ∈ J1, r0K, there exists a (unique)
index set I≡ I(i)⊂ J1, r0K such that i ∈ I and for any t ∈ I,

dt = di, δi := min
j∈Ic
|di − dj |> d

3/2
i (di − y1/2)−

1

2N−
1

2
+ε,(2.5)

where we denote Ic := J1, rK \ I. By definition, δt (or I(t)) is the same for all t ∈ I(i). Finally,
in case di ≡ di(N)→∞ as N →∞ for some i, we additionally assume that |y− 1| ≥ τ0 for
some small but fixed τ0 > 0.

REMARK 2.5. It is known that the BBP phase transition takes place in the regime
di − y1/2 ∼ N−

1

3 ; see for instance [9, 53, 21]. Hence, (2.4) ensures that we are in the su-
percritical regime. Further, note that we do not assume the spikes di ≡ di(N) to be bounded
in N . That means, we do allow di ∼N c for any c > 0, say. In (2.5), the first identity means
that we allow di to be multiple. And the second inequality is the so-called non-overlapping
condition which guarantees that the distinct (possibly multiple) di’s are well-separated such
that the eigenvalues µi’s corresponding to distinct di’s do not have essential overlap on the
scale of fluctuation; see detailed explanation in [21] for instance. Note that the prefactor d3/2

i
is not included in the non-overlapping condition in [21]. But this factor is needed to cover
the case when the N -dependent di is large. We emphasize here that in reality, it can certainly
happen that two distinct di’s are close enough to violate the non-overlapping condition. How-
ever, in this case, since the fluctuation of their sample counterparts, µi’s, have essential over-
lap, effective inference of di’s based on µi’s is believed to be impossible in general. Also,
since eigenvectors are sensitive to the eigenvalue gap, in this case, inference of vi’s based
on ξi’s will also be unreliable. Therefore, the non-overlapping condition together with (2.4)
can be regarded as a nearly minimal condition for a reliable detection of spikes. Finally, the
restriction |y− 1| ≥ τ0 when di diverges is purely technical and we conjecture that our result
shall hold without this restriction, as illustrated in Figure B.1 of our supplementary file [12,
Section B.2]. But this extension will be left as future work.
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Let I ≡ I(i) be the index set of this multiple di in Assumption 2.4. In order to study the
generalized components of the eigenvectors of the |I|-fold multiple di, we introduce

ZI :=
∑
t∈I
vtv
∗
t ,(2.6)

the orthogonal projection onto Span{vt}t∈I and the corresponding random projection

PI :=
∑
t∈I
ξtξ
∗
t ,(2.7)

which is the sample counterpart of ZI. Note that in case |I| > 1, it is meaningless to do
statistical inference for an individual diviv∗i , since there is an arbitrariness in the choice of
{vt}t∈I as a basis for certain subspace. Hence, it is more natural to study ZI and its sample
counterpart. For any unit w ∈RM , denote its projection onto Span{vt}t∈I by

wI := ZIw,(2.8)

and its weighted projection onto Span{vj}j∈J1,MK\I by

ςI :=
∑

j∈J1,MK\I

di
√
dj + 1

di − dj
〈w,vj〉vj(2.9)

with its normalized version

ς0
I :=

{
ςI/‖ςI‖, if ςI 6= 0;

0, otherwise.
(2.10)

2.2. Main theorems. In this subsection, we state the main theorems regarding the gener-
alized components. The results involve two symmetric (r + 2)× (r + 2) matrices Aw

I and
Bw

I which are used to construct the covariance matrix of a random vector in the main result
(c.f. (2.12)). The expressions of Aw

I and Bw
I are rather involved, and thus we state their defi-

nition in (E.1) and (E.2) of [12]. In Example 2.6 below, we consider a simple rank one spiked
model, for which the matrices Aw

I and Bw
I admit simple forms.

EXAMPLE 2.6. Consider a rank one spiked model such that S = dvv∗ in (1.3). As we
will see from the statistical applications in Section 3, we are mainly interested in under-
standing the distribution of w∗ξ1 with w = v or w ∈ {v}⊥. For these choices of w, the
matrices Aw

I and Bw
I are described below. (1):w = v. In this case,w1 = v and ς1 = ς0

1 = 0.
A1 ≡Aw

1 is 3× 3 symmetric matrix whose non-zeros entries are A1(1,1),A1(2,2),A1(3,3)
and A1(2,3). As we will see later in Remark 2.9, only A1(1,1) will appear in the results.
Finally, for B1 ≡ Bw

1 , the only non-zero entry is B1(1,1). (2): w ∈ {v}⊥. In this case,
w1 = 0, ς1 = ς0

1 . The only non-zero entries for A1 and B1 are A1(3,3) and B1(3,3), respec-
tively.

THEOREM 2.7. Suppose that Assumptions 2.3, 2.4 and the setting (1.4) hold. Fix an i ∈
J1, r0K and letw ∈ SM−1

R be any deterministic unit vector. Then there exist random variables
Θw

wI
,Λw

ςI ,{∆
w
vt
}t∈I,{Πw

vj
}j∈Ic such that 〈w,PIw〉 admits the following expansion

〈w,PIw〉=
d2
i − y

di(di + y)
〈w,ZIw〉+

1√
N(d2

i − y)
Θw

wI
+
‖ςI‖

√
di − y1/2

√
Ndi

Λw
ςI

+
‖ςI‖2

Ndi

∑
t∈I

(∆w
vt

)2 − 1

N

∑
j∈Ic

didj
(di − dj)2

(Πw
vj

)2
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+O≺

(
1

N
1

2
+ε

( ‖wI‖2√
d2
i − y

+ ‖wI‖‖ςI‖
√
di − y1/2

di

))

+O≺

(
1

N1+ε

(‖ςI‖2
di

+ ‖wI‖2
∑
j∈Ic

didj
(di − dj)2

))
(2.11)

for some small constant ε > 0, and(
Θw

wI
,Λw

ςI ,{∆
w
vt
}t∈I,{Πw

vj
}j∈Ic

)
'N

(
0,Aw

I + κ4
d2
i − y
d2
i

Bw
I

)
.(2.12)

Here N (0,Aw
I + κ4

d2
i−y
d2
i
Bw

I ) represents a Gaussian vector with mean 0 and covariance

matrix Aw
I + κ4

d2
i−y
d2
i
Bw

I with Aw
I and Bw

I defined in (E.1) and (E.2) respectively.

