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Abstract: Unmanned aerial vehicles (UAVs) must keep track of their location in order to maintain
flight plans. Currently, this task is almost entirely performed by a combination of Inertial Mea-
surement Units (IMUs) and reference to GNSS (Global Navigation Satellite System). Navigation by
GNSS, however, is not always reliable, due to various causes both natural (reflection and blockage
from objects, technical fault, inclement weather) and artificial (GPS spoofing and denial). In such
GPS-denied situations, it is desirable to have additional methods for aerial geolocalization. One
such method is visual geolocalization, where aircraft use their ground facing cameras to localize
and navigate. The state of the art in many ground-level image processing tasks involve the use of
Convolutional Neural Networks (CNNs). We present here a study of how effectively a modern CNN
designed for visual classification can be applied to the problem of Absolute Visual Geolocalization
(AVL, localization without a prior location estimate). An Xception based architecture is trained from
scratch over a >1000 km? section of Washington County, Arkansas to directly regress latitude and
longitude from images from different orthorectified high-altitude survey flights. It achieves average
localization accuracy on unseen image sets over the same region from different years and seasons
with as low as 115 m average error, which localizes to 0.004% of the training area, or about 8% of
the width of the 1.5 x 1.5 km input image. This demonstrates that CNNs are expressive enough to
encode robust landscape information for geolocalization over large geographic areas. Furthermore,
discussed are methods of providing uncertainty for CNN regression outputs, and future areas of
potential improvement for use of deep neural networks in visual geolocalization.

Keywords: geolocalization; visual localization; absolute visual geolocalization; drone; UAV; machine
learning; deep learning; convolutional neural network

1. Introduction

Pilotage or piloting is the practice of using vision to navigate an aircraft, usually by
reference to terrain and landmarks. This is in contrast to flying by instrument. Modern
aircraft instruments enable navigation even in the absence of vision. However, vision and
visual flight remains immensely valuable to pilots when it is available, both in improving
navigation quality and as a check against instrument error. Despite possessing cameras, au-
tomated drones are not currently capable of navigating using vision, even in clear weather
conditions. Thus, a valuable source of navigation capability and backup instrumentation
is currently not being utilized. This is of particular concern in the context of security and
reliability, when external navigational aids may not always be available or reliable [1].

Navigating by sight is a complex task that requires the ability to recognize and
contextualize terrain features from images under a wide variety of conditions. A recent
review of the field by Couturier and Akhloufi [2] divides current approaches into two
broad categories: Relative Visual Localization (RVL or frame to frame localization), which
aims to update location by calculating movement when comparing one image frame to
the next, and Absolute Visual Localization (AVL or frame to reference localization), which
aims to determine location by comparing UAV /aircraft imagery to trusted georeferenced
imagery, commonly from high-altitude survey flights or satellites. Of the two approaches,
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AVL has the notable advantage of being free from drift while RVL approaches tend to be
more accurate than AVL approaches over short distances. Over longer distances, errors
compound, as each error in estimating movement from the last frame adds to the error
in estimating current location. AVL, however, can provide estimates of location that are
independent of prior estimates. AVL, then, can be used as a complement to RVL. RVL
provides high accuracy over short distances, while AVL provides periodic, independent
estimates of location to prevent drift. This is similar to how GPS and IMUs work together,
where IMUs provide high accuracy over short distances, while GPS provides periodic
independent location information to prevent drift. Preventing drift is particularly important
for long duration flights over large distances, typically made at high altitude. However,
most prior work on AVL has focused on lower altitude flights by small UAVs, highlighting
a need for investigation of AVL using higher altitude imagery.

Since AVL involves image processing, it is natural to investigate how the current
state of the art in ground level image processing techniques performs when applied to
this task. One of the most successful modern techniques for complex visual processing
tasks is the Convolutional Neural Network (CNN). CNNs are very effective at learning
complex relationships between input images and outputs. Furthermore, although the
computational and memory resources needed to train a CNN are high, a fully trained
model can be deployed at a considerably reduced cost, which is a desirable feature for
UAVs whose computational resources may be limited.

Many frame-to-reference AVL approaches require the aerial platform to locally store
reference imagery which must be retrieved during localization, meaning that storage and
computational costs rapidly increase with the area of flight operation. Additionally, such
AVL approaches that seek to increase accuracy/robustness by comparing to multiple
reference data sets increase their storage and computational costs proportionally. In
contrast, a pure neural network approach only requires the storage of the model parameters,
and does not need to scale with the number of data sets used during training, and does
not directly scale with the size of the ROI (larger ROIs will require larger networks with
more parameters to encode information about locations in the ROL It would take more
parameters to encode a state than a county. However, because neural networks are known
to be effective at efficiently encoding data (for example, in autoencoders), the size of
the network needed to localize over a given ROI should not be directly proportional
to the ROI's area). Finally, although neural networks have large requirements for data
and computation during training, the speed of inference on a trained neural network is
quick. This makes a pure neural network approach highly desirable if it can achieve useful
accuracy over a large area. This paper aims to address the question of how effectively a
modern CNN architecture that has been successfully used on ground-level imagery tasks
can be repurposed for AVL.

When making neural networks for tasks involving recognizing objects at the ground
level, there exist many high-quality pretrained models that can be used as a starting point.
Unfortunately, there do not currently exist large, pretrained deep learning models for
aerial imagery feature detection. In contrast to most prior work in the field (see Related
Work section for details), we fully train our own model. This requires a large and varied
data set. Although large quantities of location-tagged aerial imagery exist, organizing
and processing them for use in training a neural network remains an ongoing challenge.
For this study, publicly available high-altitude images were used. Images are precropped
and downscaled to allow for input into a CNN. Additional random crops augment the
training data. One of the challenges of AVL is that the photographic properties of the input
may vary considerably due to factors such as time of day, season, year, weather, and the
properties of the camera used. This study therefore trains and tests on different image
sources that vary by as many of these factors as possible.

