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Abstract—With inputs from human crowds, usually through
the Internet, crowdsourcing has become a promising methodology
in AI and machine learning for applications that require human
knowledge. Researchers have recently proposed interval-valued
labels (IVLs), instead of commonly used binary-valued ones,
to manage uncertainty in crowdsourcing [19]. However, that
work has not yet taken the crowd worker’s reliability into
consideration. Crowd workers usually come with various social
and economic backgrounds, and have different levels of reliability.
To further improve the overall quality of crowdsourcing with
IVLs, this work presents practical methods that quantitatively
estimate worker’s reliability in terms of his/her correctness,
confidence, stability, and predictability from his/her IVLs. With
worker’s reliability, this paper proposes two learning schemes:
weighted interval majority voting (WIMV) and weighted pre-
ferred matching probability (WPMP). Computational experi-
ments on sample datasets demonstrate that both WIMV and
WPMP can significantly improve learning results in terms of
higher precision, accuracy, and F1-score than other methods.

Index Terms—crowdsourcing, interval-valued label, worker’s
reliability, correctness, confidence, stability, predictability

I. INTRODUCTION

In this section, we briefly introduce the typical crowdsourc-
ing problem that we study with a short literature review.

A. Crowdsourcing and worker’s reliability

Crowdsourcing is the practice of obtaining inputs (labels)
from a large number of people (crowd workers) typically
via the Internet. Meaningful human knowledge from these
labels can be further applied in machine learning and AI.
Nowadays, large volumes of data manually labeled via human
crowds have been collected such as Amazon Mechanical
Turk1, CrowdFlower2, and others.

In this work, we assume the typical binary classification
model in crowdsourcing. That is to determine if an observation
x ∈ X is an instance of a given class y ∈ Y . To simplify the
discussion, researchers often assume |Y | = 1 without loss of
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1https://www.mturk.com/
2http://crowdflowersites.com/

generality. This is because when |Y | = m > 1, one may check
if xi is an instance of each of the m classes repeatedly. With
the assumption of |Y | = 1, the problem becomes a decision
problem: is xi ∈ X an instance of a given class y? The correct
answer, either yes (1) or no (0), is the ground truth. The basic
idea of crowdsourcing is to acquire a list of answers (labels),
denoted as Li, from a crowd on the same xi. Applying a
learning strategy to aggregate Li, one makes an inference
with the objective of matching the ground truth. Obviously,
the overall quality of collected labels plays a critical role in
addition to the learning strategy.

Due to the open nature, crowd workers usually come with
diverse social-economical backgrounds. Workers with a higher
level of domain knowledge usually make better quality labels
than those with less. However, an expert with adversarial
purposes can cause more harm than good. Even without
any adversarial intention, experts may often disagree [26]. In
addition, cultural and demographic differences often lead to
biased labels. Even for the same worker, he may not perform
exactly the same all time because of variations of his emotional
and stress level.

In short, crowd workers are usually not equally reliable. To
improve the quality of crowdsourced work, we should take
worker’s reliability into consideration.

B. Related previous work and motivation of this study

Researchers have studied worker’s reliability previously.
In [1], Bi et al explicitly studied sources for a noisy label
including worker’s dedication, expertise, default labeling judg-
ment, and sample difficulty. In [23] and [27], the authors
discussed effective and efficient ways to select a subsets of
workers to maximize the accuracy under a budget constraint.
Qiu et al proposed ways to select worker through behavior
prediction [33]. Wang et al reported practical strategies for
adversarial detection in [35]. In [30], the correctness of a
worker j is described as a probability pj obtained from historic
data. Applying the probability with EM algorithm [5], one
may improve the quality of statistical inferences. Tao et al



considered worker’s reliability in MV-Freq and MV-Beta [32],
and reported quality improvements in [34].