REMARK 2.8. Here we further explain how to read off the information of the limiting
behaviour of 〈w,PIw〉 from the expansion in (2.11). The first term in the RHS of (2.11) is the
first order deterministic estimator of 〈w,PIw〉 which can be biased in the high-dimensional
case, especially when di is a fixed constant independent of N . The second and the third
terms in the RHS of (2.11) are asymptotically normal, and the fourth and fifth terms are
(asymptotically) linear combinations of χ2, according to (2.12). These four terms together
describe the limiting distribution of 〈w,PIw〉 − d2

i−y
di(di+y)〈w,ZIw〉, after appropriate scaling.

We further emphasize here that the sizes of the first five terms may not be comparable and
it is not uniformly determined which one is the leading term in all cases. Under different
choices of di’s andw, say, the leading term may change. However, in any case, the two error
terms in (2.11) are always smaller than the sum of the second to the fifth terms with high
probability. This can be checked easily from the sizes of the entries in the covariance matrix
Aw

I + κ4
d2
i−y
d2
i
Bw

I . Hence, from the expansion (2.11), one can get the limiting distribution of

〈w,PIw〉 − d2
i−y

di(di+y)〈w,ZIw〉 in all cases.

In the next remark, we show how to get the limiting distribution for some specific exam-
ples. For brevity, we introduce the following auxiliary functions for d > 0

f(d) :=
y(1 + d)

d(d+ y)

(
1 +

d(1 + d)

d+ y

)
, g(d) :=

2
√

(d+ 1)(d+
√
y)

d+ y
,(2.13)

h(d) :=
d+ 1

d+ y
, l(d) :=

1 + d√
d(d+ y)

.(2.14)

REMARK 2.9. If w ∈ Span{vt}t∈I, then wI = w and ςI = 0 (c.f. (2.8), (2.9)). Hence,
the Λw

ςI and ∆w
vt

terms vanish for all t ∈ I. The conclusion of Theorem 2.7 is reduced to

〈w,PIw〉=
d2
i − y

di(di + y)
+

1√
N(d2

i − y)
Θw

w −
1

N

∑
j∈Ic

didj
(di − dj)2

(Πw
vj

)2

+O≺

( N−ε√
N(d2

i − y)
+
N−ε

N

∑
j∈Ic

didj
(di − dj)2

)
,(2.15)

for some small ε > 0, and (Θw
w,{Πw

vj
}j∈Ic) is asymptotically Gaussian with mean 0 and

covariance matrix with entries given by the RHS of the following equations

var(Θw
w)

.
= 2yh(di)

2(1 + yh(di)
2) + κ4

d2
i − y
d2
i

f(di)
2s4(w),
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var(Πw
vj

)
.
= l(di)

2 + κ4
d2
i − y
d2
i

l(di)
2s2,2(vj ,w),

cov(Θw
w,Π

w
vj

)
.
= κ4

d2
i − y
d2
i

f(di)l(di)s1,3(vj ,w),

cov(Πw
vj
,Πw

vj̄
)
.
= κ4

d2
i − y
d2
i

l(di)
2s1,1,2(vj ,vj̄ ,w),

for j, j̄ ∈ Ic. In particular, if κ4 = 0, the limiting distribution of 〈w,PIw〉 does not depend
on the specific choice of w ∈ Span{vt}t∈I. Here we recall the notation AN

.
=BN for AN =

BN (1 + oN (1)).
If w ∈ Span{vj}j∈J1,MK\I, then wI = 0 and thus (2.11) becomes

〈w,PIw〉=
‖ςI‖2

Ndi

∑
t∈I

(∆w
vt

)2 +O≺

( ‖ςI‖2
N1+εdi

)
.(2.16)

Finally, for the rank one spiked model considered in Example 2.6, we have more compact
formulas. In particular, we have that for w = v,

√
N√
V

(
|〈v,ξ1〉|2 −

d2 − y
d(d+ y)

)
'N (0,1),(2.17)

where V is defined by

V =

(
2yh(d)2(1 + yh(d)2) + κ4

d2 − y
d2

f(d)2s4(v)

)/
(d2 − y).

Moreover, when w ∈ {v}⊥, we have

Nd|〈w,ξ1〉|2

`1
' χ2

1, `1 =
d+ 1

d+ y
(1 +

d2 − y
d2

κ4s2,2(v,w)).(2.18)

Our second result is the joint eigenvalue-eigenvector distribution, i.e., joint distribution of
the outlying eigenvalues and the generalized components of the associated eigenvectors. We
state it for the case when di is simple, i.e. I = {i}. For simplicity, we abbreviate the notation
A{i} to Ai for A =w,P,Φ, etc. Further, we use {i}c to represent J1, rK \ {i}.

THEOREM 2.10. Under the same assumptions as Theorem 2.7, with I = {i} and
wi = 〈w,vi〉vi, the conclusion of Theorem 2.7 for the generalized component 〈w,Piw〉 =
|〈w,vi〉|2 holds. Additionally, there exists a random variable Φi such that the outlying eigen-
value admits the expansion

µi = 1 + di + y+
y

di
+

√
d2
i − y√
N

Φi +O≺

(√d2
i − y

N
1

2
+ε

)
,(2.19)

for some small constant ε > 0, and(
Φi,Θ

w
wi
,Λw

ςi ,∆
w
vi
,{Πw

vj
}j∈{i}c

)
'N (0,Cw

i ) .

Here N (0,Cw
i ) represents a Gaussian vector with mean 0 and covariance matrix Cw

i of
size r+ 3. The lower right (r+ 2)× (r+ 2) corner of Cw

i is given by Aw
i + κ4

d2
i−y
d2
i
Bw
i as
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in (E.1) and (E.2). The entries of the first row of Cw
i is given by the RHS of the following

equations

var(Φi)
.
= (1 + d−1

i )2
(

2 + κ4
d2
i − y
d2
i

s4(vi)
)
,

cov(Φi,Θ
w
wi

)
.
= 2yh(di)

2(1 + d−1
i )〈w,vi〉2 + κ4

d2
i − y
d2
i

(1 + d−1
i )f(di)s2,2(wi,vi),

cov(Φi,Λ
w
ςi )

.
= κ4

d2
i − y
d2
i

g(di)(1 + d−1
i )s1,1,2(ς0

i ,wi,vi),

cov(Φi,∆
w
vi

)
.
= κ4

d2
i − y
d2
i

√
h(di)(1 + d−1

i )s1,3(ς0
i ,vi),

cov(Φi,Π
w
vj

)
.
= κ4

d2
i − y
d2
i

l(di)(1 + d−1
i )s1,1,2(vj ,wi,vi), for j ∈ {i}c.

Here we recall the notation AN
.
=BN for AN =BN (1 + oN (1)).