Several configurations of CNNs were trained from scratch to regress latitude and
longitude coordinates from high-altitude photographs (covering 1.5 x 1.5 km each) over
the region of interest (ROI, the selected area within which localization was assessed), a 32.2
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by 32.2 km section of Washington County encompassing urban, suburban, and rural areas.
The best performing architecture, Xception [3], was investigated further. An investigation
into the use of probability distribution parameters as outputs in order to quantify model
uncertainty was performed. The final models were trained on 12 data sets and tested on
a 13th, with a separate model being trained with each data set acting as a holdout set to
act as cross-validation. Performance was robust across all cross-validation training runs,
and performance was high relative to the area of the ROI and size of the input images,
where average errors were as low as 0.004% of the ROI’s area and 8% of input image
width, respectively. Future directions to improve CNN performance on this task, and better
incorporate them into overall UAV navigation models, are discussed.

Related Works

Visual localization can be split into two broad categories: relative visual localization
(RVL) or frame-to-frame localization, and absolute visual localizationn (AVL) or frame-to-
reference localization. Although this paper is addressing the problem of AVL, RVL is the
more mature field and the field of AVL has developed primarily out of a need to address
drift in RVL approaches. Because RVL provides a location relative to the last location
estimate, error inevitably compounds no matter how accurate the technique (unless the
error is zero—a very high bar to cross!). Thus, even the most accurate RVL techniques have
unbounded error over long enough timescales. In application, AVL is best used together
with RVL, with RVL providing high accuracy over short distances and AVL preventing
drift from becoming unbounded. Additionally, RVL can only provide relative position
updates - it can not localize when there is no initial estimate of position, while AVL can.

The most straightforward type of RVL is visual odometry (VO) [4]. VO compares the
current and prior observation, compares them, and then determines the movement of the
platform based on differences. VO approaches evolved out of feature-based detection algo-
rithms such as SIFT [5] (Scale-invariant Feature Transform), where certain features, crafted
to be robust to image transformations caused by camera pose, are extracted from each
image and then matched across images. The difference in the locations and orientations of
these features within each image can then be used to estimate camera movement. Feature
extraction and matching is computationally intensive, leading to interest in VO methods
that do not use feature extraction (see [6] for an example). Additionally, some approaches
now also incorporate additional information from IMUs to increase accuracy, an approach
called Visual Inertial Odometry [7].

Because VO updates position from prior estimates, it is susceptible to drift over time.
If the aircraft loops over prior locations (loop closure), then if the previously visited location
is recognized the aircraft can reconcile its current and past location estimates, eliminat-
ing drift. This is approach taken in Simultaneous-Localization Furthermore, Matching
(SLAM) [8], where a map of prior visited locations is constructed simultaneously with
location estimation. However, in the absence of loop closures (such as in straight-line flight),
or if it fails to recognize a prior location, SLAM is still susceptible to drift. Additionally,
SLAM requires additional computational resources to store and query its map of prior
locations - and this cost increases over operation time as the number of prior locations
grows. Thus, although effective, SLAM does not solve the problem of location drift in all
situations, highlighting the need for AVL approaches. In contrast to RVL, which updates
position based on a prior estimate, AVL compares the operational imagery during flight to
a trusted reference to produce a location estimate. Since each comparison to the reference
is made independently, each location estimate is independent of previous estimates and is
not susceptible to compounding drift.

Couturier and Akhloufi recently published an excellent review of AVL [2] which
covers much of the recent publications in the field. From this review, it is seen that the
most popular and currently most successful AVL methods use template or feature points
matching, with only a minority opting to use deep learning techniques, and even then often
only using deep learning techniques as a supplement to another matching technique. This
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is despite deep learning being the leading method in various ground-based tasks, including
analogous problems such as self-driving cars. Neural networks are also being successfully
applied to the related problem of cross-view geolocation, where ground level pictures
of locations must be matched to aerial pictures of the same location (see for example
Hu et al. [9]).

There are two major difficulties facing researchers attempting to leverage deep learning
on aerial photographs: lack of existing models, and difficulty in obtaining sufficient
train/test data. Although it is still possible to use the early layers of models trained on
ground level imagery tasks, it is likely that the filters learned when training on ground level
imagery are inefficient when applied to aerial imagery, especially high-altitude imagery,
due to the vast difference in image scale and perspective. Nonetheless, because of the
difficulties in training a deep model from scratch, most papers using them to-date have
opted to fine-tune existing pre-trained ground-level models [see, e.g., [10-13]]. Unlike our
approach, none of these works attempt to directly determine location using a deep model,
but instead use neural networks as steps along a template or segment matching pipeline.
Thus, the potential of a purely CNN based AVL procedure remains unknown.

Additionally, because of the large computational cost of matching over a large area,
many models employ some level of search space reduction such as a sliding window [13]
or constant registration of the current position [12]. This presents a problem if the error in
the estimate of position ever becomes too large: the reduced search space may no longer
include the true position. In other words, these systems can suppress small-scale drift, but
are still susceptible to drift resulting from larger errors. They also can not localize without
some estimate of initial position. Thus, they are susceptible to outlier estimates, system
memory failure, and are unsuitable for recovering from an extended navigation blackout
(e.g., flying through an extended fogbank or cloud in a GPS-denied environment).

Schleiss et al. [14] fully train a generative adversarial network, but use this to convert
input images into a semantically segmented (to roads, buildings, and none) map-like image
to template match to an also segmented reference map (in this case, from OpenStreetMap,
OSM). They do not employ any search space reduction, but their test area is only 560 m
long and 680 m wide. Because their template matching technique uses a sliding window
approach, it would likely require some form of search space reduction to remain com-
putationally feasible over a larger area. Notably, they train and test on different (though
geographically nearby) regions. The ability for this technique to generalize outside of the
trained area is a considerable benefit, as it means that it is not necessary to train a model
over the operational area specifically. However, the fact that the model must segment the
image to match to a specific reference map creates two possible issues. First, as demon-
strated in the paper, the model cannot differentiate areas with limited texture of the selected
semantic categories (for example, a forest with no structures or roads). Second, although
one can apply this technique to regions not trained on, the technique does requires an
accurate reference map segmented in the same manner as the model was trained on. In
this case, the model could only be applied to where OSM has an accurate segmentation of
the local terrain already available.