Previous studies in crowdsourcing mostly use binary-valued
labels. However, a worker may often have ambiquity when
having to select 0 or 1 definitely in practice. Uncertainties
like this are inevitable when gathering crowdsourced data.
This is the reason to use interval-valued labels over binary
ones. Forcing the worker to use binary-valued labels loses
the uncertainity a worker has in their inputs. The more
information gained from the workers, the better the algorithms
and models predictions. To include this information, Hu et al
introduced interval-valued labels (IVL) in [19]. Intervals have
their own specific properties and operations. With them, people
have made significant progresses in solving otherwise hard
problems [3], [4], [6], [7], [9]–[18], [20]–[22], [24], [25], [28],
and more. Likewise, computational results in [19] evidence
quality improvements with IVLs than without. However, that
work implicitly treats all IVLs equally without considering
worker’s reliability. Noticing IVLs from a worker j contain
information on j’s reliability, we study worker’s reliability
with IVLs in this work to further improve the quality of
crowdsourced work.

The rest of this paper is organized as follows. In section 2,
we briefly introduce related background knowledge. In section
3, we quantitatively study ways to estimate worker’s reliability
from his IVLs in terms of his overall correctness, confidence,
stability, and predictability. In section 4, we present strategies
that apply worker’s reliability on worker selection, and infer-
ence making. We report results of computational experiments
in section 5; and summarize the work in section 6.

II. BACKGROUND KNOWLEDGE AND NOTATIONS

In this section, we introduce notations and properties of
IVLs after a very brief review on binary-valued labels on gold
questions.

A. Binary-valued labels on gold questions
To computationally estimate worker’s correctness, a com-

mon approach in the literature is to employ a set of gold
questions. For each gold question, its ground truth is known
but opaque to workers. Let G = [g1, g2, . . . , gk] be a list of
gold questions. Then, the ground truth of G is a binary string
o(G) ∈ {0, 1}k. Let Lj

G be the list of binary-valued labels on
G by a worker j. For each gi ∈ G, lji ∈ Lj

G may or may not
match the ground truth o(gi). Comparing the binary string Lj

G

against o(G), one may predict j’s correctness. For example, if
the count of total matching is cj , then the ratio pj = cj/k is
an empirical probability of j’s overall correctness. Assuming
j labels each gi ∈ G independently with exactly the same
probability of success pj , then Lj

G records the result of
Bernoulli trials. Solving Eq. (1) numerically, one may find
the probability pj :

cj
k

=

(
k
cj

)
pkj (1− pj)

k−cj . (1)

People have applied the pj to quantify j’s reliability. However,
the assumptions of independence and the same probability of

success may not always hold in real applications. A binary-
valued label may also cause information loss, especially when
j has ambiguity in selecting either 0 or 1 definitely. The
lost information is closely related to j’s reliability, and hard
to recover through post processing. In contrast to binary-
valued labels, IVL allows j to specify his uncertainty. With
such additional information in j’s IVLs, we can study j’s
reliability in terms of his correctness, confidence, stability, and
predictability in this section.

B. Properties of IVLs and notations used in this work

Prior to our discussion, let us clarify some notation rules
first. In the literature of interval computing, people often
denote an interval object with a boldface letter to distinguish
it from a real valued one (not boldface). The greatest lower
and least upper bounds of an interval object are specified
with an underline and an over-line of the same letter without
boldface, respectively. Hence, the IVL for an instance i made
by j is denoted as lij = [lij , lij ] ⊆ [0, 1]. The minimum and
maximum beliefs of j on i being an instance of the given class
are lij and lij , respectively. The midpoint or centroid of lij is
point-valued. We write it as

mid(lij) =
lij + lij

2
(2)

without boldface lij because mid(lij) is a real. Because lij ⊆
[0, 1], we have 0 ≤ mid(lij) ≤ 1. When mid(lij) > 0.5, j
leans toward to accepting xi in the class. We call it a positive
IVL. If mid(lij) < 0.5, then j leans toward rejecting xi from
the class. We call it a negative IVL. Otherwise, it is neither
positive nor negative, and implies a tie. The radius of lij ,

rad(lij) =
lij − lij

2
, (3)

is point-valued too. So, the lij is not in boldface. The radius
of lij specifies the range of variations from the centroid.

Let L = [l1, l2, . . . , ln] be a list of IVLs. Both its lower and
upper bounds L and L are real vectors without boldface. So
are the element-wise midpoint and radius vectors. We denote
them as mid(L) and rad(L), respectively, without boldface.
The mean of L is an interval as the following

µ(L) =

∑n
i=1 li
n

=

[
1

n

n∑
i=1

li,
1

n

n∑
i=1

li

]
= [µ(L), µ(L)].

