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Coding for Non-Coherent Wireless Networks

Mahdi Soleymani and Hessam Mahdavifar, Member, IEEE

Abstract—We provide a novel framework to study subspace
codes for non-coherent communications in wireless networks. To
this end, an analog operator channel is defined with inputs and
outputs being subspaces of Cn. Then a certain distance is defined
to capture the performance of subspace codes in terms of their
capability to recover from interference and rank-deficiency of the
network. We also study the robustness of the proposed model
with respect to an additive noise. Furthermore, we propose a
new approach to construct subspace codes in the analog domain,
also regarded as Grassmann codes, by leveraging polynomial
evaluations over finite fields together with characters associated
to finite fields that map their elements to the unit circle in the
complex plane. The constructed codes, referred to as character-
polynomial (CP) codes, are shown to perform better comparing to
other existing constructions of Grassmann codes in terms of the
trade-off between the rate and the normalized minimum distance,
for a wide range of values for n.

I. INTRODUCTION

Wireless networks are rapidly growing in size, are becoming
more hierarchical, and are becoming increasingly distributed.
In the next generation of wireless cellular networks, namely 5G,
tens of small cells, hundreds of mobile users demanding ultra-
high data rates, and thousands of Internet-of-Things (IoT) de-
vices will be all operating within the coverage of one single cell
[1]. While the efforts for 5G standardization are still ongoing,
several new features have been introduced in the recent releases
of the Long-Term Evolution (LTE) standard to start supporting
the diverse requirements of the wide range of use cases in
5G. Started with Release 10 the deployment of small cells
in LTE is becoming increasingly popular to deliver enhanced
spectral capacity and extended network coverage [2], which is
also fundamental to enhanced mobile broadband (eMBB) and
massive machine type communications (mMTC) scenarios in
5G. Moreover, features such as coordinated multipoint (CoMP)
transmission and reception [3] together with enhanced intercell
interference coordination (eICIC) [4] have been introduced and
used since Release 10 and evolved since then.

The aforementioned techniques are, however, difficult to
scale as the number of small cells, that can be also regarded
as relays, keeps increasing and as more layers are added in the
hierarchical network. More specifically, conventional methods
including channel estimation of point-to-point wireless links,
link-level block coding, and successive interference cancella-
tion do not properly scale with the size of such massive net-
works. Motivated by the emergence of such massive networks
we study coding for wireless networks consisting of many
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relays operating in a non-coherent fashion, where the network
nodes are oblivious to the channel gains of the point-to-point
wireless links as well as the structure of the network. In a
sense, this resembles a random linear network coding scenario,
though completely in the physical layer, where physical-layer
transport blocks are linearly combined in the relay nodes as they
receive the spatial sum of blocks sent by the neighboring nodes.
This holds assuming omni-directional radio frequency (RF)
transmitter and receiver antennas are deployed at the network
nodes. Also, in the considered setup, the relay nodes, such as
small cells, do not attempt to decode messages and only amplify
and forward the received physical-layer blocks.

In this paper, we define a new framework for reliable commu-
nications over wireless networks in a non-coherent fashion, as
discussed above, using analog subspace codes. Let W denote
an ambient vector space of dimension n over a field L, i.e.,
W “ Ln. A subspace code in W is a non-empty subset of the
set of all the subspaces of W . We observe that subspace codes
in the analog domain, where the underlying field L is R or C,
become relevant for conveying information across networks in
such a scenario.

This work is mainly inspired by the seminal work by Koetter
and Kschischang [5], who defined a new framework for cor-
recting errors and erasures in a randomized network coding
scenario [6]. They defined an operator channel to capture the
effect of errors and erasures in such a scenario and showed that
subspace codes over finite fields are instrumental to provide re-
liability for communications over operator channels. In a sense,
we develop a counterpart for Koetter-Kschischang’s operator
channel in the analog domain, referred to as analog operator
channel. More specifically, the analog operator channel models
the rank-deficiency of the network, caused by relay failures
or lacking a sufficient number of active relays, as subspace
erasures. Also, it models the interference from neighboring
cells/small cells as subspace errors. We further discuss various
methods for constructing subspace codes for the analog op-
erator channel. In particular, we propose a novel construction
method by leveraging characters associated to Abelian groups
and finite fields, and mapping them to the unit circle in the
complex plane.

It is worth noting that the setup considered in this paper
fundamentally differs from Koetter-Kschischang’s setup in two
main aspects. First, due to the fundamental differences between
the structure of finite fields and the analog fields of R or C con-
structing codes for analog operator channels requires entirely
different approaches comparing to subspace codes constructed
over finite fields in [5]. Second, the effect of physical layer is
abstracted out in the setup considered in [5] as it is often the
case in the network coding literature. However, in this work,
we arrive at the notion of analog operator channels of subspace
codes with an innovative perspective, namely, physical layer
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communications over wireless networks. Hence, we consider
the additive noise that is always present in the physical layer,
in addition to subspace errors and erasures discussed above,
and characterize the robustness of the analog operator channel
model with respect to the additive noise.

Analog subspace codes can be also viewed as codes in
Grassmann space, also referred to as Grassmann codes, pro-
vided that the dimensions of all the subspace codewords are
equal. There is a long history on studying bounds [7]–[11],
using packing and covering arguments, and capacity analysis
in Grassmann space, mostly motivated by space-time coding
for multiple-input multiple-output (MIMO) wireless systems
[12]–[14]. In such systems, a separate block code is needed
to guarantee the reliability regardless, and the space-time code
can be interpreted as the means of improving the reliability by
exploiting the diversity the MIMO channel offers. However,
we arrive at the problem of constructing subspace codes from
the analog operator channel. In other words, subspace codes
are used for reliable communications over analog operator
channels the same way block codes are conventionally used
for reliable communications over point-to-point links. A more
detailed overview of prior works on Grassmann codes and their
relations to our approach is provided later in Section II-C.

The rest of this paper is organized as follows. In Section II
the analog operator channel is defined and an overview of
the related prior work on Grassmann codes is provided. In
Section III a new notion of subspace distance is defined and
its relation with correcting subspace errors and erasures is
discussed. The robustness of the analog operator channel with
respect to the additive noise is analyzed in Section IV. Also,
new constructions of analog subspace codes are discussed in
Section V. Finally, the paper is concluded in Section VI.

II. PRELIMINARIES

A. Notation Convention

Let rns denote the set of positive integers less than or equal
to n, i.e., rns “ t1, 2, . . . , nu for n P N. Also, for x P R,
pxq`

def“ maxp0, xq.
In this paper, matrices are represented by bold capital letters.

The row space of a matrix X is denoted by xXy. Also, for a
square matrix X, the trace of X, denoted by trpXq, is defined to
be the sum of elements of X on the main diagonal.

The ambient vector space is denoted by W. The parameter n
is reserved for the dimension of W throughout the paper. Also,
we have W “ Ln, where L can be either R or C. In order to
state results for L, which could be either R or C, a parameter
β is defined, where β “ 1 for L “ R and β “ 2 for L “ C.
Let PpWq denote the set of all subspaces of W. For a subspace
V P PpWq, the dimension of V is denoted by dimpVq. The
sum of two subspaces U, V P PpWq is defined as

U ` V def“ tu ` v : u P U, v P Vu. (1)

Note that if U and V intersect trivially, i.e., U X V “ t0u,
where 0 is the all-zero vector, then U ` V is a direct sum and is
denoted by U ‘ V.

The set of all m-dimensional subspaces of Ln is denoted by
Gm,npLq, which is referred to as Grassmann space or Grass-

mannian in the literature. Given L “ C, Gm,npCq can be also
described as follows:

Gm,npCq def“ txZy : Z P Cmˆn, ZZH “ Imu, (2)

where Im is the m ˆ m identity matrix. The elements of
Gm,npLq are also referred to as m-planes.

The Frobenius norm of a matrix A is defined as

∥A∥ def“
b

trpAHAq “
b

trpAAHq. (3)

By fixing a basis for W, any vector in W is represented by n-
tuples of coordinates with respect to the chosen basis. The inner
product between u, v P W is then defined as: u.v def“ řn

i“1 uivi.
Then the orthogonal subspace of U P PpWq is defined as

UK def“ tv P W : u.v “ 0, @u P Uu. (4)

For a set M, a σ-quasimetric on M is a function d : M ˆ
M ÝÑ R that satisfies all the conditions of a metric except the
triangle inequality being relaxed to

@x, y, z P M, dpx, zq ă σ
`

dpx, yq ` dpy, zq˘

, (5)

for a constant σ ą 1. This inequality is referred to as σ-relaxed
triangle inequality.

B. Analog operator channel

This model is motivated by non-coherent communications
over wireless networks, as discussed in Section I. Hence, each
piece of the model is followed by a brief explanation from this
perspective. Let xi P Cn, for i P rms, denote the input vectors.
The input vectors, as physical layer transport blocks, can be sent
by several antennas of a transmitter, e.g., a cellular base station,
at different time frames. By discarding the interference and the
additive noise, the output of the channel is a set of vectors
yj “ řm

i“1 hj,ixi, where j P rls. Each vector yj is the received
transport block by an antenna of the receiver at a certain
time frame. Note that a time-frame-level synchronization is
assumed across the wireless links, e.g., by employing specific
patterns in a designated subset of orthogonal frequency-division
multiplexing (OFDM) symbols in each time frame as in LTE
networks [15]. Also, the relays in the network, e.g., small
cells, are assumed to be amplify-and-forward relays. They can
forward a transport block, received during a certain time frame,
in a subsequent time frame. This is because the communication
is assumed to be done in the unit of time frame, i.e., the relay
has to wait for the current time frame to end before it can begin
forwarding what it received. Then, due to the different delays, in
the unit of time frames, that the transport blocks may encounter
as they are propagated through the network, the received yj’s
can be the combination of transmitted xi’s across different
antennas and time frames. Under a non-coherent scenario, both
the transmitter and the receiver are oblivious to hj,i’s, the
topology of the network, and the link-level channel gains. It
is possible that several interference blocks, e.g., up to t of
them, from neighboring cells/small cells are also received by
the receiver. Hence, we have

Ylˆn “ HlˆmXmˆn ` GlˆtEtˆn, (6)
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Fig. 1: An example of a non-coherent wireless network with the input-
output relation specified in (6).

where X’s rows are the transmitted blocks x1, x2, . . . , xm, E’s
rows are the interference blocks e1, e2, . . . , et, Y’s rows are
the received blocks y1, y2, . . . , yl , and H “ rhj,islˆm and
G “ rgj,islˆt are assumed to be unknown to the transmitter and
the receiver. Note that both H and G depend on the network
topology as well as the link-level channel gains, however,
G also depends on the specific nodes where the interference
blocks have entered the network.

