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Abstract

Deep reinforcement learning augments the reinforcement learning framework and
utilizes the powerful representation of deep neural networks. Recent works have demon-
strated the remarkable successes of deep reinforcement learning in various domains in-
cluding finance, medicine, healthcare, video games, robotics, and computer vision. In
this work, we provide a detailed review of recent and state-of-the-art research advances
of deep reinforcement learning in computer vision. We start with comprehending the
theories of deep learning, reinforcement learning, and deep reinforcement learning. We
then propose a categorization of deep reinforcement learning methodologies and discuss
their advantages and limitations. In particular, we divide deep reinforcement learning
into seven main categories according to their applications in computer vision, i.e. (i)
landmark localization (ii) object detection; (iii) object tracking; (iv) registration on
both 2D image and 3D image volumetric data (v) image segmentation; (vi) videos
analysis; and (vii) other applications. Each of these categories is further analyzed with
reinforcement learning techniques, network design, and performance. Moreover, we
provide a comprehensive analysis of the existing publicly available datasets and exam-
ine source code availability. Finally, we present some open issues and discuss future
research directions on deep reinforcement learning in computer vision.

1 Introduction

Reinforcement learning (RL) is a machine learning technique for learning a sequence of ac-
tions in an interactive environment by trial and error that maximizes the expected reward
[351]. Deep Reinforcement Learning (DRL) is the combination of Reinforcement Learning
and Deep Learning (DL) and it has become one of the most intriguing areas of artificial intel-
ligence today. DRL can solve a wide range of complex real-world decision-making problems
with human-like intelligence that were previously intractable. DRL was selected by [316],
[106] as one of ten breakthrough techniques in 2013 and 2017, respectively.

The past years have witnessed the rapid development of DRL thanks to its amazing
achievement in solving challenging decision-making problems in the real world. DRL has



been successfully applied into many domains including games, robotics, autonomous driving,
healthcare, natural language processing, and computer vision. In contrast to supervised
learning which requires large labeled training data, DRL samples training data from an
environment. This opens up many machine learning applications where big labeled training
data does not exist.

Far from supervised learning, DRL-based approaches focus on solving sequential decision-
making problems. They aim at deciding, based on a set of experiences collected by interacting
with the environment, the sequence of actions in an uncertain environment to achieve some
targets. Different from supervised learning where the feedback is available after each system
action, it is simply a scalar value that may be delayed in time in the DRL framework. For
example, the success or failure of the entire system is reflected after a sequence of actions.
Furthermore, the supervised learning model is updated based on the loss/error of the output
and there is no mechanism to get the correct value when it is wrong. This is addressed by
policy gradients in DRL by assigning gradients without a differentiable loss function. This
aims at teaching a model to try things out randomly and learn to do correct things more.

Many survey papers in the field of DRL including [13] [97] [414] have been introduced
recently. While [13] covers central algorithms in DRL, [97] provides an introduction to
DRL models, algorithms, and techniques, where particular focus is the aspects related to
generalization and how DRL can be used for practical applications. Recently, [414] introduces
a survey, which discusses the broad applications of RL techniques in healthcare domains
ranging from dynamic treatment regimes in chronic diseases and critical care, an automated
medical diagnosis from both unstructured and structured clinical data, to many other control
or scheduling domains that have infiltrated many aspects of a healthcare system. Different
from the previous work, our survey focuses on how to implement DRL in various computer
vision applications such as landmark detection, object detection, object tracking, image
registration, image segmentation, and video analysis.

Our goal is to provide our readers good knowledge about the principle of RL/DRL and
thorough coverage of the latest examples of how DRL is used for solving computer vision
tasks. We structure the rest of the paper as follows: we first introduce fundamentals of
Deep Learning (DL) in section 2 including Multi-Layer Perceptron (MLP), Autoencoder,
Deep Belief Network, Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs). Then, we present the theories of RL in section 3, which starts with the Markov
Decision Process (MDP) and continues with value function and Q-function. In the end of
section 3, we introduce various techniques in RL under two categories of model-based and
model-free RL. Next, we introduce DRL in section 4 with main techniques in both value-
based methods, policy gradient methods, and actor-critic methods under model-based and
model-free categories. The application of DRL in computer vision will then be introduced
in sections 5, 6, 7, 8, 9, 10, 11 corresponding respectively to DRL in landmark detection,
DRL in object detection, DRL in object tracking, DRL in image registration, DRL in im-
age segmentation, DRL in video analysis and other applications of DRL. Each application
category first starts with a problem introduction and then state-of-the-art approaches in the
field are discussed and compared through a summary table. We are going to discuss some



future perspectives in section 12 including challenges of DRL in computer vision and the
recent advanced techniques.

2 Introduction to Deep Learning

2.1 Multi-Layer Perceptron (MLP)

Deep learning models, in simple words, are large and deep artificial neural networks. Let us
consider the simplest possible neural network which is called "neuron” as illustrated in Fig.

1. A computational model of a sinole nenron ig called a nercentron which consists of ane or
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Figure 1: An example of one neuron which takes input x = [xq, 9, 23], the intercept term
+1 as bias, and the output o.

Figure 2: An example of multi-layer perceptron network (MLP)

In this example, the neuron is a computational unit that takes x = [z, x1, 2] as input,
the intercept term +1 as bias b, and the output o. The goal of this simple network is to
learn a function f : RN — RM where N is the number of dimensions for input x and M is
the number of dimensions for output which is computed as o = f(x,6), where 6 is a set of
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Figure 3: An illustration of various DL architectures. (a): Autoencoder (AE); (b): Deep
Belief Network; (c): Convolutional Neural Network (CNN); (d): Recurrent Neural Network
(RNN).

weights and are known as weights 0 = {w;}. Mathematically, the output o of a one neuron

is defined as:
N

o= f(x,0)=0 (Z wiT; + b) = o(W'x +0) (1)
i=1

In this equation, ¢ is the point-wise non-linear activation function. The common non-
linear activation functions for hidden units are hyperbolic tangent ( Tanh), sigmoid, softmax,
ReLU, and LeakyReLU. A typical multi-layer perception (MLP) neural network is composed
of one input layer, one output layer, and many hidden layers. Each layer may contain many
units. In this network, x is the input layer, o is the output layer. The middle layer is called
the hidden layer. In Fig. 2(b), MLP contains 3 units of the input layer, 3 units of the hidden
layer, and 1 unit of the output layer.

In general, we consider a MLP neural network with L hidden layers of units, one layer
of input units and one layer of output units. The number of input units is N, output units
is M, and units in hidden layer {** is N'. The weight of the j unit in layer " and the *
unit in layer (I + 1)™ is denoted by w!,. The activation of the i" unit in layer I" is h!.

2.2 Autoencoder

Autoencoder is an unsupervised algorithm used for representation learning, such as feature
selection or dimension reduction. A gentle introduction to Variational Autoencoder (VAE)
is given in [11] and VAE framework is illustrated in Fig.3(a). In general, VAE aims to learn
a parametric latent variable model by maximizing the marginal log-likelihood of the training
data.

2.3 Deep Belief Network

Deep Belief Network (DBN) and Deep Autoencoder are two common unsupervised ap-
proaches that have been used to initialize the network instead of random initialization.
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Figure 4: Architecture of a typical convolutional network for image classification containing
three basic layers: convolution layer, pooling layer and fully connected layer

While Deep Autoencoder is based on Autoencoder, Deep Belief Networks is based on Re-
stricted Boltzmann Machine (RBM), which contains a layer of input data and a layer of
hidden units that learn to represent features that capture high-order correlations in the data
as illustrated in Fig.3(b).

2.4 Convolutional Neural Networks (CNN)

Convolutional Neural Network (CNN) [204] [203] is a special case of fully connected MLP that
implements weight sharing for processing data. CNN uses the spatial correlation of the signal
to utilize the architecture in a more sensible way. Their architecture, somewhat inspired by
the biological visual system, possesses two key properties that make them extremely useful
for image applications: spatially shared weights and spatial pooling. These kinds of networks
learn features that are shift-invariant, i.e., filters that are useful across the entire image (due
to the fact that image statistics are stationary). The pooling layers are responsible for
reducing the sensitivity of the output to slight input shifts and distortions, and increasing
the reception field for next layers. Since 2012, one of the most notable results in Deep
Learning is the use of CNN to obtain a remarkable improvement in object recognition in
ImageNet classification challenge [72] [187].

A typical CNN is composed of multiple stages, as shown in Fig. 3(c). The output of each
stage is made of a set of 2D arrays called feature maps. Each feature map is the outcome of
one convolutional (and an optional pooling) filter applied over the full image. A point-wise
non-linear activation function is applied after each convolution. In its more general form, a
CNN can be written as

h' =x
h' =pool'(o;(w'h!™* +b")), Vi € 1,2, ...L (2)
o =h"



where w!, b’ are trainable parameters as in MLPs at layer ['". x € R&"*¥ ig vectorized from
an input image with ¢ being the color channels, h the image height and w the image width.
o € R™"*v" ig vectorized from an array of dimension 2’ x w' of output vector (of dimension
n). pool' is a (optional) pooling function at layer [*".

Compared to traditional machine learning methods, CNN has achieved state-of-the-
art performance in many domains including image understanding, video analysis and au-
dio/speech recognition. In image understanding [404], [426], CNN outperforms human ca-
pacities [39]. Video analysis [422], [217] is another application that turns the CNN model
from a detector [374] into a tracker [94]. As a special case of image segmentation [194], [193],
saliency detection is another computer vision application that uses CNN [381], [213]. In addi-
tion to the previous applications, pose estimation [290], [362] is another interesting research
that uses CNN to estimate human-body pose. Action recognition in both still images and
videos is a special case of recognition and is a challenging problem. [110] utilizes CNN-based
representation of contextual information in which the most representative secondary region
within a large number of object proposal regions, together with the contextual features,
is used to describe the primary region. CNN-based action recognition in video sequences
is reviewed in [420]. Text detection and recognition using CNN is the next step of optical
character recognition (OCR) [406] and word spotting [160]. Not only in computer vision,
CNN has been successfully applied into other domains such as speech recognition and speech
synthesis [274], [283], biometrics [242], [85], [281], [350],[304], [261], biomedical [191], [342],
[192], [411].

2.5 Recurrent Neural Networks (RNN)

RNN is an extremely powerful sequence model and was introduced in the early 1990s [172].
A typical RNN contains three parts, namely, sequential input data (x;), hidden state (h;)
and sequential output data (y,) as shown in Fig. 3(d).

RNN makes use of sequential information and performs the same task for every element
of a sequence where the output is dependent on the previous computations. The activation
of the hidden states at time-step ¢ is computed as a function f of the current input symbol
x¢ and the previous hidden states hy_;. The output at time ¢ is calculated as a function g
of the current hidden state h; as follows

ht = f(UXt -+ Wht_l) (3)
y: = 9(Vhy)
where U is the input-to-hidden weight matrix, W is the state-to-state recurrent weight
matrix, V is the hidden-to-output weight matrix. f is usually a logistic sigmoid function or
a hyperbolic tangent function and ¢ is defined as a softmax function.
Most works on RNN have made use of the method of backpropagation through time

(BPTT) [318] to train the parameter set (U, V, W) and propagate error backward through
time. In classic backpropagation, the error or loss function is defined as

E(y,y)=>_II¥’ = vlP (4)
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where y, is the prediction and y’, is the labeled groundtruth.

For a specific weight W, the update rule for gradient descent is defined as W™ =
W — ’yg—vf”;,, where v is the learning rate. In RNN model, the gradients of the error with
respect to our parameters U, V and W are learned using Stochastic Gradient Descent
(SGD) and chain rule of differentiation.

The difficulty of training RNN to capture long-term dependencies has been studied in
[26]. To address the issue of learning long-term dependencies, Hochreiter and Schmidhuber
[139] proposed Long Short-Term Memory (LSTM), which can maintain a separate memory
cell inside it that updates and exposes its content only when deemed necessary. Recently, a
Gated Recurrent Unit (GRU) was proposed by [51] to make each recurrent unit adaptively
capture dependencies of different time scales. Like the LSTM unit, the GRU has gating units
that modulate the flow of information inside the unit but without having separate memory
cells.

Several variants of RNN have been later introduced and successfully applied to wide
variety of tasks, such as natural language processing [257], [214], speech recognition [115],
[54], machine translation [175], [241], question answering [138], image captioning [247], [78],
and many more.

3 Basics of Reinforcement Learning

This section serves as a brief introduction to the theoretical models and techniques in RL. In
order to provide a quick overview of what constitutes the main components of RL methods,
some fundamental concepts and major theoretical problems are also clarified. RL is a kind
of machine learning method where agents learn the optimal policy by trial and error. Unlike
supervised learning, the feedback is available after each system action, it is simply a scalar
value that may be delayed in time in RL framework, for example, the success or failure of the
entire system is reflected after a sequence of actions. Furthermore, the supervised learning
model is updated based on the loss/error of the output and there is no mechanism to get
the correct value when it is wrong. This is addressed by policy gradients in RL by assigning
gradients without a differentiable loss function which aims at teaching a model to try things
out randomly and learn to do correct things more.

Inspired by behavioral psychology, RL was proposed to address the sequential decision-
making problems which exist in many applications such as games, robotics, healthcare, smart
grids, stock, autonomous driving, etc. Unlike supervised learning where the data is given,
an artificial agent collects experiences (data) by interacting with its environment in RL
framework. Such experience is then gathered to optimize the cumulative rewards/utilities.

In this section, we focus on how the RL problem can be formalized as an agent that
can make decisions in an environment to optimize some objectives presented under reward
functions. Some key aspects of RL are: (i) Address the sequential decision making; (ii) There
is no supervisor, only a reward presented as scalar number; and (iii) The feedback is highly
delayed. Markov Decision Process (MDP) is a framework that has commonly been used to
solve most RL problems with discrete actions, thus we will first discuss MDP in this section.



We then introduce value function and how to categorize RL into model-based or model-free
methods. At the end of this section, we discuss some challenges in RL.
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Figure 5: An illustration of agent-environment interaction in RL

3.1 Markov Decision Process

The standard theory of RL is defined by a Markov Decision Process (MDP), which is an
extension of the Markov process (also known as the Markov chain). Mathematically, the
Markov process is a discrete-time stochastic process whose conditional probability distribu-
tion of the future states only depends upon the present state and it provides a framework to
model decision-making situations. An MDP is typically defined by five elements as follows:

e S: aset of state or observation space of an environment. s is starting state.

A: set of actions the agent can choose.

e T: a transition probability function T'(s,11|s¢, a;), specifying the probability that the
environment will transition to state s;; 1 € S if the agent takes action a; € A in state
St € S.

R: a reward function where 7,117 = R(sy, $441) is a reward received for taking action a;
at state s; and transfer to the next state s;;.

e 7: a discount factor.

Considering MDP(S, A, v, T, R), the agent chooses an action a; according to the pol-
icy m(as|s;) at state s;. Notably, agent’s algorithm for choosing action a given current
state s, which in general can be viewed as distribution m(als), is called a policy (strat-
egy). The environment receives the action, produces a reward r;,; and transfers to the next
state s;y1 according to the transition probability T'(s;i1]S¢, a;). The process continues until
the agent reaches a terminal state or a maximum time step. In RL framework, the tuple
(St, g, ev1, Ser1) is called transition. Several sequential transitions are usually referred to as
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roll-out. Full sequence (sg, ag, 1, S1, a1,79,...) is called a trajectory. Theoretically, trajectory
is infinitely long, but the episodic property holds in most practical cases. One trajectory of
some finite length 7 is called an episode. For given MDP and policy 7, the probability of
observing (so, ag, 11, $1,a1, T2, -..) is called trajectory distribution and is denoted as:

Tr = Hﬂ(at\st)T(Swﬂstaat) (5)

The objective of RL is to find the optimal policy ©* for the agent that maximizes the cumu-
lative reward, which is called return. For every episode, the return is defined as the weighted
sum of immediate rewards:

T—1
R=> 7'rn (6)
t=0

Because the policy induces a trajectory distribution, the expected reward maximization can

be written as:
T—1

Er. Z Te41 — Max (7)

t=0

Thus, given MDP and policy 7, the discounted expected reward is defined:

T—1
G(r) =Bz, Y 'rin (8)
t=0

The goal of RL is to find an optimal policy 7*, which maximizes the discounted expected
reward, i.e. G(m) — max,.