REMARK 2.11. Here we remark that in the supercritical regime, a generalized CLT for
the eigenvalues has been established in [7] previously, for fixed di’s which are away from
y1/2 by a constant order distance. When there is a multiple di in the supercritical regime
with multiplicity |I|, it is known from [7] that the corresponding eigenvalues {µt}t∈I will
converge jointly to the eigenvalues of a |I| × |I| Gaussian matrix GOE. Since it is not con-
venient to express the distribution of the eigenvalues of this fixed-dimensional GOE and
their dependence with the the generalized components of ξi’s, we are not going to state
the joint eigenvalue-eigenvector distribution in the multiple case here. Nevertheless, we will
state the joint distribution of the generalized components of ξi and all the matrix entries
of this limiting GOE in Section I of the supplement [12] which equivalently describes the
joint eigenvalue-eigenvector distribution; see Proposition I.4 in [12]. Finally, we point out
that since the covariance matrix of the joint eigenvalue-eigenvector distribution is provided
explicitly, we can explore the independence/dependence between the eigenvalues and eigen-
vectors. For example, as we can conclude from Section I of [12], when the spikes are distinct
and well separated, the outlier eigenvalues will be asymptotically independent. Moreover,
{v∗i ξi}1≤i≤r will also be asymptotically independent.

3. Statistical inference for principal components. In this section, we apply our results
and their variants to some statistical problems. We will focus on the hypothesis testing regard-
ing the eigenspaces of covariance matrices. Eigenspaces of covariance matrices are important
in many statistical methodologies and computational algorithms. A lot of efforts have been
made to infer the eigenspace of the covariance matrices in the setting M �N , for instance,
see [42, 56, 69, 82, 83].

In this section, we consider a generic index set I ⊂ J1, r0K, which may contain indices for
both simple and multiple dt’s. Further, we set

ZI =
∑
t∈I
vtv
∗
t .(3.1)

We remark here that ZI shall be regarded as an extension of ZI(i) defined in (2.6), in the
sense that the former may be constituted of vt’s associated with distinct dt’s.

Specifically, in the literature [2, 6, 19, 42, 56, 69, 82, 83], researchers are particularly
interested in testing the following hypothesis: for I ⊂ J1, r0K,

(3.2) H
(1)
0 : ZI = Z0 vsH(1)

a : ZI 6= Z0
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for a given projection Z0. For the alternative H(1)
a in (3.2), we are particularly interested in

testing a subset of it by considering whether Z0 is in the complement of ZI . Specifically, the
hypothesis testing problem can be formulated as

(3.3) H
(2)
0 : ZI ⊥ Z0 vsH(2)

a : ZI 6⊥ Z0.

Note that (3.3) is the complement of the test considered in [84, 85] and hence it can be used
to study the alternative in [84, 85]. The above hypothesis testing problems also naturally
arise from applications in financial economics and biology. For instance, in [2] the authors
discuss the principal eigenportfolio construction (i.e., first eigenvector) in finance and [6] is
devoted to the study of some specific factor (i.e, one of the eigenvectors) in macroeconomics.
Moreover, in [19], the authors propose a method to estimate the eigenvector and consider ap-
plications in gene expression. Consequently, a testing for such an estimation will be natural.

In Section 3.1, we propose accurate and powerful statistics for the aforementioned hypoth-
esis testing problems (3.2) and (3.3) in the high dimensional regime (2.2). We construct test
statistics using some plug-in estimators, which are nonlinear shrinkers of the sample eigen-
values. Consequently, the proposed statistics are adaptive to di’s. Our test statistics for these
two problems are denoted by T1 and T2, respectively, whose definitions are stated below

T1 =

√
N
∑

i∈I

(
〈ui,PIui〉 − ϑ(d̂i)

)
√
V1(d̂I)

, T2 =
N
∑

i∈I,j∈J 〈ξi,uj〉2

q(d̂ )
,

where we assume that Z0 =
∑

i∈I uiu
∗
i in the first testing problem and Z0 =

∑
j∈J uju

∗
j

for some fixed index set J with a family of orthonormal vectors {uj}j∈J in the second
testing problem. Here we refer to (3.6), (3.9)-(3.10) and (3.14)-(3.16) for the definitions of
d̂i, V1(d̂I) and q(d̂ ), respectively. Then we derive the distributions of T1 and T2 utilizing
the joint distribution of the eigenvalues and eigenvectors given in Section 2 and its extensions
in Section I of [12]. It turns out T1 is asymptotically normal (c.f. Corollary 3.4) and the
limiting distribution of T2 can be described by certain quadratic form of a Gaussian vector
(c.f. Corollary 3.10). The rejection regions are constructed based on the distributions of the
proposed statistics. In Section B.4 of the supplement [12], we also work on a real example
on gene expression data to demonstrate the usefulness of our test statistic T2.

We mention that this methodology can be potentially applied to perform statistical infer-
ence and build up confidence intervals for other statistics related to the principal components.
For instance, the loadings of principal components [50], the shrinkage of eigenvalues [36],
the number of spikes [35, 75], the estimation of eigenvectors [63] and the invariant estimator
for covariance matrices [25, Section 6]. These applications will be studied in the future.

3.1. Test statistics and their asymptotic distributions. In this section, we propose statis-
tics to test (3.2) and (3.3). We start with (3.2). In what follows, we construct a data-dependent
statistic to address the high dimensional issue. Denote Z0 =

∑
i∈I uiu

∗
i . We first study

T1 :=
∑
i∈I

(
〈ui,PIui〉 − ϑ(d̂i)

)
,(3.4)

where

PI =
∑
i∈I
ξiξ
∗
i , ϑ(d) =

d2 − y
d(d+ y)

(3.5)

and d̂i is a nonlinear shrinkage of the sample eigenvalues defined by

(3.6) d̂i = γ(µi), γ(x) =
1

2
(−y+ x− 1) +

1

2

√
(−y+ x− 1)2 − 4y.
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We remark here that PI shall be regarded as an extension of PI(i) defined in (2.7), in the sense
that the former may be constituted of ξt’s associated with distinct dt’s. Further, we remark,
according to the definition in (3.4), the statistic T1 does not depend on the specific choice of
the basis {ui} of Z0. Hence, we have a freedom to choose any basis {ui} of Z0 in the sequel.

Since we are studying general I in this section, the indices in I may not belong to the
same multiple dt’s. To facilitate our discussion in the sequel, we do a decomposition of I
into subsets with each consisting of the indices for one multiple (or simple) dt. For I =

{i1, · · · , ir∗} ⊂ J1, r0K, we assume that I =
⋃`
k=1 Ik for some fixed integer ` such that Ik ∩

Ij = ∅ for k 6= j ∈ J1, `K. We assume that (2.5) holds for all the di, i ∈ I . For each i ∈ I ,
there is a ki ∈ J1, `K, such that i ∈ Iki . Moreover, we suppose that for 1 ≤ k ≤ `, dt, t ∈ Ik
are all the same, and di 6= dj for i ∈ Iki , j /∈ Iki . Note that by definition Iki ≡ I(i) (c.f.
Assumption 2.4). Further note that `= r∗ corresponds to the case that all the spikes in I are
simple , `= 1 corresponds to the case that all the spikes are equal and 1< ` < r∗ corresponds
to a mixture case.