(4)
The variance of L derived in [17] is a real value denoted as

V ar(L) = V ar(mid(L)) + V ar(rad(L)) +
2

n

n∑
i=1

|∆mi∆ri|

(5)
where ∆mi = mid(li) − µ(mid(L)) and ∆ri = rad(li) −
µ(rad(L)). Hence, the standard deviation of L is

σ(L) =
√
V ar(L). (6)

We say that a function f(t) is a pdf if and only if{
f(t) ≥ 0 ∀t ∈ (−∞,∞), and∫∞
−∞ f(t)dt = 1.

(7)



Eq. (8) provides a pdf (probability density function) for L:

f(t) =

∑n
i=1 pdfi(t)

n
, (8)

where pdfi is a pdf of a random variable li ∈ li.
In the rest of this paper, we apply the above statistic and

probabilistic properties of IVLs to study worker’s reliability.
We use Li to denote the list of IVLs on the same instance i
by some workers j ∈ J . We use Lj to denote the list of IVLs
made by the same worker j on different observations. When
needed, we use Lj

G and Lj
X to distinguish j’s IVLs on G (a

set of gold questions) and X (regular questions), respectively.

III. ESTIMATING WORKER’S RELIABILITY FROM HIS IVLS

In this section, we quantitatively specify worker’s reliability
from his IVLs in terms of his correctness, confidence, stability,
and predictability.

A. Estimating worker’s correctness from his IVLs on a set of
gold questions

To study j’s correctness, we collect his IVLs on G. The
IVL from j on a g ∈ G is denoted as lgj = [lgj , lgj ]. With
the known ground truth o(g), we have the center-correctness
of lgj represented in its centroid as:

center correctness(lgj) =

{
1−mid(lgj) if o(g) = 0,
mid(lgj) if o(g) = 1.

(9)
The center-correctness of lgj relies on both mid(lgj) and o(g).
To simplify our discussion, we assume o(g) = 1 for all g ∈ G
without loss of generality. This is because the value of o(g)
is known. In the case o(g) = 0, we can replace lgj with its
difference from 1, i.e. 1 − lgj = [1 − lgj , 1 − lgj ] without
changing its center-correctness.

For example, let o(g) = 0 and lgj = [0.2, 0.4], then the
center-correctness is 1− 0.3 = 0.7. Converting o(g) to 1 and
replacing lgj with [1− 0.4, 1− 0.2] = [0.6, 0.8], Eq. (9) gives
exactly the same center-correctness of 0.7.

Hereafter, unless specified otherwise, we assume o(g) = 1
for all gold questions upon the replacement of lgj with 1 −
lgj whenever o(g) = 0 originally. By doing so, the center-
correctness of an IVL on a gold question g by j is mid(lgj).
Similar to center-correctness, we call the values of lgj and lgj
the min- and max-correctness of the label lgj .

Let Lj
G = [lg1j , lg2j , . . . , lgkj ] be the list of k IVLs from j

on G. Then, the mean of Lj
G is µ(Lj

G) = [µ(Lj
G), µ(L

j

G)]. It
provides estimations of the overall correctness of j in terms of
his average min-, max-, and center-correctness µ(Lj

G), µ(L
j

G),
and mid(µ(Lj

G)), respectively. Contrast to the probability
pj derived from Eq. (1), the average correctness of j rep-
resented in µ(Lj

G) does not require the strict assumptions
of Bernoulli trial. Furthermore, the average min-, max-, and
center-correctness of j provide us the means of the worst,
best, and average correctness of j. Moreover, the standard
deviations of Lj

G, L
j

G, and mid(Lj
G) provide information on

the stability of j’s min-, max-, and center-correctness, respec-
tively. This means that Lj

G contains more information about
j’s correctness than the pj in Eq. (1).