An example of the communication scenario, described by
(6), is illustrated in Figure 1. Here, all the considered nodes
have one transmit and one receive antennas and the commu-
nication is done in two time frames. We have X “ rxs1ˆn,

Y “
„

y1
y2

ȷ

2ˆn
, E “ res1ˆn, G “

„

g
0

ȷ

2ˆ1
, and H “

„

h1
h2h3

ȷ

2ˆ1
. In other words, the receiver receives h1x ` ge

in the first time frame and receives h2h3x in the second time
frame.

In the scenario described by (6), even in the absence of
the interference blocks E, the only way to convey informa-
tion to the receiver is through the subspace spanned by the
rows of X. This is mainly due to the underlying assumption
on non-coherent communications, where H is assumed to be
completely unknown to both the transmitter and the receiver.
Furthermore, H may not be full column rank, e.g., when l ă n,
which implies that xXy can not be fully recovered. In order to
capture the rank-deficiency of H, a stochastic erasure operator
is defined as follows. For some k ě 0, HkpUq returns a random
k-dimensional subspace of U, if dimpUq ą k, and returns
U otherwise. Then the analog operator channel is defined as
follows:

Definition 1: An analog operator channel associated with W
is a channel with input U P PpWq and output V P PpWq
together with the following input-output relation:

V “ HkpUq ‘ E, (7)

where E is the interference subspace, also referred to as the
error subspace, with E X U “ t0u. Then ρ “ dimpUq ´ k

is referred to as the dimension of erasures and t “ dimpEq is
referred to as the dimension of errors.
Remark 1. In the communication scenario described by (6), the
additive noise of the physical layer, often modeled as additive
white Gaussian noise (AWGN), is discarded. Note that the
intermediate relay nodes in the wireless network, such as small
cells, are not often limited by power constraints as the end
mobile users are. Hence, it is natural to assume that the relay
nodes operate at high signal-to-noise ratio (SNR). Nevertheless,
it is essential to investigate the effect of additive noise as a
perturbation of the transformation described by (6). In other
words, instead of Y, Y ` N is received by the receiver, where
N is a matrix of i.i.d. Gaussian random variables. This, in turn,
results in a perturbation in the analog operator channel, defined
in Definition 1. We will discuss the robustness of the considered
channel model with respect to the additive noise in Section IV.

C. Related prior work
The Grassmann space can be turned into a metric space

using chordal distance. Roughly speaking, chordal distance
generalizes the notion of angle between two lines to subspaces
of equal dimension, which will be defined more precisely in the
next section. Let δc denote the chordal distance normalized by
n. Also, let the rate R of a code C be defined as ln |C|{n.

The problem of deriving bounds on the minimum distance of
subspace codes of fixed dimension, i.e., packing subspaces in
Gm,npRq, was first studied by Shannon for the special case of
m “ 1 [7]. The packing problem in G1,npRq is also related to
designing spherical codes, i.e., packing points on a hyper sphere
in the Euclidean space with a given angular separation. A lower
bound on the best rate R of C with the minimum angle θ, i.e.,
δc “ sinpθq, is derived by Shannon [7] as R ą ´ lnpsinpθqq,
assuming n Ñ 8. Lower and upper bounds on the largest
achievable rate R, given a fixed δc and m while n Ñ 8, were
derived in [8]. The upper bound was later improved in [9]–[11].

In terms of lower bounds for the packing problem in the
Grassmann space, an achievability bound for the minimum
distance of the codes for finite values of n was derived in [16].
The construction of subspace codes in Gm,npRq and analysis
of their minimum chordal distance was also studied in [17],
and some of these constructions were observed to be optimal.
However, the suggested construction methods in [17] are nu-
merical, making them computationally infeasible for general
parameters. Another numerical method for constructing codes
based on alternative projection is proposed in [18]. In another
line of work, motivated by quantum error-correcting codes,
constructions based on group structures are suggested [19]–
[23] (see, e.g., [24] for a brief survey). A connection between
these codes and massive multiple access scenarios is observed
in [25], where low-complexity decoders are also proposed.
Another related line of work is the frame design problem in a
Hilbert space, where a frame is a set of overcomplete unit norm
vectors having small mutual inner product. Such a design has
applications to a broad range of problems, including problems
in signal processing, distributed sensing, parallel processing,
etc [26]–[30].

The most notable line of work on Grassmann codes is
motivated by space-time coding for MIMO channels. In other
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words, the problem of constellation design for communications
over a non-coherent MIMO is observed to be closely related
to the packing problem in the complex Grassmann space. In
this line of work, initiated by Marzetta and Hochwald [12], it is
assumed that neither the transmitter nor the receiver knows the
fading coefficients of the channel which are assumed to be fixed
in the coherence time of the channel. They also proposed a con-
stellation scheme in the Grassmann space called unitary space-
time modulation [13]. Zheng and Tse [14] derived the capacity
of non-coherent MIMO channel in high SNR in terms of the
channel coherence time and the number of receive and transmit
antennas. They further give a geometric interpretation of the ca-
pacity expression as sphere packing in the Grassmann manifold
[14]. Furthermore, it is observed by Han and Rosenthal [31]
that maximizing the chordal distance is the appropriate design
criterion for the design of unitary space-time constellation at
the low-SNR regime in non-coherent wireless communication
systems. In another related work by Hochwald et al. , a lower
bound on pairwise error probability between two subspaces of
equal dimension is derived in [32], which is then used to derive
a certain criterion for constellation design by maximizing the
chordal distance between subspaces in the Grassmann space.
They also provide a Fourier-based construction method and
its equivalent algebraic construction employing linear codes to
design constellations for non-coherent MIMO channels. Their
approach involves random search procedure and, hence, is not
scalable with n. Another numerical optimization method is
described in [33]. Other constructions of Grassmann packings
based on Nordstrom-Robinson Codes [34] and Reed-Muller
codes [35] were also shown to closely approximate the channel
capacity of non-coherent MIMO channels.

Another major related line of work includes a wide range
of signal processing tasks where the pairwise geometry of
subspaces plays an important role in characterizing the per-
formance of the system, e.g., the misclassification probabil-
ity for the optimal maximum-a-posteriori (MAP) classifier in
a Gaussian mixture model (GMM). In particular, a duality
between the problems of classification of k-dimensional sub-
spaces from noisy features and the communication over non-
coherent MIMO channel are observed in [36] and [37]. Also,
the results on the capacity of non-coherent MIMO channels
are used to provide necessary conditions for successful clas-
sification in [38]. The probability of misclassification is further
analyzed in [39] and is characterized in terms of the principal
angles.

Note that non-coherent MIMO communication can be con-
sidered as a special case of the non-coherent wireless network-
ing scenario, described by (6), where there is no interference
term while discarding additive noise. Also, there is no relay
node and the number of transmitter and receiver antennas are
known. In other words, the structure of the network and conse-
quently, the rank of transform matrix H is known. Accordingly,
prior works on non-coherent MIMO do not deal with subspace
errors and erasures, and the underlying communication channel
model is totally different from the analog operator channel
considered in this paper, as defined in Definition 1.

Note also that the aforementioned prior works on code
constructions in the Grassmann space do not often provide

good solutions, in terms of the trade-off between R and the
normalized minimum distance, for general m and n. However,
a comparison, in terms of the trade-off between R and the
normalized minimum distance, between a new construction of
analog subspace codes proposed in this paper and the best
existing constructions in the literature is done in Section V-C.

III. ANALOG METRIC SPACE, SUBSPACE CODES,
AND ERROR CORRECTION

In this section we provide a precise description of the chordal
distance defined for Grassmann space. Then we extend and
modify the chordal distance to arrive at a new notion of dis-
tance, defined for the set of all subspaces of the ambient space,
i.e., PpWq, and show that it conveniently captures the error-
correction capability of subspace codes when used over analog
operator channels.

Given the structure of analog operator channels and their
input and output alphabets being PpWq, as defined in Defi-
nition 1, it is natural to design codes over PpWq in order to
correct errors and erasures associated with such channels. To
this end, the first step is to define a distance function that
properly captures the effect of errors and erasures imposed by
the analog operator channel. Before that, we discuss the chordal
distance between two m-planes, which makes Gm,npLq a metric
space.

The chordal distance dc : Gm,npLq ˆ Gm,npLq Ñ R was
first introduced for L “ R in [17] and was extended to L “ C

in [8]. Consider two m-planes U and V. Let ui P U and vi P V
be row vectors having unit length such that |uivH

i | is maximal,
subject to the conditions uiuH

j “ 0 and vivH
j “ 0 for all i, j with

i ą j ě 1. Then the principal angle θi, for i P rms, between U
and V is defined as θi “ arccos |uivH

i |, see, e.g., [8], [40]. Then
the chordal distance between U and V is defined as follows:

dcpU, Vq def“
g

f

f

e

m
ÿ

i“1

sin2pθiq. (8)

Note that this is not the only possible definition for distance
between subspaces (see, e.g., [8], [41] for other similar no-
tions). However, we focus on extending a certain variation of
this notion of distance in this paper, to be discussed next. We
will show later that it can be made suitable for capturing the
error correcting capabilities of subspace codes for the analog
operator channel.