3.2 Value and Q- functions

The value function is applied to evaluate how good it is for an agent to utilize policy 7
to visit state s. The concept of "good” is defined in terms of expected return, i.e. future
rewards that can be expected to receive in the future and it depends on what actions it will
take. Mathematically, the value is the expectation of return, and value approximation is
obtained by Bellman expectation equation as follows:

V(s¢) = E[repr + V7 (5041))] (9)

V7™(s) is also known as state-value function, and the expectation term can be expanded as
a product of policy, transition probability, and return as follows:

V7(s1) = Z 7(ast) Z T(se41lse, ae)[R(se; 1) 7V (5141)] (10)

at€A St+1E€S

This equation is called the Bellman equation. When the agent always selects the action
according to the optimal policy 7* that maximizes the value, the Bellman equation can be



expressed as follows:
Sst+1€8 ( 1 1)

However, obtaining optimal value function V* does not provide enough information to re-
construct some optimal policy 7* because the real-world environment is complicated. Thus,
a quality function (Q-function) is also called the action-value function under policy w. The
Q-function is used to estimate how good it is for an agent to perform a particular action (a;)
in a state (s;) with a policy 7 and it is introduced as:

Q" (s, ar) = ZT(St+1’5ta ar)[R(se, Se41) + YV (8141)] (12)

St4+1

Unlike value function which specifies the goodness of a state, a Q-function specifies the
goodness of action in a state.

3.3 Category

In general, RL can be divided into either model-free or model-based methods. Here, "model”
is defined by the two quantity: transition probability function T'(s;1|s¢, a;) and the reward
function R(s, S¢41).

3.3.1 Model-based RL

Model-based RL is an approach that uses a learnt model, i.e. T(s;41|ss,a;) and reward
function R(s;, s;11) to predict the future action. There are four main model-based techniques
as follows:

e Value Function: The objective of value function methods is to obtain the best policy
by maximizing the value functions in each state. A value function of a RL problem
can be defined as in Eq.10 and the optimal state-value function is given in Eq.11
which are known as Bellman equations. Some common approaches in this group are
Differential Dynamic Programming [208], [266], Temporal Difference Learning [249],
Policy Iteration [334] and Monte Carlo [137].

e Transition Models: Transition models decide how to map from a state s, taking
action a to the next state (s’) and it strongly affects the performance of model-based
RL algorithms. Based on whether predicting the future state s’ is based on the proba-
bility distribution of a random variable or not, there are two main approaches in this
group: stochastic and deterministic. Some common methods for deterministic models
are decision trees [280] and linear regression [265]. Some common methods for stochas-
tic models are Gaussian processes [71], [1], [12], Expectation-Maximization [59] and
dynamic Bayesian networks [280].

10



e Policy Search: Policy search approach directly searches for the optimal policy by
modifying its parameters, whereas the value function methods indirectly find the ac-
tions that maximize the value function at each state. Some of the popular approaches
in this group are: gradient-based [87], [267], information theory [1], [189] and sampling
based [21].

e Return Functions: Return functions decide how to aggregate rewards or punishments
over an episode. They affect both the convergence and the feasibility of the model.
There are two main approaches in this group: discounted returns functions [21], [75],
[393] and averaged returns functions [34], [3]. Between the two approaches, the former
is the most popular which represents the uncertainty about future rewards. While
small discount factors provide faster convergence, its solution may not be optimal.

In practice, transition and reward functions are rarely known and hard to model. The
comparative performance among all model-based techniques is reported in [385] with over 18
benchmarking environments including noisy environments. The Fig.6 summarizes different
model-based RL approaches.

3.3.2 Model-free methods

Learning through the experience gained from interactions with the environment, i.e. model-
free method tries to estimate the t. discrete problems transition probability function and the
reward function from the experience to exploit them in acquisition of policy. Policy gradient
and value-based algorithms are popularly used in model-free methods.

e The policy gradient methods: In this approach, RL task is considered as optimiza-
tion with stochastic first-order optimization. Policy gradient methods directly optimize
the discounted expected reward, i.e. G(m) — max, to obtains the optimal policy 7*
without any additional information about MDP. To do so, approximate estimations of
the gradient with respect to policy parameters are used. Take [392] as an example,
policy gradient parameterizes the policy and updates parameters 6,

G%(mw) = Er, Y log(ms(as|s)r'R (13)

t=0

where R is the total accumulated return and defined in Eq. 6. Common used policies
are Gibbs policies [20], [352] and Gaussian policies [294]. Gibbs policies are used in
discrete problems whereas Gaussian policies are used in continuous problems.

e Value-based methods: In this approach, the optimal policy 7* is implicitly con-
ducted by gaining an approximation of optimal Q-function Q*(s,a). In value-based
methods, agents update the value function to learn suitable policy while policy-based
RL agents learn the policy directly. To do that, Q-learning is a typical value-based
method. The update rule of Q-learning with learning rate A is defined as:

Q(s1,ar) = Q(s¢,ar) + Ay (14)

11



Table 1: Comparison between model-based RL and model-free RL

Factors Model-based RL | Model-free RL
Number of iterations between :
. Small Big
agent and environment
Convergence Fast Slow
Prior knowledge of transitions | Yes No
- Strongly depend on | Adjust based
Flexibility a learnt model on trials and errors

where 6; = R(sy, s¢11) +yargmax, Q(si11,a) — Q(st, a) is the temporal difference (TD)
error.

Target at self-play Chess, [394] investigates inasmuch it is possible to leverage the
qualitative feedback for learning an evaluation function for the game. [319] provides
the comparison of learning of linear evaluation functions between using preference
learning and using least-squares temporal difference learning, from samples of game
trajectories. The value-based methods depend on a specific, optimal policy, thus it is
hard for transfer learning.

e Actor-critic is an improvement of policy gradient with an value-based critic I, thus,
Eq.13 is rewritten as:

G’ () =Kz, Y _ log(mo(ar|si))y'T (15)
=0
The critic function I' can be defined as Q™ (s, a;) or Q7 (s, a;) — Vi or R[s;_1, 8] +

=V
Actor-critic methods are combinations of actor-only methods and critic-only methods. Thus,
actor-critic methods have been commonly used RL. Depend on reward setting, there are two

groups of actor-critic methods, namely discounted return [282], [30] and average return [289],
[31]. The comparison between model-based and model-free methods is given in Table 1.

4 Introduction to Deep Reinforcement Learning

DRL, which was proposed as a combination of RL and DL, has achieved rapid developments,
thanks to the rich context representation of DL. Under DRL, the aforementioned value and
policy can be expressed by neural networks which allow dealing with a continuous state or
action that was hard for a table representation. Similar to RL, DRL can be categorized into
model-based algorithms and model-free algorithms which will be introduced in this section.

4.1 Model-Free Algorithms

There are two approaches, namely, Value-based DRL methods and Policy gradient DRL
methods to implement model-free algorithms.

12
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4.1.1 Value-based DRL methods

Deep Q-Learning Network (DQN): Deep Q-learning [264] (DQN) is the most famous
DRL model which learns policies directly from high-dimensional inputs by CNNs. In DQN,
input is raw pixels and output is a quality function to estimate future rewards as given in
Fig.7. Take regression problem as an instance. Let y denote the target of our regression
task, the regression with input (s, a), target y(s, a) and the MSE loss function is as:

ﬁDQN = £<y(3t7 at)a Q*(St, Gy, Qt))
= |ly(st, ar) — Q" (st az, 0)|I* (16)
Y(st, ar) = R(t, 5¢41) + Y max Q" (51, ry1,0;)

Where 6 is vector of parameters, § € RISI®l and s,,, is a sample from T(s;11|s, a;) with
input of (s, a;).
Minimizing the loss function yields a gradient descent step formula to update 6 as follows:

aﬁDQN

01 =0, — 17
t+1 t t 86 ( )

.-a"\

> Q(sr.a
L J L et J
Al hl
Convolutional Layers Dense Layers

Figure 7: Network structure of Deep Q-Network (DQN), where Q-values Q(s,a) are generated
for all actions for a given state.

Double DQN: In DQN, the values of J* in many domains were leading to overestimation
because of max. In Eq.16, y(s,a) = R(s,s’) + ymaxy Q*(s',d’,0) shifts Q-value estima-
tion towards either to the actions with high reward or to the actions with overestimating
approximation error. Double DQN [370] is an improvement of DQN that combines double
Q-learning [130] with DQN and it aims at reducing observed overestimation with better

14



performance. The idea of Double DQN is based on separating action selection and action
evaluation using its own approximation of Q* as follows:

Igl?_x Q" (5141, ar11;0) = Q" (541, arg maxQ™ (s¢41, ag11; 601); 02) (18)
t+1 at41
Thus
Y = R(st, s11) + Q" (8141, arg maxQ™ (s¢41, @113 61); 02) (19)
at41

The easiest and most expensive implementation of double DQN is to run two independent
DQNs as follows:

1 = R(s¢, St41)+

YQ7(St41, arg maxQs(seq1, asr1; 02); 01)
at+1
(20)
Yo = R(sy, 8041)+

YQ5(St41, arg maxQy (s41, aryr; 01); 02)
at4+1
Dueling DQN: In DQN, when the agent visits an unfavorable state, instead of lowering its
value V*, it remembers only low pay-off by updating QQ*. In order to address this limitation,
Dueling DQN [390] incorporates approximation of V* explicitly in a computational graph
by introducing an advantage function as follows:

A" (sg,a1) = QT (8, a4) — V™ (sy) (21)

Therefore, we can reformulate Q-value: Q*(s,a) = A*(s,a) + V*(s). This implies that after
DL the feature map is decomposed into two parts corresponding to V*(v) and A*(s,a) as
illustrated in Fig.8. This can be implemented by splitting the fully connected layers in
the DQN architecture to compute the advantage and state value functions separately, then
combining them back into a single Q-function. An interesting result has shown that Dueling
DQN obtains better performance if it is formulated as:

Q* (s, ar) = V*(s¢) + A% (54, a;) — max A*(s¢, agq1) (22)

at+1

In practical implementation, averaging instead of maximum is used, i.e.
Q" (s, ar) = V*(s¢) + A*(sy, a¢) — meany, ,, A*(s¢, azq1)

Furthermore, to address the limitation of memory and imperfect information at each decision
point, Deep Recurrent Q-Network (DRQN) [131] employed RNNs into DQN by replacing
the first fully-connected layer with an RNN. Multi-step DQN [68] is one of the most popular
improvements of DQN by substituting one-step approximation with N-steps.

15



*.-—"f
—> — | || Qsray
_—
_/ | AL
L UL _ J
RE RE
Convolutional Layers Dense Layers

Figure 8: Network structure of Dueling DQN, where value function V(s) and advantage
function A(s,a) are combined to predict Q-values Q(s, a) for all actions for a given state.

4.1.2 Policy gradient DRL methods

Policy Gradient Theorem: Different from value-based DRL methods, policy gradient
DRL optimizes the policy directly by optimizing the following objective function which is
defined as a function of 6.

G(0) =Err, Z Y R(sy_1, 8) — max (23)

t=1

For any MDP and differentiable policy 7y, the gradient of objective Eq.23 is defined by policy
gradient theorem [353] as follows:

V0 G(0) =B, > 7'Q (51, 1) Vo logmg(ay]st) (24)

t=0

REINFORCE: REINFORCE was introduced by [392] to approximately calculate the gra-
dient in Eq.24 by using Monte-Carlo estimation. In REINFORCE approximate estimator,
Eq.24 is reformulated as:

Vo G(0) =D > 4 o logmo(arls) (Y 7" Rlsw, su41)) (25)

T t=0 t'=t

where T is trajectory distribution and defined in Eq.5. Theoretically, REINFORCE can be
straightforwardly applied into any parametric mpeq(als). However, it is impractical to use
because of its time-consuming nature for convergence and local optimums problem. Based
on the observation that the convergence rate of stochastic gradient descent directly depends
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on the variance of gradient estimation, the variance reduction technique was proposed to
address naive REINFORCE'’s limitations by adding a term that reduces the variance without
affecting the expectation.

4.1.3 Actor-Critic DRL algorithm

Both value-based and policy gradient algorithms have their own pros and cons, i.e. policy
gradient methods are better for continuous and stochastic environments, and have a faster
convergence whereas, value-based methods are more sample efficient and steady. Lately,
actor-critic [182] [262] was born to take advantage from both value-based and policy gradient
while limiting their drawbacks. Actor-critic architecture computes the policy gradient using
a value-based critic function to estimate expected future reward. The principal idea of actor-
critic is to divide the model into two parts: (i) computing an action based on a state and (ii)
producing the Q values of the action. As given in Fig.9, the actor takes as input the state
s; and outputs the best action a;. It essentially controls how the agent behaves by learning
the optimal policy (policy-based). The critic, on the other hand, evaluates the action by
computing the value function (value-based). The most basic actor-critic method (beyond the
tabular case) is naive policy gradients (REINFORCE). The relationship between actor-critic
is similar to kid-mom. The kid (actor) explores the environment around him/her with new
actions i.e. tough fire, hit a wall, climb a tree, etc while the mom (critic) watches the kid
and criticizes/compliments him/her. The kid then adjusts his/her behavior based on what
his/her mom told. When the kids get older, he/she can realize which action is bad/good.

Reward r,

State s,

Actio

_________________

Critic

Figure 9: Flowchart showing the structure of actor critic algorithm.

Advantage Actor-Critic (A2C) Advantage Actor-Critic (A2C) [263] consist of two neural
networks i.e. actor network my(as|s;) representing for policy and critic network VT with
parameters w approximately estimating actor’s performance. In order to determine how
much better, it is to take a specific action compared to the average, an advantage value is
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Figure 10: An illustration of Actor-Critic algorithm in two cases: sharing parameters (a)
and not sharing parameters (b).

defined as:
AT (s, a0) = Q" (8¢, a0) — V7 (51) (26)

Instead of constructing two neural networks for both the Q value and the V value, using the
Bellman optimization equation, we can rewrite the advantage function as:

AT (sp,ai) = R(st, sp41) + YV (8041) — VI (se) (27)
For given policy 7, its value function can be obtained using point iteration for solving:

V7 (8t) = Baprm(arlse) By o1 ~T(sepalarse) (B(St; St41) + 7V (8141)) (28)
Similar to DQN, on each update a target is computed using current approximation:
y = R(st, s141) + 7V (5041) (29)
At time step t, the A2C algorithm can be implemented as following steps:
e Step 1: Compute advantage function using Eq.27.
e Step 2: Compute target using Eq.29.
e Step 3: Compute critic loss with MSE loss: £ = £ > ,[ly — V™(s:))||?, where B is

batch size and V™ (s;) is defined in Eq.28.

18



e Step 4: Compute critic gradient: 7 = g—f}-

e Step 5: Compute actor gradient: 72" = £ > 7plogm(as|s;) A™ (s, ar)

Asynchronous Advantage Actor Critic (A3C) Besides A2C, there is another strategy
to implement an Actor-Critic agent. Asynchronous Advantage Actor-Critic (A3C) [263]
approach does not use experience replay because this requires a lot of memory. Instead, A3C
asynchronously executes different agents in parallel on multiple instances of the environment.
Each worker (copy of the network) will update the global network asynchronously. Because
of the asynchronous nature of A3C, some workers (copy of the agents) will work with older
values of the parameters. Thus the aggregating update will not be optimal. On the other
hand, A2C synchronously updates the global network. A2C waits until all workers finished
their training and calculated their gradients to average them, to update the global network.
In order to update the entire network, A2C waits for each actor to finish their segment of
experience before updating the global parameters. As a consequence, the training will be
more cohesive and faster. Different from A3C, each worker in A2C has the same set of
weights since and A2C updates all their workers at the same time. In short, A2C is an
alternative to the synchronous version of the A3C. In A2C, it waits for each actor to finish
its segment of experience before updating, averaging over all of the actors. In a practical
experiment, this implementation is more effectively uses GPUs due to larger batch sizes. The
structure of an actor-critic algorithm can be divided into two types depending on parameter
sharing as illustrated in Fig.10.