To our knowledge, only one other published work on AVL to-date has trained a deep
CNN from scratch for direct regression AVL. Marcu et al. [15] trained a multi-stage multi-
task architecture for simultaneous geolocalization and semantic segmentation. Their best
approach uses a model that treats AVL as an image segmentation problem, and combines
this with a simultaneous semantic segmentation that is then used to fine tune the image
correspondence by matching identified roads. They also train one branch of their network
for direct regression of latitude and longitude. However, the output of the direct regression
branch is not the focus of their paper, and results are only reported in a single histogram
(thus average error is not known). Additionally, although different train and test images
are used, they appear to be from a common source and therefore have similar photographic
qualities. Learning to identify locations across multiple photographic sources which may
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differ in time of day, season, year, and photographic platform is a considerably more
difficult challenge.

2. Methods and Results
2.1. Data Choice and Processing

An effective deep learning approach to AVL should be robust to factors such as time of
day, season, year, altitude, weather, angle of approach, and the camera used, maintaining
accuracy under as many different conditions as possible. Producing robustness to these
factors in a neural network requires large, high quality input data that includes the full
range of plausible scenarios within it. Furthermore, all of these data must be georeferenced
accurate to the desired scale. Unfortunately, such data is not readily available to the public
in an organized form, which has hampered research efforts in this field.

Georeferenced imagery from satellite and high-altitude survey flights, however, are
readily available, and serve as a reasonable proxy to high-altitude UAV images (indeed,
an increasing number of such image sets are from high-altitude UAVs). In total, 13 data
sets over Washington County, Arkansas were acquired (see Appendix A for detailed
information on data sets and links to source data). These data sets differ in year taken (from
2006 to 2020), season, time of day, and camera used. All image sets used are from clear
weather, daytime flights due to the vast majority of georeferenced, publicly available data
being of this type. The data sets are also orthorectified using a mixture of digital elevation
models—some from national elevation datasets and others from elevation data produced
from the aerial triangulation results. For high altitude flights this alteration is relatively
minor as the photographs are already taken nearly vertical angles and the terrain effects in
this area are minimal at the flown altitudes. See Figure 1 for examples of 3 x 3 km crops
and how they vary between a few of the datasets.

Spring 2010 Winter 2016 Winter 2020

i

Rural

Suburban

Figure 1. Example images from different data sets, illustrating the visual changes to two locations,
one rural and one suburban, over different years and seasons.

Since the data sets did not all completely cover Washington County, a 34.2 by 34.2 km
square patch included in all data sets was chosen as the ROI within which localization
would be assessed. This area includes both the urban centers of Fayetteville and Springdale,
as well as the suburban and rural areas around them. The presence of highly varied terrain
and land use - including both developed and undeveloped areas - makes this an especially
good test of our approach’s robustness to terrain character.
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From each data set, 2000 3 x 3 km random crops and their locations were taken
from the ROI and downsampled to 1000 x 1000 pixels for speed of image loading and
manipulation. During training of the neural network, each one of these crops is randomly
cropped again to 1.5 x 1.5 km and downsampled to 224 x 224 pixels. Thus, a full epoch
of training exposes the network to 2000 images from each data set, each of which is at
least slightly novel due to random cropping. The labels for the network are the latitude
and longitude of the image centers (in implementation the upper left-hand corner location
was used as the label, as this is the native format of world files. Because all images are
North-South aligned, the image center is always 750 m down and to the right of the
upper-left hand corner, and so determining the location of the corner also determines the
location of the image center), with locations adjusted as needed during cropping, scaled
first to a range between 0 and 1 using a min-max scaler. The scaling applied is such that,
over the entire dataset, the minimum latitude and longitude is 0 and the maximum is 1.
Since the coordinate system used during processing increases in the west—east, south-north
directions, the bottom left (southwest) corner of the ROI has coordinate (0,0), and the
top-right (northeast) corner has coordinate (1,1) (thus the ROI is normalized to the unit
square). When adjusting labels during random crops, the flat world assumption is used,
which is justified because the images are high-altitude and orthorectified vertical. This also
justifies the conflation of image centers and UAV location; for a camera looking straight
down they will be approximately the same. See Figure 2 for a visual overview of the image
processing pipeline.

The offline initial crop and downsampling is done using bicubic interpolation, how-
ever the online resizing for loading into the neural net is done using bilinear interpolation
to reduce computational time. The image crops are saved as jpegs to reduce file size.
Although both resampling and jpeg compression can introduce artifacts in images, both
training and test images go through the same downsampling process, so these artifacts
are consistent at train and test time. Pilot runs (data not shown) showed no significant
difference in final model accuracy from using different common resizing methods.

2.2. Network Architecture Selection

For initial selection of network architecture, we decided to test a variety of architectures
already available in Keras [16] as built-in models (see Appendix A for detailed information
on implementation and hyperparameter choice. Model references: EffNet [17], ResNet [18],
VGG [19], MobileNetv2 [20], Inception [21], Xception [3]). These include many of the
most successful models for various classification data sets and competitions over the last
decade. Because we were only interested in comparing the models, the data set used
for classification was a limited one where training and test was restricted to only one
data set (ADOP2017). Furthermore, fine tuning for each architecture was minimal, so this
comparison should not be taken as a final verdict on model performance. Performance is
reported in mean absolute error on the x, y in the converted coordinate scheme as this test
was solely intended for a preliminary model comparison. Models were given 500 epochs
to train. See Appendix A for further implementation details.

Results are shown in Table 1. Based on Xception’s high performance and relatively
small model size, it was selected as the model of choice for further experiments. For
subsequent experiments, Xception was modified to include additional fully connected and
dropout layers before the output layer in order to provide additional regularization and
capacity (these modifications are similar to some of the configurations used in [3]).
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Dataset and Rol Selection

Chipping Images from Rol in Dataset

Cropping from Chipped Image

Downsampled Input for Model

Figure 2. Figure demonstrating cropping setup. The transparent square over the county represents
the ROL The green squares are individual 3km x 3km image chips extracted from the base data
set. 2000 random chips are taken from each data set to ensure overcoverage, with different random
chips for each data set. The final step before use in network training is a random crop from each
chip, shown in red. Downsampling occurs at both the chipping and cropping stages. Chipping is an
offline step performed once. Cropping is an online step performed during every epoch with different
random crops.
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Table 1. Model comparison for various built-in Keras models. Error is given as mean absolute error
over the test set in normalized coordinates (NMAE). Note that performance should be about 0.25, the
average distance to the center along either axis, if the model solely guesses (0.5, 0.5), the middle of
the RO, as an output. * EffNetB7 became overfitted extremely early in training. ** VGG16Conv was
a custom modification of a smaller VGG-type architecture where pooling layers were replaced with
strided convolution layers.