Let Z denote an orthonormal matrix spanning V P Gm,npLq,
i.e. ,

V “ xZy, ZZH “ Im.

Then, the matrix PV “ ZHZ is an orthogonal projection
operator from Ln on V. It is shown in [17] that Gm,npRq
with chordal distance can be isometrically embedded into a
sphere in the Euclidean space RD , where D “ `n`1

2

˘ ´ 1,
using the projection matrices associated with subspaces. More
specifically, ⃦⃦⃦

PV ´ m
n

In

⃦⃦⃦2 “
c

mpn ´ mq
n

, (9)
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for all V P Gm,npRq. It is also shown that the chordal distance
between two m-planes is equal to

dcpU, Vq “ 1?
2
∥PU ´ PV∥ . (10)

Moreover, G0,npRq, G1,npRq, . . . , Gn,npRq can also be embed-
ded into a larger sphere in RD`1, i.e., for all subspaces V of
the ambient space Rn we have⃦⃦⃦⃦

PV ´ 1
2

In

⃦⃦⃦⃦2
“ 1

4
n. (11)

Note that Gm,npRq is the intersection of this sphere with the
plane described by trpPVq “ m, which is characterized by
(9) (see [17, Figure 10]). Since the Frobenius norm induces a
metric on the set of all n ˆ n matrices, regardless of whether
they are projection matrices or not, one can use (10) to gen-
eralize the notion of chordal distance to subspaces of different
dimensions. This generalized distance is the Euclidean norm of
the chord connecting the points associated with U and V on the
sphere characterized by (11) normalized by

?
2. Note that, this

definition coincides with (8) if U and V have equal dimensions.
The proposed generalization of the chordal distance definition
that also includes subspaces with different dimensions is similar
to the one considered in [35, Definition 1]. The only minor
difference is that the one considered in [35, Definition 1] has
an extra multiplicative factor of

?
2.

Note also that principal angles, used in the definition of
chordal distance, do not depend on the choice of basis for the
ambient space. In other words, roughly speaking, the chordal
distance is invariant under rotation of subspaces. This is shown
more formally in the following lemma.

Lemma 1: Let U, V P PpWq. Given any two orthonormal
bases for W, namely te1, . . . , enu and te1

1, . . . , e1
nu, referred to

as basis 1 and basis 2, respectively, we have

∥PU ´ PV∥ “ ⃦⃦
P1

U ´ P1
V
⃦⃦

,

where PV and P1
V are matrix representations for the orthogonal

projection operator on V in basis 1 and basis 2, respectively.
Proof: Let Z and T be matrices with orthonormal rows,

represented in basis 1, which span U and V, respectively. Then,
they are represented in basis 2 as follows:

Z1 “ ZQ, T1 “ TQ,

for a unitary matrix Q. Then we have the following series of
equalities by noting that trpABq “ trpBAq for any two matrices
A and B such that both BA and AB are well-defined and that
the projection matrices are Hermitian:⃦⃦

P1
U ´ P1

V
⃦⃦ “ ⃦⃦

QHpPV ´ PUqQ
⃦⃦

“
b

trpQHpPV ´ PUqQQHpPV ´ PUqQq
“

b

trpQHpPV ´ PUq2Qq “
b

trpQQHpPV ´ PUq2q
“

b

trppPV ´ PUq2q “ ∥PU ´ PV∥ ,

which complete the proof.
The generalized chordal distance, discussed above, is further

modified to arrive at a new notion of distance over PpWq,

defined as follows.
Definition 2: The distance d : PpWq ˆ PpWq ÝÑ R is

defined as

dpU, Vq def“ ∥PU ´ PV∥2 “ tr
`pPU ´ PVq2˘

, (12)

where U, V P PpWq and PU , PV are the projection matrices
associated to U, V, respectively.

Note that Lemma 1 implies that dp., .q is well-defined. Note
also that dp., .q “ 2dcp., .q2 by (10) and (12) and, equivalently,
is equal to the square of the metric considered in [35, Defini-
tion 1]. It is shown in Lemma 15 in the appendix that the square
of a metric is a 2-quasimetric, where a quasimetric is defined
in Section II-A. Hence, dp., .q is a 2-quasimetric. It is further
shown in Lemma 16 in the appendix that for U, V, T P PpWq,
dp., .q satisfies the triangle inequality, i.e., σ “ 1 in (5), as long
as PU and PV are simultaneously diagonalizable, i.e., one can
find a basis in which both PU and PV are diagonal matrices.
This property is later utilized to characterize the error-and-
erasure correction capability of codes used over analog operator
channels in terms of their minimum distance the same way it is
done given an underlying metric. Hence, we refer to dp., .q as a
distance through the rest of this paper keeping in mind that it is
indeed a 2-quasimetric.

An equivalent expression for the distance dp., .q is derived in
the following lemma.

Lemma 2: For any xZy, xTy P Gm,npLq, where the rows of Z
and T are orthonormal, we have

dpxZy, xTyq “ 2pm ´ ⃦⃦
ZTH⃦⃦2q.

Proof: By noting that trpZZHq “ trpTTHq “ m and by
using (12) one can write

dpxZy, xTyq “ trppZHZ ´ THTq2q “ 2pm ´ trpZHZTHTqq
“ 2pm ´ trpTZHZTHqq “ 2pm ´ trppZTHqHpZTHqqq
“ 2pm ´ ⃦⃦

ZTH⃦⃦2q,

which completes the proof.
Definition 3: An analog subspace code C is a subset of

PpWq. The size of C is denoted by |C|. The minimum distance
of C is defined as

dminpCq def“ min
U,VPC,U‰V

dpU, Vq,

where dp., .q is defined in Definition 2. The maximum dimen-
sion of the codewords of C is denoted by

lpCq def“ max
UPC

dimpUq.

The code C is then referred to as an rn, lpCq, |C|, dminpCqs
subspace code, where n is the dimension of the ambient space
W.

If the dimension of all codewords in C are equal, then the
code is referred to as a constant-dimension code, which is also
called a code on Grassmannian or a Grassmann code in the
literature.

The dual subspace code associated with subspace code C
is the code CK def“ tUK : U P Cu. Lemma 17 implies that
dminpCKq “ dminpCq. Note that if C is a constant-dimension
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code of type rn, l, M, dmins, then CK is a constant-dimension
code of type rn, n ´ l, M, dmins.

Definition 4: Let C be an rn, l, M, dminpCqs subspace code.
The normalized weight λ, the rate R, and the normalized
minimum distance δ of C are defined as follows:

λ
def“ l

n
, R def“ ln M

n
, δ

def“ dminpCq
2l

.

Note that the normalized weight λ and the normalized min-
imum distance δ are always between 0 and 1. However, while
designing constant-dimension codes one can limit the attention
to λ P r0, 1

2 s. This is because for any code C with l ą n
2 , there

exists a dual code CK with l ă n
2 and having the same distance

properties.

As in conventional block codes, one can associate a mini-
mum distance decoder to a subspace code C, e.g., when used
for communication over an analog operator channel, in order
to recover from subspace errors and erasures. Such a decoder
returns the nearest codeword V P C given U P PpWq as its
input, i.e., for any V1 P C, dpU, Vq ď dpU, V1q. The following
lemma plays a key rule in relating the minimum distance of
C to its error-and-erasure correction capability under minimum
distance decoding.

Lemma 3: Let U, V P PpWq denote the input and the output
of an analog operator channel, respectively, with the relation
specified in (7). Then for any T P PpWq we have

dpU, Tq ď ρ ` t ` dpV, Tq, (13)

where ρ and t denote the dimension of erasures and errors,
respectively, as specified in Definition 1.

Proof: Let U1 “ HkpUq. Then dpU, U1q “ ρ by
Lemma 18. Also, as shown in the proof of Lemma 18, PU and
PU1 are simultaneously diagonalizable. Hence, by Lemma 16
we have

dpU, Tq ď ρ ` dpU1, Tq, (14)

for any T P PpWq. Moreover, V “ U1 ‘ E, where E denotes
the error space with dimpEq “ t. Using the same argument
PU1 and PV are also simultaneously diagonalizable. Similarly,
by Lemma 16 we have

dpU1, Tq ď t ` dpV, Tq, (15)

for any T P PpWq. Combining (14) with (15) completes the
proof.

Theorem 4: Consider a subspace code C used for commu-
nication over an analog operator channel, as defined in Def-
inition 1, i.e., the input to the channel is U P C. Let t and
ρ denote the dimension of errors and erasures, respectively.
Then the minimum distance decoder successfully recovers the
transmitted codeword U P C from the received subspace V if

2pρ ` tq ă dminpCq, (16)

where dminpCq is the minimum distance of C defined in Defini-
tion 3.

Proof: By Lemma 3 we have

dpU, Tq ď ρ ` t ` dpV, Tq, (17)

for any T P PpWq. In particular,

dpU, Vq ď ρ ` t, (18)

by letting T “ V. Now, let T P C be a codeword other than U.
By (16) and the definition of minimum distance we have

dpU, Tq ě dminpCq ą 2pρ ` tq. (19)

This together with (17) and (18) yields

dpV, Tq ą ρ ` t ě dpU, Vq. (20)

Hence, the minimum-distance decoder returns U.
Theorem 4 implies that erasures and errors have equal costs

in the subspace domain as far as the minimum-distance decoder
is concerned. In other words, the minimum-distance decoder for
a code C can correct up to

Y

dminpCq´1
2

]

errors and erasures.
Remark 2. If one uses the chordal distance, instead of the
distance dp., .q defined in Definition 2, and follows the similar
arguments as we did in this section, a result similar to Theo-
rem 4 can be obtained while the condition in (16) is replaced by?

