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ABSTRACT
To address the sample selection bias between the training and test

data, previous research works focus on reweighing biased training

data to match the test data and then building classification models

on the reweighed training data. However, how to achieve fairness

in the built classification models is under-explored. In this paper,

we propose a framework for robust and fair learning under sample

selection bias. Our framework adopts the reweighing estimation

approach for bias correction and the minimax robust estimation ap-

proach for achieving robustness on prediction accuracy. Moreover,

during the minimax optimization, the fairness is achieved under

the worst case, which guarantees the model’s fairness on test data.

We further develop two algorithms to handle sample selection bias

when test data is both available and unavailable.
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1 INTRODUCTION
Traditional supervised machine learning assumes that training

data and test data are independently and identically distributed

(iid), i.e., each example 𝑡 with pairs of feature input 𝑥 and label 𝑦

drawn from the same distributionQ = 𝑃 (𝑥,𝑦). The conditional label
distribution, 𝑃 (𝑦 |𝑥), is estimated as 𝑃 (𝑦 |𝑥) (aka, a classifier 𝑓 (𝑥))
from the given training dataset D𝑠 . Similarly, in the fair machine

learning, we aim to learn a fair classifier 𝑓 (𝑥, 𝑎) from the training

dataset drawn from Q = 𝑃 (𝑥, 𝑎,𝑦) where 𝑎 is a protected attribute

such as gender or race. However, when the distributions on training
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and test data sets do not match, we are facing sample selection bias

or covariate shift. The classifier 𝑓 simply learned from the training

dataset is vulnerable to sample selection bias and will incur more

accuracy loss over test data. Moreover, the fair classifier trained

with the biased data cannot guarantee fairness over test data. This

is a serious concern when it is critical and imperative to achieve

fairness in many applications.

In this paper, we develop a framework for robust and fair learning

under sample selection bias. We embrace the uncertainty incurred

by sample selection bias by producing predictions that are both

fair and robust in test data. Our framework adopts the reweighing

estimation approach for bias correction and the minimax robust es-

timation approach for achieving robustness on prediction accuracy.

Moreover, during theminimax optimization, the fairness is achieved

under the worst case, which guarantees the model’s fairness on

test data. To address the intractable issue, we approximate the fair-

ness constraint using the boundary fairness and combine into the

classifier’s loss function as a penalty. The modified loss function is

minimized in view of the most adverse distribution within aWasser-

stein ball centered at the empirical distribution of the training data.

We present two algorithms for the scenarios where the unlabeled

test dataset D is either available or unavailable.

RelatedWork. Robust classification under covariate shift has been
studied recently. For example, Wen et al. [15] consider covariate

shift between the training and test data and apply Gaussian kernel

functions to reweigh the training examples and correct the shift.

Taskesen et al. [14] study fairness from the distributionally robust

perspective and assume the unknown true test distribution is con-

tained in a Wasserstein ball centered at the empirical distribution

on the observed training data. However the approach robustifies

the distribution at the individual data level and overlooks the over-

all distribution. Rezaei et al. [12] propose the use of ambiguity set

to derive the fair classifier based on the principles of distributional

robustness. The proposed approach incorporates fairness criteria

into a worst case logarithmic loss minimization but ignores the

distribution shift. There has been research on studying fairness

issues in domain adaptation, transfer learning, and federated learn-

ing [3, 5, 8, 10, 13]. However, they do not address the robustness in

learning under sample selection bias.

