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Abstract—Internet of Things (IoT) deployments are becoming
the backbone of all future Smart City (SC) environments. They
can, therefore, act as massive crowd-sourced data aggregators,
driven by device-to-device interactions with SC users’ mobile
devices and their wireless interfaces. Provided that, our research
focuses on developing probabilistic and machine learning models
to (a) enable knowledge discovery from passive user interactions
with the wireless IoT infrastructure and (b) apply the collected
intelligence to increase the energy-efficiency and resiliency of the
Smart City’s IoT network. In this extended abstract we elaborate
on the motivation behind our work, and the related challenges,
while pointing to the solutions developed so far.

I. INTRODUCTION AND MOTIVATION

Until now the realization of the "Smart City” concept by
urban planners and city governments has been relying on
plain digitalization and automated implementations that often
overlook the whole equation’s human aspect. The inclusion of
those who work and reside in the Smart City (SC) environ-
ment into the design process is becoming highly significant
especially since the current urban population represents 55%
of the world’s population, a number that is expected to reach
68% by 2050. In addition, more and more municipalities
and governments actively participate to discuss and address
challenges with EU’s Smart City Initiative and UN’s United
Smart City Initiative being two cases in point.

Without a doubt, the backbone of any SC undertaking
is an Internet of Things (IoT) infrastructure that supports
city-wide communications and consists of a vast group of
computationally powerful participants including sensors, smart
furniture, EVs, drones, 4G/5G eNBs, and WiFi hotspots [1],
[2]. The increasing edge loT network introduces significant
challenges that pertain to various infrastructure aspects:

1) IoT devices should continuously function with minimal
operational and maintenance costs. Thus, extending the
edge’s battery life is important for large-scale adoption.

or other User Equipment (UE) with capabilities that far exceed
those of the equipment found around cities nowadays (smart
wearables, etc.). In this setting, the IoT infrastructure is the
ideal instrument to conduct mobile crowdsensing [4]. The
main characteristics of mobile crowdsourcing in a SC include
(i) dynamic mobility of the citizens’ UEs that mirror their own,
(ii) collaboration, namely the ability of crowds to create social
structures and work together to achieve their goals, and (iii)
the dual nature of each SC occupant that is at the same time
data producer, and consumer as the sensing, communication,
and processing of his data enhance the performance of the SC
services. Evidently, there are many challenges associated with
the above reality related to the efficient design of non-intrusive
crowdsensing mechanisms, protection of the SC user’s data
privacy, and the application of distributed algorithms able to
fully exploit the generated data streams in a cooperative and
complementary manner for Smart City services.

Given that (a) the IoT infrastructure will be a critical
component of almost all provided services of a future Smart
City, (b) within the Smart City this vast edge network of
IoT devices coexists and interconnects with mobile devices
owned by citizens, and (c) current crowdsourcing mechanisms
put user data privacy at significant risk while demanding
exhaustive incentive mechanisms, our research aims to answer
the following research questions:

« How can future Smart City systems utilize wireless inter-
actions of citizens’ mobile devices with the existing IoT
infrastructure to extract actionable intelligence without
involving other types of data?

How can we optimize the operation, and increase the
sustainability and resiliency of the Smart City’s IoT
infrastructure?

Our focus is on designing and analyzing cognitive mechanisms
across different layers of the SC’s communication infrastruc-
ture to address the aforementioned questions and challenges.

2) The existence of multiple network protocols and wireless
interfaces (WiFi, 5G, Bluetooth, NFC, etc.) should be II. REAL-WORLD PASSIVE 10T INTERACTION DATA:
addressed and utilized to collectively aid the availability THE BLEBEACON DATASET
and connectivity ‘ff the. massively deployed devicgs. As passive user-IoT device interactions, we consider non-
3) The edge network’s resiliency should be enhanced in the  jnrygive advertising of a user’s mobile device facilitated by

face of public-safety critical events [3].

Apart from the static IoT infrastructure, modern smart cities
are developed around their citizens that carry mobile devices

any of their communication interfaces with the most common
being WiFi probe request frames and Bluetooth Low Energy
(BLE) advertisement packets. To the best of our knowledge,
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there are not many available datasets that collect such inter-
actions with IoT deployments over long periods. A recently
published work in [5] captures multiple smartphone-based
interactions between users (proximity, records, social media)
without the involvement of a static IoT deployment.

In order to bridge this gap, we utilize our BLEBeacon
dataset [6] that was the outcome of an IRB-approved one-
month trial with real participants. The trail’s design enabled
us to track spatio-temporal interactions of university students
with a network of IoT devices (32 Raspberry Pis) installed
on three floors of a campus facility in a way that emulates
a future edge device topology in a smart environment. To
generate interactions with this infrastructure, forty-six students
carried BLE beacons with them during their daily routines for
over one month. Among others, we collected over 17 million
data points of physical proximity indicators, and we have made
the BLEBeacon dataset available as part of the CRAWDAD
Community Resource repository [6].

III. RESEARCH OUTPUT AND DISCUSSION

Next, we discuss developed tools, and research outcomes
that harvest passive interaction data for various applications.

A. Spacio-Temporal Smart Facility Management

In [7] we explore how spatio-temporal data from smart
environment users can be utilized to perform real-time facil-
ity management towards optimizing energy consumption and
maintenance operations. In [8] the use of an IoT deployment
within smart spaces is extended to facilitate accurate occupant
tracking using Received Signal Strength Indicator (RSSI)
modeling and Geofencing for edge IoT nodes.

B. Unsupervised Radio Map Update and Localization

In [9], we showcase how IoT deployments in smart spaces
can act as massive crowdsensing mechanisms towards simpli-
fying and optimizing underlying services (e.g., micro-location
in this case). We utilize RSSI readings from IoT edge devices
as crowdsourced fingerprints to enable unsupervised learn-
ing of radio maps in a smart space. We construct a finite
naive Bayes Gaussian mixture model (GMM) for occupant
localization and use Expectation Maximization with unlabeled
RSSI fingerprints to train it. This approach eliminates the
need for exhaustive site surveys to construct and renew radio
maps, while the positioning accuracy is maintained regardless
of changes in the underlying hardware or physical space,
and is even improved over time as more crowdsensed data
are becoming available. We present a detailed performance
analysis for static and mobile user localization accuracy while
evaluating the impact of important system design parameters
including training dataset size, feature number, real-time de-
cision periods, and deployment density of edge IoT devices.

C. Energy-Efficient Communications for Edge Nodes

As seen in [10] the analysis of spatio-temporal correla-
tions of passive RSSI packets can lead to the extraction of
reliable social behavior of the mobile users, and thus social
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relationships between their communication nodes. In our work
in [11], [12], and [13] we present frameworks that exploit
social graphs expressing communication interest among nodes
to construct optimal clusters and increase energy-efficiency
during wireless data aggregation. In [11] this mechanism is
accompanied by a reinforcement learning process that utilizes
socio-spatial information to further optimize the data aggrega-
tion according to the needs of the underlying application. In
addition, wireless powered communications are introduced to
prolong the overall IoT infrastructure’s lifetime. Finally, the
other two works focus on wireless networks that take over
during public safety threatening situations in Smart Cities and
increase their resiliency. In [12] the socio-physical clustering
is again accompanied by learning-mechanism that chooses the
optimal wireless communication interface for each node’s data
aggregation, while in [13] the optimal path of a mobile data
aggregator is constructed in an attempt to maximize the IoT
infrastructure’s energy availability.
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