For brevity, in the first testing problem (3.2), we further restrict ourselves to the case
satisfying the following assumption.

ASSUMPTION 3.1. Let the index set I ⊂ J1, r0K be defined above. We assume that for
any i ∈ I , the following inequality holds

1

N

∑
j∈(I(i))c

didj
(di − dj)2

≤N−ε 1√
N(d2

i − y)
.(3.7)

for some small but fixed ε > 0. Here i ∈ Iki ≡ I(i) for some ki ∈ J1, `K.

REMARK 3.2. We remark here that the inequality (3.7) ensures that the χ2 terms in
(2.15) are suppressed by the Gaussian term. We impose such a condition in order to simplify
the discussion in the application part, thanks to the simplicity of the Gaussianity. But our
result can be applied without this additional assumption. In the general case, we need to
work with a linear combination of Gaussian and χ2 variables. For brevity, we omit such a
general discussion and leave it to the future work.

We record the results regarding the asymptotic distribution of (3.4) in the following theo-
rem and postpone its proof to Section I of [12].

THEOREM 3.3. Suppose that Assumptions 2.3 , 2.4, and the setting (1.4) hold. Suppose
that H(1)

0 of (3.2) and Assumption 3.1 hold. For the statistic (3.4), we have that

(3.8)

√
NT1√
V1(dI)

'N (0,1),

where V1(dI),dI = (di1 , · · · , dir∗ ) is defined as

V1(dI) :=α∗CIα.

Here α= (α1, · · · , α2r∗)
∗ ∈R2r∗ is defined as

αk =

{
−y(d2

ik
+ 2dik + y)(dik + y)−2(d2

ik
− y)−

1

2 , 1≤ k ≤ r∗;
(d2
ik−r∗

− y)−
1

2 , r∗ + 1≤ k ≤ 2r∗,

and CI is a positive definite matrix of dimension 2r∗ and explicitly defined in Proposition I.1
of [12]. Particularly, when all the spikes dt, t ∈ I are equal to de, i.e., I = I(i) for some i,
we have that
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V1(dI) = 2(d2
e − y)−1

(
yh(de)

2|I| − y(d2
e + 2de + y)(1 + de)

(de + y)2de

)2

+ 2(d2
e − y)−1

(
yh(de)

2|I|+ y2h(de)
4(|I| − |I|2)

)
+ κ4

(f(de)

de
− y(d2

e + 2de + y)(1 + de)

(de + y)2d2
e

)2 ∑
k,t∈I

s2,2(vk,vt),(3.9)

where h(·) and f(·) are defined in (2.13) and (2.14).

By Theorems 3.3 and 2.10, we can construct a pivotal statistic. Rewrite

(3.10) T1 =

√
NT1√
V1(d̂I)

, d̂I := (γ(µi1), · · · , γ(µir∗ )).

We mention that (3.10) is adaptive to the di’s by utilizing their estimators (3.6). We summa-
rize the distribution of T1 in the corollary below.

COROLLARY 3.4. Under the assumptions of Theorem 3.3, we have that

T1 'N (0,1).

Since T1 is asymptotically pivotal, we will use (3.10) as our statistic for the testing of (3.2).
For an illustration, we record the behavior of our statistic for a single spike model (i.e., r0 =
r∗ = 1) in Figure 1. The more general and extensive simulations will be conducted in Section
3.2. We find that under the null hypothesis of (3.2), our proposed statistic is close to N (0,1)
for different values of d and hence it is suitable for the hypothesis testing problem (3.2). We
mention that even though we have not justified the case di diverges under the assumption y =
1 theoretically, our statistic is still accurate and powerful according to empirical illustrations
for this case. Hence, in the sequel, we also present the simulation results for the case y = 1.

In what follows, we provide a few examples with explicit formulas of V1(·). These will be
used for the simulations in Section 3.2.

EXAMPLE 3.5. We consider that I = {1,2}, both d1 and d2 are simple and vi = ei, i=
1,2. In this case, we have that

V1(d1, d2) =

2∑
i=1

α∗
[
A11(di)A12(di)
A21(di)A22(di)

]
α,

where

α=
(
− y(d2

i + 2di + y)

(di + y)2(d2
i − y)

1

2

, (d2
i − y)−

1

2

)∗
A11(di) = 2(1 + d−1

i )2 + κ4(1− yd−2
i )(1 + d−1

i )2,

A12(di) = 2yh(di)
2(1 + d−1

i ) + κ4(1− yd−2
i )f(di)(1 + d−1

i ),

A22(di) = 2yh(di)
2(1 + yh(di)

2) + κ4(1− yd−2
i )f(di)

2,

and the functions h(·) and f(·) are defined in (2.13) and (2.14).
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Fig 1: Simulated empirical cumulative distribution function (ECDF) for the proposed statistic (3.10) under null
of (3.2) with r0 = r∗ = 1. Here, the spiked covariance matrix is denoted as Σ = diag(d+1,1, · · · ,1) and we use

the statistic
√
N(|〈ξ1,e1〉|2 − ϑ(d̂))/

√
V1(d̂ ), where V1(d) = 1

2V1(d, d); see Example 3.5 for the definition of
V1(·, ·). Here N = 500 and we report our results based on 8,000 simulations with Gaussian random variables.

EXAMPLE 3.6. We consider the case that I = {1,2} with d1 = d2 = d and vi = ei, i=
1,2. In this case, we have that

V1(d, d) =2(d2 − y)−1
(

2yh(d)2 − y(d2 + 2d+ y)(1 + d)

(d+ y)2d

)2

+ 2(d2 − y)−1
(

2yh(d)2 − 2y2h(d)4
)

+ κ4

(f(d)

d
− y(d2 + 2d+ y)(1 + d)

(d+ y)2d2

)2 ∑
k,t∈I

s2,2(vk,vt).