In order to overcome the limitation of speed, GA3C [16] was proposed and it achieved
a significant speedup compared to the original CPU implementation. To more effectively
train A3C, [141] proposed FFE which forces random exploration at the right time during a
training episode, that can lead to improved training performance.

4.2 Model-Based Algorithms

We have discussed so far model-free methods including the value-based approach and pol-
icy gradient approach. In this section, we focus on the model-based approach, that deals
with the dynamics of the environment by learning a transition model that allows for sim-
ulation of the environment without interacting with the environment directly. In contrast
to model-free approaches, model-based approaches are learned from experience by a func-
tion approximation. Theoretically, no specific prior knowledge is required in model-based
RL/DRL but incorporating prior knowledge can help faster convergence and better-trained
model, speed up training time as well as the number of training samples. While using raw
data with pixel, it is difficult for model-based RL to work on high dimensional and dynamic
environments. This is addressed in DRL by embedding the high-dimensional observations
into a lower-dimensional space using autoencoders [95]. Many DRL approaches have been
based on scaling up prior work in RL to high-dimensional problems. A good overview of
model-based RL for high-dimensional problems can be found in [297] which partition model-
based DRL into three categories: explicit planning on given transitions, explicit planning on
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learned transitions, and end-to-end learning of both planning and transitions. In general,
DRL targets training DNNs to approximate the optimal policy 7* together with optimal
value functions V* and Q*. In the following, we will cover the most common model-based
DRL approaches including value function and policy search methods.

4.2.1 Value function

We start this category with DQN [264] which has been successfully applied to classic Atari
and illustrated in Fig.7. DQN uses CNNs to deal with high dimensional state space like
pixels, to approximate the Q-value function.

Monte Carlo tree search (MCTS) MCTS [62] is one of the most popular methods to
look-ahead search and it is combined with a DNN-based transition model to build a model-
based DRL in [9]. In this work, the learned transition model predicts the next frame and
the rewards one step ahead using the input of the last four frames of the agent’s first-person-
view image and the current action. This model is then used by the Monte Carlo tree search
algorithm to plan the best sequence of actions for the agent to perform.

Value-Targeted Regression (UCRL-VTR) Alex, et al. proposed model-based DRL for
regret minimization [167]. In their work, a set of models, that are ‘consistent’ with the data
collected, is constructed at each episode. The consistency is defined as the total squared
error, whereas the value function is determined by solving the optimistic planning problem
with the constructed set of models

4.2.2 Policy search

Policy search methods aim to directly find policies by means of gradient-free or gradient-
based methods.
Model-Ensemble Trust-Region Policy Optimization (ME-TRPO) ME-TRPO [190]
is mainly based on Trust Region Policy Optimization (TRPO) [327] which imposes a trust
region constraint on the policy to further stabilize learning.
Model-Based Meta-Policy-Optimization (MB-MPO) MB-MPO [58] addresses the
performance limitation of model-based DRL compared against model-free DRL when learn-
ing dynamics models. MB-MPO learns an ensemble of dynamics models, a policy that can
quickly adapt to any model in the ensemble with one policy gradient step. As a result, the
learned policy exhibits less model bias without the need to behave conservatively.

A summary of both model-based and model-free DRL algorithms is given in Table 2.
In this Table, we also categorized DRL techniques into either on-policy or off-policy. In
on-policy RL, it allows the use of older samples (collected using the older policies) in the
calculation. The policy 7" is updated with data collected by 7* itself. In off-policy RL, the

data is assumed to be composed of different policies 7%, 7°, ..., 7%. Each policy has its own

data collection, then the data collected from 7°, 7!, ..., 7¥ is used to train 7*+!.
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Table 2: Summary of model-based and model-free DRL algorithms consisting of value-based
and policy gradient methods.

DRL Algorithms Description Category
Value-based
DQN [264] Deep Q Network Off-policy
Value-based
Double DQN [370] | Double Deep Q Network Off-policy
Value-based
Dueling DQN [390] | Dueling Deep Q Network Off-policy
Value-based
MCTS [9] Monte Carlo tree search On-policy
Value-based
UCRL-VTRJ[167] optimistic planning problem Off-policy
Policy gradient
DDPG [223] DQN with Deterministic Policy Gradient Off-policy
Policy gradient
TRPO [327] Trust Region Policy Optimization On-policy
Policy gradient
PPO [328] Proximal Policy Optimization On-policy
Policy gradient
ME-TRPO [190] Model-Ensemble Trust-Region Policy Optimization On-policy
Policy gradient
MB-MPO [58] Model-Based Meta- Policy-Optimization On-policy
Actor Critic
A3C [263] Asynchronous Advantage Actor Critic On-Policy
Actor Critic
A2C [263] Advantage Actor Critic On-Policy
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4.3 Good practices

Inspired by Deep Q-learning [264], we discuss some useful techniques that are used during
training an agent in DRL framework in practices.

Experience replay Experience replay [417] is a useful part of off-policy learning and is
often used while training an agent in RL framework. By getting rid of as much information
as possible from past experiences, it removes the correlations in training data and reduces
the oscillation of the learning procedure. As a result, it enables agents to remember and
re-use past experiences sometimes in many weights updates which increases data efficiency.
Minibatch learning Minibatch learning is a common technique that is used together with
experience replay. Minibatch allows learning more than one training sample at each step,
thus, it makes the learning process robust to outliers and noise.

Target Q-network freezing As described in [264], two networks are used for the training
process. In target Q-network freezing: one network interacts with the environment and
another network plays the role of a target network. The first network is used to generate
target Q-values that are used to calculate losses. The weights of the second network i.e.
target network are fixed and slowly updated to the first network [224].

Reward clipping A reward is the scalar number provided by the environment and it aims
at optimizing the network. To keep the rewards in a reasonable scale and to ensure proper
learning, they are clipped to a specific range (-1 ,1). Here 1 refers to as positive reinforcement
or reward and -1 is referred to as negative reinforcement or punishment.

Model-based v.s. model-free approach Whether the model-free or model-based ap-
proaches is chosen mainly depends on the model architecture i.e. policy and value function.

5 DRL in Landmark Detection

Autonomous landmark detection has gained more and more attention in the past few years.
One of the main reasons for this increased inclination is the rise of automation for evaluating
data. The motivation behind using an algorithm for landmarking instead of a person is that
manual annotation is a time-consuming tedious task and is prone to errors. Many efforts
have been made for the automation of this task. Most of the works that were published for
this task using a machine learning algorithm to solve the problem. [64] proposed a regression
forest-based method for detecting landmark in a full-body CT scan. Although the method
was fast it was less accurate when dealing with large organs. [101] extended the work of [64]
by adding statistical shape priors that were derived from segmentation masks with cascade
regression.

In order to address the limitations of previous works on anatomy detection, [105] re-
formulated the detection problem as a behavior learning task for an artificial agent using
MDP. By using the capabilities of DRL and scale-space theory [226], the optimal search
strategies for finding anatomical structures are learned based on the image information at
multiple scales. In their approach, the search starts at the coarsest scale level for capturing
global context and continues to finer scales for capturing more local information. In their

22



RL configuration, the state of the agent at time ¢, s, = I(p;) is defined as an axis-aligned
box of image intensities extracted from the image I and centered at the voxel-position p;
in image space. An action a; allows the agent to move from any voxel position p; to an
adjacent voxel position p;;1. The reward function represents distance-based feedback, which
is positive if the agent gets closer to the target structure and negative otherwise. In this
work, a CNN is used to extract deep semantic features. The search starts with the coarsest
scale level M —1, the algorithm tries to maximize the reward which is the change in distance
between ground truth and predicted landmark location before and after the action of moving
the scale window across the image. Upon convergence, the scale level is changed to M — 2
and the search continued from the convergence point at scale level M — 1. The process is
repeated on the following scales until convergence on the finest scale. The authors performed
experiments on 3D CT scans and obtained an average accuracy increase of 20-30% and lower
distance error than the other techniques such as SADNN [104] and 3D-DL [427]

Focus on anatomical landmark localization in 3D fetal US images, [10] proposed and
demonstrated use cases of several different Deep Q-Network RL models to train agents that
can precisely localize target landmarks in medical scans. In their work, they formulate the
landmark detection problem as an MDP of a goal-oriented agent, where an artificial agent
is learned to make a sequence of decisions towards the target point of interest. At each time
step, the agent should decide which direction it has to move to find the target landmark.
These sequential actions form a learned policy forming a path between the starting point
and the target landmark. This sequential decision-making process is approximated under
RL. In this RL configuration, the environment is defined as a 3D input image, action A is a
set of six actions a,+, az—, ay+, a,—, a,+, a,— corresponding to three directions, the state
s is defined as a 3D region of interest (ROI) centered around the target landmark and the
reward is chosen as the difference between the two Euclidean distances: the previous step
and current step. This reward signifies whether the agent is moving closer to or further away
from the desired target location. In this work, they also proposed a novel fixed- and multi-
scale optimal path search strategy with hierarchical action steps for agent-based landmark
localization frameworks.

Whereas pure policy or value-based methods have been widely used to solve RL-based
localization problems, [7] adopts an actor-critic [262] based direct policy search method
framed in a temporal difference learning approach. In their work, the state is defined as
a function of the agent-position which allows the agent at any position to observe an m x
m x 3 block of surrounding voxels. Similar to other previous work, the action space is
ag+, az—, ay+,ay—,a,+,a,—. The reward is chosen as a simple binary reward function,
where a positive reward is given if an action leads the agent closer to the target landmark,
and a negative reward is given otherwise. Far apart from the previous work, their approach
proposes a non-linear policy function approximator represented by an MLP whereas the value
function approximator is presented by another MLP stacked on top of the same CNN from
the policy net. Both policy (actor) and value (critic) networks are updated by actor-critic
learning. To improve the learning, they introduce a partial policy-based RL to enable solving
the large problem of localization by learning the optimal policy on smaller partial domains.
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The objective of the partial policy is to obtain multiple simple policies on the projections
of the actual action space, where the projected policies can reconstruct the policy on the
original action space.

Based on the hypothesis that the position of all anatomical landmarks is interdependent
and non-random within the human anatomy and this is necessary as the localization of dif-
ferent landmarks requires learning partly heterogeneous policies, [377] concluded that one
landmark can help to deduce the location of others. For collective gain, the agents share
their accumulated knowledge during training. In their approach, the state is defined as Rol
centered around the location of the agent. The reward function is defined as the relative
improvement in Fuclidean distance between their location at time ¢ and the target land-
mark location. Each agent is considered as Partially Observable Markov Decision Process
(POMDP) [107] and calculates its individual reward as their policies are disjoint. In or-
der to reduce the computational load in locating multiple landmarks and increase accuracy
through anatomical interdependence, they propose a collaborative multi-agent landmark de-
tection framework (Collab-DQN) where DQN is built upon a CNN. The backbone CNN is
shared across all agents while the policy-making fully connected layers are separate for each
agent.

Table 3: Comparing various DRL-based landmark detection meth-
ods. The first group on Single Landmark Detection (SLD) and the
second group for Multiple Landmark Detection (MLD)

Approaches Year | Training | Actions Remarks Performance Datasets  and
Tech- source code
nique

SLD [105] | 2017 | DQN 6 action: | State: an axis- | Average accuracy in- | 3D CT Scan

2 per axis | aligned box cen- | crease 20-30%. Lower
tered at the voxel- | distance error than
position. Action: | other techniques such
move from pP; to | as SADNN [104] and
Dii1 Reward: | 3D-DL [427]
distance-based
feedback

SLD [10] | 2019 | DQN, 6 action: | Environment: 3D | Duel DQN performs | Fetal head, ul-
DDQN, 2 per axis | input image. State: | the best on Right | trasound scans
Duel 3D Rol centered | Cerebellum (FS), | [219].

DQN around the target | Left Cerebellum (FS, | Code
and landmark. Re- | MS) Duel DDQN is
Duel ward: Euclidean | the best on Right
DDQN distance  between | Cerebellum (MS)
predicted points and | DQN performs the
groundtruth points. | best on Cavum Sep-
tum  Pellucidum(F'S,
MS)

24



https://github.com/amiralansary/rl-medical

SLD [7] 2019 | Actor- 6 action: | State: a function of | Faster and better | CT  volumes:
Critic 2 per axis | the agent-position. | convergence, out- | Aortic valve.
-based Reward: binary | performs than other | CT volumes:
Partial reward function. | conventional actor- | LAA seed-
-Policy policy function: | critic and Q-learning | point. MR
RL MLP. value func- images: Ver-
tion: MLP tebra  centers
[42].
MLD 2019 | Collab 6 action: | State: Rol centred | Colab DQN got bet- | Brain MRI
[377] DQN 2 per axis | around the agent. | ter results than su- | landmark [158],
Reward: relative | pervised CNN and | Cardiac ~MRI
improvement in | DQN landmark [70],
Euclidean distance. Fetal brain
Each Agent is a landmark [10].
POMDP has its Code
own reward. Collab-
DQN: reduce the
computational load
MLD 2020 | DQN 6 action 2 | State: 3D image | Detection error in- | 3D Head MR
[161] per axis patch. Reward: Eu- | creased as the degree | images
clidean distance and | of missing informa-
€ [-1,1]. Backbone | tion increased Perfor-
CNN is share among | mance is affected by
agents FEach agent | the choice of land-
has it own Fully con- | marks
nected layer

Different from the previous works on RL-based landmark detection, which detect a single
landmark,[161] proposed a multiple landmark detection approach to better time-efficient and
more robust to missing data. In their approach, each landmark is guided by one agent. The
MDP is models as follows: The state is defined as a 3D image patch. The reward, clipped in
-1, 4+1], is defined as the difference in the Euclidean distance between the landmark predicted
in the previous time step and the target, and in the landmark predicted in the current time
step and the target. The action space is defined as in other previous works i.e. there are 6
actions ag,+, a;—, a,+, ay—, a.+,a,— in the action space. To enable the agents to share the
information learned by detecting one landmark for use in detecting other landmarks, hard
parameter sharing from multi-task learning is used. In this work, the backbone network is
shared among agents and each agent has its own fully connected layer.

Table 3 summarizes and compares all approaches for DRL in landmark detection, and
a basic implementation of landmark detection using DRL has been shown in Fig. 11. The
figure illustrates a general implementation of landmark detection with the help of DRL, where
the state is the Region of interest (ROI) around the current landmark location cropped from
the image, The actions performed by the DRL agent are responsible for shifting the ROI
across the image forming a new state and the reward corresponds to the improvement in
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euclidean distance between ground truth and predicted landmark location with iterations as

used by [105],[7],[10],[377],[161].

Action to shift the ROI f

— upP

,‘, DOWN
CNN DRL =p RIGHT
Backbone Agent

<= LEFT
Environment State Backbone Reward Actions
Image with ROI Cropped ROI around To extract Improvement in distance Generated using
around the present the landmark image features between ground truth Q-values predicted
landmark location and predicted landmark by the Agent

Figure 11: DRL implementation for landmark detection, The red point corresponds to the
current landmark location and Red box is the Region of Interest (ROI) centered around the
landmark, the actions of DRL agent shift the ROI across the image to maximize the re-
ward corresponding to the improvement in distance between the ground truth and predicted
landmark location.

6 DRL in Object Detection

Object detection is a task that requires the algorithm to find bounding boxes for all objects
in a given image. Many attempts have been made towards object detection. A method for
bounding box prediction for object detection was proposed by [109], in which the task was
performed by extracting region proposals from an image and then feeding each of them to
a CNN to classify each region. An improvement to this technique was proposed by [108],
where they used the feature from the CNN to propose region proposals instead of the image
itself, this resulted in fast detection. Further improvement was proposed by [309], where the
authors proposed using a region proposal network (RPN) to identify the region of interest,
resulting in much faster detection. Other attempts including focal loss [225] and Fast YOLO
[332] have been proposed to address the imbalanced data problem in object detection with
focal loss [225], and perform object detection in video on embedded devices in a real-time
manner [332].