2p?
ρ ` ?

tq being strictly less than the minimum chordal dis-
tance of the code. Since dp., .q “ 2dcp., .q2, where dcp., .q is the
generalized chordal distance, this condition can be expressed in
terms of dminpCq as follows:

4p?
ρ ` ?

tq2 ă dminpCq. (21)

Note that the left hand side of (21) is greater than that of (16)
by a multiplicative factor that is between 2 and 4. This shows
the clear advantage in using the new distance dp., .q instead
of the chordal distance in characterizing the error-and-erasure
correction capability of analog subspace codes. The advantage
is due to the fact that although dp., .q does not always satisfy
the triangle inequality, it exhibits properties of a metric when
dealing with inputs and outputs of analog operator channels.

IV. ROBUSTNESS AGAINST ADDITIVE NOISE

In this section, we analyze the robustness of the analog
operator channel in the presence of an additive noise.

The additive noise is denoted by N P Clˆn, referred to as the
noise matrix. In the presence of the additive noise, the transform
equation described in (6) is extended as follows:

Ylˆn “ HlˆmXmˆn ` GlˆtEtˆn ` Nlˆn. (22)

More specifically, the effect of all the noise terms added to
the blocks across the wireless network is included in the noise
matrix N. For ease of notation, let A denote the term HX ` GE,
consisting of terms associated to the transmitted blocks as well
as the interference blocks, referred to as the signal matrix.

In the rest of this section, we aim at characterizing the
perturbation imposed by the additive noise in terms of the
subspace distance. In other words, we derive bounds on sub-
space distance between the signal matrix and the signal matrix
perturbed by noise, i.e., dpxAy, xA ` Nyq, in terms of various
characteristics of both the noise and the signal matrix.

First, we consider the case where A is full row rank. In a
sense, this implies that the receiver does not oversample from
the network. In this case, we show that the subspace distance
caused by the noise is bounded in terms of two parameters: (1)



7

the ratio of the maximum singular value, also referred to as the
spectral norm, of the signal matrix to the Frobenius norm of
the noise matrix, i.e., ∥A∥2

∥N∥ ; and (2) the spectral norm condition
number of the signal matrix, defined as

κpAq def“ ∥A∥2 ||A`||2, (23)

where A` is the pseudo-inverse of A, defined as
A` def“ AHpAAHq´1. It is well-known that κpAq “ σmax

σmin
ě 1,

where σmax “ ∥A∥2 and σmin are the largest and the smallest
singular values of A, respectively.

Our analysis is based on the analysis of perturbation of RQ-
factorization, see., e.g., [42]. Recall, from the linear algebra
literature, that the RQ-factorization of a given matrix A P Clˆn

decomposes it as A “ RQ, where Q P Clˆn is an orthonormal
matrix with QQH “ Il and R P Clˆl is an upper triangular
matrix with positive diagonal elements. It is well known that
the RQ-factorization is unique [43]. The following result relates
the perturbation of A to the perturbation of Q in its RQ-
factorization.

Theorem 5: [42, Theorem 1.6] (rephrased) Let A P Clˆn be
a full row rank matrix with RQ-factorization A “ RQ. Then
for any E P Clˆn that satisfies

⃦⃦
A`

⃦⃦
2 ∥E∥2 ă 1, we have the

following RQ-factorization for A ` E:

A ` E “ pR ` R∆qpQ ` Q∆q,

with pQ ` Q∆qpQ ` Q∆qH “ Il such that

∥Q∆∥ ď p1 ` ?
2qκpAq

1 ´ ∥A`∥2 ∥E∥2
.
∥E∥
∥A∥2

. (24)

An upper bound on the subspace distance caused by the noise
is derived in the following theorem.

Theorem 6: Let A P Clˆn be a full row rank matrix. Then for
any E P Clˆn that satisfies

⃦⃦
A`

⃦⃦
2 ∥E∥2 ă 1, we have

dpxAy, xA ` Eyq ď 2ϵ ` ϵ2, (25)

where

ϵ
def“ p p1 ` ?

2qκpAq
1 ´ ∥A`∥2 ∥E∥2

.
∥E∥
∥A∥2

q2. (26)

Proof: Suppose that Q and Q∆ are derived according to
Theorem 5. Then we have

dpxAy, xA ` Eyq “ ⃦⃦pQ ` Q∆qHpQ ` Q∆q ´ QHQ
⃦⃦2

(27)

ď ⃦⃦
QHQ∆

⃦⃦2 ` ⃦⃦
QH

∆Q
⃦⃦2 ` ⃦⃦

QH
∆Q∆

⃦⃦2

(28)

“ 2
⃦⃦

QHQ∆
⃦⃦2 ` ⃦⃦

QH
∆Q∆

⃦⃦2
, (29)

where (27) is by (12), (28) follows from triangle inequality
and (29) is by observing that ∥A∥ “ ⃦⃦

AH
⃦⃦

for any matrix A.
Moreover, for the first term in (29) we have⃦⃦

QHQ∆
⃦⃦2 “ trpQH

∆QQHQ∆q “ trpQH
∆Q∆q “ ∥Q∆∥2 , (30)

since QQH “ Il . Applying Lemma 19, in the appendix, to the
second term in (29) results in⃦⃦

QH
∆Q∆

⃦⃦ ď ∥Q∆∥2 . (31)

Then (29), (30), and (31) together with the result of Theorem 5

yield (25).
The result of Theorem 6 can be applied to upper bound

the subspace distance dpxAy, xA ` Nyq caused by the additive
noise N as long as the signal matrix A is full row rank. If A
is not full row rank, which means that the receiver is somewhat
oversampling from the network, the addition of N, even with
very small norm, may result in a large dpxAy, xA ` Nyq. This is
because A ` N is full row rank with probability 1 if entries of N
are Gaussian random variables. Consequently, by Lemma 18,

dpxAy, xA ` Nyq ě l ´ rankpAq, (32)

regardless of how small ∥N∥ is. The aim here is to characterize
the error correction capability of subspace codes in the presence
of additive noise, i.e., to extend the result of Theorem 4 to take
into account the effect of the additive noise as well as subspace
errors and erasures. In order to do so for the general case, where
the signal matrix A is not necessarily full row rank, one can
model the effect of the noise partially as an interference of
dimension l ´ rankpAq and partially as an addition of noise
to a full row rank sub-matrix of the signal matrix, whose effect
can be bounded using Theorem 6. This is elaborated through
the rest of this section.

Let r “ rankpAq and rd denote the rank-deficiency of A, i.e.,

rd
def“ l ´ r. (33)

Also, let A1 be an r ˆ n full row rank sub-matrix of A and A2
denote the sub-matrix of A consisting of its remaining rows. Let
N1 and N2 be sub-matrices of N with row indices associated
with row indices of A1 and A2, respectively. Without loss of
generality one can write

A “
„

A1
A2

ȷ

, N “
„

N1
N2

ȷ

, (34)

where both A1 and N1 are r ˆ n matrices and both A2 and N2
are rd ˆ n matrices. Then we have the following theorem.

Theorem 7: Let A P Clˆn with rankpAq “ r. Let A1 P Crˆn

denote a foll row rank sub-matrix of A. Then for any N P Clˆn

that satisfies
⃦⃦

A`
1

⃦⃦
2 ∥N∥2 ă 1 we have

dpxAy, xA ` Nyq ď p?
rd ` ?

∆q2, (35)

where rd is the rank-deficiency of A, as defined in (33). Also,

∆ def“ 2ϵ ` ϵ2, (36)

where

ϵ
def“ p p1 ` ?

2qκpA1q
1 ´ ⃦⃦

A`
1

⃦⃦
2 ∥N∥2

.
∥N∥
∥A1∥2

q2. (37)

Proof: Let A1, A2, N1, and N2 be as specified in (34).
Then we have the following:

dpxAy, xA ` Nyq1{2 (38)

“ dpxA1y, xA ` Nyq1{2 (39)

ď dpxA1y, xA1 ` N1yq1{2 ` dpxA1 ` N1y, xA ` Nyq1{2, (40)

where (39) holds because xAy “ xA1y and (40) is by triangle
inequality for dcp., .q and noting that dpU, Vq “ 2dcpU, Vq2.
We will bound the two terms in (40) separately.
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To bound the first term in (40), first note that ∥N1∥ ď ∥N∥.
Also, for the spectral norm, we have ∥N1∥2 ď ∥N∥2 since
adding a row to a rectangular matrix does not reduce its
maximum singular value, see, e.g., [44]. This together with
Theorem 6 yield the following upper bound on the first term
in (40):

dpxA1y, xA1 ` N1yq ď ∆ “ 2ϵ ` ϵ2 (41)

where ϵ is specified in (37).
For the second term in (40) we have

dpxA1 ` N1y, xA ` Nyq
“ dpxA1 ` N1y, xA1 ` N1y ` xA2 ` N2yq (42)
ď rankpxA2 ` N2yq ď rd, (43)

where (42) holds by the definition in (1), and (43) follows from
Lemma 18 and by noting that for any U, V P PpWq one can
always write U ` V “ U ‘ V1 for some V1 P PpWq with
dimpV1q ď dimpVq. The proof is complete by combining (41)
and (43) together with (40).

Theorem 7 shows that the additive noise affects the output
of the analog operator channel in two ways. It, in a sense,
rotates the output subspace by a value upper bounded by ∆ and
also, implicitly, induces an extra interference term of dimension
upper bounded by rd (For simplicity, we consider the worst case
scenario where this dimension is rd). This motivates us to define
the noisy analog operator channel as follows. First, we define
a stochastic operator R∆, referred to as the rotation operator,
which takes a subspace U P PpWq as the input and returns a
random subspace V P PpWq with dimpVq “ dimpUq as the
output in such a way that

dpU, Vq ď ∆.