Model NMAE
EffNetB4 0.25
EffNetB7 * 0.25
EffNetBO 0.18
Resnet152V2 0.09
VGG16 0.08
VGG19 0.08
VGG16Conv ** 0.07
Resnet152V2 0.07
MobileNetv2 0.06
Inception 0.05
Xception 0.04

2.3. Field of View Comparison

As the altitude of an aerial platform increases, the field of view, and therefore the
number of features that can be seen and used to navigate, increases. However, distance
also decreases the ability to resolve smaller objects, and fine features are lost. In order
to investigate this tradeoff within a CNN context, different field of views for the input
images were tested while holding the input size fixed at 224 x 224 pixels. At the time this
experiment was performed, the data set only had 11 of the 13 data sets in it. Holdout data
set was held constant as the ADOP2006 data set for comparison. Training was performed
for 250 epochs.

See results in Table 2. Results are reported in normalized RMSE (NRMSE) for simple
comparison. Within the range studied, it was found that increasing field of view increased
performance. There is a confounding factor that due to the processing pipeline, very large
fields of view had fewer unique crops (that is, cropping a greater percentage of the source
image reduces the difference between crops), however, this would be expected to decrease
performance due to producing less varied training data.

Table 2. Field of view comparison. Absolute accuracy improved as field of view increased despite
loss in visual resolution and confounding factors that favored smaller fields of view. Error is given as
RMSE in normalized coordinates (NRMSE).

Input Width/Height NRMSE
0.25 km 0.3013
0.5 km 0.2770
1 km 0.0671
1.5 km 0.0269
2km 0.0171
3 km 0.0165

2.4. Loss Function Comparison

For regression tasks there are numerous loss functions available to train a neural
network. Since backpropagation training of neural networks is not a straightforward
optimization relative to the loss function, it is not the case that using the desired metric as a
loss function will lead to the best results as measured by that metric. That is, if our desired
metric is to minimize the Euclidean distance between the predicted and actual location, the
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loss function that produces the best model may not be the Euclidean distance itself. It is
therefore necessary to investigate loss functions and empirically observe their impact on
model training.

For this experiment, three loss functions were investigated. First, mean squared error,
which is the most common loss function used for regression tasks. Secondly, Euclidean
distance (typically, Euclidean distance is used only as a metric, however it can be used
as a loss function. RMSE and Euclidean distance are of the same degree with regards
to the error, and differ only by the averaging operation in RMSE. When the number of
dimensions and batch size are fixed, this difference will be a constant multiplicative factor.
That is, RMSE and Euclidean distance produce the same pattern of losses differing only in
scale, which can be changed by altering the learning rate), which is our desired metric to
minimize. Thirdly, the output layers are changed to be the mean and standard deviation
of a normal distribution, and the loss function is the negative log-likelihood. This would
allow the model to output a quantity related to its confidence in the prediction at a small
computational cost.

Each model was trained for 500 epochs. Because of the difference in gradients due to
choice of loss function, learning rate was individually tuned for each model based on pilot
runs (data not shown). See Appendix A for implementation details.

Since the distribution-output model trained with negative log-likelihood trained
more quickly, had a higher accuracy, and gave additional information in the form of
the output distribution’s standard deviation, it was selected as the model of choice for
subsequent experiments.

The results are shown in Table 3.

Table 3. Loss function comparison. Holdout set was help constant as AO15. Error is the average
distance error over the entire holdout set in normalized distances.

Loss Function Normalized Mean Euclidean Error
NegLogLikelihood 0.0041
MSE 0.0198
Euclidean Distance 0.0232

2.5. Training Replicability

To help estimate the effects of stochasticity during training on the final accuracy,
five runs of the exact same model were trained for the same number of epochs and their
accuracies compared. See Table 4. Results showed reasonably low inter-run variation,
which suggests that training results are replicable.

Table 4. Run replicability experiment results. Results are given in RMSE of the normalized error
distances (NRMSE).

AO20 Run NRMSE
1 0.0556
2 0.0474
3 0.0481
4 0.0530
5 0.0541

2.6. AVL Results

The Xception-based model was trained on 12 data sets and tested on one holdout
dataset. Each dataset was used as a holdout set in a separate training run to cross-validate
the results. Models were trained with both independent normal and bivariate normal
distributions as the final layer, with the negative log-likelihood used as training loss. On
the validation step, since it was noticed that the random cropping in the data pipeline
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would lead to occasional sampling outside of the ROI and to undersampling of edge
regions during training, the ROI was shrunk slightly by 5% on each side. Since the input
images are 1.5 km a side, this shrinks the ROI to about 32.2 km a side or 1036 km?2. The
second cropping step during validation was always taken from the upper-left corner of the
input image so that the validation input images were the same for direct comparison.

See Table 5 for results. See Figure 3 for a visual representation of error scale relative to
ROI for one representative model. Results were small relative to the ROI and the input’s
geographic size of 1.5 x 1.5 km. Results were largely robust to choice of holdout set. The
larger error of the NAIP2009 holdout set was driven by cloud cover in part of the data set.

Model Example Errors
1.0 . -

0.8 4

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. Figure demonstrating 100 sample errors of one of the runs (WaC02020). Green is the true
location, blue is the prediction, where predictions are connected to their true location by a red line.
The background is of the holdout data set over the ROL
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Table 5. Xception results on different holdout sets. Models were trained for 500 epochs. Error is

reported in Euclidean distance.