REMARK 3.7. We provide some remarks on the asymptotic power of the statistic T1 for
a rank-one spiked model assuming that r = r0 = 1 as in Assumption 2.4. Note that for any
given nominal level (i.e., type I error rate) α, according to Corollary 3.4, our critical region is
constructed as {|T1|> z1−α/2}, where z1−α/2 is the (1− α/2) quantile of a standard Gaus-
sian distribution. Recall that in this setting wk = 〈v0,vk〉,1≤ k ≤M. Under the alternative
H

(1)
a , our test statistic can be decomposed as

T1 =

√
N

(〈
ξ1,w1v1 +

∑M
k=2w2vk

〉2
− ϑ(d̂1)

)
√
V1(d̂1)

=

√
N
(
〈ξ1,w1v1〉2 − ϑ(d̂1)

)
√
V1(d̂1)

+O≺(1)

=

√
N
(
〈ξ1,v1〉2 − ϑ(d̂1)

)
√
V1(d̂1)

+ (w2
1 − 1)

√
N 〈ξ1,v1〉2√

V1(d̂1)
+O≺(1) =: T11 +T12 +O≺(1).

According to Corollary 3.4, T11 is asymptotically Gaussian. Since 〈ξ1,v1〉2 � 1 with high
probability, if we assume that for some 0< δ ≤ 1/2

(3.11) 1−w2
1 ≥

√
V1(d̂1)N−1/2+δ,
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then with high probability |T12| → ∞ as N →∞. Consequently, under the nominal level
α, we need to reject H(1)

0 . This implies that once we have a small deviation from the null
hypothesis, our statistic will be able to reject it.

Next, we consider the hypothesis testing problem (3.3). In this case, we further assume
that the true model or the population matrix Σ only contains supercritical spikes, i.e.,

r0 = r.(3.12)

It will be seen that if there exist subcritical spikes, one will need to provide a plug-in es-
timator of the subcritical di’s in order to raise a test statistic which is adaptive to all the
spiked eigenvalues. However, it is well-known now that an effective detection of subcritical
di’s based on µi’s is impossible in general [65, 66, 67, 78], unless one employs additional
information such as the structure of vi’s [88]. And also, indeed, in many applications, di’s
are very large and even divergent, and thus are certainly supercritical. Hence, in the sequel,
we will focus on the case when (3.12) is satisfied. Nevertheless, we would like to mention
the problem of detecting weak spikes has also been considered in the literature. For example,
assuming X is Gaussian, the power of likelihood ratio test was studied in [71, 72]. Later on,
the maximal asymptotic power among tests based on linear spectral statistics was studied in
[33] for a more general spiked model which recovers [71, 72] as a special case.

Suppose that in this case Z0 =
∑

j∈J uju
∗
j for some fixed index set J and {uj}j∈J is a

family of orthonormal vectors. We define the following test statistic

(3.13) T2 =
∑

i∈I,j∈J
〈ξi,uj〉2.

The asymptotic distribution of T2 is recorded in the following theorem. It turns out that its
asymptotic distribution coincides with linear combinations of χ2 variables. For convenience,
we first define d := (d1, . . . , dr) and

q(d) := max
i∈I,j∈J

∑
k∈J1,MK\I

h(di)
di(dk + 1)

(di − dk)2
〈uj ,vk〉2(3.14)

which depends on the subspace Z0 and all the di’s for i ∈ J1, rK. Here dr+1 = · · ·dM = 0.
We emphasize that all di’s for i ∈ J1, rK satisfy (2.4) and (2.5) in this part.

THEOREM 3.8. Suppose that Assumptions 2.3 , 2.4, and the settings (1.4) and (3.12)
hold. Suppose that H(2)

0 of (3.3) holds true. For the statistic T2 defined in (3.13), we have

NT2

q(d)
' g

∗Ug

q(d)
,(3.15)

where g ∈ R|I||J |, g ∼ N (0, I|I||J |), and U ≡ U(d) is a symmetric matrix of dimension
|I||J | defined explicitly in Proposition I.1 of [12].

REMARK 3.9. We remark that in (3.15), the factor 1/q(d) on both sides is used to scale
the quantities to order one, since the notation “' ” (c.f. Definition 2.2) requires the tightness.

The results of Theorem 3.8, especially q(d) andU , still contain the values of di, i ∈ I and
also the other nonzero spikes dj , j ∈ Ic which are all supercritical (c.f. (3.12)) so that we can
use (3.6) to estimate them all. To construct a data-dependent statistic, we can use the plug-in
estimator (3.6) to generate critical values of the hypothesis testing (3.3) using the samples.
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COROLLARY 3.10. Under the assumptions of Theorem 3.8, we have that

T2 :=
NT2

q(d̂ )
' g

∗Ûg

q(d̂ )
, where Û :=U(d̂ ), and d̂ := (d̂1, . . . , d̂r).(3.16)

We can use our statistic T2 with the critical values generated from Corollary 3.10 to study
the hypothesis testing problem (3.3). Here we shall point out that although our statistic T2 is
adaptive to the di’s, it is nevertheless dependent on {vi}i∈J1,rK\I and also a κ4 term which
involves some {vi}i∈I -dependent parameters of the form s1,1,1,1(·, ·, ·, ·); see the definition
of U in Proposition I.1 in [12]. Hence, first of all, we shall only apply our statistic T2 in
case either {vi}i∈J1,rK\I is known a priori, or I = J1, rK such that the set {vi}i∈J1,rK\I is
empty. In practice, this restriction is mild and fits the following real scenario: if some of the
vi’s are already known, we only need to do inference for those unknown vi’s, while if none
of the vi is known a priori, we consider the inference for all {vi}i∈J1,rK together. Certainly,
it is also natural to consider a part of vi’s even if none of them is known, as what we did
in the test (3.2). Nevertheless, due to the restriction of the theoretical result, we focus on the
aforementioned scenario, which is more restricted but still very natural. Second, the unknown
κ4 term will be absent in case we consider the Gaussian matrix X which is often the case in
reality. Hence, in the Gaussian case, we can apply our statistic directly if we restrict ourself to
the aforementioned scenario of vi’s. Nevertheless, for the reader’s reference, we also present
our simulation study in our supplementary file [12] for the two-point case, as if the additional
parameter, the κ4 term, was known a priori. Here, we remark that the restriction of scenario to
apply our theoretical result for the test (3.3), which is not necessary for (3.2), is actually quite
reasonable. Note that, in (3.2), the necessary parameters from {vi}i∈I are completely fixed
by the null hypothesis, and the distribution of our statistic (under the null hypothesis) can be
expressed in terms of these given parameters. However, in the test (3.3), our null hypothesis
is ZI ⊥ Z0. In case that the rank of the projection of the given Z0 is small, as a low-rank
subspace living in the complement of Z0, ZI can have many choices and thus there is a big
uncertainty on the unknown parameters of ZI which cannot be fixed by Z0.