Definition 5: A noisy analog operator channel associated
with the analog ambient space W is a channel with input U and
output V, where U, V P PpWq, with the following input-output
relation:

V “ R∆
`

HkpUq ‘ E
˘ ‘ F, (44)

where HkpUq and E induce subspace erasures and errors,
respectively, as in the analog operator channel model, defined
in Definition 1, R∆ is the rotation operation defined above, and
F is the implicit interference caused by the additive noise.

The following theorem extends the result of Theorem 4 to
take into account the effect of the additive noise as well as the
subspace errors and erasures.

Theorem 8: Consider a subspace code C used for commu-
nication over a noisy analog operator channel, as defined in
Definition 5, i.e., the input to the channel is U P C. Let t, ρ,
and rd denote the dimension of errors, erasures, and the implicit
noise interference F, respectively. Then the minimum distance
decoder successfully recovers the transmitted codeword U P C
from the received subspace V if

ρ ` t ` pa

ρ ` t ` ∆ ` ?
∆ ` 2

?
rdq2 ă dminpCq. (45)

Proof: Let V1 “ HkpUq ‘ E and V2 “ R∆
`

V1q. Note
that we have V “ V2 ‘ F. Then by applying Lemma 3 to the

analog operator channel with input U and output V1 we have

dpU, V2q ď ρ ` t ` dpV1, V2q “ ρ ` t ` ∆. (46)

Also, by using the triangle inequality for the chordal distance
dcp., .q and noting that dp., .q “ 2dcp., .q2 we have

dpU, Vq ď `

a

dpU, V2q ` a

dpV2, Vq˘2. (47)

By Lemma 18 we have dpV2, Vq “ rd. This together with (46)
and (47) yields

dpU, Vq ď pa

ρ ` t ` ∆ ` ?
rdq2. (48)

Now consider a codeword T P C other than U. Again, by
applying Lemma 3 to the analog operator channel with the input
U and the output V1 and by rearranging the terms we have

dpT, V1q ě dpT, Uq ´ ρ ´ t ě dminpCq ´ ρ ´ t, (49)

where the last inequality is by the definition of minimum
distance. Also, by using the triangle inequality for the chordal
distance we have

dpT, Vq ě `

a

dpT, V1q ´ a

dpV1, V2q ´ a

dpV2, Vq˘2. (50)

Again by noting that dpV1, V2q ď ∆, dpV2, Vq “ rd, and by
combining (50) with (49) we have

dpT, Vq ě `

b

dminpCq ´ ρ ´ t ´ ?
∆ ´ ?

rd
˘2. (51)

It can be observed that the condition given in (45) implies that
the right hand side of (51) is strictly greater than that of (48). In
other words, (45) guarantees that

dpT, Vq ą dpU, Vq,

for any codeword T P C other than U. Hence, the minimum
distance decoder returns U which completes the proof.

Remark 3. Note that Theorem 8 reduces to Theorem 4 by set-
ting rd “ ∆ “ 0. In other words, Theorem 8 properly extends
the result of Theorem 4, on relating the minimum distance
of analog subspace codes to their error-and-erasure correction
capability, to the noisy analog operator channel scenario. In
practice, the implicit noise interference term F and, conse-
quently, the term rd in (45) can be potentially removed by
simply discarding a certain number of received blocks at the re-
ceiver. However, this requires knowing the rank of the received
signal by the receiver which may not be readily available due
to the assumptions on non-coherent communications. This can
be further explored when considering a practical wireless net-
working scenario to see whether such information, i.e., the rank
of the received signal, can be obtained or well-approximated,
e.g., using principal component analysis (PCA) methods, by
the receiver. Also, as shown in Theorem 7, the other term,
besides rd, resulting from the additive noise that affects the
output subspace is ∆. Note that for a fixed signal matrix A, as
∥N∥ Ñ 0, we have ϵ Ñ 0 as well as ∆ Ñ 0, where ϵ and ∆
are specified in (37) and (36), respectively. This together with a
procedure to remove the rd term, as discussed above, show that
the analog operator channel can be made robust with respect
to the additive noise, i.e., the subspace distance perturbation in
the received signal matrix, caused by the additive noise, goes to
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zero as ∥N∥ Ñ 0.

V. CONSTRUCTIONS OF ANALOG SUBSPACE CODES

In this section, we explore three approaches for constructing
analog subspace codes. In particular, the novel approach based
on character sums results in explicit constructions with better
rate-minimum distance trade-off compared to the previously
known constructions for a wide range of parameters.

More specifically, we are concerned with the following
equivalent questions. For a given dimension of the ambient
space n and the size of the subspace code |C|, or equivalently
the rate of C, construct C with the maximum possible dmin.
Alternatively, given n and a desired dmin, construct the sub-
space code C with the maximum size/rate. Although the exact
answer to these equivalent questions are not known in general,
one can derive sphere-packing-type upper bounds and Gilbert-
Varshamov-type lower bounds for codes in the subspace do-
main.

By precisely characterizing the volume of balls in the Grass-
mann space Barg and Nogin derived lower and upper bounds
for R as n ÝÑ 8 while m and δ are fixed [8]. More specifically,
they analyzed the asymptotic behavior of the volume of a sphere
with a fixed radius on Gm,npLq that is then used in a packing-
type and a covering-type argument. Their result is recapped
in the following theorem. Note that we use the new notion of
distance, as defined in Definition 2, to state the results.

Theorem 9: [8, Theorem 2] There exists a sequence of codes
in Gm,npLq with fixed m and δ, while n Ñ 8, and asymptotic
rate

R ą ´1
2

βm lnpδq. (52)

Moreover, for any such sequence of codes

R ă ´βm lnp
d

1 ´
c

1 ´ δ

2
q, (53)

where β “ 1, 2 for L “ R, C, respectively, as discussed in
Section II-A.

Note that the lower bound in Theorem 9 is based on
existence-type arguments. However, a somewhat stronger result
can be established to conclude that such codes, perhaps by
sacrificing in the rate, can be found with probability arbitrarily
close to 1 in a random ensemble. This is the focus of the next
subsection. Also, it is discussed how such a result can be used
in constructing explicit codes.

A. Constructions based on random ensembles

For large values of n, the volume of a ball with a certain
radius r in Gm,npCq is characterized in [8]. This is done
by utilizing the relation between the principal angles of two
uniformly distributed subspaces in Gm,npCq and the singular
values of Wishart matrices, the matrices of the form NNH,
where the elements of N P Cmˆn are i.i.d standard normal
random variables. Note that the subspace spanned by the rows
of such a random matrix N is uniformly distributed on the
corresponding sphere in the Grassmann space Gm,npCq.

Let R denote a random ensemble of subspace codes with
code size M “ exppnRq, wherein each codeword is the

row space of a randomly generated m ˆ n matrix with i.i.d
entries from the N p0, 1q distribution. In the next theorem, it
is shown that a random subspace code almost achieves half of
the Gilbert-Varshamov lower bound, stated in (52), as n Ñ 8,
with a probability that approaches 1 exponentially fast in n.

Theorem 10: Consider a random ensemble R of subspace
codes with the rate

R “ ´1
4

βm lnpδq ´ ϵ,

for some ϵ ą 0. Then the normalized minimum distance of a
code C randomly picked from R is at least δ with probability at
least 1 ´ expp´2nϵ ` opnqq.

Proof: Let C “ tΦi : 1 ď i ď Mu, where M “ exppnRq
and C is randomly picked from R. Then the probability p that
two arbitrary codewords Φi and Φj have distance at most r
is equal to the volume of a ball with radius r, which can be
characterized as follows [11, Theorem 1]:

p “ p r
2m

q βnm
2 `opnq. (54)

Let Xi,j be an indicator random variable which is 1 if
dpΦi, Φjq ď r; otherwise, Xi,j “ 0. Let

X def“
M
ÿ

i“1

M
ÿ

j“i`1

Xi,j.

Using Markov inequality together with (54) and the linearity of
expectation we have:

PrrX ě 1s ă ErXs “
ˆ

M
2

̇

PrrXi,j “ 1s (55)

“
ˆ

M
2

̇

p ă exp
´

2nR ` ` βmn
2

` opnq˘

lnp r
2m

q
¯

. (56)

Note that if the random variable X, associated to C, is zero, then
it implies that dminpCq ě r, i.e.,

PrrdminpCq ě rs “ PrrX “ 0s “ 1 ´ PrrX ě 1s. (57)

This together with (56) complete the proof.
Remark 4. Note that random ensembles, in general, do not
lead to explicit constructions of subspace codes that can be
constructed with complexity that is polynomial in n. However,
a potential approach to utilize such ensembles is to pick another
parameter n1 that is much smaller than n, e.g., n1 “ Oplog nq,
and consider a random ensemble of subspace codes with the
dimension of ambient space equal to n1. Then a brute-force
search within the ensemble is feasible as its complexity is
exponential in n1 and, hence, it is polynomial in n. Also,
a minimum distance decoding is feasible for such a code.
Then a proper concatenation scheme can be potentially used,
by concatenating the random inner code with some explicit
construction of an outer code in order to construct explicit codes
with non-vanishing rates given a fixed δ as n Ñ 8. The details
are left for future work.

B. Packing lines using binary codes
A special and yet practically interesting case of the analog

operator channel is when m “ 1. For instance, from the non-
coherent wireless communications perspective, elaborated in



10

Section II-B, this can be a reasonable scenario in the uplink
transmission of a wireless node with one antenna transmitting
the node’s data in one time frame. In such cases, it is natural to
assume that there is no rank deficiency; otherwise, reliable com-
munication is not possible. A possible approach to construct
codes in G1,npLq is to use well-known constructions of binary
linear codes and map the binary coded data into real/complex
symbols resembling a joint coded modulation design.