B. Estimating the confidence of a worker j from his IVLs

An IVLs l = [l, l] contains information of labeler’s con-
fidence. The centriod of l, mid(l), represents the degree of
the worker’s belief toward 0 or 1. When mid(l) = 0.5, the
worker has absolutely no confidence to pick either 0 or 1.
The distance between mid(l) and 0.5, i.e. |mid(l) − 0.5|,
reflects the labeler’s confidence on his belief. The radius of
l, rad(l) = l−l

2 , specifies the maximum possible variation
from the centroid. When rad(l) = 0, l is point-valued; and
the worker is confident on the value of l. Otherwise, the label
l contains uncertainty over a range. Because the maximum
possible value of rad(l) is 0.5, the difference between 0.5 and
rad(l), i.e. 0.5− rad(l), measures labeler’s confidence on the
centroid. We say the confidence of l is

conf(l) = |mid(l)− 0.5|+ 0.5− rad(l). (10)

Because both of |mid(l)− 0.5| and 0.5− rad(l) are between
0 and 0.5, the confidence of l is between 0 and 1. In contrast,
the confidence of any binary-valued label is 100%. This is
because, for a binary-valued label l = 0 (or 1), |mid(l) −
0.5| = 0.5 and rad(l) = 0. This means that the confidence
of a binary-valued label is not distinguishable. In contrast, we
are able to differentiate IVLs with their confidence values. For
instance, the confidence values of [0.8, 0.9] and [0.5, 0.7] are
0.8 = 0.35 + 0.45 and 0.5 = 0.1 + 0.4, respectively.

As mentioned earlier, the mean of Lj
G, µ(Lj

G), is a sub-
interval of [0, 1]. It not only provides j’s average correctness,
but also reflects j’s overall confidence as |mid(µ(Lj

G)) −
0.5|+ 0.5− rad(µ(Lj

G)). We want to make two clarifications
here. The first is that j’s overall confidence is not the same
as the mean of conf(lgij). The other one is that unlike pre-
dicting worker’s correctness, estimating worker’s confidence
with Eq. (10) does not require the ground truth but only
the mean of IVLs. With this in mind, we can calculate j’s
overall level of confidence on X . Comparing j’s confidences
conf(Lj

G) and conf(Lj
X), we may statistically check if j

performs consistently or not. If G well samples X , then
conf(Lj

G) and conf(Lj
X) should be statistically consistent.

C. Estimating worker’s stability and predictability from his
IVLs

The standard deviation of a data set measures its overall
stability. As mentioned earlier, j’s min-, max-, and center-
correctness as well as his confidence are point-valued. We
can calculate their standard deviations as usual. Beyond that,
Eqs. (5) and (6) enable us to calculate σ(Lj) from Lj to
estimate j’s overall stability. Similar to j’s confidence, the
standard deviation of Lj does not rely on the ground truth. So,
we can calculate and compare σ(Lj

G) and σ(Lj
X) statistically.

To measure j’s predictability, we apply the entropy of Lj

according to information theory. Let s be a discrete random
variable with possible outcomes s1, s2, . . . , sn, which occur



with probability p(s1),p(s2), . . . ,p(sn). Then, Shannon’s en-
tropy [29] of s is:

H(s) = −
n∑

i=1

p(si) log p(si). (11)

Assume |Lj | = m and pdf j are the pdf of a random variable
l over an lj ∈ Lj . The 2m endpoints in Lj , though some of
them may overlap, form a partition of the interval [0, 1] into
2m + 1 sub-intervals. With Eq. (8), we are able to calculate
the probability of each of the 2m + 1 sub-intervals with
Algorithm 1 in [17]. We can then apply Eq. (11) to obtain
H(Lj), the entropy of Lj as a quantitative measure on j’s
predictability. According to the minimum entropy principle, a
worker j is more predictable if the H(Lj) is less than others’.
The calculation of entropy does not depend on the ground
truth of instances to be classified. For a specific j ∈ J , we
can calculate and compare the values of H(Lj

G) and H(Lj
X)

statistically as well.

IV. APPLYING WORKER’S RELIABILITY TO WORKER
SELECTION AND INFERENCE MAKING

With IVLs from j, we are able to quantitatively measure his
reliability in terms of correctness, confidence, stability, and
predictability. Now, we apply worker’s reliability to worker
selection and inference making.

A. Worker selection

The purpose of worker selection is to improve the quality
of crowdsourced work. Previous studies in worker selection
mostly apply worker’s correctness estimated from binary-
valued labels on gold questions [23], [33], etc. With Lj

G,
we have newly estimated j’s correctness together with his
confidence, stability, and predictability available for worker
selection. For example, the confidence of µ(Lj

G) may differ-
entiate j from others.