2 FAIR CLASSIFIER UNDER SELECTION BIAS
We first define notations throughout this paper. Let 𝑋 denote the

feature space, 𝐴 the protected attribute, and 𝑌 the label set. Let Q
denote the true distribution over 𝑋 ×𝐴 ×𝑌 according to which test

samples 𝑡 = (𝑥, 𝑎,𝑦) are drawn. For simplicity, we assume both 𝑦

and 𝑎 are binary where𝑦 = 1 (0) denotes the favorable (unfavorable)

decision and 𝑎 = 1 (0) denotes the majority (minority) group. Under

the sample selection bias setting, the learning algorithm receives

a training dataset D𝑠 of 𝑁D𝑠
labeled points 𝑡1, · · · , 𝑡𝑁D𝑠

drawn
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according to a biased distribution Q𝑠 over 𝑋 ×𝐴 × 𝑌 . This sample

bias can be represented by a random binary variable 𝑠 that controls

the selection of points, i.e., 𝑠 = 1 for selected and 𝑠 = 0 otherwise.

Problem FormulationWith the observed D𝑠 , how to construct

a fair classifier 𝑓 that minimizes E(𝑥,𝑎,𝑦) ∈Q [𝑙 (𝑓 (𝑥, 𝑎), 𝑦)] subject
to |𝑅𝐷 (Q)| ≤ 𝜏 where 𝑙 is the loss function, 𝑅𝐷 (Q) is the risk

difference over distribution Q, i.e., 𝑅𝐷 (Q) = |𝑃Q (𝑦 = 1|𝑎 = 1) −
𝑃Q (𝑦 = 1|𝑎 = 0) |, and 𝜏 ∈ [0, 1] is a fairness threshold.

The probability of drawing 𝑡 = (𝑥, 𝑎,𝑦) according to the true but
unobserved distribution Q is related to the observed distribution

Q𝑠 . By definition of the random selection variable 𝑠 , the observed

biased distribution Q𝑠 can be expressed by 𝑃Q𝑠
(𝑡) = 𝑃Q (𝑡 |𝑠 = 1)

or 𝑃Q𝑠
(𝑥, 𝑎,𝑦) = 𝑃Q (𝑥, 𝑎,𝑦 |𝑠 = 1). Assuming 𝑃 (𝑠 = 1|𝑥, 𝑎) ≠ 0

for all 𝑡 ∈ 𝑋 × 𝐴 × 𝑌 , by the Bayes formula, we have 𝑃Q (𝑡) =
𝑃 (𝑡 |𝑠=1)𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑥,𝑎) =

𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑥,𝑎) 𝑃Q𝑠

(𝑡). Hence, if we define and con-

struct the new distribution
ˆQ𝑠 as 𝑃 (𝑠=1)

𝑃 (𝑠=1 |𝑡 ) Q𝑠 , i.e., 𝑃 ˆQ𝑠
(𝑥, 𝑎,𝑦) =

𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑥,𝑎,𝑦) 𝑃Q𝑠

(𝑥, 𝑎,𝑦), we have:

E(𝑥,𝑎,𝑦) ∈ ˆQ𝑠
[𝑙 (𝑓 (𝑥, 𝑎), 𝑦)] =

∑
𝑥,𝑎,𝑦

𝑙 (𝑓 (𝑥, 𝑎), 𝑦))𝑃
ˆQ𝑠
(𝑥, 𝑎,𝑦)

=
∑
𝑥,𝑎,𝑦

𝑙 (𝑓 (𝑥, 𝑎), 𝑦)) 𝑃 (𝑠 = 1)
𝑃 (𝑠 = 1|𝑥, 𝑎,𝑦) 𝑃Q𝑠

(𝑥, 𝑎,𝑦)

=
∑
𝑥,𝑎,𝑦

𝑙 (𝑓 (𝑥, 𝑎), 𝑦)) 𝑃 (𝑠 = 1)
𝑃 (𝑠 = 1|𝑥, 𝑎,𝑦)

𝑃Q(𝑠=1 |𝑥,𝑎,𝑦)𝑃Q (𝑥, 𝑎,𝑦)
𝑃Q (𝑠 = 1)

=
∑
𝑥,𝑎,𝑦

𝑙 (𝑓 (𝑥, 𝑎), 𝑦))𝑃Q (𝑥, 𝑎,𝑦) = E(𝑥,𝑎,𝑦) ∈Q [𝑙 (𝑓 (𝑥, 𝑎), 𝑦)]