The idea of constructing codes in G1,npRq using binary linear
codes was first suggested in [17]. Consider a binary linear code
of length n that forms a closed set under the completion, i.e.,
it contains the all-one codeword, with normalized minimum
Hamming distance γ. Then a possible mapping to real-valued
symbols is to map zeros to 1’s and ones to ´1’s. This results
in a code in G1,npRq with the normalized minimum distance
δ “ 32γ2p1 ´ γq2. The same result also holds in the complex
domain, i.e., packing lines in G1,npCq, where one can map ones
to p1 ` iq’s and zeros to ´p1 ` iq’s. Hence, given a family of
binary linear codes with fixed Hamming distance and asymptot-
ically non-vanishing rate in terms of n, one can construct a code
in G1,npLq with a fixed minimum distance and non-vanishing
rate as well. To this end, in the rest of this subsection, we
briefly overview various families of binary linear codes, from
this perspective, in the coding theory literature.

There are several well-known constructions of binary linear
codes, mainly based on code concatenations, with asymptoti-
cally good minimum distance. The idea of code concatenation
was first introduced by Elias in the form of product codes [45]
and was later developed by Forney [46]. Also, the well-known
Zyablov lower bound for the normalized minimum distance of a
concatenated code with rate R is characterized as follows [47]:

δZpRq “ max
Rďxď1

δGVpxqp1 ´ R
x

q, (58)

where δGVpxq is the Gilbert-Varshamov normalized distance at
rate x for the binary codes. Furthermore, by using multilevel
concatenation, codes with minimum distance even larger than
Zyablov bound (58) can be constructed. More specifically, a
generalization to (58) by letting the number of concatenation
levels going to infinity was given later, known as Blokh-
Zyablov bound [48], stated as follows:

RBZ “ 1 ´ hpδq ´ δ

ż 1´hpδq

0

dx
δGVpxq . (59)

Another line of work on combining codes is due to Tanner
[49] with the general theme of using one or more shorter codes,
referred to as subcodes, in combination with a certain bipartite
graph. In particular, a certain family of such graph-based codes
is referred to as expander codes, which are proved to have
asymptotically good minimum distance. For instance, Barg
and Zemor [50] proposed a family of expander codes meeting
the Zyablov bound, specified in (58), with the construction
complexity at most Opn2q and a decoder, with complexity that
is linear in n, that corrects up to half of the minimum distance.
They further improved this result by introducing another family
of codes that exceeds Zyablov bound with construction com-
plexity not more than Opn log nq.

There are also other families of concatenated codes, based

on algebraic-geometry (AG) codes as their outer codes, which
can somewhat provide better minimum distance comparing to
graph-based codes. More specifically, a certain concatenated
code family with a short binary inner code and an AG outer
code can surpass the Blokh-Zyablov bound [51], character-
ized in (59). These codes have construction complexity of
Opn3 log3 nq [52] and are currently known to have the largest
asymptotic rate, given a certain fixed normalized minimum,
while having polynomial construction complexity. Also, the
decoding complexity of such codes is Opn3q.

A main drawback of aforementioned construction methods
based on concatenation is that they often require n to be very
large in order to meet the promised performance. In other
words, they exhibit excellent asymptotic performance, however,
they often fall short for finite values of n that are of practical
interest. Hence, it is desirable to focus on explicit constructions
of subspace codes that can be constructed for a wide range
of n, regardless of how small or large n is, while providing
reasonable performance. In a sense, we aim at constructing
subspace codes that resemble well-known families of block
codes such as Reed-Solomon codes in the subspace domain,
and that can be constructed for a broad range of parameters.
This is the focus of the next subsection.

C. A new family of analog subspace codes: Character-
polynomial codes

In this section, we propose a new family of subspace codes in
G1,npCq by leveraging polynomial evaluations over finite fields
and mapping the finite field symbols to the roots of unity. Then
results on character sums from analytic number theory [53],
discussed next, are used to bound the minimum distance of
the constructed codes. The resulting codes are referred to as
character-polynomial (CP) codes.

Consider a cyclic group G of order |G|. A character χ
associated to G is a homomorphism from G to the unit circle in
the complex plane with the regular multiplication of complex
numbers, i.e.,

χpg1g2q “ χpg1qχpg2q, (60)

for all g1, g2 P G. It can be observed that

χ˚
g “ χpg´1q, (61)

where g´1 is the inverse of g in G and x˚ is the complex
conjugate of x for x P C. Given a certain and finite number
of characters χ1, . . . , χl one can define the product character
χ1χ2 . . . χl by setting

pχ1χ2 . . . χlqpgq “ χ1pgqχ2pgq . . . χlpgq,

for all g P G. The set of all characters associated to G together
with this product form an Abelian group of order |G|, where
the elements χj, for j “ 1, 2, . . . , |G|, are described as follows
[53]:

χjpg1kq “ ep jk
|G| q, (62)

for k “ 0, 1, . . . , |G| ´ 1, where g1 is a generator of G and
epxq def“ expp2πixq. Note that χ0pgq “ 1 for g P G and hence,
it is referred to as the trivial character.
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A finite field Fq is naturally equipped with two finite Abelian
groups, i.e., the additive and the multiplicative group. Then, the
additive and multiplicative characters of Fq are defined as the
characters associated with the additive and the multiplicative
group in Fq, respectively. Using (62), the additive characters,
denoted by χj, for j “ 0, 1, . . . , q ´ 1, are described as follows
[53]:

χjpαq “ ep trapjαq
p

q (63)

for j P Fq, where p is the characteristic of Fq, and

trapγq def“ γ ` γp ` ¨ ¨ ¨ ` γpm´1

is the absolute trace function from Fq to Fp, where q “ pm.
Note that (63) implies that χjpαq “ χ1pjαq and the trivial
additive character is χ0pαq “ 1 for α P Fq.

The following result, due to Weil [54], on the summations
over characters, which are commonly known as exponential
sums or character sums in the literature, will be utilized in
bounding the minimum distance of CP codes, to be discussed
next.

Theorem 11: [53, Theorem 5.35] Consider a polynomial f P
Fqrxs of degree d ě 1 with gcdpd, qq “ 1. Let χ be a nontrivial
additive character of Fq. Then

|
ÿ

αPFq

χp f pαqq| ď pd ´ 1q?
q. (64)

Next, for some k ă q, let

F def“ t f P Fqrxs : f pxq “
ÿ

iPrks,i mod p‰0

fixiu. (65)

Note that |F | “ qrkpp´1q{ps. We fix n “ q ´ 1 in our
construction.

Definition 6: The code CpFq Ď G1,npCq, referred to as a
character-polynomial (CP) code, is defined as follows:

CpFq def“ txpc1, c2, . . . , cnqy : ci “χ
`

f pαiq
˘

,
@ f P F , αi P Fqzt0uu, (66)

where χ is a fixed nontrivial additive character of Fq, and αi’s
are distinct non-zero elements of Fq.

The following theorem provides a lower bound on the nor-
malized minimum distance of CpFq in terms of q and d.

Theorem 12: The code CpFq has size qrkpp´1q{ps and

δ ě 1 ´
`pk ´ 1q?q ` 1

˘2

n2 , (67)

where δ “ dmin{2m (here m “ 1) is the normalized minimum
distance of the code.

Proof: Consider distinct codewords xC1y, xC2y P CpFq
with corresponding distinct polynomials f1, f2 P F1. Let f “
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Figure 1. Error-correction radius versus rateFig. 2: Comparison of CP codes with lower-bounds in terms of the
trade-off between the rate R and the normalized minimum distance δ
for m “ 1.

f2 ´ f1. Then we have

n
⃦⃦

C1CH
2
⃦⃦ “ |

ÿ

αPFqzt0u

χ˚
`

f1pαq˘

χ
`

f2pαq˘|

paq“ |
ÿ

αPFq

χ
`

f pαq˘ ´ 1|

pbqď |
ÿ

αPFq

χ
`

f pαq˘| ` 1

pcqď pk ´ 1q?
q ` 1,

where paq follows by (61) and (60) and noting that χ
`

f p0q˘ “
1, pbq is by the triangle inequality, and pcq is by Theorem 11
applied to f “ f1 ´ f2. Note that f P F . This implies
that degp f q ě 1 and gcdpdegp f q, qq “ 1 since polynomials
in F , as defined in (65), do not have a monomial of degree
divisible by p. Hence, f “ f1 ´ f2 satisfies the conditions in
Theorem 11.

Using Lemma 2, we have

δ “ dpxC1y, xC2yq
2

“ 1 ´ ⃦⃦
C1CH

2
⃦⃦2 ą 1 ´ ppk ´ 1q?q ` 1q2

n2 ,

which completes the proof.
Note that the right hand side of (67) can be approximated

in terms of the rate of the code. This results in a bound on
the trade-off between the normalized minimum distance and
the rate of the code. We plot this bound and compare it with
other bounds/constructions next. In particular, in order to have
a simplified numerical analysis, we limit our attention to the
case where q is a prime, i.e., q “ p, and k ă p. In this case,
we have |CpFq| “ qk and R “ k ln q

n . Also, the bound in (67) is
simplified as follows:

δ ě 1 ´ ppk ´ 1q?q ` 1q2

n2 ą 1 ´ qR2

pln qq2 . (68)

It is worth mentioning that all nontrivial choices for the
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character χ result in the same codebook. To observe this, let
χa and χb denote two distinct nontrivial characters for some
a, b P Fq, and CapFq and CbpFq denote the corresponding
codebooks described in Definition 6, respectively. Since both
a and b are non-zero, c “ ba´1 is a well-defined non-zero
element of Fq. Then, for any f pxq P F , one can write

χbp f pxqq “ep trapb f pxqq
p

q “ ep trapac f pxqq
p

q

“ep trapa f 1pxqq
p

q “ χap f 1pxqq. (69)

Note that f 1pxqdef“ c f pxq is also in F . This together with (69)
imply that CapFq “ CbpFq.