Considering MDP as the framework for solving the problem, [43] used DRL for active
object localization. The authors considered 8 different actions (up, down, left, right, bigger,
smaller, fatter, taller) to improve the fit of the bounding box around the object and additional
action to trigger the goal state. They used a tuple of feature vector and history of actions
for state and change in IOU across actions as a reward.
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An improvement to [43] was proposed by [25], where the authors used a hierarchical
approach for object detection by treating the problem of object detection as an MDP. In
their method, the agent was responsible to find a region of interest in the image and then
reducing the region of interest to find smaller regions from the previously selected region and
hence forming a hierarchy. For the reward function, they used the change in Intersection over
union (IOU) across the actions and used DQN as the agent. As described in their paper, two
networks namely, Image-zooms and Pool45-crops with VGG-16 [340] backbone were used to
extract the feature information that formed the state for DQN along with a memory vector
of the last four actions.

Using a sequential search strategy, [251] proposed a method for object detection using
DRL. The authors trained the model with a set of image regions where at each time step
the agent returned fixate actions that specified a location in image for actor to explore next
and the terminal state was specified by done action. The state consisted of a tuple three
elements: the observed region history H;, selected evidence region history FE; and fixate
history F;. The fizate action was also a tuple of three elements: fixate action, index of
evidence region e; and image coordinate of next fixate z;. The done action consisted of: done
action, index of region representing the detected output b; and the detection confidence c¢;.
The authors defined the reward function that was sensitive to the detection location, the
confidence at the final state and incurs a penalty for each region evaluation.

To map the inter-dependencies among the different objects, [170] proposed a tree-structured
RL agent (Tree-RL) for object localization by considering the problem as an MDP. The au-
thors in their implementation considered actions of two types: translation and scaling, where
the scaling consisted of five actions whereas translation consisted of eight actions. In the
specified work, the authors used the state as a concatenation of the feature vector of the
current window, feature vector of the whole image, and history of taken actions. The feature
vector were extracted from an ImageNet [72] [320] trained VGG-16 [340] model and for re-
ward the change in IOU across an action was used. Tree-RL utilized a top-down tress search
starting from the whole image where each window recursively takes the best action from
each action group which further gives two new windows. This process is repeated recursively
to find the object.

The task of breast lesion detection is a challenging yet very important task in the medical
imaging field. A DRL method for active lesion detection in the breast was proposed by [246],
where the authors formulated the problem as an MDP. In their formulation, a total of nine
actions consisting of 6 translation actions, 2 scaling actions, and 1 trigger action were used.
In the specified work, the change in dice coefficient across an action was used as the reward for
scaling and translation actions, and for trigger action, the reward was +n for dice coefficient
greater than r,, and —n otherwise, where n and r,, were the hyperparameters chosen by the
authors. For network structure, ResNet [133] was used as the backbone and DQN as the
agent.

Different from the previous methods, [386] proposed a method for multitask learning using
DRL for object localization. The authors considered the problem as an MDP where the agent
was responsible to perform a series of transformations on the bounding box using a series
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of actions. Utilizing an RL framework the states consisted of feature vector and historical
actions concatenated together, and a total of 8 actions for Bounding box transformation
(left, right, up, down, bigger, smaller, fatter, and taller) were used. For reward the authors
used the change in IOU between actions, the reward being 0 for an increase in IOU and -1
otherwise. For terminal action, however, the reward was 8 for IOU greater than 0.5 and -8
otherwise. The authors in the paper used DQN with multitask learning for localization and
divided terminal action and 8 transformation actions into two networks and trained them
together.

An improvement for the Region proposal networks that greedily select the ROIs was
proposed by [295], where they used RL for the task. The authors in this paper used a
two-stage detector similar to Fast and Faster R-CNN But used RL for the decision-making
Process. For the reward, they used the normalized change in Intersection over Union (IOU).

Instead of learning a policy from a large set of data, [15] proposed a method for bounding
box refinement (BAR) using RL. In the paper, once the authors have an inaccurate bounding
box that is predicted by some algorithm they use the BAR algorithm to predict a series of
actions for refinement of a bounding box. They considered a total of 8 actions (up, down,
left, right, wider, taller, fatter, thinner) for bounding box transformation and considered
the problem as a sequential decision-making problem (SDMP). They proposed an offline
method called BAR-DRL and an online method called BAR-CB where training is done on
every image. In BAR-DRL the authors trained a DQN over the states which consisted of
features extracted from ResNet50 [133] [354] pretrained on ImageNet [72] [320] and a history
vector of 10 actions. The Reward for BAR-DRL was 1 if the IOU increase after action and -3
otherwise. For BAR-CB they adapted the LinUCB [216] algorithm for an episodic scenario
and considered The Histogram of Oriented Gradients (HOG) for the state to capture the
outline and edges of the object of interest. The actions in the online method (BAR-CB) were
the same as the offline method and the reward was 1 for increasing IOU and 0 otherwise.
For both the implementations, the authors considered  as terminal IOU.

An improvement to sequential search strategy by [251] was proposed by [367], where
they used a framework consisting of two modules, Coarse and fine level search. According to
the authors, this method is efficient for object detection in large images (dimensions larger
than 3000 pixels). The authors first performed a course level search on a large image to
find a set of patches that are used by fine level search to find sub-patches. Both fine and
coarse levels were conducted using a two-step episodic MDP, where The policy network
was responsible for returning the probability distribution of all actions. In the paper, the
authors considered the actions to be the binary action array (0,1) where 1 means that the
agent would consider acquiring sub-patches for that particular patch. The authors in their
implementation considered a number of patches and sub-patches as 16 and 4 respectively
and used the linear combination of R,.. (detection recall) and R, which combines image
acquisition cost and run-time performance reward.

Table 4: Comparing various DRL-based object detection methods
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Approaches| Year| Training | Actions Remarks Backbong Performance Datasets and
Tech- source code
nique

Active 2015 DQN 8 ac- | States: feature | 5 layer | Higher mAP | Pascal VOC-

Object tions: up, | vector of ob- | pre- as compared to | 2007 [90],

Local- down, served region | trained | methods that did | 2012 [91] Im-

ization left, and action his- | CNN not wuse region | age Dataset.

[43] right, tory. Reward: proposals like

bigger, Change in IOU. MultiBox  [89],

smaller, RegionLets [433],

fatter, DetNet [356],

taller and second best
mAP as com-
pared to R-CNN
[109]

Hierarchical| 2016 DQN 5 actions: | States: current | VGG- Objects detected | Pascal VOC-

Object 1 action | region and mem- | 16 with very few | 2007 Image

Detection per image | ory vector using | [340] region proposals | Dataset [90].

[25] quarter Image-zooms per image Code

and 1 | and Pool45-
at the | crops. Reward:
center change in IOU.

Visual Ob- | 2016| Policy 2 actions: | States: Observed | Deep Comparable Pascal VOC

ject Detec- sam- fixate region  history, | NN mAP and lower | 2012 Object

tion [251] pling and done, | evidence region | [187] run time as com- | detection
and where history and pared to other | challenge [91].
state each is a | fixate history. methods such
tran- tuple of | Reward:  sensi- as to exhaustive
sition three. tive to detection sliding ~ window
algo- location search(SW), ex-
rithm haustive search
over the CPMC
and region pro-
posal  set(RP)
[112] [366]

Tree- 2016 DQN 13 ac- | States: Feature | CNN Tree-RL with | Pascal VOC

Structured tions: 8 | vector of cur- | trained | faster =~ R-CNN | 2007 [90] and

Sequential transla- rent region, and | on Im- | outperformed 2012 [91].

Object Lo- tion, 5 | whole image. | ageNet | RPN with fast

calization scaling. Reward: change | [72] R-CNN [108]

(Tree-RL) in IOU. [320] in terms of AP

[170] and comparable

results to Faster
R-CNN [309]
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Active 2017 DQN 9 actions: | States:  feature | ResNet | Comparable true | DCE-MRI
Breast 6 trans- | vector of current | [133] positive and | and T1-
Lesion lation, 2 | region, Reward: false positive | weighted
Detection scaling, 1 | improvement in proportions  as | anatomical
[246] trigger localization. compared to | dataset [253]
SL  [253] and
Ms-C [116], but
with lesser mean
inference time.
Multitask | 2018 DQN 8 actions: | States:  feature | PretraingdBetter mAP as | Pascal VOC-
object lo- left, vector, historical | VGG- compared to | 2007 Image
calization right, up, | actions. Reward: | 16 MultiBox  [89], | Dataset [90].
[386] down, change in IOU. | [340] Caicedo et al
bigger, different network | with [43] and second
smaller, for transforma- | Ima- best to R-CNN
fatter tion actions and | geNet [109].
and taller | terminal actions. | [72]
[320]
Bounding- | 2020 DQN 8 ac- | Offline and | ResNet5() Better final IOU | Pascal VOC-
Box Au- tions: up, | online implemen- | [133] for boxes gener- | 2007 [90],
tomated down, tation  States: ated by meth- | 2012 [91] Im-
Refine- left, feature vector ods such as Reti- | age Dataset.
ment right, for offline (BAR- naNet [225].
[15] bigger, DRL), HOG for
smaller, online (BAR-
fatter, CB). Reward:
taller change in IOU
Efficient 2020 DQN binary Course  CPNet | ResNet32 Higher mAP and | Caltech
Object action and fine FPNet | [133] lower run time | Pedestrian
Detection array: level search. | for as compared to | dataset
in Large where 1 | States: selected | policy | other methods | (CPD) [77]
Images means region. Reward: | net- such as [99]. Code
[367] that the | detection recall | work.
agent image  acquisi- | and
would tion cost. Policy: | YOLOv3
consider REINFORCE [306]
acquiring | [351] with
sub- DarkNet
patches 53 for
for that Object
par- detec-
ticular tor
patch
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Organ Lo- | 20200 DQN 11 ac- | States: region in- | Architectukewer distance | CT scans

calization tions: 6 | side the Bound- | similar | error for organ | from the
in CT transla- ing box. Reward: | to [10] | localization and | VISCERAL
[275] tion, 2 | change in IOU. run time as com- | dataset [171]

scaling, 3 pared to other

deforma- methods such as

tion 3D-RCNN  [409]

and CNNs [152]

Monocular | 2020 DQN 15 ac- | State: 3D | ResNet- | Higher average | KITTI [102]
3D Object [264] tions, bounding  box | 101 precision  (AP)
Detection each parameters, 2D | [133] compared to
[231] modifies | image of ob- [268], [302], [210]

the 3D | ject cropped and [35]

bounding | by 2D its de-
box in a | tected bounding

specific box. Reward:

parame- accuracy im-

ter provement after
applying an
action.

Localization of organs in CT scans is an important pre-processing requirement for taking
the images of an organ, planning radiotherapy, etc. A DRL method for organ localization was
proposed by [275], where the problem was formulated as an MDP. In the implementation,
the agent was responsible for predicting a 3D bounding box around the organ. The authors
used the last 4 states as input to the agent to stabilize the search and the action space
consists of Eleven actions, 6 for the position of the bounding box, 2 for zoom in and zoom
out the action, and last 3 for height, width, and depth. For Reward, they used the change
the in Intersection over union (IOU) across an action.

Monocular 3D object detection is a problem where 3D bounding boxes of objects are
required to be detected from a single 2D image. Even the sampling-based method is the
SOTA approach, it has a huge flaw, in which most of the samples it generates do not
overlap with the groundtruth. To leverage that method, [231] introduced Reinforced Axial
Refinement Network (RARN) for monocular 3D object detection by utilizing an RL model to
iteratively refining the sampled bounding box to be more overlapped with the groundtruth
bounding box. Given a state having the coordinates of the 3D bounding box and image
patch of the image, the model predicts an action out of a set of 15 actions to refine one of
the bounding box coordinates in a direction at every timestep, the model is trained by DQN
method with the immediate reward is the improvement in detection accuracy between every
pair of timesteps. The whole pipeline, namely RAR-Net, was evaluated on the real-world
KITTI dataset [102] and achieved state-of-the-art performance.

All these methods have been summarised and compared in Table 4, and a basic imple-
mentation of object detection using DRL has been shown in Fig. 12. The figure illustrates
a general implementation of object detection using DRL, where the state is an image seg-
ment cropped using a bounding box produced by some other algorithm or previous iteration
of DRL, actions predicted by the DRL agent predict a series of bounding box transforma-
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tion to fit the object better, hence forming a new state and Reward is the improvement in
Intersection over union (IOU) with iterations as used by [43],[25],[15],[386],[170],[275].

Action for BBox tranformation * up

‘ ‘ DOWN

- A ' RIGHT
CNN DRL ->

Backbone Agent €= | EFT

=) FATTER
Environment State Backbone Reward
. . TALLER
Image with Cropped Image To extract Improvement in IOU ¢
resent BBox around the BBox  j -
p image features Actions

Figure 12: DRL implementation for object detection. The red box corresponds to the
initial bounding box which for t=0 is predicted by some other algorithm or the transformed

bounding box by previous iterations of DRL using the actions to maximize the improvement
in IOU.

7 DRL in Object Tracking

Real-time object tracking has a large number of applications in the field of autonomous
driving, robotics, security, and even in sports where the umpire needs accurate estimation of
ball movement to make decisions. Object tracking can be divided into two main categories:
Single object tracking (SOT) and Multiple object tracking (MOT).

Many attempts have been made for both SOT and MOT. SOT can be divided into two
types, active and passive. In passive tracking it is assumed that the object that is being
tracked is always in the camera frame, hence camera movement is not required. In active
tracking, however, the decision to move the camera frame is required so that the object is
always in the frame. Passive tracking has been performed by [397], [146], where [146] per-
formed tracking for both single and multiple objects. The authors of these papers proposed
various solutions to overcome common problems such as a change in lighting and occlusion.
Active tracking is a little bit harder as compared to a passive one because additional deci-
sions are required for camera movement. Some efforts towards active tracking include [74]
[270] [178]. These solutions treat object detection and object tracking as two separate tasks
and tend to fail when there is background noise.

An end-to-end active object tracker using DRL was proposed by [240], where the authors
used CNNs along with an LSTM [139] in their implementation. They used the actor-critic
algorithm [262] to calculate the probability distribution of different actions and the value
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of state and used the object orientation and distance from the camera to calculate rewards.
For experiments, the authors used VizDoom and Unreal Engine as the environment.

Another end-to-end method for SOT using sequential search strategy and DRL was
proposed by [418]. The method included using an RNN along with REINFORCE [392]
algorithm to train the network. The authors used a function f(W}) that takes in S; and
frame as input, where S; is the object location for the first frame and is zero elsewhere. The
output is fed to an LSTM module [139] with past hidden state h;. The authors calculated the
reward function by using insertion over union (IoU) and the difference between the average
and max.

A deformable face tracking method that could predict bounding box along with facial
landmarks in real-time was proposed by [118]. The dual-agent DRL method (DADRL)
mentioned in the paper consisted of two agents: a tracking and an alignment agent. The
problem of object tracking was formulated as an MDP where state consisted of image regions
extracted by the bounding box and a total of 8 actions (left, right, up, down, scale-up, scale
down, stop and continue) were used, where first six consists of movement actions used by
tracking agent and last two for alignment agent. The tracking agent is responsible for
changing the current observable region and the alignment agent determines whether the
iteration should be terminated. For the tracking agent, the reward corresponded to the
misalignment descent and for the alignment agent the reward was +n for misalignment
less than the threshold and —n otherwise. The DADRL implementation also consisted of
communicated message channels beside the tracking agent and the alignment agent. The
tracking agent consisted of a VGG-M [340] backbone followed by a one-layer Q-Network
and the alignment agent was designed as a combination of a stacked hourglass network
with a confidence network. The two communicated message channels were encoded by a
deconvolution layer and an LSTM unit [139] respectively.

Visual object tracking when dealing with deformations and abrupt changes can be a
challenging task. A DRL method for object tracking with iterative shift was proposed by
[308]. The approach (DRL-IS) consisted of three networks: The actor network, the prediction
network, and the critic network, where all three networks shared the same CNN and a fully
connected layer. Given the initial frame and bounding box, the cropped frame is fed to the
CNNSs to extract the features to be used as a state by the networks. The actions included
continue, stop and update, stop and ignore, and restart. For continue, the bounding boxes
are adjusted according to the output of the prediction network, for stop and update the
iteration is stopped and the appearance feature of the target is updated according to the
prediction network, for stop and ignore the updating of target appearance feature is ignored
and restart means that the target is lost and the algorithm needs to start from the initial
bounding box. The authors of the paper used reward as 1 for change in IoU greater than
the threshold, 0 for change in IOU between + and - threshold, and -1 otherwise.