To combine j’s correctness and confidence together in
worker selection, we first investigate the relation between
j’s correctness and confidence. The estimated j’s center-
correctness from µ(Lj

G) is mid(µ(Lj
G)), which is between

0 and 1. The radius of µ(Lj
G), rad(µ(Lj

G)), is between 0
and min{mid(µ(Lj

G)), 1−mid(µ(Lj
G))} to ensure µ(Lj

G) ⊆
[0, 1]. According to Eq. (10), the range of confidence for
any given mid(µ(Lj

G)) is |mid(µ(Lj
G)) − 0.5| + 0.5 −

min{mid(µ(Lj
G)), 1−mid(µ(Lj

G))}.
Fig. 1 visually illustrates the range of confidence vs. a given

center-correctness. It suggests that a worker with a high level
of center-correctness has a high level of confidence too. For
example, when j’s overall center-correctness is above 90%,
his level of confidence is at least 80%. However, the converse
is not true. Given j’s confidence level at 80% or above, the
range of his center-correctness can be less than 20% or above
80%. While it is good to have a worker with correctness above
80%; it seems unacceptable if the correctness is less than 20%.
However, because of the binary classification model, we may
still utilize labels from j, even though his correctness is less
than 20%. Replacing his lij with 1 − lij , we would expect

Fig. 1: Range of confidence vs. correctness

an average center-correctness above 80%. Another observation
from Fig. 1 is that the range of center-correctness converges to
0.5 as confidence approaches 0. This implies that a label from a
worker with a very low confidence is likely a tie. Summarizing
the above discussion, we suggest the following heuristics for
worker selection:

• A worker j is preferable if he has a high level of confi-
dence above a threshold. For example, if the confidence
threshold is 80%, then the average correctness can be
above 80% too upon the difference from 1 replacement
when mid(µ(Lj

G)) ≤ 0.2.
• When µ(Lj

G) has a mediocre confidence (say between
40-60%), then j’s correctness may vary in a rather broad
range. For instance, if the confidence level is 40%, then
the center-correctness can be between 30-70%. If we need
to select a worker with a mediocre confidence, the one
with high correctness would be preferable.

• A worker j is not very helpful if his confidence level is
very low. For instance, if j’s confidence is below 20%,
then the average of his IVLs is at most 10% away from
a tie (50%).

The confidence of j providse us an additional criterion, other
than correctness, for worker selection.

A challenging task in worker selection is to identify and
exclude those who are very knowledgeable but have adversary
purposes [2], [33]. A naive attacker with good knowledge
may purposely classify all instances opposite to the ground
truth. His answers on the gold questions result in a very
low level of correctness. By replacing his labels with the
difference from 1, we are still able to utilize his labels. In
contrast to a naive attacker, a sophisticated attacker may be
able to identify gold questions and label them correctly in
order to be selected. After that, he launches attacks when
answering regular questions. In practice, it has been sug-
gested to monitor workers with very high correctness. A
very sophisticated attacker may manipulate his correctness in
answering gold questions to pass the threshold and avoid being
identified. When a worker tries to lower his correctness with
IVLs, his confidence level changes. Gold questions are not



required when calculating worker’s confidence, stability, and
predictability. This means that if G well samples X , then the
overall confidence, stability, and entropy derived from Lj

G and
Lj

X should be statistically consistent. This can be helpful in
identifying possible attackers, which is an important subject
in crowdsourcing. However, due to page limitation, we will
discuss this in detail later in another paper.

B. Applying worker’s reliability in inference making with
improved matching probability

The objective of crowdsoucing is to derive an inference
from collected labels that matches the ground truth. Let
Li = {li1, li2, . . . , lim} be the IVLs collected from m workers
on the same xi ∈ X . Two strategies are suggested in [19]
on making an inference from Li. One of them mimics the
majority voting (MV) with binary-valued labels. It counts the
numbers of positive and negative IVLs, denoted as c+i and
c−i , according to if mid(lij) is greater or less than 0.5. By
comparing c+i and c−i , the inference is

yi =

 1 if c+i > c−i
0 if c+i < c−i
tie otherwise

(12)