Average Error

1.0

0.8 4

o
o

Observed Probability
o
£

0.2 4

0.0

Test Set
Independent Normal Bivariate Normal
ADOP2006 188.2 m 2144 m
ADOP2017 172.7 m 206.8 m
NAIP2006 189.2 m 2159 m
NAIP2009 323.8 m 320.2m
NAIP2010 146.4 m 160.2 m
NAIP2013 129.9 m 164.8 m
NAIP2015 1734 m 185.0 m
CAST2008 1834 m 2513 m
AO15 124.3 m 168.9 m
AO16 1155 m 156.5 m
AO17 127.6 m 169.3 m
AO19 141.6 m 174.1m
AO20 148.7 m 166.4 m

2.7. Uncertainty Calibration

One of the advantages of using a distribution output layer and a likelihood based log
function is that the network produces an additional output related to prediction confidence:
the standard error of the output normal. We did find that the standard deviation was
correlated with error size for predictions. However, as model accuracy increased, standard
deviations did not shrink at the same rate as the error sizes, leading to underconfidence, see
Figure 4. A similar pattern of underconfidence was observed for both bivariate (bivariate
confidence intervals were calculated jointly, using a Chi-square distribution, whereas the
independent normal Cls were calculated independently for X and Y axes) and independent

normal runs.

Probabilities of Predictions in Confidence Intervals

T T
0.0 0.2 0.4 0.6 0.8
Expected Probability

(a) Calibration of Overconfident, Accurate Model

Figure 4. Cont.

10

X Error

0.030

0.025 4

0.020 4

0.015 4

0.010 4

0.005 +

0.000 +

Standard Deviation vs. Error

T T
0.005 0.010

T T T T T
0.015 0.020 0025 0030 0.035

Standard Deviation

T
0.040

(b) Scatter Plot of Errors, Overconfident Model
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Figure 4. Comparison of uncertainty calibration between an accurate model and a less accurate model. The units in (b,d)

are normalized over the unit square ROL The first model, shown in parts (a,b), had an average error of 149 m. It has

poor uncertainty calibration; more of the true centers are contained in a given percent confidence interval than expected,

meaning the model is underconfident. The second model, shown in (¢,d), was incompletely trained, and only achieved an

average error of 965 m. However, it showed better uncertainty calibration. Note, however, that some of the error sizes are

unrealistically large given the standard errors, indicating the true uncertainty distribution is not Gaussian.

3. Discussion
3.1. Accuracy and Loss Function Choice

This paper sought to investigate how suitable CNNs that have been successful on
ground level tasks are for the purpose of aerial AVL. Results were highly encouraging.
With limited tuning, and using only 12 training data sets, we were able to train Xception
to successfully localize over a >1000 km? geographic area. Our best model was able to
localize with an average error as small as 115.5 m on 1.5 x 1.5 km input images. Although
the absolute size of this error is larger than many methods previously reported, the error
relative to the input size of the image and the ROI is small. Moreover, we were able
to include an additional measure of prediction uncertainty in the form of the output
distribution’s standard error. Not only did this inclusion not reduce performance, switching
to a distribution output with negative log likelihood loss actually increased accuracy while
decreasing training time.

This was a surprising result, as we expected the increase in output complexity to
decrease accuracy. We hypothesize that the decreased training time and increased accuracy
may be due to the sharper gradient increase with error distance attributable to the likelihood
loss model. That is, because likelihood scales sharply to zero with error size when using a
normal distribution as the output distribution, the negative log-likelihood gradient scales
enormously with error size, far more so than for MSE where it only grows quadratically.
Overfitting also was observed to be less severe in the probabilistic models. Because of the
potential for large gradients, it was necessary to cap gradient size whenever we trained the
distribution output models, or it was extremely likely to produce NaN loss at some point
due to overflow. This was especially important in bivariate models. The bivariate models,
while theoretically more expressive than the models with two independent normals, were
slightly less accurate overall, indicating that the gain in model expressivity was not worth
the increase in model complexity. Future work may wish to investigate choice of output
distribution further. Multi-modal distributions, as in mixture density networks, may be
able to better encapsulate uncertainty caused by distant locations being visually similar.

Results were robust to choice of holdout set, with the caveats that the error was slightly
lower for the grouping of AO datasets, likely due to the larger number of similar datasets
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in the training set, and a slightly worse accuracy when using the NAIP2009 dataset. Upon
further investigation, the source of this increased error was traced to a cloud covered region
in the NAIP2009 dataset where the model performed poorly, as it was not trained on any
cloudy data sets. In future studies, it would be beneficial to try and train over a variety
of weather conditions if appropriate data sets can be found or artificially generated (e.g.,
by randomly adding various levels of cloud cover). Another approach would be to mask
clouds in the training data as a preprocessing step.

Differences in choice of image and region domain make direct comparisons between
different AVL methods difficult. The absolute error of our is large compared to those
reported by most prior works, while the relative error compared to the geographic size of
the ROI and the input images is small. That is to say, an error of 50 m while operating at
low altitudes may mean that the location estimation is entirely outside of the image field of
view, and the UAV is in serious danger of becoming lost. On the other hand, an error of
50 m while operating at a height of several km may mean that the estimated location was
only a few pixels away from the true center of the input image.

However, this paper is not seeking to promote this particular model as a ready-to-
implement solution, but rather to see whether a very simple approach using solely CNNs
and image inputs could be successful on this task. Undoubtedly, with additional tuning
and training examples, the current results could be significantly improved upon. Moreover,
overfitting was a large issue during training and had to be aggressively controlled with
dropout and L1/L2 regularization methods. This is encouraging because it suggests that
the models are not utilizing their full expressive capability. This suggests that models of
Xception’s size are capable of performing AVL over a considerably larger geographic area
than the ROI here. Or, alternatively, a considerably smaller model could be used without
greatly affecting accuracy, saving on computation.

3.2. Uncertainty Calibration

The standard deviations produced by the model do correlate with error size. However,
they are too conservative. This miscalibration tended to increase with model accuracy. Un-
certainty miscalibration increasing with accuracy is a known problem with deep networks
[22]. However, in classification problems models have tended to become overconfident
at high accuracy, whereas here the model becomes underconfident. This may be due to
the choice of a normal distribution to model the uncertainty. Since you can have visually
similar regions that are geographically distant, the true uncertainty distribution should be
multi-modal.