Considering the performance of actor-critic framework for various applications, [45] pro-
posed an actor-critic [262] framework for real-time object tracking. The authors of the paper
used a pre-processing function to obtain an image patch using the bounding box that is fed
into the network to find the bounding box location in subsequent frames. For actions the
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authors used Az for relative horizontal translation, Ay for relative vertical translation, and
As for relative scale change, and for a reward they used 1 for IoU greater than a threshold
and -1 otherwise. They proposed offline training and online tracking, where for offline train-
ing a pre-trained VGG-M [340] was used as a backbone, and the actor-critic network was
trained using the DDPG approach [224].

An improvement to [45] for SOT was proposed by [84], where a visual tracker was for-
mulated using DRL and an expert demonstrator. The authors treated the problem as an
MDP, where the state consists of two consecutive frames that have been cropped using the
bounding box corresponding to the former frame and used a scaling factor to control the
offset while cropping. The actions consisted of four elements: Ax for relative horizontal
translation, Ay for relative vertical translation, Aw for width scaling, and Ah for height
scaling, and the reward was calculated by considering whether the IoU is greater than a
threshold or not. For the agent architecture the authors used a ResNet-18 [133] as backbone
followed by an LSTM unit [391][139] to encode past information, and performed training
based on the on-policy A3C framework [262].

In MOT the algorithm is responsible to track trajectories of multiple objects in the given
video. Many attempts have been made with MOT including [53], [55] and [143]. However,
MOT is a challenging task because of environmental constraints such as crowding or object
overlapping. MOT can be divided into two main techniques: Offline [53] and Online [55]
[143]. In offline batch, tracking is done using a small batch to obtain tracklets and later
all these are connected to obtain a complete trajectory. The online method includes using
present and past frames to calculate the trajectory. Some common methods include Kalman
filtering [177], Particle Filtering [284] or Markov decision [401]. These techniques however
are prone to errors due to environmental constraints.

To overcome the constraints of MOT by previous methods, [401] proposed a method for
MOT where the problem was approached as an MDP. The authors tracked each object in
the frame through the Markov decision process, where each object has four states consisting:
Active, Tracked, Lost, and Inactive. Object detection is the active state and when the
object is in the lost state for a sufficient amount of time it is considered Inactive, which is
the terminal state. The reward function in the implementation was learned through data by
inverse RL problem [279].

Previous approaches for MOT follow a tracking by detection technique that is prone
to errors. An improvement was proposed by [307], where detection and tracking of the
objects were carried out simultaneously. The authors used a collaborative Q-Network to
track trajectories of multiple objects, given the initial position of an object the algorithm
tracked the trajectory of that object in all subsequent frames. For actions the authors used
Az for relative horizontal translation, Ay for relative vertical translation, Aw for width
scaling, and Ah for height scaling, and the reward consisted of values 1,0,-1 based on the
IoU.

Another method for MOT was proposed by [168], where the authors used LSTM [139]
and DRL to approach the problem of multi-object tracking. The method described in the
paper used three basic components: a YOLO V2 [260] object detector, many single object
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trackers, and a data association module. Firstly the YOLO V2 object detector is used to
find objects in a frame, then each detected object goes through the agent which consists of
CNN followed by an LSTM to encode past information for the object. The state consisted
of the image patch and history of past 10 actions, where six actions (right, left, up, down,
scale-up, scale down) were used for bounding box movement across the frame with a stop
action for the terminal state. To provide reinforcement to the agent the reward was 1 if the
IOU is greater than a threshold and 0 otherwise. In their experiments, the authors used
VGG-16 [340] for CNN backbone and performed experiments on MOT benchmark [201] for
people tracking.

Table 5: Comparing various DRL-based object tracking methods.

The First group for Single object tracking (SOT) and the second

group for multi-object tracking (MOT)

Approaches | Year | Training | Actions Remarks Backbone | Performance Datasets and
Tech- Source code
nique

End to | 2017 | Actor- 6 actions: | Environment: ConvNet- | Higher ac- | ViZDoom

end ac- Critic turn virtual environ- | LSTM cumulated [176], Unreal

tive object (a3c) left, turn | ment. Reward: reward and | Engine
tracking [262] right, calculated episode length

[240] turn left | using object as compared

and move | orientation to methods
forward, | and  position. like MIL [17],
turn right | Tracking Using Meanshift [60],
and move | LSTM [139] KCF [134].
forward,

move

forward,

no0-op

DRL for ob- | 2017 | DRLT None State:  feature | YOLO Higher area | Object track-

ject track- vector, Reward: | network under curve | ing bench-

ing [418] change in IOU | [305] (success rate Vs | mark [397].

use of LSTM overlap thresh- | Code
[139] and REIN- old), precision
FORCE [392] and speed (fps)

as compared to
STUCK  [126]
and DLT [384].
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Dual-agent | 2018 | DQN 8 actions: | States: image | VGG-M Lower mnormal- | Large-scale
deformable left, region using | [340] ized point to | face tracking
face tracker right, up, | Bounding box. point error for | dataset, the
[118] down, Reward: dis- landmarks and | 300-VW test
scale tance error. higher success | set [336]
up, scale | Facial landmark rate for facial
down, detection  and tracking as
stop and | tracking using compared to
continue. | LSTM [139] ICCR [187],
MDM [336],
Xiao et al [32],
etc.
Tracking 2018 | Actor- 4 actions: | States: im- | 3 Layer | Higher area | OTB-2015
with  iter- critic continue, | age region | CNN and | under curve | [398], Temple-
ative  shift [262] stop and | using bounding | FC layer | for success rate | Color  [220],
[308] update, box.  Reward: Vs overlap | and VOT-
stop change in I0U. threshold and | 2016 Dataset
and  ig- | Three networks: precision Vs | [186]
nore and | actor, critic location  error
restart and prediction threshold as
network compared to
CREST  [345],
ADNet  [416],
MDNet  [273],
HCFT [243],
SINT [358],
DeepSRDCF
[67], and HDT
[301]
Tracking 2018 | Actor- 3 actions: | States: image | VGG-M Higher average | OTB-2013
with actor- critic Az, Ay | region using | [340] precision score | [397], OTB-
critic [45] [262] and As bounding box. then PTAV [93], | 2015 [398]
Reward: 10U CFNet  [368], | and VOT-
greater then ACFN [52], | 2016 dataset
threshold.  Of- SiameFC  [29], | [186]
fline  training, ECO-HC [67], | Code
online tracking etc.
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Visual 2019 | Actor- 4 actions: | States: image | ResNet- Comparable GOT-10k
tracking critic Az, region using | 18 [133] success and | [148], LaSOT
and expert (a3c) Ay, Aw bounding box. precision scores | [92], UAV123
demon- [262] and Ah Reward: change as compared to | [269], OTB-
strator in IOU. SOT LADCF [408], | 100 [397],
[84] using  LSTM SiamRPN [209] | VOT-2018
391][139] and ECO [66] | [185]  and
VOT-2019.
Object 2015 | TLD 7 actions: | States: 4 states: | None Comparable MO0T15
tracking Tracker | corre- Active, tracked, multiple object | dataset [201]
by decision [174] sponding | lost and Inac- tracking accu- | Code
making to mov- | tive.  Reward: racy (MOTA)
[401] ing  the | inverse RL and  multiple
object problem [279] object  track-
between ing precision
states (MOTP) 28]
such as as compared to
Active, DPNMS  [296],
tracked, TCODAL [18],
lost and SegTrack [259],
Inactive MotiCon [200],
ete
Collaborative 2018 | DQN 4 actions: | States: image | 3 Layer | Comparable MOT15 [201]
multi  ob- Az, Ay, | region using | CNN and | multiple object | and MOT16
ject tracker Aw and | bounding box. | FC Layer | tracking accu- | [258] datasets
[307] Ah Reward: IOU racy (MOTA)
greater then and multiple
threshold. 2 object track-
networks: pre- ing precision
diction and (MOTP)  [28]
decision net- as compared
work to SCEA [143],
MDP [401],
CDADDALpb
[19], AMIR15
[321]
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Multi 2018 | DQN 6 actions: | States: image | VGG-16 Comparable MOT15
object right, region using | [340] if not better | Dataset [201]
tracking in left, wup, | bounding box. multiple object
video [168] down, Reward: IOU tracking accu-
scale greater then racy (MOTA)
up, scale | threshold. De- and multiple
down tection  using object  track-
YOLO-V2 [260] ing  precision
for detector and (MOTP) 28]
LSTM [139] . as  compared
to RNN-LSTM
[201], LP-SSVM
[401], MDPSub-
CNN [199], and
SiameseCNN
[123]
Multi agent | 2019 | DQN 9 actions: | States: image | VGG-16 Higher run- | MOT15 chal-
multi  ob- move region using | [340] ning time, and | lenge bench-
ject tracker right, bounding box. comparable mark [201].
[169] move left, | Reward: IOU if not better
move greater then multiple object
up, move | threshold. tracking accu-
down, YOLO-V3 [306] racy (MOTA)
scale for detection and multiple
up, scale | and LSTM object track-
down, [139]. ing  precision
fatter, (MOTP)  [28§]
taller and as compared
stop to RNN-LSTM
[201], LP-SSVM
[401], MDPSub-
CNN [199], and
SiameseCNN
[123]

To address the problems

in existing tracking methods such as varying numbers of tar-

gets, non-real-time tracking, etc, [169] proposed a multi-object tracking algorithm based on
a multi-agent DRL tracker (MADRL). In their object tracking pipeline the authors used
YOLO-V3 [306] as object detector, where multiple detections produced by YOLO-V3 were
filtered using the IOU and the selected results were used as multiple agents in multiple agent
detector. The input agents were fed into a pre-trained VGG-16 [340] followed by an LSTM
unit [139] that could share information across agents and return the actions encoded in a
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9-dimensional vector( move right, move left, move up, move down, scale-up, scale down, as-
pect ratio change fatter, aspect ratio change taller and stop), also a reward function similar
to [168] was used.

Various works in the field of object tracking have been summarized in Table 5, and a
basic implementation of object tracking using DRL has been shown in Fig. 13. The figure
illustrates a general implementation of object tracking in videos using DRL, where the state
consists of two consecutive frames (F}, Fy, 1) with a bounding box for the first frame produced
by another algorithm for the first iteration or by the previous iterations of DRL agent. The
actions corresponds to the moving the bounding on the image to fit the object in frame Fj,4,
hence forming a new state with frame F;,; and frame F} 5 along with the bounding box
for frame Fy,, predicted by previous iteration and reward corresponds to whether IOU is
greater then a given threshold as used by [118],[308],[45], [84],[307],[168],[169].

Action to fit BBox in t+1 frame

— f uP

* DOWN

' CNN DRL =P RIGHT
Backbone Agent

frame t frame t+1 € LEFT
Environment State Backbone Reward AC“OC?S )
Video frames with Consecutive frames and To extract IOU greater then Q(_Bf ;Egaste . eudsilcr:gd
BBox for first frame BBox for first frame image features threshold P

by the Agent

Figure 13: DRL implementation for object tracking. Here the state consists of two consecu-
tive frames with bounding box locations for the first frame that is predicted by some object
detection algorithm or by the previous iteration of DRL, the actions move the bounding box
present in the first frame to fit the object in the second frame to maximize the reward which
is the whether the IOU is greater than a given threshold or not.

8 DRL in Image Registration

Image registration is a very useful step that is performed on 3D medical images for the
alignment of two or more images. The goal of 3D medical image registration is to find a
correlation between two images from either different patients or the same patients at different
times, where the images can be Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), or Positron Emission Tomography (PET). In the process, the images are brought to
the same coordinate system and aligned with each other. The reason for image registration
being a challenging task is the fact that the two images used may have a different coordinate
system, scale, or resolution.

Many attempts have been made toward automated image registration. A multi-resolution
strategy with local optimizers to perform 2D or 3D image registration was performed by
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[359]. However, multi-resolution tends to fail with different field of views. Heuristic semi-
global optimization schemes were proposed to solve this problem and used by [252] through
simulated annealing and through genetic algorithm [317], However, their cost of computation
was very high. A CNN-based approach to this problem was suggested by [256], and [79]
proposed an optical flow method between 2D RGB images. A descriptor learned through a
CNN was proposed by [395], where the authors encoded the posture and identity of a 3D
object using the 2D image. Although all of these formulations produce satisfactory results
yet, the methods could not be applied directly to 3D medical images.

To overcome the problems faced by previous methods, [238] proposed a method for im-
proving probabilistic image registration via RL and uncertainty evaluation. The method in-
volved predicting a regression function that predicts registration error from a set of features
by using regression random forests (RRF) [37] method for training. The authors performed
experiments on 3D MRI images and obtained an accuracy improvement of up to 25%.

Previous image registration methods are often customized to a specific problem and are
sensitive to image quality and artifacts. To overcome these problems, [221] proposed a robust
method using DRL. The authors considered the problem as an MDP where the goal is to find
a set of transformations to be performed on the floating image to register it on the reference
image. They used the gamma value for future reward decay and used the change in L2
Norm between the predicted transformation and ground truth transformation to calculate
the reward. The authors also used a hierarchical approach to solve the problem with varying
FOVs and resolutions.

Table 6: Comparing various DRL-based image registration meth-

ods.
Approaches | Year | Training | Actions Remarks Backbone | Performance Datasets
Tech-
nique
Image reg- | 2013 | DQN Not spec- | Probabilistic Not spec- | Higher final | 3D MRI
istration ified model using | ified Dice score | images from
using  un- regression ran- (DSC) as com- | LONI Prob-
certainity dom forests pared to other | abilistic
evaluation (RRF) [37] methods  like | Brain  Atlas
[238] random  seed | (LPBA40)
selection  and | Dataset
grid-based seed
selection
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Robust 2017 | DQN 12 ac- | States: current | 5 Better success | Abdominal
Image reg- tions: transforma- Conv3D rate then ITK | spine CT
istration corre- tion. Reward: | layers [153], Quasi- | and  CBCT
[221] sponding | distance error. and 3 FC | global [255] | dataset, Car-
to dif- layers and  Semantic | diac CT and
ferent registration[277] | CBCT
transfor-
mations
Multimodal | 2017 | Duel- Actions States: cropped | Batch Lower Eu- | Thorax and
image reg- DQN update 3D image. | normal- clidean dis- | Abdomen
istration Double- | the trans- | Duel-DQN ization tance error as | (ABD)
[244] DQN forma- for value es- | followed compared  to | dataset
tions on | timation and | by 5 | methods like
floating Double DQN | Conv3D Hausdorff, ICP,
image for updating | and 3 | DQN [264],
weights. Maxpool | Dueling [390],
layers ete.
Robust 2017 | DQN 2n ac- | States: fixed | Multi Higher  Mean | MICCAI
non-rigid tions for | and moving | layer Dice score and | challenge
agent-based n dimen- | image. Reward: | CNN, lower Hausdorff | PROMISE12
registration sional € | change in trans- | pooling distance as | [227]
[184] vector formation error. | and FC | compared  to
With  Statisti- | layers. methods like
cal deformation LCC-Demons
model and fuzzy [237] and
action control. Elastix [180].
Robust 2018 | Actor- 8 actions: | States: fixed | Multi Comparable CT and MR
Multimodal Critic for  dif- | and moving | layer if not lower | images
registration (a3c) ferent image. Reward: | CNN and | target registra-
[349] [262] transfor- | Distance error. | FC layer | tion error [96]
mations Monte-carlo as compared
method with to methods
LSTM [139]. like SIFT
[239], Elastix
[180], Pure
SL, RL-matrix,
RL-LME, etc.

A multi-modal method for image registration was proposed by [244], where the authors
used DRL for alignment of depth data with medical images. In the specified work Duel
DQN was used as the agent for estimating the state value and the advantage function, and

the cropped 3D image tensor of both data modalities was considered as the state.
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algorithm’s goal was to estimate a transformation function that could align moving images
to a fixed image by maximizing a similarity function between the fixed and moving image.
A large number of convolution and pooling layer were used to extract high-level contextual
information, batch normalization and concatenation of feature vector from last convolution
layer with action history vector was used to solve the problem of oscillation and closed loops,
and Double DQN architecture for updating the network weights was used.