Similarly we have 𝑅𝐷 ( ˆQ𝑠 ) = 𝑅𝐷 (Q). Equivalently, if we define

and construct a modified training dataset
ˆD𝑠 by introducing a

weight
𝑃 (𝑠=1)

𝑃 (𝑠=1 |𝑥,𝑎,𝑦) to each record 𝑡 ∈ D𝑠 , we can approximate

E(𝑥,𝑎,𝑦) ∈ ˆQ𝑠
[𝑙 (𝑓 (𝑥, 𝑎), 𝑦)] using E(𝑥,𝑎,𝑦) ∈ ˆD𝑠

[𝑙 (𝑓 (𝑥, 𝑎), 𝑦)], which

can be expressed as
1

𝑁D𝑠

∑𝑁D𝑠

𝑖=1
𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑡 ) 𝑙 (𝑓 (𝑥𝑖 , 𝑎𝑖 ), 𝑦𝑖 ).

Theorem 1. Under sample selection bias, the classifier 𝑓 that
minimizes E(𝑥,𝑎,𝑦,𝑠) ∈ ˆD𝑠

[𝑙 (𝑓 (𝑥, 𝑎), 𝑦)] subject to 𝑅𝐷 ( ˆD𝑠 ) ≤ 𝜏 is a
fair classifier.

The sample selection bias causes training data to be selected

non-uniformly from the population to be modeled. In this paper,

we assume 𝑃 (𝑠 = 1|𝑥, 𝑎,𝑦) = 𝑝 (𝑠 = 1|𝑥, 𝑎). Then the minimization

of the loss on
ˆD𝑠 subject to the fairness constraint is as:

min

w∈W
𝐿(w) = 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

𝑃 (𝑠 = 1)
𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )

𝑙 (𝑓 (𝑥𝑖 , 𝑎𝑖 ), 𝑦𝑖 )

subject to 𝑅𝐷 (𝐷̂𝑠 ) ≤ 𝜏

(1)

where w are the parameters of the classifier 𝑓 , and 𝑅𝐷 (𝐷̂𝑠 ) is

|
∑
1(𝑥𝑖 ,𝑎𝑖 ) ∈D11

𝑠

𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 )∑

1(𝑥𝑖 ,𝑎𝑖 ) ∈D ·1
𝑠

𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 )

−
∑
1(𝑥𝑖 ,𝑎𝑖 ) ∈D10

𝑠

𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 )∑

1(𝑥𝑖 ,𝑎𝑖 ) ∈D ·0
𝑠

𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 )

|. (2)

In the above, 1[.] is an indicator function,D
𝑖 𝑗
𝑠 = {(𝑥𝑖 , 𝑎𝑖 ) |𝑌 = 𝑖, 𝐴 =

𝑗} where 𝑖, 𝑗 ∈ {0, 1}, D · 𝑗
𝑠 = {(𝑥𝑖 , 𝑎𝑖 ) |𝐴 = 𝑗} where 𝑗 ∈ {0, 1} and ·

represents {0, 1}.

3 ROBUST AND FAIR CLASSIFICATION
To obtain the optimal solution of Eq. 1, we need to derive the sample

selection probability 𝑃 (𝑠 = 1|𝑡). However, it is rather challenging
to get the true value practically because the selection mechanism

is usually unknown. We estimate the sample selection probability

and use the estimated probability 𝑃 (𝑠 = 1|𝑡) as the true 𝑃 (𝑠 = 1|𝑡).
To take the estimation error between 𝑃 (𝑠 = 1|𝑡) and 𝑃 (𝑠 =