For an illustration, we record the behavior and power of our statistic for a single spiked
model (i.e., r0 = r = 1) in Figure 2. We find that our proposed statistic is close to Chi-
square distribution with one degree of freedom for various values of d and hence it can be
applied for testing (3.3) for this single spike model. For more general case, the asymptotic
distribution of (3.13) is a linear combination of Chi-square distributions. We will conduct
extensive simulations in Section 3.2.

We next consider a few examples to specify the asymptotic distribution stated in Theorem
3.8 and the results will be used in Section 3.2.

EXAMPLE 3.11. We consider that r0 = 3, I = {1,2}, di, i = 1,2,3 are simple and sat-
isfy (2.4), (2.5) and vi = ei, i = 1,2,3 and Z0 = e3e

∗
3 + e4e

∗
4. In this case, since ςe3

{1} =

d1

√
d3+1

d1−d3
e3, ςe3

{2} = d2

√
d3+1

d2−d3
e3 and ςe4

{1} = ςe4

{2} = e4 and s1,1,1,1(ei1 ,ei2 ,ej1 ,ej2) = 0 for

i1,2 = 1,2, j1,2 = 3,4. Further, q(d) = q(d1, d2, d3) = max{ (d3+1)d1h(d1)
(d1−d3)2 , h(d1)

d1
, (d3+1)d2h(d2)

(d2−d3)2 , h(d2)
d2
}.

We have that the statistic NT2/q(d) will be asymptotically distributed as

1

q(d)
g∗ diag

(
(d3 + 1)d1h(d1)

(d1 − d3)2
,
h(d1)

d1
,
(d3 + 1)d2h(d2)

(d2 − d3)2
,
h(d2)

d2

)
g,

where g ∈R4 is a standard Gaussian random vector, i.e., g ∼N (0, I4).
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Fig 2: Simulated empirical cumulative distribution function (ECDF) for the proposed statistic under null of (3.3)
with r0 = 1. Here, the spiked covaraince matrix is denoted as Σ = diag{d+ 1,1, · · · ,1} and Z0 = e3 in (3.3).
We use the statistic Nd̂(d̂+ y)|〈ξ1,e3〉|2/(d̂+ 1). Here d̂= γ(µ1),N = 500 and we report our results based
on 8,000 simulations with Gaussian random variables.

EXAMPLE 3.12. We consider that r0 = 3, I = {1,2}, d1 = d2 = d, d3 is distinct from d

by a distance of order 1, and vi = ei, i= 1,2,3. In this case, q(d) = max{ (d3+1)dh(d)
(d−d3)2 , h(d)

d }.
We have that the statistic NT2/q(d) will be asymptotically distributed as

1

q(d)
g∗ diag

(
(d3 + 1)dh(d)

(d− d3)2
,
h(d)

d
,
(d3 + 1)dh(d)

(d− d3)2
,
h(d)

d

)
g,

where g ∈R4 is a Gaussian random vector such that g ∼N (0, I4).

3.2. Simulation studies. In this subsection, we perform extensive Monte Carlo simula-
tions to study the finite-sample accuracy and power of our proposed statistics. We focus on
(3.2). The discussion on (3.3) can be found in Section B.5-B.7 of [12]. For (3.2), we not only
report our results but also compare them with the existing statistics in the literature. We will
call our statistics as Fr-Adaptive. Moreover, we use Fr-boostrap to represent the
bootstrapping method using the Frobenius norm proposed in [69], Fr-Bayes to represent
the frequentist Bayes using the Frobenius norm proposed in [83], Fr-DataDriven to rep-
resent the sample splitting method using the Frobenius norm proposed in [56], HPV-LeCam
to represent the Le Cam optimal test proposed in [42], En-bootstrap and En-Bayes
to represent the bootstrapping method and the frequentist Bayes method respectively using
the power-enhanced norm introduced in [82] with s1 = s2 = 1 (see Definition 3.1 of [82]),
and Sp-bootstrap and Sp-Bayes the bootstrapping method and the frequentist Bayes
method respectively using the spectral norm. In the following discussion, we compare the
performance of our Fr-Adaptive with all the aforementioned statistics.

In all the following simulations, we conduct 2,000 Monte-Carlo repetitions for the boot-
strapping and frequentist Bayes procedure. For the accuracy of the tests, we focus on re-
porting the results with the type I error rate 0.1 under different values of y = 0.1,1,10 and
various choices of the spikes. Moreover, we consider the following Scenario I to illustrate the
usefulness and generality of our results. In Section B.6 of our supplement [12], we conduct
more simulations when some of the spikes are equal, which will be called Scenario II.

Scenario I: We consider the case r0 = 3 with d1 = d + 7, d2 = 7 and d3 = 5, where
d takes a variety of values. We consider the hypothesis testing for the eigenspace of Σ =
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I +
∑3

i=1 dieie
∗
i with I = {1,2}, where the null is

(3.17) Z0 = e1e
∗
1 + e2e

∗
2.

In this scenario, the spiked eigenvalues are simple. We will consider the standard Gaussian
distribution and the two-point distribution 1

3δ
√

2 + 2
3δ− 1√

2
as the distribution of entries of X .

We mention that the asymptotic distribution of our statistic (3.10) under the null hypothesis
of (3.2) has been established in Examples 3.5 and 3.6 for Scenarios I and II, respectively.

For both of the two scenarios, we consider the alternative

(3.18) Za = v1(ϕ)v1(ϕ)∗ + v2(ϕ)v2(ϕ)∗,

where for ϕ ∈ [0, π2 ]

v1(ϕ) = cosϕe1 + sinϕe4, v2(ϕ) = cosϕe2 + sinϕe5.

Note that ϕ= 0 corresponds to the null case of (3.17). It is easy to see that κ4 =−1.5 for the
two-point distribution and κ4 = 0 for standard Gaussian random variable.

For Scenario I, from Tables 1–3, we find that our proposed statistic (3.10) is very accurate
even for small values of N and d. Moreover, our statistic reaches accuracy regardless of
the values of y. In contrast, for the other methods in the literature, we find that all of them
lose their accuracy when y increases (i.e. M increases). Moreover, we find that most of
the methods are conservative except for the Le Cam test. Finally, we find that some of the
methods, especially the frequentiest Bayes method with Frobenius norm, spectral norm or
the power-enhanced norm in [82] are also reasonably accurate for large values of d when y is
small. For Scenario II when some spikes are equal, we can obtain similar results as reported
in Section B.6 of [12]. For the two-point distribution, the results can be bound in Section B.7
of [12].