Previous methods for image registration fail to cope with large deformations and variabil-
ity in appearance. To overcome these issues [184] proposed a robust non-rigid agent-based
method for image registration. The method involves finding a spatial transformation Ty that
can map the fixed image with the floating image using actions at each time step, that is
responsible for optimizing 6. If the 6 is a d dimensional vector then there will be 2d possi-
ble actions. In this work, a DQN was used as an agent for value estimation, along with a
reward that corresponded to the change in # distance between ground truth and predicted
transformations across an action.

An improvement to the previous methods was proposed by [349], where the authors used
a recurrent network with RL to solve the problem. Similar to [221], they considered the
two images as a reference/fixed and floating/moving, and the algorithm was responsible
for predicting transformation on the moving image to register it on a fixed image. In the
specified work an LSTM [139] was used to encode past hidden states, Actor-critic [262] for
policy estimation, and a reward function corresponding to distance between ground truth
and transformed predicted landmarks were used.

Various methods in the field of Image registration have been summarized and compared
in Table 6, and a basic implementation of image registration using DRL has been shown in
Fig. 14. The figure illustrates a general implementation of image registration using DRL
where the state consists of a fixed and floating image. The DRL agent predicts actions in
form of a set of transformations on a floating image to register it onto the fixed image hence
forming a new state and accepts reward in form of improvement in distance error between
ground truth and predicted transformations with iterations as described by [349],[184],[221].

9 DRL in Image Segmentation

Image segmentation is one of the most extensively performed tasks in computer vision,
where the algorithm is responsible for labeling each pixel position as foreground or back-
ground corresponding to the object being segmented in the image. Image segmentation has
a wide variety of applications in medical, robotics, weather, etc. One of the earlier attempts
with image segmentation includes [125]. With the improvement in detection techniques and
introduction of CNN, new methods are introduced every year for image segmentation. Mask
R-CNN [132] extended the work by Faster R-CNN [309] by adding a segmentation layer
after the Bounding box has been predicted. Some earlier works include [109], [127], [128]
etc. Most of these works give promising results in image segmentation. However, due to
the supervised nature of CNN and R-CNN, these algorithms need a large amount of data.
In fields like medical, the data is sometimes not readily available hence we needed a way to
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Figure 14: DRL implementation for image registration. The state consists of fixed and
floating image and the actions in form of transformations are performed on the floating
image so as to maximize reward by minimizing distance between the ground truth and
predicted transformations.

train algorithms to perform a given task when there are data constraints. Luckily RL tends
to shine when the data is not available in a large quantity.

One of the first methods for Image segmentation through RL was proposed by [324],
where the authors proposed an RL framework for medical image segmentation. In their
work, they used a Q-Matrix, where the actions were responsible for adjusting the threshold
values to predict the mask and the reward was the normalized change in quality measure
between action steps. [325] also used a similar technique of Tabular method.

To overcome the constraints of the previous method for segmentation, [310] proposed a
method for indoor semantic segmentation through RL. In their paper, the authors proposed
a sequential strategy using RL to combine binary object masks of different objects into a
single multi-object segmentation mask. They formulated the binary mask in a Conditional
Random Field Framework (CRF), and used a logistic regression version of AdaBoost [140] for
classification. The authors considered the problem of adding multiple binary segmentation
into one as an MDP, where the state consisted of a list of probability distributions of differ-
ent objects in an image, and the actions correspond to the selection of object/background
segmentation for a particular object in the sequential semantic segmentation. In the RL
framework, the reward was considered in terms of pixel-wise frequency weighted Jaccard
Index computed over the set of actions taken at any stage of an episode.

Interactive segmentation is the task of producing an interactive mask for objects in an
image. Most of the previous works in this field greatly depend on the distribution of inputs
which is user-dependent and hence produce inadequate results. An improvement was pro-
posed by [343], where the authors proposed SeedNet, an automatic seed generation method
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for robust interactive segmentation through RL. With the image and initial seed points, the
algorithm is capable of generating additional seed points and image segmentation results.
The implementation included Random Walk (RW) [114] as the segmentation algorithm and
DQN for value estimation by considering the problem as an MDP. They used the current
binary segmentation mask and image features as the state, the actions corresponded to se-
lecting seed points in a sparse matrix of size 20 x 20(800 different actions were possible), and
the reward consisted of the change in IOU across an action. In addition, the authors used
an exponential IOU model to capture changes in IOU values more accurately.

Most of the previous work for image segmentation fail to produce satisfactory results
when it comes to 3D medical data. An attempt on 3D medical image segmentation was done
by [222], where the authors proposed an iteratively-refined interactive multi-agent method
for 3D medical image segmentation. They proposed a method to refine an initial course
segmentation produced by some segmentation methods using RL, where the state consisted of
the image, previous segmentation probability, and user hint map. The actions corresponded
to adjusting the segmentation probability for refinement of segmentation, and a relative
cross-entropy gain-based reward to update the model in a constrained direction was used.
In simple words, it is the relative improvement of previous segmentation to the current one.
The authors utilized an asynchronous advantage actor-critic algorithm for determining the
policy and value of the state.

Table 7: Comparing various DRL-based image segmentation meth-

ods
Approachesy Year | Training Actions Remarks Backbone| Performance Datasets
Technique
Semantic | 2016 | DQN 2 ac- | States: current | Not Pixel-wise NYUD V2
Segmen- tions per | probability Speci- percentage dataset [338]
tation for object: distribution. fied jaccard  index
indoor object, Reward: pixel- comparable to
scenes[310] back- wise frequency Gupta-L  [121]
ground weighted  Jac- and  Gupta-P

card index. [120].

Conditional

Random Field

Framework

(CRF) and lo-
gistic regression
version of Ad-
aBoost [140] for
classification.
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SeedNet 2018 | DQN, 800 ac- | States: image | Multi Better I0U | MSRA10K
[343] Double- tions: 2 | features and | layer then  methods | saliency
DQN, per pixel | segmentation CNN like FCN [236] | dataset [49]
Duel-DQN mask. Reward: and iFCN [407].
change in IOU.
Random Walk
(RW) [114] for
segmentation
algorithm.
Iteratively | 2020 | Actor-critic | 1 action | States: 3D | R-net Better perfor- | BraTS
refined (a3c) [262] | per voxel | image segmen- | [378] mance then | 2015[254],
multi for ad- | tation  proba- methods like | MM-WHS
agent justing bility and hint MinCut [183], | [432] and
segmen- segmen- map. Reward: DeeplGeoS NCI-ISBI
tation tation cross  entropy (R-Net)  [378] | 2013  Chal-
[222] probabil- | gain based and InterCNN | lenge [33]
ity framework. [36].
Multi- 2020 | Actor-critic | Actions States: image, | ResNet18| Higher = Mean | Prostate MR
step (a3c) [262] | control segmentation [133] Dice score and | image dataset
medical the posi- | mask and time lower Hausdorff | (PROMISE12,
image tion and | step. Reward: distance  then | ISBI2013)
segmen- shape change in dis- methods like | and  retinal
tation of brush | tance error. Grab-Cut [315], | fundus  im-
[360] stroke to | Policy: = DPG PSPNet [425], | age  dataset
modify [339]. FCN [236], | (REFUGE
segmen- U-Net [313], | challenge
tation etc. dataset [285])
Anomaly | 2020 | REINFORCHE 9 actions, | Environment: None Superior perfor- | MVTec AD
Detection [392] 8 for di- | input image mance in [27] | [27], Nan-
in Images rections to the model. and [337] on | oTWICE
[56] to  shift | State: ob- all metrics e.g. | [44], Crack-
center served patch precision, recall | Forest [337]
of the | from the image and F1 when
extracted | centered by compared with
patch to, | predicted center U-Net [313]
the last | of interest. and baseline
action is unsupervised
to switch method in [27]
to a ran- but only wins
dom new on recall in [44]
image
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Further improvement in the results of medical image segmentation was proposed by
[360]. The authors proposed a method for multi-step medical image segmentation using RL,
where they used a deep deterministic policy gradient method (DDPG) based on actor-critic
framework [262] and similar to Deterministic policy gradient (DPG) [339]. The authors used
ResNet18 [133] as backbone for actor and critic network along with batch normalisation
[157] and weight normalization with Translated ReLU [400]. In their MDP formulation,
the state consisted of the image along with the current segmentation mask and step-index,
and the reward corresponded to the change in mean squared error between the predicted
segmentation and ground truth across an action. According to the paper the action was
defined to control the position and shape of brush stroke used to modify the segmentation.

An example in image segmentation outside the medical field is [56] proposing to tackle the
problem of anomalies detection and segmentation in images (i.e. damaged pins of an IC chip,
small tears in woven fabric). [56] utilizes an additional module to attend only on a specific
patch of the image centered by a predicted center instead of the whole image, this module
helps a lot in reducing the imbalance between normal regions and abnormal locations. Given
an image, this module, namely Neural Batch Sampling (NBS), starts from a random initiated
center and recurrently moves that center by eight directions to the abnormal location in the
image if it exists, and it has an additional action to stop moving the center when it has already
converged to the anomaly location or there is not any anomaly can be observed. The NBS
module is trained by REINFORCE algorithm [392] and the whole model is evaluated on
multiple datasets e.g. MVTec AD [27], NanoTWICE [44], CrackForest [337].

Various works in the fields of Image segmentation have been summarised and compared
in Table 7, and a basic implementation of image segmentation using DRL has been shown
in Fig. 15. The figure shows a general implementation of image segmentation using DRL.
The states consist of the image along with user hint (landmarks or segmentation mask by
the other algorithm) for the first iteration or segmentation mask by the previous iteration.
The actions are responsible for labeling each pixel as foreground and background and reward
corresponds to an improvement in IOU with iterations as used by [343],[222].

10 DRL in Video Analysis

Object segmentation in videos is a very useful yet challenging task in computer vision field.
Video object segmentation task focuses on labelling each pixel for each frame as foreground
or background. Previous works in the field of video object segmentation can be divided
into three main methods. unsupervised [288][402], weakly supervised [48][163] [419] and
semi-supervised [41] [164][292].

A DRL-based framework for video object segmentation was proposed by [323], where
the authors divided the image into a group of sub-images and then used the algorithm on
each of the sub-image. They proposed a group of actions that can perform to change the
local values inside each sub-image and the agent received reward based on the change in the
quality of segmented object inside each sub-image across an action. In the proposed method
deep belief network (DBN) [47] was used for approximating the Q-values.
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Figure 15: DRL implementation for Image segmentation. The state consists of the image to
be segmented along with a user hint for t=0 or the segmentation mask by the previous itera-
tions. The DRL agent performs actions by labeling each pixel as foreground and background
to maximize the improvement in IOU over the iterations.

Surgical gesture recognition is a very important yet challenging task in the computer
vision field. It is useful in assessing surgical skills and for efficient training of surgeons. A
DRL method for surgical gesture classification and segmentation was proposed by [228]. The
proposed method could work on features extracted by video frames or kinematic data frames
collected by some means along with the ground truth labels. The problem of classification
and segmentation was considered as an MDP, where the state was a concatenation of TCN
[195][199] features of the current frame, 2 future frames a specified number of frames later,
transition probability of each gesture computed from a statistical language model [311] and
a one-hot encoded vector for gesture classes. The actions could be divided into two sub-
actions, One to decide optimal step size and one for choosing gesture class, and the reward
was adopted in a way that encouraging the agent to adopt a larger step and also penalizes the
agent for errors caused by the action. The authors used Trust Region Policy Optimization
(TRPO) [326] for training the policy and a spacial CNN [196] to extract features.

Earlier approaches for video object segmentation required a large number of actions to
complete the task. An Improvement was proposed by [124], where authors used an RL
method for object segmentation in videos. They proposed a reinforcement cutting-agent
learning framework, where the cutting-agent consists of a cutting-policy network (CPN)
and a cutting-execution network (CEN). The CPN learns to predict the object-context box
pair, while CEN learns to predict the mask based on the inferred object-context box pair.
The authors used MDP to solve the problem in a semi-supervised fashion. For the state of
CPN the authors used the input frame information, the action history, and the segmentation
mask provided in the first frame. The output boxes by CPN were input for the CEN. The
actions for CPN network included 4 translation actions (Up, Down, Left, Right), 4 scaling

47



action (Horizontal shrink, Vertical shrink, Horizontal zoom, Vertical zoom), and 1 terminal
action (Stop), and the reward corresponded to the change in IOU across an action. For the
network architecture, a Fully-Convolutional DenseNet56 [166] was used as a backbone along
with DQN as the agent for CPN and down-sampling followed by up-sampling architecture
for CEN.

Unsupervised video object segmentation is an intuitive task in the computer vision field.
A DRL method for this task was proposed by [111], where the authors proposed a motion-
oriented unsupervised method for image segmentation in videos (MOREL). They proposed
a two-step process to achieve the task in which first a representation of input is learned to
understand all moving objects through unsupervised video object segmentation, Then the
weights are transferred to the RL framework to jointly train segmentation network along
with policy and value function. The first part of the method takes two consecutive frames
as input and predicts a number of segmentation masks, corresponding object translations,
and camera translations. They used a modified version of actor-critic [262][329][371] for the
network of first step. Following the unsupervised fashion, the authors used the approach
similar to [375] and trained the network to interpolate between consecutive frames and used
the masks and translations to estimate the optical flow using the method that was proposed
in Spatial Transformer Networks [159]. They also used structural dissimilarity (DSSIM)
[388] to calculate reconstruction loss and actor-critic [262] algorithm to learn policy in the
second step.

A DRL method for dynamic semantic face video segmentation was proposed by [387],
where Deep Feature Flow [431] was utilized as the feature propagation framework and RL
was used for an efficient and effective scheduling policy. The method involved dividing
frames into key (I;) and non-key (/;), and using the last key frame features for performing
segmentation of non-key frame. The actions made by the policy network corresponded to
categorizing a frame as [ or I; and the state consisted of deviation information and expert
information, where the deviation information described the difference between current I; and
last I and expert information encapsulated the key decision history. The authors utilized
FlowNet2-s model [156] as an optical flow estimation function, and divided the network into
feature extraction module and task-specific module. After policy network which consisted
of one convolution layer, 4 fully connected layers and 2 concatenated channels consisting of
KAR (Key all ratio: Ratio between key frame and every other frame in decision history) and
LKD (Last key distance: Distance between current and last key frame) predicted the action,
If the current frame is categorized as key frame the feature extraction module produced
the frame features and task-specific module predicted the segmentation, However if the
frame is categorized as a non-key frame the features from the last key frame along with
the optical flow was used by the task-specific module to predict the segmentation. The
authors proposed two types of reward functions, The first reward function was calculated by
considering the difference between the IOU for key and non-key actions. The second reward
function was proposed for a situation when ground truth was not available and was calculated
by considering the accuracy score between segmentation for key and non-key actions.
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Table 8: Comparing various methods associated with video. First

group for video object segmentation, second group for action recog-

nition and third group for video summarisation

Approaches Year | Training Actions Remarks Backbone | Performance Datasets and
Technique Source code
Object 2016 | Deep Actions States: sub- | Not spec- | Not specified Not specified
segmen- Belief changed images. Re- | ified
tation in Network local ward: quality of
videos[323] [47] values segmentation.
in  sub-
images