1|𝑡) into consideration, we adopt the approach of minimax robust

minimization [7, 11, 15] which advocates for the worst case of any

unknown true sample selection probability.Wemake an assumption

here that the true 𝑃 (𝑠 = 1|𝑥, 𝑎) is with the 𝜖 range of the estimated

𝑃 (𝑠 = 1|𝑥, 𝑎). Therefore, any value of 𝑃 (𝑠 = 1|𝑥, 𝑎) in this 𝜖 range

represents the possible real unknown distribution Q. Following the

standard robust optimization approaches and taking the estimation

error into consideration, we reformulate Eq. 1:

min

w∈W
max

𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 )
𝐿(w, 𝑃) = 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

𝑃 (𝑠 = 1)
𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )

𝑙 (𝑓 (𝑥𝑖 , 𝑎𝑖 ), 𝑦𝑖 )

subject to |𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ) − 𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ) | ≤ 𝜖
𝑅𝐷 (𝐷̂𝑠 ) ≤ 𝜏

(3)

In fact, 𝑃 (𝑠 = 1) is a constant and does not affect the problem

formulation and optimization. The robust minimax optimization

can be treated as an adversarial game by two players. One player

selects 𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ) within the 𝜖 range of the estimated 𝑃 (𝑠 =

1|𝑥𝑖 , 𝑎𝑖 ) to maximize the loss of the objective, which can be seen as

the worst case of Q. Another player minimizes the worst case loss

to find the optimal w. There are two advantages of robust minimax

optimization of Eq. 3. First, it takes the worst case induced by the

estimation error into consideration, thus the obtained classifier 𝑓 is

robust to any possible Q within the error range of the estimation.

Second, during the minimax optimization, the fairness is achieved

under the worst case. Therefore, we can guarantee the fairness for

any possible Q within the error range of the estimation.

The computation of 𝑅𝐷 (𝐷̂𝑠 ) involves the indicator function,

which makes it computationally intractable to reach the optimal

solution of Eq. 3. To address the intractable issue, we approximate

the fairness constraint using the boundary fairness [16]. We define

𝐶 (𝑡,w) be the covariance between the sensitive attribute and the

signed distance from the non-sensitive attribute vector to the de-

cision boundary. Then we can write the boundary fairness on D𝑠

as 𝐶D𝑠
(𝑡,w) = 1

𝑁D𝑠

∑𝑁D𝑠

𝑖=1
(𝑎𝑖 − 𝑎)𝑑w(x𝑖 ) , where 𝑎𝑖 is the sensitive

attribute value of 𝑡𝑖 , 𝑎 = 1

𝑁D𝑠

∑𝑁D𝑠

𝑖=1
𝑎𝑖 is the mean value of the sensi-

tive attribute and 𝑑w(x𝑖 ) is the distance to the decision boundary of

the classifier 𝑓 and is formally defined as 𝑑w(x𝑖 ) = w𝑇 x𝑖 . Similarly

we will have the boundary fairness on
ˆD𝑠 as:

𝐶
ˆD𝑠
(𝑡,w) = 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

(𝑎𝑖 − 𝑎)
𝑃 (𝑠 = 1)

𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )
𝑑w(x𝑖 ) . (4)

We enforce 𝐶
ˆD𝑠
(𝑡,w) ≤ 𝜎, 𝜎 ∈ 𝑅+ to achieve the fair classification.
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3.1 Solving Robust and Fair Optimization
The above optimization of involves two sets of parameters w and

𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ). According to its minimax formulation, it is prefer-

able to obtain the optimal solution in an iterativemanner by optimiz-

ing w and 𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ) alternatively. First, we fix 𝑃 (𝑠 = 1|𝑥1, 𝑎𝑖 )
and choose to transform the fairness constraint as a penalty term

and add to 𝐿(w), which can be expressed as:

min

w∈W
𝐿(w) = 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

𝑃 (𝑠 = 1)
𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )

𝑙 (𝑓 (𝑥𝑖 , 𝑎𝑖 ), 𝑦𝑖 )

+𝛽 ( 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

(𝑎𝑖 − 𝑎)
𝑃 (𝑠 = 1)

𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )
𝑑w(x𝑖 ) − 𝜎)

2

(5)

where 𝛽 is a hyperparameter that controls the utility and fairness

trade-off. By the transformation, standard optimization techniques

such as stochastic gradient decent can be used to solve Eq. 5. Second,

we fix w and derive the formula only related to 𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ) as:

max

𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 )
𝐿(𝑃) = 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

𝑃 (𝑠 = 1)
𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )

𝑙 (𝑓 (𝑥𝑖 , 𝑎𝑖 ), 𝑦𝑖 )

subject to |𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ) − 𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ) | ≤ 𝜖

| 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

(𝑎𝑖 − 𝑎)
𝑃 (𝑠 = 1)

𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )
𝑑w(x𝑖 ) | ≤ 𝜎

(6)

The objective of Eq. 6 is a linear combination of
𝑃 (𝑠=1)

𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 ) that
can be treated as one variable. 𝑃 (𝑠 = 1) is a constant and does not af-
fect the optimization. For the first constraint, |𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )−𝑃 (𝑠 =
1|𝑥𝑖 , 𝑎𝑖 ) | ≤ 𝜖 , we can obtain the range of

𝑃 (𝑠=1)
𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 ) after we es-

timate the range of each 𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ). The second constraint

| 1

𝑁D𝑠

∑𝑁D𝑠

𝑖=1
(𝑎𝑖 −𝑎) 𝑃 (𝑠=1)

𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 ) 𝑑w(x𝑖 ) | ≤ 𝜎 in Eq. 6 is linear with re-

spect to
𝑃 (𝑠=1)

𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 ) when w is fixed. Therefore, the optimization is

a standard linear programming problem and can be solved without

any additional relaxation.

3.2 RFLearn1: Bias Correction with D
Our previous formulation assumes the estimated 𝑃 (𝑠 = 1|𝑥, 𝑎)
is obtained. In this section, we discuss how to estimate the true

𝑃 (𝑠 = 1|𝑥, 𝑎) by using the unlabeled test data D. For a particular

data record 𝑡 , the ratio between the number of times 𝑡 in D and the

number of times 𝑡 in D𝑠 in terms of (𝑎, 𝑥) is an estimation value

for 𝑃 (𝑠 = 1|𝑥, 𝑎). Formally, for 𝑡 ∈ D, let D𝑡
denote the subset of

D containing exactly all the instances of 𝑡 and 𝑛𝑡 = |D𝑡 |. Similarly,

let D𝑡
𝑠 denote the subset of D𝑠 containing exactly all the instances

of 𝑡 and𝑚𝑡 = |D𝑡
𝑠 |. We then have 𝑃 (𝑠 = 1|𝑥, 𝑎) = 𝑚𝑡

𝑛𝑡
.

Lemma 1 [2] Let 𝛿 > 0, with probability at least 1−𝛿 , the following
inequality holds for all 𝑡 ∈ D𝑠 :

|𝑃 (𝑠 = 1|𝑥, 𝑎) − 𝑚𝑡

𝑛𝑡
| ≤

√
ln2𝑚′ + ln

1

𝛿

𝑝0𝑁D
(7)

where 𝑚′
denotes the number of unique points in D𝑠 and 𝑝0 =

min𝑡 ∈D𝑃 (𝑡) ≠ 0.

For notation convenience, we define 𝜃 (𝑥𝑖 , 𝑎𝑖 ) = 𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 )
and

ˆ𝜃 (𝑥𝑖 , 𝑎𝑖 ) = 𝑃 (𝑠 = 1|𝑥𝑖 , 𝑎𝑖 ), where ˆ𝜃 (𝑥𝑖 , 𝑎𝑖 ) is the empirical

value based on the frequency estimation. Lemma 1 states that

|𝜃 (𝑥𝑖 , 𝑎𝑖 ) − ˆ𝜃 (𝑥𝑖 , 𝑎𝑖 ) | is upper bounded by the right term in Eq.