Using binary-valued labels, a reasonable worker would label
xi with 1 (or 0) if mid(lij) is greater (or less) than 0.5. Hence,
Eq. (12) leads to an inference the same as that of binary-
valued labels. A straightforward modification of Eq. (12) is to
not count each positive (or negative) IVL as one but with its
centroid mid(lij) instead. That is

W+
i =

∑
lij∈Li∧mid(lij)>0.5

mid(lij), and (13)

W−
i =

∑
lij∈Li∧mid(lij)<0.5

1−mid(lij). (14)

Then, we have IMV (interval MV) as

yi =

 1 if W+
i > W−

i ,
0 if W+

i < W−
i ,

tie otherwise.
(15)

However, not all labels are created equal. Some labels should
be weighted more than others [36]. Using j’s reliability rj as
the weight of his label lij , we have

W+
i =

∑
lij∈Li∧mid(lij)>0.5

rj ×mid(lij), and (16)

W−
i =

∑
lij∈Li∧mid(lij)<0.5

rj × (1−mid(lij)). (17)

Using Eqs. (16) and (17) instead of (13) and (14) to make an
inference with Eq. (15), we have WIMV (weighted IMV) to
make an inference from Li. The strength of the inference with
WIMV (or IMV) is

p̂ = max

{
W+

i

W+
i +W−

i

,
W−

i

W+
i +W−

i

}
. (18)

In the discussion above, we ignore such lij ∈ Li whenever
mid(lij) = 0.5.

The other inference scheme in [19] applies a pdf of Li

defined as

fi(t) =

∑m
j=1 pdfij(t)

m
, (19)

where pdfij is a pdf of lij . Because any value t > 0.5 implies
a preference of 1, the probability of the overall preference of
1 on xi is

P+(0.5) =

∫ 1

0.5

fi(t)dt. (20)

Eq. (21) results in an inference with a preferred matching
probability (PMP) as the following

yi =

 1 if P+(0.5) > 0.5,
0 if P+(0.5) < 0.5, and
tie otherwise.

(21)

Computational experiments reported in [19] clearly demon-
strate that inferences from the same Li with PMP have much
better overall quality than those with MV.

Notice that the arithmetic average in Eq. (19) treats all pdfij
equally without considering worker’s reliability. To include
worker’s reliability in calculating fi, we multiply j’s reliability
rj with pdfij as a weight, and have

fi(t) =

∑m
j=1 rj × pdfij(t)∑m

j=1 rj
. (22)

It is straightforward to verify that the fi(t) in Eq. (22) is
a pdf of Li too. Applying it in Eq. (20), we can eval-
uate P+ then make an inference with Eq. (21). We call
it WPMP (weighted PMP). The probability of matching is
p̂ = max{P+, 1− P+} for both PMP and WPMP.

We have one more question. Which value should we use
as the weight rj? The objective of learning is to make
an inference that matches the ground truth. A worker with
high confidence, stability, and predictability may miss the
ground truth completely. Among the four reliability indicators,
only the correctness is directly associated with ground truth.
Hence, we should use j’s correctness as the weight rj .
As demonstrated in our computational experiments below,
using correctness as weight in WIMV and WPMP, we can
significantly improve the overall quality.

V. COMPUTATIONAL EXPERIMENTS

In this section, we report our computational experiments to
examine if we achieve quality improvements with considera-
tions of worker’s reliability in crowdsourcing.

A. The design of our experiments

To test the concepts and methodologies discussed, we
generate a pool of workers randomly with various levels of
reliability. Fig. 2 illustrates the pool of workers in clusters
according to their correctness and confidence. From the pool,
we randomly select a group of at least ten workers whose
levels of confidence are no less than a preset threshold. These
selected workers are asked to provide random IVLs on a



Fig. 2: A pool of workers with different reliability

Strategy TP FP TN FN
MV 24 48 37 39
IMV 34 56 44 46
PMP 25 53 39 48
WIMV 74 3 97 6
WPMP 75 1 99 5

TABLE I: Confusion matrices for strategies without correction

benchmark dataset in CEKA [38]. We then apply MV, IMV,
PMP, WIMV, and WPMP to make inferences from these
collected IVLs, and then check against the known ground
truth. For the inferences obtained with each of the strategies,
we record its confusion matrix [37] for the purpose of quality
comparison. Table I records the results of a single run on
the Income94 dataset with 180 items that used a worker
confidence threshold of 60% and no label correction, i.e.
without the 1 − lij replacement of lij when j’s correctness
is very low. The table indicates that both WIMV and WPMP
produce better results in terms of significantly reduced false
positive (FP) and false negative (FN), while IMV and PMP
miss a majority of ground truth. In addition, MV classified
only 148 items with the remaining 32 being marked as a tie.