The Gaussian distribution has very thin tails that cause the likelihood of outliers to
fall rapidly. In this case, if the true uncertainty has more probability mass at long distances
from the mean than a Gaussian distribution can represent (which seems likely), then we
should expect the standard deviations to be conservative. This is because the occurrence of
occasionally large errors due to multi-modality will drive the standard deviation estimate
up substantially. This explanation would also explain why the underconfidence increases
with training. Notice that even in the undertrained, better-calibrated model, the error vs. SE
plot shown in Figure 4d shows some >10¢ events—which would be virtually impossible
if the error landscape was truly Gaussian and the model was correctly calibrated. The
calibration of model uncertainty remains an area for future investigation.

3.3. Computational Considerations

A large issue for many current AVL techniques is computational load. In this domain,
we believe deep learning offers many advantages. Although deep models take considerable
computational resources to train, when put into production where they are only doing
forward passes on single samples they are efficient. The Xception architecture is on the
smaller end of famous architectures, weighing in at about 88 MB compared to VGG16's
528 MB (from https:/ /keras.io/api/applications/, accessed on 7 October 2021 This is
parameter storage size, not required memory for deployment, and does not include the
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fully connected layers we included in our Xception model.). On a device with a GPU, which
can easily be fit into larger drones, a forward pass of Xception takes under 10 milliseconds
[23]. Even without a GPU, a single forward pass of Xception is only on the order of 1s
or less, depending on the CPU used (from personal experience), which is still feasible for
navigation use at higher altitudes where views change more slowly.

As GPUs and TPUs are increasingly being incorporated into mobile devices, even
smaller drones would be able to take advantage of this speed. Xception only requires
1-2 GB of memory [23] for inference, meaning it plausible to run it on mobile devices. A
larger savings comes from system memory and storage; rather than having to store an
entire database of template images to match to, which may also need to be partially loaded
into memory, the drone would only have to store a single trained model. Furthermore, in a
production setting, techniques are available to compress/prune trained networks to greatly
reduce their size while minimally impacting their performance, yielding further speed and
memory improvements (see, e.g., [24] for a recent overview of pruning techniques).

3.4. Input and Output Choices

The current CNN only addresses obtaining horizontal coordinates from nadir images.
The reason we chose to focus on this is because we feel this is the core challenge of AVL. Full
six degree-of-freedom pose estimation is undoubtedly extremely important. However, four
of those parameters (roll, pitch, and yaw angles and flying height) can be obtained from
instruments directly without reference to any external systems. While it would certainly
be beneficial to also have an estimate of pitch, yaw, roll, and altitude from vision, it is not
as pressing since internal systems are much less susceptible to interference. You can not,
for instance, spoof Earth’s gravity to deceive an accelerometer. For this reason, we focus
solely on the challenge of horizontal positioning. This is the heart of visual localization,
and requires more than creating better, more reliable sensors.

Similarly, we did not concern ourselves here with input images of different scales or
rotational orientation. In an applied setting, this would need to be dealt with, either by
training on such data, or more simply by preprocessing image inputs to the appropriate
orientation and scale, which can be done if we assume that the UAV has at least a rough
idea of it’s orientation, altitude, and camera position. Fortunately, as discussed above,
these can all be tracked solely by internal systems such as a compass or altimeter, which
are cheaply available and nonreliant on external systems. Since this preprocessing can be
performed after downsampling, its computational cost would be small. It is worth noting
that, although all data sets were downsampled to the same size and covered the same
geographic extent, their differing initial ground sample distance (GSD) would still have an
effect on the final input images. However, the model proved capable of generalizing across
data sets with different initial GSDs.

A more complicated issue is that of image obliqueness. Especially at low altitudes,
image features will look very different based on the angle of the object to the camera. We
kept the problem as simple as possible, opting to use high-altitude orthorectified vertical
imagery on a projected surface. Such imagery is also far more widely available than low-
altitude imagery. For images that are not extremely oblique, orientation angle can be used
to convert images to their nadir view with only some non-correctable terrain distortions
(e.g., minor occlusion) remaining, standardizing the input. Addressing the additional
challenges of extremely oblique input imagery that can not be converted to nadir view
easily remains for future work.

The height experiment presented here suggests that the problem becomes more dif-
ficult as geographic field-of-view decreases, even though resolution increases. This is
expected as a larger field of view means more opportunities to include relevant identifying
features. However, the decrease in accuracy, especially at the 0.5 km and 0.25 km levels,
is so extreme as to suggest other factors are also at work. Although the higher resolution
of a smaller field-of-view might allow the discrimination of finer features, these smaller
features are more likely to be transient (e.g., cars, shadows, foliage patterns) and therefore
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not robust. CNN architectures have a built-in sensitivity to features of a certain size due to
their architectures. For lower altitude images, the most identifying features of a location
may be quite large relative to the size of the image, and therefore difficult for CNNs opti-
mized for detecting more local features to use. It is notable that the Xception and Inception
architectures, which performed the best in the architecture comparison, are designed to
include filters of multiple different sizes to detect features at varying scales.

A future experiment would be to compare increases in resolution while holding
geographic field-of-view constant. However, it is difficult to compare this in a principled
manner since model size increases with input size unless modifications are made, but
such modifications also have implications on the model’s performance. The fact that
increasing field-of-view increases AVL performance suggests that, in models capable of
handling multiple scale inputs, a navigation strategy would be to raise altitude and increase
field-of-view as much as possible. This is a strategy that humans also use.

3.5. Future Directions for AVL Deep Models

The current results are encouraging but also highlight the need for the development
of architectures specifically suited for the problem domain. Many aspects of architectures
built for ground-level classification tasks are ill-suited for AVL. A pressing example is that
most such architectures specifically aim for a high level of translational invariance in their
results. This is because in ground-level classification tasks the specific location of objects
in location is often irrelevant (a dog remains a dog where ever in the image it is). In AVL,
however, the location of features in the image is critical to precise localization. Pooling
layers, which reduce the resolution of input, are known to promote translational invariance.