7. Then we can apply the robust fairness aware framework by set-

ting 𝜃 (𝑥𝑖 , 𝑎𝑖 ) within 𝜖 range of estimated
ˆ𝜃 (𝑥𝑖 , 𝑎𝑖 ), where 𝜖 is the

right term of Eq. 7. According to the Theorem 2 in [2], the general-

ization error between the true distribution 𝜃 (𝑥𝑖 , 𝑎𝑖 ) and distribution
using the estimated

ˆ𝜃 (𝑥𝑖 , 𝑎𝑖 ) is expressed as: |𝐿𝜃 (w) − 𝐿
ˆ𝜃
(w) | <

𝜇

√
ln2𝑚′+ln 1

𝛿

𝑝0𝑁D
where 𝜇 is a constant determined by 𝜎 (Lemma 1) and

hyperparameter 𝛽 (Eq. 5). Suppose the maximum value of 𝐿
ˆ𝜃
(w) is

defined as 𝐿
ˆ𝜃
(w)𝑚𝑎𝑥 and our robust fairness-aware optimization is

to minimize 𝐿
ˆ𝜃
(w)𝑚𝑎𝑥 per iteration. The loss 𝐿

ˆ𝜃
(w)𝑚𝑎𝑥 consists of

both the prediction loss and fairness loss. Therefore, the minimiza-

tion of upper bound of the generalization error of true distribution

can provide robustness in terms of both prediction and fairness.

3.3 RFLearn2: Bias Correction without D
In this section, we focus on the scenario without unlabeled test

data D. The challenge is how to use D𝑠 alone to estimate the

true sample selection probability so that we can construct
ˆD𝑠 to

resemble D. We assume that 1) there exist 𝐾 clusters in D𝑠 ; 2) the

samples in the same cluster have the same selection probability;

and 3) the selection probability of each sample is within a range

of the uniform selection probability. Under these assumptions, the

ratio
𝑃 (𝑠=1)

𝑃 (𝑠=1 |𝑥𝑖 ,𝑎𝑖 ) for each sample from the same cluster is the same.

The ratio vector for 𝐾 clusters is defined as r = (𝑟1, 𝑟2, · · · , 𝑟𝐾 ). We

robustify the estimation by approximating 𝑟 within a Wasserstein

ball 𝐵𝜌 [1] around the uniform ratio r𝑢 , where all of the values in
r𝑢 is 1. Formally we have |r − r𝑢 | ≤ 𝜌 , where 𝜌 is the radius of

the Wasserstein ball. Suppose 𝑥𝑖 belongs to the 𝑘-th cluster where

𝑘 ∈ [𝐾], we have:

min

w∈W
max

r∈𝐵𝜌

𝐿(w, r) = 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

𝑟𝑘𝑙 (𝑓 (𝑥𝑖 , 𝑎𝑖 ), 𝑦𝑖 )

subject to |r − r𝑢 | ≤ 𝜌, | 1

𝑁D𝑠

𝑁D𝑠∑
𝑖=1

(𝑎𝑖 − 𝑎)𝑟𝑘𝑑w(x𝑖 ) | ≤ 𝜎

(8)

4 EXPERIMENT
We use two benchmark datasets, Adult [6] and Dutch [17]. In both

datasets, we set gender as the protected attribute. We follow the

biased data generation approach in [9] and select the data based on

the education level (married status) for Adult (Dutch). We choose

the logistic regression (LR) to implement and evaluate different

algorithms. We consider the following baselines: (a) LR without

fairness constraint (LR); (b) LR with fairness constraint (FairLR); (c)
robust LR in [15] that uses kernel functions to reweigh samples un-

der covariate shift but ignores the fairness constraint. For RFLearn1

(RFLearn2), we also consider its variation RFLearn1- (RFLearn2-) that
optimizes the robust loss with unweighted fairness constraint. For