For comparison, Table II shows the results of a another
test on the same dataset using the same confidence threshold
60% and the same workers but utilizing label correction via
replacing lij with 1− lij when j’s confidence is greater than
90%. In this table, all five strategies produce better results
than those reported in Table I. This is due to utilizing label
correction for high confidence, low correctness workers.

Tables I and II indicate that both WIMV and WPMP
can produce much better results with random workers whose
confidence level is at least 60%. It is impractical to verify the
findings with various confidence thresholds through counting

Strategy TP FP TN FN
MV 45 30 55 18
IMV 60 30 70 20
PMP 49 35 62 23
WIMV 79 0 100 1
WPMP 78 2 98 2

TABLE II: Confusion matrices for strategies with correction

the numbers on confusion matrices. Instead, we apply the
metrics of recall, precision, accuracy, and F1-score to quanti-
tatively measure the performance.

B. Computational results

We implemente the design in Python 3 and illustrate the
results graphically. Figs. 3-6 illustrate the changes of recall,
precision, accuracy, and F1-score for the Income94 dataset
as the confidence threshold increases by 1% for each of
the inference strategies. For each confidence threshold, ten
workers are randomly selected from the pool in each run. The
scores are then averaged over forty (no specific reasons) runs.
Labels for workers with a correctness lower than 20% were
replaced with 1− lij .

Fig. 3: Recall values vs. confidence threshold

Fig. 4: Precision values vs. confidence threshold

Figs. 3-6 shows the average recall, precision, accuracy, and
F1-score values with an increasing confidence threshold on
the dataset. All four figures show similar properties. When
the confidence threshold is less than 60%, the qualitative
measures on inferences made with MV, IMV,and PMP are all
below 50%. When the confidence threshold increases beyond
60%, the measures show an increasing trend. Nevertheless, the
results produced with WIMV and WPMP are above 0.8 even at
a low confidence threshold. The significantly improved overall
quality of WIMV and WPMP comes from the reliability
weighted strategies proposed in this work.



Fig. 5: Accuracy values vs. confidence threshold

Fig. 6: F1-score values vs. confidence threshold

To verify the findings, we ran the same experiments with
the same workers on another benchmark dataset named car in
CEKA. Figs. 7–10 report the qualitative measures. They show
very similar properties to Income94, with the only difference
being that precision and F-score start relatively lower than
others when the confidence threshold is low. Overall, these

Fig. 7: Recall values vs. confidence threshold

figures demonstrate a significant improvement of the reliability
weighted strategies, i.e. WIMV and WPMP, especially when
the threshold of worker’s confidence is relatively low. Using
worker’s confidence for worker selection is also shown to be

Fig. 8: Precision values vs. confidence threshold

Fig. 9: Accuracy values vs. confidence threshold

an effective method to get an accurate ground truth in crowd-
sourcing. When the threshold is high enough, all inference
strategies lead to ground truth when utilizing IVLs from naive
attackers through label correction. In our experiments, we treat
those with less than 20% correctness as a naive attacker.

VI. SUMMARY

In this work, we use IVLs, which contain more information
than binary-valued labels do, to quantitatively estimate crowd
worker’s reliability in terms of his/her correctness, confidence,

Fig. 10: F1-score values vs. confidence threshold



stability, and predictability. Applying worker’s reliability, we
have developed a worker selection scheme together with two
reliability weighted algorithms WIMV and WPMP to make
inference in crowdsourcing. Especially when the threshold of
worker’s confidence is low, the newly proposed approaches
lead to significant quality improvements comparing against
other strategies consistently.

Our initial work reported here indicates that crowd work-
ers’ reliability may significantly impact the overall quality
of crowdsourced work. We are currently applying worker’s
reliability, especially confidence, stability, and predictability, to
anomaly detection and explainable crowdsourcing. We expect
to report the results in another paper soon.
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