To illustrate the issue, consider that the Xception model has four max-pooling layers,
each of which approximately halves the spatial resolution. Thus, we can roughly estimate
that the spatial resolution of the model before the dense layer may be on the order of
1/16th the input resolution. Given the input resolution of 224 x 224 px fora 1.5 x 1.5 km,
this would suggest a final spatial resolution on the order of 100 m for the Xception model,
which our best models approach in accuracy. Although this should not be taken as a hard
limit on the model’s possible accuracy, since information can combine across filters and
areas, it does suggest that improving accuracy beyond this point will be more difficult for
the model. Thus, reducing the level of pooling, or otherwise increasing spatial resolution,
may lead to improved model performance on AVL. However, pooling layers also play an
important role in reducing model size to manageable levels, and regularizing the network
against overfitting on fine features that are unlikely to be robust. Model size also increase
quickly with input resolution. The problem of designing architectures optimized for AVL
is not a simple one, and requires additional investigation.

Secondly, a major weakness of the CNN-only method is the necessity of training
directly over the area of operation. However, this is a weakness shared by many other
proposed AVL techniques. Even those techniques which are based on template-matching
must always have templates of their full area of operation loaded into memory in order
to match. Indeed, the CNN only method can be conceptualized as an implicit template-
matching method. It is matching against representations of locations contained implicitly
within the model’s weights. When thought of in this way, the CNN training process is a
way of efficiently encoding all location templates so that they can all be matched against
quickly every time an image is presented. Notably, this approach does not require an
increase in model size to incorporate additional datasets into the training process.

The issue of needing to gather data and devote computational resources to train a
model for each new area of operation, however, remains a serious issue. This highlights the
need for established, quality models specifically designed for AVL. If such models existed
for any region, then the early layers could be used pre-trained. Adapting the model for a
new region would be then be a fine-tuning task. This would greatly reduce the training
time and amount of data needed for use in new areas. One of the most pressing needs right
now is an established, standardized, high-quality large data set to use as a benchmark for
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AVL. Because publicly available image sets favor good visual conditions, finding data sets
for poor visual conditions such as inclement weather or at night is especially challenging.

Finally, most prior work using deep models on this problem have combined them
with other techniques. Although we do not do so here, we believe that this is a sound
technique. Our approach of a pure CNN model has the advantage of not requiring any
prior estimate of location to work. In an applied setting, we think that our approach
would be most useful as a periodic check for drift on some other technique, or a way
to initialize the position estimate. Currently, visual location techniques tend to be split
into two broad categories: techniques that are precise over short distances but susceptible
to drift (RVL), and techniques that are less precise but are not susceptible to drift (AVL).
A hybrid approach that uses RVL over short distances while periodically checking and
rebasing with AVL can combine these strengths, in a manner analogous to how IMUs and
GPS work together synergistically.

4. Conclusions

A pure neural network approach was shown to be viable for AVL over a large geo-
graphic area. First, several architectures that had previously shown success at ground-based
classification tasks were tested, with the Xception model showing the best performance.
The Xception model was then modified to output parameters of a normal distribution de-
scribing the location estimate, training with the negative log-likelihood as the loss function.
Subsequently, a modified Xception-based model achieved an average error of 166.5 m
across 13 different cross-validation training runs on different holdout sets. This is good
accuracy compared to the 1.5 km x 1.5 km size of the input images, and the 32.2 by
32.2 km ROI. Additionally, modifying the model to output parameters of a normal proba-
bility distribution, and training with negative log-likelihood loss, not only did not decrease
performance, but increased model accuracy. The standard deviations of the resulting
distributions did correlate with error variance, showing potential usefulness as a measure
of estimate uncertainty, although the fully trained models were underconfident.

The direct neural network approach presented here presents several attractive prop-
erties from a computational and performance standpoint. First, the storage requirements
are minimal, requiring only the trained model parameters to be onboard the platform.
Second, inference is fast and consistent (every forward pass requires the same number of
operations, there is never a possibility of needing to expand operations as with some other
approaches that can fail to produce a match/estimate). Third, computational requirements
during flight do not grow proportionally with the amount of datasets used for training, or
with the area of the ROI being considered. This third property is especially important, as it
means that this approach is potentially scaleable to much larger areas of operation with a
proportionally minor increase in model size required.

In order to move from concept to application, more work has to be done on optimizing
the neural network architecture, incorporating other techniques for fine tuning of position
estimation, and, especially, the development of appropriate data sets for training and
testing. This study shows that a neural network AVL models can be trained to be robust to
time of day, season, camera characteristics, and even year that the data set was gathered.
However, the ability of existing models to generalize across different camera angles, as well
as to operate during night-time or during inclement weather, has yet to be demonstrated.
To train models to attempt to solve these problems will take a substantial effort in data
gathering and acquisition.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
UAV Unmanned Aerial Vehicle

IMU Inertial Measurement Units

GNSSs Global Navigation Satellite System
GPS Global Positioning System

CNN Convolutional Neural Network
AVL Absolute Visual Localization

RVL Relative Visual Localization

OSM OpenStreetMap

ROI Region Of Interest

VO Visual Odometry

SLAM Simultaneous-Localization Furthermore, Matching
GSD Ground Sample Distance

RMSE Root Mean Squared Error

NRMSE Normalized Root Mean Squared Error
MAE Mean Average Error

NMAE  Normalized Mean Average Error
GPU Graphics Processing Unit

CPU Central Processing Unit
TPU Tensor Processing Unit
Appendix A

Appendix A.1. Neural Network Implementation Details
Appendix A.1.1. Final AVL Runs

Both the bivariate and independent normal implementations were trained on an
Xception architecture with no top layers as implemented in Keras in Tensorflow 2.4. On
top of this implementation, we added global average pooling and two fully-connected
layers with 4096 hidden units each, a configuration described in the Xception publication.
Regularization was extremely important to prevent overfitting, so we added 3 dropout
layers with dropout set to 0.5, one after the global average pooling layer and the other two
after the fully connected layers.