Surgical 2018 | Trust 2  types: | States: TCN | Spacial Comparable JIGSAWS
gesture Region optimal [[195], [199]] and | CNN accuracy, and | [[6], [100]]
segmen- Policy Op- | step future frames. | [196] higher edit and | benchmark
tation timization | size and | Reward: en- F1 scores as | dataset
and clas- (TRPO) gesture courage larger compared to | Code
sification [326] class steps and min- methods  like
[228] imize action SD-SDL  [331],

errors.  Statis- Bidir LSTM

tical language [76], LC-SC-

model [311] CRF [197],

for gesture Seg-ST-CNN

probability. [196], TCN

[198], etc
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Cutting 2018 | DQN 8 actions: | States: input | DenseNet | Higher mean | DAVIS
agent 4 trans- | frame, action | [166] region simi- | dataset
for video lation history and larity, counter | [293] and the
object actions segmentation accuracy and | YouTube Ob-
segmen- (Up, mask. Reward: temporal  sta- | jects dataset
tation Down, change in IOU. bility [293] as | [162], [300]
[124] Left, cutting-policy compared to
Right), network for box- methods  like
4 scaling | context pair MSK [292],
action and  cutting- ARP [173],
(Hori- execution net- CTN [165],
zontal work for mask VPN [164], etc.
shrink, generation
Vertical
shrink,
Horizon-
tal zoom,
Vertical
zoom)
and 1
terminal
action
(Stop)
Unsupervise@018 | Actor- Not spec- | States: consec- | Multi- Higher total | 59 Atari
video ob- critic ified utive frames. | layer episodic reward | games.
ject (a2c) [262] Two step | CNN as compared to | Code
segmen- process with methods  that
tation optical flow used actor-
(MOREL) using  Spatial critic ~ without
[111] Transformer MOREL
Networks [159]
and recon-
struction  loss

using structural
dissimilarity
[388].
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Face 2020 | Not speci- | 2 actions: | States:  devia- | Multi- Higher mean | 300VW
video fied categoris- | tion information | layer IOU then other | dataset [336]
segmen- ing a | which described | CNN methods like | and Cityscape
tation frame as | the difference DVSNet [410], | dataset [61]
[387] a key or | between  cur- DFF [431].
a non-key | rent non-key
and last key
decision,  and
expert infor-
mation  which
encapsulated
the key decision
history. Re-
ward: improve-
ment in mean
I0U /accuracy
score  between
segmentation of
key and non-key
frames
Multi- 2020 | DQN Actions States: input | DenseNet | Higher mean | DAVIS-17
agent of 2 | frame, optical | [147] region similar- | dataset [293]
Video types: flow [156] from ity and contour
Object move- previous frame accuracy  [293]
Segmen- ment and action his- as compared to
tation actions tory. Reward: semi-supervised
[373] (up, clicks generated methods such as
down, by gamifica- SeamSeg  [14],
left and | tion. Down- BSVS [248],
right) sampling  and VSOF [363],
and set | up-sampling OSVOS [41]
action similar to and weakly-
(action U-Net [313] supervised
to place methods  such
location as GVOS [346],
prior  at Spftn [419]
a random
location
on the
patch)
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Skeleton- | 2018 | DQN 3 actions: | States: Global | Multi- Higher cross | NTU+RGBD
based shifting video infor- | layer subject and | [333], SYSU-
Action to  left, | mation and | CNN cross view | 3D [145] and
Recog- staying selected frames. metrics for | UT-Kinect
nition the same | Reward: change NTU+RGBD Dataset [399]
[357] and shift- | in  categorical dataset  [333],
ing to | probability. 2 and higher
right step network accuracy for
(FDNet) to SYSU-3D [145]
filter frames and UT-Kinect
and GCNN for Dataset  [399]
action labels when com-
pared with
other methods
like  Dynamic
Skeletons [145],
HBRNN-L [81],
Part-aware
LSTM [333],
LieNet-3Blocks
[151], Two-
Stream  CNN
[211], etc.
Video 2018 | DQN 2 actions: | tates: bidirec- | GoogLeNet Higher F- | TVSum [344]
summari- selecting | tional ~ LSTM | [355] score [421] | and SumMe
sation and re- | [150] produced as  compared | [122].
[429] jecting states by input to methods | Code
the frame | frame fea- like Uniform
tures. Reward: sampling,
Diversity- K-medoids,
Representativeness Dictionary  se-
Reward Func- lection [88],
tion. Video-MMR
[218], Vsumm
[69], etc.
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summa- Double selecting | quence of | [355] score [421] as | and CoSum
rization DQN and re- | frames Reward: compared to | [67] datasets.
[430] jecting Diversity- methods  like | Code
the frame | Representativenegs Dictionary  se-

Reward Func- lection [88],

tion 2 stage GAN [245],

implementa- DR-DSN [429],

tion: classi- Backprop-Grad

fication and [287], etc in

summarisation most cases.

network  using
bidirectional

GRU  network
and LSTM [150]

Video 2018 | Duel DQN | 2 actions: | States: se- | GoogLeNet Higher F- | TVSum [344]

Video 2020 | Not speci- | 2 actions: | States:  frame | Not spec- | Higher F1- | Fetal
summa- fied selecting | latent scores | ified scores in su- | trasound
rization and re- | Reward: Rges, pervised and | [179]
in Ul- jecting Ryep and Rgg, unsupervised
trasound the frame | bidirectional fashion as
[233] LSTM [150] and compared  to
Kernel temporal methods like
segmentation FCSN [312] and
[298] DR-DSN [429].

Video object segmentation using human-provided location priors have been capable of
producing promising results. An RL method for this task was proposed by [373], in which
the authors proposed MASK-RL, a multiagent RL framework for object segmentation in
videos. They proposed a weakly supervised method where the location priors were provided
by the user in form of clicks using gamification (Web game to collect location priors by
different users) to support the segmentation and used a Gaussian filter to emphasize the
areas. The segmentation network is fed a 12 channel input tensor that contained a sequence
of video frames and their corresponding location priors (3 X 3 color channels + three gray-
scale images). The authors used a fully convoluted DenseNet [147] with down-sampling and
up-sampling similar to U-Net [313] and an LSTM [139] for the segmentation network. For
the RL method, the actor takes a series of steps over a frame divided into a grid of equal
size patches and makes the decision whether there is an object in the patch or not. In their
MDP formulation the states consisted of the input frame, optical flow (computed by [156])
from the previous frame, patch from the previous iteration, and the episode location history,
the actions consisted of movement actions (up, down, left and right) and set action (action
to place location prior at a random location on the patch), and two types of rewards one for
set actions and one for movement actions were used. The reward was calculated using the
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clicks generated by the game player.

Action recognition is an important task in the computer vision field which focuses on
categorizing the action that is being performed in the video frame. To address the problem
a deep progressive RL (DPRL) method for action recognition in skeleton-based videos was
proposed by [357]. The authors proposed a method that distills the most informative frames
and discards ambiguous frames by considering the quality of the frame and the relationship
of the frame with the complete video along with a graph-based structure to map the human
body in form of joints and vertices. DPRL was utilized to filter out informative frames in a
video and graph-based CNNs were used to learn the spatial dependency between the joints.
The approach consisted of two sub-networks, a frame distillation network (FDNet) to filter a
fixed number of frames from input sequence using DPRL and GCNN to recognize the action
labels using output in form of a graphical structure by the FDNet. The authors modeled the
problem as an MDP where the state consisted of the concatenation of two tensors F' and M,
where F' consisted of global information about the video and M consisted of the frames that
were filtered, The actions which correspond to the output of FDNet were divided into three
types: shifting to left, staying the same and shifting to the right, and the reward function
corresponded to the change in probability of categorizing the video equal to the ground truth
clipped it between [-1 and 1] and is provided by GCNN to FDNet.

Video summarization is a useful yet difficult task in the computer vision field that involves
predicting the object or the task that is being performed in a video. A DRL method for
unsupervised video summarisation was proposed by [429], in which the authors proposed a
Diversity-Representativeness reward system and a deep summarisation network (DSN) which
was capable of predicting a probability for each video frame that specified the likeliness of
selecting the frame and then take actions to form video summaries. They used an encode-
decoder framework for the DSN where GoogLeNet [355] pre-trained on ImageNet [320] [72]
was used as an encoder and a bidirectional RNNs (BiRNNs) topped with a fully connected
(FC) layer was used as a decoder. The authors modeled the problem as an MDP where
the action corresponded to the task of selecting or rejecting a frame. They proposed a
novel Diversity-Representativeness Reward Function in their implementation, where diversity
reward corresponded to the degree of dissimilarity among the selected frames in feature space,
and representativeness reward measured how well the generated summary can represent the
original video. For the RNN unit they used an LSTM [139] to capture long-term video
dependencies and used REINFORCE algorithm for training the policy function.

An improvement to [429] was proposed by [430], where the summarisation network was
implemented using Deep Q-learning (DQSN), and a trained classification network was used
to provide a reward for training the DQSN. The approach included using (Bi-GRU) bidirec-
tional recurrent networks with a gated recurrent unit (GRU) [50] for both classification and
summarisation network. The authors first trained the classification network using a super-
vised classification loss and then used the classification network with fixed weights for the
classification of summaries generated by the summarisation network. The summarisation
network included an MDP-based framework in which states consisted of a sequence of video
frames and actions reflected the task of either keeping the frame or discarding it. They used
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Figure 16: DRL implementation for video summarization. For state a sequence of consecutive
frames are used and the DRL agent decided whether to include the frame in the summary
set that is used to predict video summary.

a structure similar to Duel-DQN where value function and advantage function are trained
together. In their implementation, the authors considered 3 different rewards: Global Recog-
nisability reward using the classification network with +1 as reward and -5 as punishment,
Local Relative Importance Reward for rewarding the action of accepting or rejecting a frame
by summarisation network, and an Unsupervised Reward that is computed globally using
the unsupervised diversity-representativeness (DR) reward proposed in [429]. The authors
trained both the networks using the features generated by GoogLeNet [355] pre-trained on
ImageNet [72].

A method for video summarization in Ultrasound using DRL was proposed by [233], in
which the authors proposed a deep summarisation network in an encoder-decoder fashion
and used a bidirectional LSTM (Bi-LSTM) [150] for sequential modeling. In their implemen-
tation, the encoder-decoder convolution network extracted features from video frames and
fed them into the Bi-LSTM. The RL network accepted states in form of latent scores from
Bi-LSTM and produced actions, where the actions consist of the task of including or discard-
ing the video frame inside the summary set that is used to produce video summaries. The
authors used three different rewards Rge;, Ryep and Ry, where R, evaluated the likelihood
of a frame being a standard diagnostic plane, R,., defined the representativeness reward and
R, was the diversity reward that evaluated the quality of the selected summary. They used
Kernel temporal segmentation (KTS) [298] for video summary generalization.

Various works associated with video analysis have been summarised and compared in
Table 8 and a basic implementation of video summarization using DRL has been shown in
Fig. 16, where the states consist of a sequence of video frames. The DRL agent performs
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actions to include or discard a frame from the summary set that is later used by the summa-
rization network to predict video summary. Each research paper propose their own reward
function for this application, for example [429] and [430] used diversity representativeness
reward function and [233] used a combination of various reward functions.

11 Others Applications

Object manipulation refers to the task of handling and manipulating an object using a robot.
A method for deformable object manipulation using RL was proposed by [250], where the
authors used a modified version of Deep Deterministic Policy Gradients (DDPG) [224]. They
used the simulator Pybullet [63] for the environment where the observation consisted of a
84 x 84 x 3 image, the state consists of joint angles and gripper positions and action of four
dimensions: first three for velocity and lasts for gripper velocity was used. The authors used
sparse reward for the task that returns the reward at the completion of the task. They used
the algorithm to perform tasks such as folding and hanging cloth and got a success rate of
up to 90%.

Visual perception-based control refers to the task of controlling robotic systems using a
visual input. A virtual to real method for control using semantic segmentation was proposed
by [142], in which the authors combined various modules such as, Perception module, con-
trol policy module, and a visual guidance module to perform the task. For the perception
module, the authors directly used models such as DeepLab [46] and ICNet [424], pre-trained
on ADE20K [428] and Cityscape [61], and used the output of these model as the state for the
control policy module. They implemented the control policy module using the actor-critic
[262] framework, where the action consisted of forward, turn right, and turn left. In their im-
plementation, a reward of 0.001 is given at each time step. They used the Unity3D engine for
the environment and got higher success and lower collision rate than other implementations
such as ResNet-A3C and Depth-A3C.

Automatic tracing of structures such as axons and blood vessels is an important yet chal-
lenging task in the field of biomedical imaging. A DRL method for sub-pixel neural tracking
was proposed by [65], where the authors used 2D grey-scale images as the environment. They
considered a full resolution 11px x 11px window and a 21px X 21px window down-scaled to
11px x 11px as state and the actions were responsible for moving the position of agent in 2D
space using continuous control for sub-pixel tracking because axons can be smaller then a
pixel. The authors used a reward that was calculated using the average integral of intensity
between the agent’s current and next location, and the agent was penalized if it does not
move or changes directions more than once. They used an Actor-critic [262] framework to
estimate value and policy functions.

An RL method for automatic diagnosis of acute appendicitis in abdominal CT images
was proposed by [8], in which the authors used RL to find the location of the appendix and
then used a CNN classifier to find the likelihood of Acute Appendicitis, finally they defined
a region of low-entropy (RLE) using the spatial representation of output scores to obtain
optimal diagnosis scores. The authors considered the problem of appendix localization as
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an MDP, where the state consisted of a 50 x 50 x 50 volume around the predicted appendix
location, 6 actions (2 per axis) were used and the reward consisted of the change in distance
between the predicted appendix location and actual appendix location across an action.

They utilized an Actor-critic [262] framework to estimate policy and value functions.

Table 9: Comparing various other methods besides landmark de-

tection, object detection, object tracking, image registration, image

segmentation, video analysis, that is associated with DRL

Datasets
Approaches| Year | Training Actions Remarks Backbone | Performance Source code
Technique
Object 2018 | Rainbow 4 actions: | State: joint an- | Multi Success rate up | Pybullet
manip- DDPG 3 for ve- | gle and gripper | layer CNN | to 90% [63].
ulation locity 1 for | position. Re- Code
[250] gripper ve- | ward: at the
locity end of task.
Visual 2018 | Actor- 3 actions: | State: output | DeepLab Higher success | Unity3D
based critic forward, by backbones. | [46] and | and lower col- | engine
control (a3c) [262] | turn right | Reward: 0.001 | ICNet lision rate then
[142] and turn | at each time- | [424] ResNet-A3C
left step. and Depth-A3C
Automatic | 2019 | Actor- 4 actions State: 1lpx x | Multi Comparable Synthetic
tracing critic 11px  window. | layer CNN | convergence % | and  mi-
[65] [262] Reward: av- and average | croscopy
erage integral error as com- | dataset
of intensity pared to other | [24]
between the methods like
agent’s cur- Vaa3D software
rent and next [291] and APP2
location. neuron  tracer
[403]
Automatic | 2019 | Actor- 6 actions: | State: 50 x 50 x | Fully con- | Higher sen- | Abdominal
diagnosis critic 2 per axis | 50 volume. Re- | nected sitivity and | CT Scans
(RLE) [8] [262] ward: change in | CNN specificity  as

distance error.

compared to
only CNN clas-
sifier and CNN

classifier  with
RL without
RLE.
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https://github.com/JanMatas/Rainbow_ddpg

Learning 2019 | Actor- Actions State: Refer- | ResNet18 Able to repli- | MNIST
to  paint critic with | control the | ence image, | [133] cate the original | [202],
[149] DDPG stoke pa- | Drawing can- images to a | SVHN
rameter: vas and time large  extent, | [276],
location, step. Reward: and better | CelebA
shape, change in dis- resemblance [235] and
color and | criminator score to the origi- | ImageNet
trans- (calculated by nal image as | [320].
parency WGAN-GP compared to | Code
[117] across an SPIRAL  [98]
action. GANs with same num-
[113] to improve ber of brush
image quality strokes.
Guiding 2020 | Double- 5 actions: | State: probe | ResNet18 Higher % of pol- | Ultrasound
medical DQN, up, down, | position. Re- | [133] icy correctness | Images
robots Duel-DQN | left, right | ward: Move and reachability | Dataset.
[129] and stop closer: 0.05, as compared to | Code
Move away: CNN Classifier,
-0.1, Correct where MS-DQN
stop: 1.0, In- showed the best
correct stop: results
-0.25.
Crowd 2020 | DQN 9 actions: | State:  weight | VGG16 Lower /comparable The
counting -10, -5, | vector W; and | [340] mean squared | Shang-
[230] -2, -1, +1, | image feature error (MSE) | haiTech
+2, 45, | vector FVi. and mean ab- | (SHT)
+10 and | Reward: Inter- solute error | Dataset
end mediate reward (MAE) as com- | [423], The
and ending pared to other | UCFCC50
reward methods like | Dataset
DRSAN [232], | [154] and
PGCNet [412], | The UCF-
MBTTBF [341], | QNRF
S-DCNet [405], | Dataset
CAN [234], etc. | [155].
Code
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https://github.com/hzwer/ICCV2019-LearningToPaint
https://github.com/hhase/sacrumdata-set
https://github.com/hhase/spinal-navigation-rl
https://github.com/poppinace/libranet

Automated | 2020 | Not Speci- | selecting State: quality of | AlexNet Higher peak | Proposed
Exposure fied optimal generated HDR | [188] signal to noise | bench-
bracketing bracket- image. Reward: ratio as com- | mark
[389] ing from | improvement in pared to other | dataset.
candidates | peak signal to methods like | Code/data
noise ratio Barakat  [22],
Pourreza-
Shahri [299],
Beek [369], etc.
Urban Au- | 2020 | Rainbow- 36 or 108 | State: environ- | Resnetl8 Won the 2019 | CARLA
tonomous IQN actions: ment variables | [133] camera only | urban
driving (9 x 4) or | like traffic light, CARLA  chal- | driving
[361] (27 x 4), | pedestrians, lenge [314]. simulator
9/27 steer- | position  with [314]
ing and 4 | respect to Code
throttle center lane.
Reward: gener-
ated by CARLA
waypoint API
Mitigating | 2020 | DQN 3 ac- | State: the race | Multi- Proposed al- | RFW
bias in tions:(Margingroup, current | layer CNN | gorithm had | [383] and
Facial adjust- adaptive mar- higher verifica- | proposed
Recog- ment) gin and bias tion  accuracy | novel
nition staying between the as compared to | datasets:
(382] the same, | race group and other methods | BUPT-
shifting to | Caucasians. such as Cos- | Globalface
a  larger | Reward: change Face [379] and | and
value and | in the sum of ArcFace [73]. BUPT-
shifting to | inter-class and Balancedfac
a smaller | intra-class bias Data
value
Attention | 2020 | DQN [264] | Actions State: Feature | ResNet- Improves  the | ImageNet
mecha- are map at each | 101 [133] performances [72]
nism  to weights intermediate of [144], [205]
improve for every | layer of model. and [396], which
CNN per- location or | Reward: pre- attend on fea-
formance channel in | dicted by a ture  channel,
[212] the feature | LSTM model. spatial-channel

map.

and style,

respectively
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https://github.com/wzhouxiff/EBSNetMEFNet
https://github.com/valeoai/learningbycheating
http://www.whdeng.cn/RFW/index.html
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Figure 17: A general DRL implementation for agent movement with visual inputs. The state
is provided by the environment based on which the agent performs movement actions to get
a new state and a reward from the environment.