In summary, our proposed statistic (3.10) is quite accurate for different values of d sat-
isfying Assumption 2.4, even for small and multiple ones. This accuracy is robust against
different values of y. As summarized in [82, Section 7.4], all the previous methods in the
literature request that M �N. Therefore, when y increases (i.e., M diverges faster), we find
that our method performs better than all the other methods. Indeed, all our current results
can be extended to the regime logM � logN following the discussion of [21, 24]. We will
pursue this direction in the future work. Moreover, since the computational complexity of the
aforementioned methods depends on a polynomial order of the dimensionality M (see [82,
Section 7.4]), they can be computationally intensive as M diverges faster. In contrast, our
method works faster since it only depends on the sample eigenvalues and eigenvectors.

Then we compare the power of the above statistics under the alternative (3.18) for differ-
ent values of ϕ regarding Scenario I. First of all, we apply the above statistics directly for
d = 5,50, respectively, in Figures B.12 and B.13 of [12]. We find that our method is very
powerful even when y is relatively large and d is relatively small, and it outperforms the
other methods. When y is small and d is large, even though for larger values of ϕ, many
methods can obtain high power, we find that our proposed statistic (3.10) is quite powerful
even under a relatively weak alternative, i.e., smaller values of ϕ. Second, as one can see
from Tables 1, 2 and 3, the existing methods in the literature are inaccurate. Consequently,
if we compare the power of all the methods by constructing the rejection regions using the
limiting distributions, it is not very informative. To address this issue, we do more experi-
ments and compare the power of all the methods according to the same type I error rate 0.1.
In particular, the rejection regions of all the methods are constructed using the simulated crit-
ical values based on 5,000 Monte Carlo repetitions so their type I error rates are exactly 0.1.
In Figures B.2, B.3 and B.4 of [12], we reported the results for y = 0.1, y = 1 and y = 10
with various choices of d’s, respectively. We can conclude that our method is still the most
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N = 200 N = 500

Method d= 2 d= 5 d= 10 d= 50 d= 100 d= 2 d= 5 d= 10 d= 50 d= 100

Fr-bootstrap 0.041 0.044 0.044 0.054 0.062 0.047 0.051 0.049 0.063 0.067

Fr-Bayes 0.055 0.049 0.079 0.089 0.095 0.045 0.053 0.082 0.093 0.094

En-bootstrap 0.047 0.053 0.068 0.067 0.077 0.052 0.049 0.063 0.069 0.075

En-Bayes 0.053 0.058 0.077 0.093 0.096 0.051 0.064 0.088 0.098 0.093

Fr-Datadriven 0.046 0.049 0.051 0.063 0.067 0.041 0.043 0.057 0.059 0.065

HPV-LeCam 0.381 0.374 0.383 0.391 0.373 0.376 0.368 0.365 0.342 0.373

Sp-bootstrap 0.047 0.054 0.062 0.073 0.079 0.042 0.053 0.063 0.069 0.076

Sp-Bayes 0.066 0.069 0.072 0.083 0.094 0.072 0.078 0.075 0.088 0.095
Fr-Adaptive 0.091 0.108 0.103 0.107 0.096 0.11 0.107 0.095 0.104 0.102

TABLE 1
Simulated type I error rates under the nominal level 0.1 for y = 0.1. The results are based on 2,000 Monte-Carlo
simulations with Gaussian random variables. We highlighted the two most accurate methods for each value of d.

N = 200 N = 500

Method d= 2 d= 5 d= 10 d= 50 d= 100 d= 2 d= 5 d= 10 d= 50 d= 100

Fr-bootstrap 0.053 0.045 0.051 0.049 0.047 0.052 0.049 0.047 0.053 0.061

Fr-Bayes 0.045 0.039 0.047 0.063 0.071 0.039 0.041 0.052 0.061 0.068

En-bootstrap 0.057 0.051 0.042 0.043 0.049 0.041 0.039 0.048 0.052 0.059

En-Bayes 0.057 0.053 0.061 0.067 0.075 0.048 0.059 0.064 0.073 0.078
Fr-Datadriven 0.026 0.023 0.034 0.037 0.039 0.041 0.04 0.048 0.042 0.047

HPV-LeCam 0.87 0.79 0.82 0.81 0.85 0.882 0.835 0.823 0.872 0.823

Sp-bootstrap 0.049 0.057 0.056 0.062 0.059 0.043 0.041 0.045 0.053 0.062

Sp-Bayes 0.057 0.058 0.062 0.074 0.081 0.053 0.057 0.059 0.059 0.069

Fr-Adaptive 0.103 0.092 0.105 0.107 0.099 0.11 0.107 0.104 0.097 0.103

TABLE 2
Simulated type I error rates under the nominal level 0.1 for y = 1.

N = 200 N = 500

Method d= 2 d= 5 d= 10 d= 50 d= 100 d= 2 d= 5 d= 10 d= 50 d= 100

Fr-bootstrap 0.028 0.034 0.037 0.041 0.043 0.039 0.045 0.052 0.038 0.047

Fr-Bayes 0.038 0.051 0.049 0.062 0.071 0.051 0.049 0.046 0.053 0.069
En-bootstrap 0.032 0.041 0.045 0.046 0.059 0.037 0.041 0.054 0.049 0.054

En-Bayes 0.046 0.048 0.057 0.061 0.068 0.039 0.042 0.049 0.052 0.064

Fr-Datadriven 0.027 0.033 0.038 0.041 0.043 0.038 0.034 0.029 0.045 0.052

HPV-LeCam 0.897 0.939 0.964 0.971 0.972 0.891 0.911 0.943 0.932 0.953

Sp-bootstrap 0.046 0.048 0.045 0.054 0.052 0.039 0.047 0.049 0.053 0.058

Sp-Bayes 0.043 0.049 0.052 0.057 0.068 0.051 0.048 0.059 0.063 0.068

Fr-Adaptive 0.104 0.102 0.095 0.098 0.103 0.091 0.097 0.104 0.097 0.103

TABLE 3
Simulated type I error rates under the nominal level 0.1 for y = 10.

powerful one once ϕ is reasonably large. When ϕ is small, we find that the HP− LeCam and
Sp− bootstrap are slightly more powerful than us. Third, since our proposed statistic is
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accurate, we can construct the reject region using our limiting distribution without conduct-
ing extensive numerical simulations. The type I error rates for our method are recorded in the
last rows of Tables 1, 2 and 3 which are fairly close to 0.1. In Figures B.5, B.6 and B.7 of
[12], we report these results where the rejection regions of our methods are constructed using
its limiting distribution. We can obtain similar results as in Figures B.2– B.4. We emphasize
that since it is impossible to simulate the type I error rates with one matrix in practice, our
method will be preferred in real applications. Finally, we investigate the receiver operating
characteristic curve (ROC) which is helpful for us to understand the connection between the
type I error and power. In practice, researchers will choose the test with the largest area under
an ROC curve (AUC) [40]. In Figures B.9 and B.10 of [12], we provide the ROC curves for
two different alternatives (i.e., two different values of ϕ) for y = 0.1,1,10 when d = 10. It
can be seen that our test have the largest AUC among all the tests. This also shows that our
test outperforms the other tests and will be preferred in decision making.