In Figure 2, we compare the trade-off between the rate R and
the normalized minimum distance δ that the CP codes offer
at different values of n with Shannon’s lower bound [7], for
n Ñ 8, and lower bounds derived by Henkel [16, Theorem 4.2]
for finite values of n. Note that these lower bounds are of the
same type as Gilbert-Varshamov bound and do not yield explicit
constructions. Nevertheless, it can be observed that CP codes
outperform these lower bounds at low rates, thereby improving
these bounds while providing explicit constructions. Note also
that the trade-off between R and δ shown in Figure 2 for CP
codes is derived from the bound established in Theorem 12. In
other words, the actual value of δ for the given values of R can
be larger than what is shown in Figure 2.
Remark 5. Given a subspace code in C Ď Gm,npCq one can
construct a code in G2m,2npRq by mapping Ci P C to

„

ℜpCiq ℑpCiq
´ℑpCiq ℜpCiq

ȷ

, (70)

where ℜ and ℑ represent the real part and the imaginary part
of their input, respectively. It can be observed that this map-
ping preserves the normalized distance between the codewords.
Hence, the normalized minimum distance of C is also pre-
served. This mapping enables us to construct codes in G2,npRq
using the proposed CP codes, while keeping the normalized
minimum distance and the size of the code the same, in order
to have fair comparisons with existing code constructions in the
real Grassmann space.

In Figure 3, we compare CP codes with two existing con-
structions of Grassmann codes, that are constructed explicitly
for a wide range of n, in the literature. In [21], Calderbank et al.
introduce a group-theoretic framework for packing in G2i ,2k pRq
for any pair of integers pi, kq with i ď k. In another prior
work, Ashikhmin et al. [35] provide a code construction method
in G2i ,2k pCq based on binary Reed-Muller (RM) codes. It is
worth noting that the subspaces in this construction correspond
to certain projection operators determined by Pauli matrices
appearing in quantum computing, where the main objective is
to enable error correction in quantum computing. Therefore,
one should not expect such constructions to maximize the
rate. However, they are competitive in small dimensions as
illustrated in Figure 3. By utilizing the mapping specified in
(70) for both the CP codes and the codes constructed in [35]
with i “ 0, we compare the log-size of the codes obtained in
G2,npRq with that of codes in G2,npRq from [21], while fixing

1
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Fig. 1: Comparison of the codes in G2,npRq obtained from CP codes
with the codes constructed in [?] and [?].

Fig. 3: Comparison of the codes in G2,npRq obtained from our pro-
posed CP codes in G1, n

2
pCq with the codes constructed by Calderbank

et al. [21] and Ashikhmin et al. [35]. The codes from [21] [35] have
δ “ 1

2 , and for CP codes we have δ ě 1
2 , for all considered values of

n.

δ “ 1
2 for the codes from [21] [35] and having δ ě 1

2 for the CP
codes, for all the considered values of n. The results are shown
in Figure 3. Note that n is equal to 2k for the constructions in
[21] and [35], while for CP codes we pick n “ 2p, where p
is the largest p with p ă 2k´1, for k P t3, . . . , 10u. It can be
observed that CP codes offer significantly larger code size and,
consequently, rate comparing to the other explicit constructions,
as n grows large.
Remark 6. Note that the lower bound of Theorem 12 on dmin
of CP codes is at most two. Even with dmin slightly greater
than two Theorem 4 implies that the correction of only one
error can be guaranteed using a minimum distance decoder.
A possible solution to this issue is to consider list decoders in
order to guarantee error recovery beyond dmin{2. In the finite
field domain, several prior works have studied list decoding for
algebraic subspace codes, see, e.g., [55]–[59]. In particular, it
is observed in [57] that an unbounded number of errors can
be corrected by increasing the list size, while the dimension of
subspace codewords is one. However, obtaining similar results
in the analog domain necessitates further investigation and is
left for future work.
Remark 7. The Weil bound, recapped in Theorem 11, has been
utilized in various coding theoretic contexts , e.g., to provide
bounds on the minimum distance of the duals of BCH codes
[60] and to estimate the covering radius of BCH codes with
large block lengths [61], [62]. Also, it has inspired the design of
certain families of sequences over finite fields of prime size with
low auto-correlation and cross-correlation in [63] in a similar
fashion. Notably, Kumar et al. derive a counterpart of the Weil
bound over Galios rings [64]. They further design families of
phase-shift-keying sequences with low correlation where this
bound is then utilized to provide a guarantee on the correlation
level of the construction. The main difference between the
design criterion considered in the constructions in [63] and [64]
and that of our approach is that these prior works require the
correlation between the circular shifts of any two codewords to
be bounded, in addition to the auto-correlation, while we only
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require the correlation between two distinct codewords to be
small. Furthermore, as it is shown in the next section, a certain
property of the construction provided in this work is leveraged
to construct subspace codes in higher dimensions (m ą 1).

D. Higher Dimensional Character-Polynomial Codes

The character-polynomial (CP) codes, demonstrated in Sec-
tion V-C, provide a family of one-dimensional subspaces in a
complex Grassmann space, i.e., a packing of lines in G1,npCq.
Next, we provide a slightly different version of one-dimensional
CP codes that enables us to provide a new construction in
Gm,npCq for m ą 1. We fix n “ q in this section.

Definition 7: The code C 1pFq Ď G1,npCq is defined as
follows:

C 1pFq def“ txpc1, c2, . . . , cnqy : ci “ χ
`

f pαiq
˘

, @ f P F , αi P Fqu,
(71)

where χ is a fixed nontrivial additive character of Fq, F is
defined in (65), and αi’s are distinct elements of Fq.

The definition of CP codes provided in (66) excludes the
zero element of Fq from the set of evaluation points. Including
the zero element in the alternative version, specified in (71),
leads to a certain property that is discussed in the following
lemma. Before that, we define the following. For any two sets
of orthonormal bases B1 and B2 for W, the cross-correlation
between B1 and B2 is defined as

∆B1,B2
def“ max

v1PB1,v2PB2
|v1 ¨ v2|, (72)

where the operation ¨ denotes the inner product.
Lemma 13: The set of normal vectors representing revised

one-dimensional CP codewords, defined in Definition 7, can be
split into qrkpp´1q{ps´1, denoted by b, collections Bi’s, for i P
rbs, where each Bi is an orthonormal basis for W. Furthermore,
the cross-correlation between Bi’s is upper bounded as follows:

max
i,jPrbs,i‰j

∆Bi ,Bj ď pk ´ 1q?
n

. (73)

Proof: The set of polynomials F , defined in (65), can be
split into disjoint subsets such that the polynomials belonging to
the same subset differ only in the coefficient of the degree-one
monomial, i.e., the coefficient of x. Note that the constant co-
efficient of all the polynomials in F is equal to zero according
to (65). Then, two distinct polynomials f and f 1 in F belong to
the same subset if and only if degp f ´ f 1q “ 1. Consequently,
it can be observed that F is partitioned into qrkpp´1q{ps´1 of
such subsets each of size q. Let c “ 1?

n pc1, ¨ ¨ ¨ , cnq and

c1 “ 1?
n pc1

1, ¨ ¨ ¨ , c1
nq, where ci “ χ

`

f pαiq
˘

and c1
i “ χ

`

f 1pαiq
˘

for i P rns, and f and f 1 belong to the subset of F as discussed
above. Then,

|c ¨ c1| “ 1
n

|
ÿ

αPFq

χ˚
`

f pαq˘

χ
`

f 1pαq˘| paq“ 1
n

|
ÿ

αPFq

χ
`p f 1 ´ f qpαq˘| pbqď 0

(74)
where paq follows by (63) and pbq is by the Weil bound,
specified in (64), together with noting that degp f ´ f 1q “ 1.
Therefore, (74) implies that we must have c ¨ c1 “ 0, i.e., c
and c1 must be orthogonal. Hence, each of the subsets of F , as

discussed above, consists of q mutually orthogonal lines in W.
Consequently, the set of unit-norm vectors representing these
lines is an orthonormal basis for W. The upper bound in (73)
can be derived again using the Weil bound and by noting that
degp f ´ f 1q ď k for any f and f 1 in F , i.e., for any two
normalized distinct c and c1 in the CP code, the upper bound
in (73) holds.

Inspired by Lemma 13, we provide a construction for packing
m-planes in Gm,npCq for m ą 1. Let vpiq

1 , ¨ ¨ ¨ , vpiq
q denote the

orthonormal basis vectors in Bi, for i P rbs, where b is defined
in Lemma 13. Also, let

Φij “

»

—

—

—

–

vpiq
pj´1qm`1

...
vpiq

jm

fi

ffi

ffi

ffi

fl

, (75)

for all i P rbs and j P rX q
m

\s. Then,

C def“ t@

Φij
D

: @i P rbs, @j P r
Y q

m

]

su (76)

is a subspace code in Gm,npCq. Note that we have

|C| “ qrkpp´1q{ps´1
Y q

m

]

.

The normalized minimum distance of C is characterized in
the next theorem.

Theorem 14: The normalized minimum distance δ of the
code C, defined in (76), is lower bounded as

δ ě 1 ´ mpk ´ 1q2

n
. (77)

Proof: Consider two distinct codewords C1 “ @

Φi,j
D

and

C2 “
A

Φi1,j1
E

P C. Note that the rows in Φi,j and Φi1,j1 are

orthonormal. Note also that for i “ i1, Φi,jΦH
i1,j1 “ 0, since all

the rows of both matrices belong to the same orthonormal basis
which implies that δ “ 1 in this case. Otherwise, i.e., when
i ‰ i1, we have ⃦⃦⃦

Φi,jΦH
i1,j1

⃦⃦⃦2 ď m2pk ´ 1q2

n
, (78)

since Φi,jΦH
i1,j1 is an m ˆ m matrix whose elements’ absolute

value is upperbounded by (73). Then, one can write

δ “ dpC1, C2q
2m

(79)

“
2pm ´

⃦⃦⃦
Φi,jΦH

i1,j1

⃦⃦⃦2q
2m

(80)

ě 1 ´ mpk ´ 1q2

n
, (81)

where (79) is by the definition of the normalized distance
provided in Definition 4, (80) follows by utilizing the alternative
characterization provided in Lemma 2 for the distance function
defined in (12), and (81) results from plugging in (78) into (80).