All models were trained with the Adam optimizer with initial learning rate 1 x 1074,
with a gradient clipvalue of 5. Because the probability mass of the normal distribution falls
off very rapidly with distance from the mean, NLL gradients can become exceedingly large
when the model makes a large error. Thus, for the negative log-likelihood models, gradient
clipping is very important. The loss function was negative log-likelihood. The validation
metric was RMSE on the holdout set. 11 and 12 regularization were set to 1 x 10> and
1 x 1073, respectively, and applied to all eligible layers. Learning rate was decreased by a
factor of 0.7 every 50 epochs, and an additional 0.7 every 70 epochs without improvement
on the validation set (this rarely occurred in practice). Models were trained for 600 epochs
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or 3 days on a single Nvidia V100 GPU (in practice, models typically achieved about
540 epochs). The best epoch performance on the validation set was reported. Models
typically had plateaued but not reached full convergence by 540 epochs, but it was decided
not to commit more computational resources for possibly marginal improvements. The
main bottleneck was image loading/processing for input into the model, so this training
time may be greatly improvable.

Appendix A.1.2. Other Runs

The loss function experiment settings and data set was identical to the AVL experiment,
except that MSE and EDL had a learning rate of 1 x 1072, and of course had as their output
simple dense layers instead of dense layers that fed into distribution layers.

The height experiment was run on an earlier form of the final data set which was
unbalanced in number of samples per input data set. Most data sets had 1250 image inputs,
but a few had more. Settings were identical to the AVL run except for the following: the
optimizer was stochastic gradient descent with 0.9 Nesterov momentum, the initial learning
rate was 4 x 104, except for the first 30 epochs burnin period where it was 1 x 10~* to
avoid early exploding gradients as at this time no gradient clipping was used. The learning
rate decayed by 0.7 every 35 epochs without improvement in the validation set RMSE. The
validation set was always ADOP2006.

The stochasticity experiment was performed with the same settings as the height
experiment, with the following differences: initial learning rate after the first 30 epochs
for the 2 km, 3 km, and 0.25 km experiment was 7 x 1074, and their burnin period was
20 epochs instead of 30. The other experiments in this series have a longer burnin and
lower initial learning rate because they had to be restarted due to initial run attempts
repeatedly ending in NaN training losses.

The architecture experiment had all architectures in their default configuration in
tf-nightly version 2.3.0.dev20200611, include_top = true, except for VGG16Conv which
differed from VGG16 by reducing depth and replacing max pooling layers with strided
convolutions. The optimizer was stochastic gradient descent with 0.9 Nesterov momentum,
initial Irate 0.001, Irate decay of 0.7 every 100 epochs, 500 epochs training time with best
validation result taken as final result. As mentioned, this run was done on a benchmark
data set where train and test data were both from ADOP2017 crops. In this data set, which
was from a slightly differently positioned and larger square region of Washington County,
there were 10,000 images. Train/test split was 80%/20%.

Appendix A.2. Data Set Characteristics

ADOP URLs: https:/ /gis.arkansas.gov/programs/arkansas-digital-ortho-program-
adop/, accessed on 7 October 2021. http:/ /geostor-imagery.geostor.org.s3.amazonaws.
com/index.html?prefix=State/ ADOP/, accessed on 7 October 2021. NOTE: 2001 ADOP is
false color infrared! Orthophoto ground sample distance (GSD) is 1 m for 2006; 0.3 m for
2017 2006 is three-band true-color and three-band color-infrared, 2017 is true-color. NADS83
datum and UTM Zone 15 projection.

NAIP URLSs: https:/ /www.fsa.usda.gov/programs-and-services/aerial-photography /
imagery-programs/naip-imagery/, accessed on 7 October 2021. http://geostor-imagery.
geostor.org.s3.amazonaws.com/index.html?prefix=State/USDA /, accessed on 7 October 2021.

This data set contains imagery from the National Agriculture Imagery Program (NAIP).
NAIP acquires digital ortho imagery during the agricultural growing seasons in the conti-
nental U.S. NAIP provides four main products: 1 m ground sample distance (GSD) ortho
imagery rectified to a horizontal accuracy of within +/— 5 m of reference digital ortho
quarter quads (DOQQ’s) from the National Digital Ortho Program (NDOP); 2 m GSD
orthoimagery rectified to within +/— 10 m of reference DOQQs; 1 m GSD ortho imagery
rectified to within +/— 6 m to true ground; and, 2 m GSD ortho imagery rectified to within
+/— 10 m to true ground. The tiling format of NAIP imagery is based on a 3.75" x 3.75’
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quarter quadrangle with a 300 m buffer on all four sides. NAIP quarter quads are formatted
to the NADS83 datum and UTM Zone 15 projection.

Table A1. Data set table.

Test Set Name Source Foliage Season Source GSD
ADOP2006 Arkansas Digital Ortho Program Spring /Summer 1m
ADOP2017 Arkansas Digital Ortho Program Winter /Fall 1m
NAIP2006 National Agriculture Imagery Program Spring/Summer 2m
NAIP2009 National Agriculture Imagery Program Spring/Summer 2m
NAIP2010 National Agriculture Imagery Program Spring/Summer 2m
NAIP2013 National Agriculture Imagery Program Spring/Summer 2m
NAIP2015 National Agriculture Imagery Program Spring /Summer 2m
CAST2008 Center for Advanced Spatial Technologies Mixed Foliage Summer/Fall 0.3m

AO15 Washington County Assessor’s Office Winter /Fall 0.3m
AO16 Washington County Assessor’s Office Winter /Fall 0.15m/0.23 m
AO17 Washington County Assessor’s Office Winter /Fall 0.23m
AO19 Washington County Assessor’s Office Winter /Fall 0.15m
AO20 Washington County Assessor’s Office Winter /Fall 0.15m

CAST2008 URLs: Collected for the Washington County Assessors office by Pictometry
(now EagleView). 0.30 cm GSD. This was an early collection that drove the standards for
the later sets from AQO. Collected July 2008. Available on request from the authors. NADS3
datum and UTM Zone 15 projection.

AO URLs: Imagery is publicly served as basemaps at: https://arcserv.co.washington.
ar.us/portal/apps/webappviewer/index.html?, accessed on 7 October 2021. Inquire at
Assessor’s Office about access to source rasters: https:/ /www.washingtoncountyar.gov/
government/departments-a-e/assessor, accessed on 7 October 2021.

Collected for the Washington County Assessors office by Pictometry (now EagleView).
Has the following GSDs: 2015, 12in; 2016, 6/9in depending on area; 2017, 9in; 2019, 6in;
2020, 6in. NAD83 datum and UTM Zone 15 projection.
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