4. Sketch of proof strategy. In this section, we provide a sketch of the proof strategy,
and state all details of the proof in the supplement [12].

The starting point of our proof is to express both 〈w,PIw〉 and µi in terms of the Green
function G1(z) := (XX∗ − z)−1; see Lemmas D.1 and D.5 of our supplement [12]. Both
representations can be obtained by applying resolvent expansions to certain functionals of the
Green function and its derivative. The error terms in the expansions can be estimated with
the aid of the isotropic local laws from [24, 55]. These expressions allow us to work with
the Green function instead of the eigenvalue and eigenvector statistics. We remark here that
similar derivation of the Green function representation has appeared in previous work such as
[53, 21, 54] using a second order resolvent expansion. But here for eigenvectors, we need to
do it up to the third order (with a fourth order error), in order to capture all contributing terms
for the fluctuation. For instance, when w ∈ Span{vj}j∈J1,MK\I, the fluctuation of 〈w,PIw〉
is one order smaller than that of the case w ∈ Span{vt}t∈I. In order to cover the situation
like the former case, we will need to investigate a higher order term in the expansion. It turns
out that all the leading terms in the expansions in Lemmas D.1 and D.5 are given in terms of
certain quadratic forms of the Green function. For example, for the eigenvector, Lemma D.1
suggests that the distribution of 〈w,PIw〉 is ultimately governed by the joint distribution of
the quadratic formsw∗I ΞwI, ς

∗
I ΞwI,w

∗
I Ξ′wI,{v∗tΞςI}t∈I,{v∗jΞwI}j∈Ic , where Ξ := G1(z)−

m1(z)I . Here m1(z) is defined in (C.3) and ςI is defined in (2.9).
With the expressions in terms of the quadratic forms of Green function, we then apply a

recursive moment estimate to derive the distribution. For instance, from Lemma D.1 of [12],
one can see that the asymptotic distribution of 〈w,PIw〉 can be obtained from that of the
random vector(

w∗I Ξ′(z)wI,w
∗
I Ξ(z)wI, ς

∗
I Ξ(z)wI, {v∗tΞ(z)ςI}t∈I, {v∗jΞ(z)wI}j∈Ic

)∗
,

whose components are all quadratic forms of Green function. In order to derive a multivariate
CLT for the above random vector, it suffices to show the CLT for any linear combination of
its components. Let P be a linear combination of the components of the above vectors with
any appropriately scaled deterministic coefficients. Our aim is to show that the following
recursive moment estimate is satisfied

(i) : EP = o(1), (ii) : EP l = (l− 1)V EP l−2 + o(1),

where V is a deterministic constant and the above holds for any given integer l≥ 2. We also
refer to Proposition E.2 of [12] for a more precise statement. The above recursive moment
estimate then leads to the Gaussianity of P , which further implies the CLT of 〈w,PIw〉.
The proof of the above recursive moment estimate heavily relies on the cumulant expansion
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formula and the local laws stated in Section C of the supplement [12]. The derivation for the
joint eigenvalue-eigenvector distribution is similar. We emphasize that the Green function
has also been used in [27] and [38] for the eigenvector distribution for the deformed Wigner
matrices, but in much more limited ways. Especially, in [27], only the projections to very
special directions are considered, and in [38] the strength of the spikes are assumed to be
divergent in a sufficiently fast speed so that the Green function can be expanded directly
around a large parameter z and eventually one only needs to deal with the quadratic forms of
the Wigner matrix itself.

Finally, we highlight some difficulties and novelties in the above strategy. First, since the
di’s could be either very close to the critical threshold or diverging, and meanwhile could be
equal or close to each other, the control of the sizes of the terms (especially the error terms)
becomes much more delicate. One needs to keep tracking the dependence of the size of
terms on di−

√
y, di−dj and di carefully to conduct a unified analysis in all cases of di’s. In

particular, in case that di is diverging, one needs to exploit a hidden cancellation between two
quadratic forms of the Green function, which is absent in case that di is fixed. In order to see
such a cancellation, one needs to adopt the recently established nearly optimal convergence
rate of the so-called eigenvector empirical spectral distribution (VESD) in [86]. Second, in
contrast to [11], where only the projection onto the direction of the deformation is considered,
here we consider the projection onto arbitrary direction. In particular, when one considers the
projection onto the orthogonal complement of the direction of the deformation, the size of
the whole projection will degenerate to a smaller order. As we mentioned above, in order
to study the fluctuation of the eigenvector projection onto arbitrary directions, including the
direction orthogonal to the one of the spike, one needs to express the eigenvector projection
in terms of the Green function up to a higher order projection onto, and involve the higher
order term in the recursive moment estimate, since it could be significant. Third, the joint
distribution of the eigenvalue and eigenvector statistics is obtained for the first time in the
supercritical regime for the whole range of di, thanks to our unified method of proving CLT
for both eigenvalues and eigenvectors.
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical inference for principal components of spiked covariance
matrices”. In [12], we provide a supplementary file which contains additional simulation
results, the proofs of our main results and some auxiliary lemmas.
().
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[9] J. BAIK, G. BEN AROUS, AND S. PÉCHÉ. (2005). Phase transition of the largest eigenvalue for nonnull
complex sample covariance matrices. The Annals of Probability, 33(5): 1643–1697.

[10] J. BAIK, AND J.W. SILVERSTEIN. (2006). Eigenvalues of large sample covariance matrices of spiked pop-
ulation models. Journal of multivariate analysis, 97(6): 1382–1408.

[11] Z.G. BAO, X.C. DING, AND K. WANG. (2021). Singular vector and singular subspace distribution for the
matrix denoising model. The Annals of Statistics,49(1): 370–392.

[12] Z.G. BAO, X.C. DING, J.M. WANG AND K. WANG. (2020). Supplement to ”Statistical inference for
principal components of spiked covaraince matrices”.

[13] Z.G. BAO, D. WANG. (2021). Eigenvector distribution in the critical regime of BBP transition. Probability
Theory and Related Fields (to appear)

[14] S. BELINSCHI, H. BERCOVICI, AND M. CAPITAINE. (2017). On the outlying eigenvalues of a polynomial
in large independent random matrices. arXiv:1703.08102.

[15] S. BELINSCHI, H. BERCOVICI, M. CAPITAINE, AND M. FÉVRIER. (2017). Outliers in the spectrum of
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