In Table I, we compare the parameters of our proposed codes
with those of the closest explicit construction of Grassmann
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Our construction Calderbank et al. [21]
m n lnp|C|q dmin n lnp|C|q dmin
4 254 28.36 2.43 256 32.62 2
4 502 43.51 2.44 512 40.25 2
4 1018 74.09 2.10 1024 48.57 2
4 2042 110.2 2.37 2048 57.59 2
8 1018 48.47 4.92 1024 49.87 4
8 2024 81.76 4.3 2048 59.57 4
8 4078 120.5 4.47 4096 69.97 4
8 8186 189.9 4.22 8192 81.07 4
16 2042 53.34 9.86 2048 59.52 8
16 4078 89.36 8.40 4096 70.61 8
32 4078 58.19 19.67 4096 69.19 16
32 8186 97.03 16.86 8192 81.67 16

TABLE I: Parameters of the new construction in Grassmannian space
provided in this paper to those of the proposed scheme by Calderbank
et al. [21, Theorem 1].

codes proposed in [21]. By utilizing the mapping specified in
(70) for our codes in G m

2 , n
2
pCq, we compare the blocklength,

logarithm of the code size, and the minimum distance of the
codes obtained in Gm,npRq with those of the codes in Gm,npRq
from [21]. In all the instances of n and m “ 4, 8, 16, 32 in
Table I, the normalized minimum distance is equal to 1

2 for
codes from [21] while it is at least 1

2 for our codes. Note that n
is equal to 2k for the construction in [21], while for our codes
we pick n “ 2p, where p is the largest prime number with
p ă 2k´1, for various choices of k. It can be observed that
our proposed construction offer significantly larger code size
and, consequently, rate comparing to the explicit construction
of [21], as n grows large. Note also that even for small n in
a few rows of Table I where the log-size of the proposed CP
codes is not larger than that of the codes constructed in [21]
yet, the minimum distance offered by CP codes is still larger
while having a smaller blocklength. The other advantage of
our construction is that it does not have any constraint on the
codeword dimension m but m has to be a power of two in [21].

VI. CONCLUSION AND FUTURE WORK

In this paper, motivated by the emergence of massive wire-
less networks, we provided a new coding framework for non-
coherent communications across such networks in order to mit-
igate the network deficiency and interference, e.g., from neigh-
bouring cells in a cellular network. To this end, the concept of
analog operator channel was introduced that captures the effect
of network deficiency and interference as subspace erasure
and errors, respectively. Also, a new distance is defined and
relations between the error-and-erasure correction capability of
a subspace code in the analog domain and its minimum distance
is established. This leads to a code design criteria to correct
errors/erasures over the analog operator channel. Furthermore,
we extended the framework to the case with additive noise, that
naturally exists in physical layer links, and showed that the
analog operator channel is robust with respect to the additive
noise. As a consequence, the effect of noise is shown to be
negligible in high signal-to-noise ratio regimes. Finally, we
proposed a novel algebraic construction for subspace codes in
the complex domain that outperforms the existing constructions

in the literature, in terms of the rate-minimum distance trade-
off, for a wide range of code blocklength.

There are several directions for future research. Extending
the results derived for minimum distance decoder by explor-
ing list decoding algorithms is a natural direction for future
research. In the case of noisy operator channel, obtaining tighter
bounds on the subspace perturbation imposed by the additive
noise is another research direction.
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APPENDIX

Lemma 15: Given a metric d0 : M ˆ M ÝÑ R on a set M, the
function dpx, yq “ d0px, yq2 : M ˆ M ÝÑ R is a 2-quasimetric
on M.

Proof: We only need to show that (5) holds for dp., .q with
σ “ 2. The proof is by noting that for any x, y, z P M we have

dpx, zq “ d0px, zq2 ď pd0px, yq ` d0py, zqq2 (82)

ď 2pd0px, yq2 ` d0py, zq2q (83)
“ 2pdpx, yq ` dpy, zqq, (84)

where (82) follows from the triangle inequality and (83) is
by Cauchy-Schwarz inequality. The remaining properties of a
quasimetric follow in a straightforward way given that d0 is a
metric.

Lemma 16: Suppose that the projection matrices of two
subspaces U, V P PpWq are simultaneously diagonalizable.
Then the distance dp., .q, as defined in (2), satisfies the triangle
inequality, i.e.,

dpU, Vq ` dpV, Tq ě dpT, Uq,

for any T P PpWq.
Proof: By definition of simultaneously diagonalizable

matrices, there exists an orthonormal basis for the ambient
space W in which both PU and PV are diagonal. Let ui,j,

http://www.jstor.org/stable/2099415
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vi,j and ti,j, for i, j P rns, denote the entries of the projection
matrices PU , PV , and PT in this basis, respectively. Note that
ui,j “ vi,j “ 0 for i ‰ j. Also, the diagonal entries of PU and
PV are either 0 or 1, since PU and PV are projection matrices.
Let

IU
def“ ti : ui,i “ 1, i P rnsu,

and
IV

def“ ti : vi,i “ 1, i P rnsu.

Also, we have 0 ď ti,i ď 1, for i P rns, a property that holds
for diagonal entries of any projection matrix PT . By (12) we
have the following relations for the pairwise distances between
U, V, and T:

dpU, Vq “ |IU X Ic
V | ` |Ic

U X IV |, (85)

dpT, Uq “
ÿ

i,jPrns

|ti,j|2 `
ÿ

iPIU

p1 ´ 2ti,iq, (86)

dpV, Tq “
ÿ

i,jPrns

|ti,j|2 `
ÿ

iPIV

p1 ´ 2ti,iq, (87)

where the complements in (85) are taken with respect to rns.
Subtracting (87) from (86) yields

dpT, Uq ´ dpV, Tq “
ÿ

iPIUXIc
V

p1 ´ 2ti,iq ´
ÿ

iPIc
UXIV

p1 ´ 2ti,iq (88)

ď |IU X Ic
V | ` |Ic

U X IV |, (89)

where (89) is by noting that ´1 ď 1 ´ 2ti,i ď 1 for i P rns.
This together with (85) complete the proof.

Lemma 17: For any U, V P PpWq we have

dpUK, VKq “ dpU, Vq, (90)

where dp., .q is defined in Definition 2.
Proof: It is well known that PUK “ I ´ PU . Hence,

dpUK, VKq“trppPK
U ´ PK

V q2q“trppPV ´ PUq2q“dpU, Vq.

Lemma 18: Suppose that U, T P PpWq and let V “ U ‘ T.
Then we have

dpU, Vq “ dimpTq, (91)

where dp., .q is defined in Definition 2.
Proof: Let t “ dim T and u “ dim U. Then dim V “

t ` u. One can always find a basis for W, namely te1, . . . , enu,
such that U “ xIuy and V “ xIvy where Iu and Iv are identity
matrices of dimensions u and v, respectively. Consequently, the
orthogonal projection matrices associated with these subspaces

are PU “
„

Iu 0
0 0

ȷ

and PV “
„

Iv 0
0 0

ȷ

. Then the lemma

follows immediately by using (12) and noting that the distance
is rotation invariant by Lemma 1.

Lemma 19: Let B P Clˆn. Then
⃦⃦

BHB
⃦⃦ ď ∥B∥2 .

Proof: Let σi P R, for i P rls, denote the singular values
of B. Then the singular values of BHB are λ2

i ’s. Hence, by using
(3) we have

⃦⃦
BBH⃦⃦ “

g

f

f

e

l
ÿ

i“1

σ4
i ď

l
ÿ

i“1

σ2
i “ ∥B∥2 .

Mahdi Soleymani (Student Member, IEEE) received his B.S. and M.S. degrees
in Electrical Engineering at Sharif University of Technology, Tehran, Iran,
in 2014 and 2016, respectively. He is currently pursuing his Ph.D. degree in
Electrical Engineering and Computer Science at the University of Michigan,
Ann Arbor. He received the Honourable Mention Award at the International
Physics Olympiad (IPhO) in 2010 and a Gold Medal at Iran National Physics
Olympiad in 2009. His research interests lie in the area of coding and infor-
mation theory with applications to distributed storage and computing systems,
wireless networks, and machine learning.

Hessam Mahdavifar (Member, IEEE) is an Assistant Professor in the De-
partment of Electrical Engineering and Computer Science at the University of
Michigan Ann Arbor. He received the B.Sc. degree from the Sharif University
of Technology, Tehran, Iran, in 2007, and the M.Sc. and the Ph.D. degrees from
the University of California San Diego (UCSD), La Jolla, in 2009, and 2012,
respectively, all in electrical engineering. He was with the Samsung US R&D
between 2012 and 2016, in San Diego, US, as a staff research engineer.

He received the NSF career award in 2020. He also received Best Paper
Award in 2015 IEEE International Conference on RFID, and the 2013 Samsung
Best Paper Award. He also received two Silver Medals at International Math-
ematical Olympiad in 2002 and 2003, and two Gold Medals at Iran National
Mathematical Olympiad in 2001 and 2002. His main area of research is coding
and information theory with applications to wireless communications, security,
privacy, and machine learning.


	Introduction
	Preliminaries
	Notation Convention
	Analog operator channel
	Related prior work

	Analog Metric Space, Subspace Codes, and Error Correction
	Robustness Against Additive Noise
	Constructions of Analog Subspace Codes
	Constructions based on random ensembles
	Packing lines using binary codes
	A new family of analog subspace codes: Character-polynomial codes
	Higher Dimensional Character-Polynomial Codes

	Conclusion and Future Work
	References
	Appendix
	Biographies
	Mahdi Soleymani
	Hessam Mahdavifar