Painting using an algorithm is a fantastic yet challenging task in the computer vision
field. An automated painting method was proposed by [149], where the authors introduced
a model-based DRL technique for this task. The specified work involved using a neural
renderer in DRL, where the agent was responsible for making a decision about the position
and color of each stroke, and making long-term decisions to organize those strokes into a
visual masterpiece. In this work, GANs [113] were employed to improve image quality at
pixel-level and DDPG [224] was utilized for determining the policy. The authors formulated
the problem as an MDP, where the state consisted of three parts: the target image I,
the canvas on which actions (paint strokes) are performed Cy, and the time step. The
actions corresponding to a set of parameters that controlled the position, shape, color, and
transparency of strokes, and for reward the WGAN with gradient penalty (WGAN-GP) [117]
was used to calculate the discriminator score between the target image I and the canvas CY,
and the change in discriminator score across an action (time-step) was used as the reward.
The agent that predicted the stroke parameters was trained in actor-critic [262] fashion with
backbone similar to Resnet18 [133], and the stroke parameters by the actor were used by
the neural renderer network to predict paint strokes. The network structure of the neural
renderer and discriminator consisted of multiple convolutions and fully connected blocks.

A method for guiding medical robots using Ultrasound images with the help of DRL
was proposed by [129]. The authors treated the problem as an MDP where the agent takes
the Ultrasound images as input and estimates the state hence the problem became Partially
observable MDP (POMDP). They used Double-DQN and Duel-DQN for estimating Q-Values
and ResNet18 [133] backbone for extracting feature to be used by the algorithm along with
Prioritized Replay Memory. In their implementation the action space consisted of 8 actions
(up, down, left, right, and stop), probe position as compared to the sacrum was used as the
state and the reward was calculated by considering the agent position as compared to the
target (Move closer: 0.05, Move away: -0.1, Correct stop: 1.0, Incorrect stop: -0.25). In
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their implementation, the authors proposed various architectures such as V-DQN, M-DQN,
and MS-DQN for the task and performed experimentation on Ultrasound images.

Crowd counting is considered a tricky task in computer vision and is even trickier for
humans. A DRL method for crowd counting was proposed by [230], where the authors used
sequential decision making to approach the task through RL. In the specified work, the
authors proposed a DQN agent (LibraNet) based on the motivation of a weighing scale. In
their implementation crowd counting was modeled using a weighing scale where the agent was
responsible for adding weights on one side of the scale sequentially to balance the crowded
image on the other side. The problem of adding weights on one side of the pan for balancing
was formulated as an MDP, where state consisted weight vector W; and image feature vector
FV7, and the actions space was defined similar to scale weighing and money system [372]
containing values (—10,—5,—2,—1,4+1,42,+5,+10,end). For reinforcing the agent two
different rewards: ending reward and intermediate reward were utilized, where ending reward
(following [43]) was calculated by comparing the absolute value error between the ground-
truth count and the accumulated value with the error tolerance, and three counting specific
rewards: force ending reward, guiding reward and squeezing reward were calculated for the
intermediate rewards.

Exposure bracketing is a method used in digital photography, where one scene is captured
using multiple exposures for getting a high dynamic range (HDR) image. An RL method
for automated bracketing selection was proposed by [389]. For flexible automated bracketing
selection, an exposure bracketing selection network (EBSNet) was proposed for selecting
optimal exposure bracketing and a multi-exposure fusion network (MEFNet) for generating
an HDR image from selected exposure bracketing which consisted of 3 images. Since there is
no ground truth for the exposure bracketing selection procedure, an RL scheme was utilized
to train the agent (EBSNet). The authors also introduced a novel dataset consisting of a
single auto-exposure image that was used as input to the EBSNet, 10 images with varying
exposures from which EBSNet generated probability distribution for 120 possible candidate
exposure bracketing (C3,) and a reference HDR image. The reward for EBSNet was defined
as the difference between peak signal-to-noise ratio between generated and reference HDR
for the current and previous iteration, and the MEFNet was trained by minimizing the
Charbonnier loss [23]. For performing the action of bracketing selection ESBNet consisted
of a semantic branch using AlexNet [188] for feature extraction, an illumination branch
to understand the global and local illuminations by calculating a histogram of input and
feeding it to CNN layers, and a policy module to generate a probability distribution for the
candidate exposure bracketing from semantic and illumination branches. The neural network
for MEFNet was derived from HDRNet [103].

Autonomous driving in an urban environment is a challenging task, because of a large
number of environmental variables and constraints. A DRL approach to this problem was
proposed by [361]. In their implementation, the authors proposed an end-to-end model-free
RL method, where they introduced a novel technique called Implicit Affordances. For the
environment, the CARLA Simulator [80] was utilized, which provided the observations and
the training reward was obtained by using the CARLA waypoint API. In the novel implicit
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affordances technique the training was broken into two phases, The first phase included
using a Resnet18 [133] encoder to predict the state of various environment variables such
as traffic light, pedestrians, position with respect to the center lane, etc., and the output
features were used as a state for the RL agent, For which a modified version of Rainbow-IQN
Ape-X [136] was used. CARLA simulator accepts actions in form of continuous steering and
throttle values, so to make it work with Rainbow-IQN which supports discrete actions, the
authors sampled steering values into 9 or 27 discrete values and throttle into 4 discrete values
(including braking), making a total of 36(9 x 4) or 108(27 x 4) actions.

Racial discrimination has been one of the hottest topics of the 21st century. To mitigate
racial discrimination in facial recognition, [382] proposed a facial recognition method using
skewness-aware RL. According to the authors, the reason for racial bias in facial recognition
algorithms can be either due to the data or due to the algorithm, so the authors provided
two ethnicity-aware datasets, BUPT-Globalface and BUPT-Balancedface along with an RL
based race balanced network (RL-RBN). In their implementation, the authors formulated
an MDP for adaptive margin policy learning where the state consisted of three parts: the
race group (0: Indian, 1: Asian, 2: African), current adaptive margin, and bias or the
skewness between the race group and Caucasians. A DQN was used as a policy network
that performed three actions (staying the same, shifting to a larger value, and shifting to a
smaller value) to change the adaptive margin, and accepted reward in form of change in the
sum of inter-class and intra-class bias.

Attention mechanisms are currently gaining popularity because of their powerful ability
in eliminating uninformative parts of the input to leverage the other parts having a more
useful information. Recently, attention mechanism has been integrated into typical CNN
models at every individual layer to strengthen the intermediate outputs of each layer, in
turn improving the final predictions for recognition in images. This model is usually trained
with a weakly supervised method, however, this optimization method may lead to sub-
optimal weights in the attention module. Hence, [212] proposed to train attention module
by deep Q-learning with an LSTM model is trained to predict the reward, the whole process
is called Deep REinforced Attention Learning (DREAL).

Various works specified here have been summarised and compared in Table 9 and general
implementation of a DRL method to control an agents movement in an environment has
been shown in fig 17 where state consists of an image frame provided by the environment,
the DRL agent predicts actions to move the agent in the environment providing next state
and the reward is provided by the environment, for example, [142].

12 Future Perspectives

12.1 Challenge Discussion

DRL is a powerful framework, which has been successfully applied to various computer
vision applications including landmark detection, object detection, object tracking, image
registration, image segmentation, video analysis, and other computer vision applications.
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DRL has also demonstrated to be an effective alternative for solving difficult optimization
problems, including tuning parameters, selecting augmentation strategies, and neural archi-
tecture search (NAS). However, most approaches, that we have reviewed, assume a stationary
environment, from which observations are made. Take landmark detection as an instance,
the environment takes into account the image itself, and each state is defined as an image
patch consisting of the landmark location. In such a case, the environment is known while
the RL/DRL framework naturally accommodates a dynamic environment, that is the en-
vironment itself evolves with the state and action. Realizing the full potential of DRL for
computer vision requires solving several challenges. In this section, we would like to discuss
the challenges of DRL in computer vision for real-world systems.

e Reward function: In most real-world applications, it is hard to define a specified
reward function because it requires the knowledge from different domains that may
not always be available. Thus, the intermediate rewards at each time step are not
always easily computed. Furthermore, a reward function with too long delay will make
training difficult. In contrast, assigning a reward for each action requires careful and
manual human design.

e Continuous state and action space: Training an RL system on a continuous state
and action space is challenging because most RL algorithms, i.e. Q learning, can only
deal with discrete states and discrete action space. To address this limitation, most
existing works discretize the continuous state and action space.

¢ High-dimensional state and action space: Training Q-function on a high-dimensional
action space is challenging. For this reason, existing works use low-dimensional param-
eterization, whose dimensions are typically less than 10 with an exception [184] that
uses 15-D and 25-D to model 2D and 3D registration, respectively.

e Environment is complicated: Almost all real-world systems, where we would want
to deploy DRL/RL, are partially observable and non-stationary. Currently, the ap-
proaches we have reviewed assume a stationary environment, from which observations
are made. However, the DRL/RL framework naturally accommodates dynamic envi-
ronment, that is the environment itself evolves with the state and action. Furthermore,
those systems are often stochastic and noisy (action delay, sensor and action noise) as
compared to most simulated environments.

e Training data requirement: RL/DRL requires a large amount of training data or
expert demonstrations. Large-scale datasets with annotations are expensive and hard
to come by.

More details of challenges that embody difficulties to deploy RL/DRL in the real world
are discussed in [82]. In this work, they designed a set of experiments and analyzed their
effects on common RL agents. Open-sourcing an environmental suite, realworldrl-suite [83]
is provided in this work as well.
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12.2 DRL Recent Advances

Some advanced DRL approaches such as Inverse DRL, Multi-agent DRL, Meta DRL, and
imitation learning are worth the attention and may promote new insights for many machine
learning and computer vision tasks.

e Inverse DRL: DRL has been successfully applied into domains where the reward
function is clearly defined. However, this is limited in real-world applications because
it requires knowledge from different domains that may not always be available. Inverse
DRL is one of the special cases of imitation learning. An example is autonomous
driving, the reward function should be based on all factors such as driver’s behavior,
gas consumption, time, speed, safety, driving quality, etc. In real-world scenario, it is
exhausting and hard to control all these factors. Different from DRL, inverse DRL [278],
4], [413], [86] a specific form of imitation learning [286], infers the reward function of an
agent, given its policy or observed behavior, thereby avoiding a manual specification of
its reward function. In the same problem of autonomous driving, inverse RL first uses a
dataset collected from the human-generated driving and then approximates the reward
function. Inverse RL has been successfully applied to many domains [4]. Recently, to
analyze complex human movement and control high-dimensional robot systems, [215]
proposed an online inverse RL algorithm. [2] combined both RL and Inverse RL to
address planning problems in autonomous driving.

e Multi-Agent DRL: Most of the successful DRL applications such as game[38], [376],
robotics[181], and autonomous driving [335], stock trading [206], social science [207],
etc., involve multiple players that requires a model with multi-agent. Take autonomous
driving as an instance, multi-agent DRL addresses the sequential decision-making prob-
lem which involves many autonomous agents, each of which aims to optimize its own
utility return by interacting with the environment and other agents [40]. Learning
in a multi-agent scenario is more difficult than a single-agent scenario because non-
stationarity [135], multi-dimensionality [40], credit assignment [5], etc., depend on the
multi-agent DRL approach of either fully cooperative or fully competitive. The agents
can either collaborate to optimize a long-term utility or compete so that the utility
is summed to zero. Recent work on Multi-Agent RL pays attention to learning new
criteria or new setup [348].

e Meta DRL: As aforementioned, DRL algorithms consume large amounts of experience
in order to learn an individual task and are unable to generalize the learned policy to
newer problems. To alleviate the data challenge, Meta-RL algorithms [330], [380]
are studied to enable agents to learn new skills from small amounts of experience.
Recently, there is a research interest in meta RL [271], [119], [322], [303], [229], each
using a different approach. For benchmarking and evaluation of meta RL algorithms,
[415] presented Meta-world, which is an open-source simulator consisting of 50 distinct
robotic manipulation tasks.

64



e Imitation Learning: Imitation learning is close to learning from demonstrations
which aims at training a policy to mimic an expert’s behavior given the samples col-
lected from that expert. Imitation learning is also considered as an alternative to
RL/DRL to solve sequential decision-making problems. Besides inverse DRL, an im-
itation learning approach as aforementioned, behavior cloning is another imitation
learning approach to train policy under supervised learning manner. Bradly et al.
[347] presented a method for unsupervised third-person imitation learning to observe
how other humans perform and infer the task. Building on top of Deep Deterministic
Policy Gradients and Hindsight Experience Replay, Nair et al. [272] proposed behavior
cloning Loss to increase imitating the demonstrations. Besides Q-learning, Generative
Adversarial Imitation Learning [364] proposes P-GAIL that integrates imitation learn-
ing into the policy gradient framework. P-GAIL considers both smoothness and causal
entropy in policy update by utilizing Deep P-Network [365].

Conclusion

Deep Reinforcement Learning (DRL) is nowadays the most popular technique for an artifi-
cial agent to learn closely optimal strategies by experiences. This paper aims to provide a
state-of-the-art comprehensive survey of DRL applications to a variety of decision-making
problems in the area of computer vision. In this work, we firstly provided a structured
summarization of the theoretical foundations in Deep Learning (DL) including AutoEncoder
(AE), Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Recur-
rent Neural Network (RNN). We then continued to introduce key techniques in RL research
including model-based methods (value functions, transaction models, policy search, return
functions) and model-free methods (value-based, policy-based, and actor-critic). Main tech-
niques in DRL were thirdly presented under two categories of model-based and model-free
approaches. We fourthly surveyed the broad-ranging applications of DRL methods in solv-
ing problems affecting areas of computer vision, from landmark detection, object detection,
object tracking, image registration, image segmentation, video analysis, and many other ap-
plications in the computer vision area. We finally discussed several challenges ahead of us in
order to realize the full potential of DRL for computer vision. Some latest advanced DRL
techniques were included in the last discussion.
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