RFLearn2− and RFLearn2, we apply K-means with K = 300 to cluster

the training data. We run all experiments 20 times and report the

average. The details of data preprocessing, biased data creation,

and hyperparameters are included in the report [4].
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Table 1: Model performance under data distribution shift (Adult and Dutch) Acc: accuracy

Methods Adult Dataset Dutch Dataset
Training Acc Test Acc Training 𝑅𝐷 Test 𝑅𝐷 Training Acc Test Acc Training 𝑅𝐷 Test 𝑅𝐷

LR (unbiased) 0.8124 0.8126 0.1562 0.1373 0.7493 0.7669 0.1498 0.1395

LR 0.8041 0.7882 0.1344 0.1228 0.7018 0.6821 0.0378 0.1012

FairLR 0.7823 0.7622 0.0231 0.0956 0.7006 0.6624 0.0289 0.0991

[15] 0.7883 0.8048 0.1348 0.1333 0.6812 0.7044 0.1421 0.1394

RFLearn1− 0.7412 0.7875 0.0351 0.1048 0.6501 0.6879 0.0315 0.0809

RFLearn1 0.7484 0.7816 0.0281 0.0416 0.6673 0.6910 0.0317 0.0405

RFLearn2− 0.7473 0.7771 0.0321 0.0963 0.6457 0.6809 0.0411 0.0973

RFLearn2 0.7336 0.7678 0.0197 0.0238 0.6479 0.6755 0.0321 0.0373

Table 2: Model performance of RFLearn1 under sample selection bias with different 𝛿 (Adult and Dutch). Acc: accuracy

𝛿
Adult Dataset Dutch Dataset

Training Acc Test Acc Training 𝑅𝐷 Test 𝑅𝐷 Training Acc Test Acc Training 𝑅𝐷 Test 𝑅𝐷

0.025 0.7181 0.7601 0.0189 0.0219 0.6521 0.6812 0.0291 0.0326

0.05 0.7217 0.7673 0.0239 0.0398 0.6521 0.6812 0.0321 0.0326

0.1 0.7484 0.7816 0.0307 0.0416 0.6673 0.6910 0.0378 0.0405

0.15 0.7239 0.7768 0.0277 0.0333 0.6701 0.6994 0.0275 0.0379

Table 3: Model performance of RFLearn2 under sample selection bias with different 𝜌 (Adult and Dutch). Acc: accuracy

𝜌
Adult Dataset Dutch Dataset

Training Acc Test Acc Training 𝑅𝐷 Test 𝑅𝐷 Training Acc Test Acc Training 𝑅𝐷 Test 𝑅𝐷

0.2 0.7229 0.7558 0.0178 0.0114 0.6401 0.6543 0.0175 0.0214

0.4 0.7336 0.7628 0.0197 0.0238 0.6479 0.6755 0.0321 0.0373

0.6 0.7428 0.7724 0.0269 0.0361 0.6544 0.6792 0.0301 0.0314

4.1 Accuracy vs. Fairness
Table 1 shows prediction accuracy and risk difference of each model

on training and test data for both Adult and Dutch.

Accuracy. First, the testing accuracy of LR is lower than that of

LR (unbiased), which demonstrates that the model prediction per-

formance degrades under sample selection bias. Second, with the

use of robust learning, the prediction accuracy of RFLearn1- and
RFLearn2- outperforms FairLR, which demonstrates that the robust

learning can provide robust prediction under the sample selection

bias. Third, the testing accuracy from robust learning methods

is higher than the training accuracy, which further demonstrates

the advantage of robust learning under the sample selection bias.

Fourth, the accuracy of RFLearn1 is higher than that of RFLearn2. It
is reasonable as we leverage the unlabeled test data in our RFLearn1.
Fairness. First, all of FairLR, RFLearn1- and RFLearn2- can only

achieve fairness on the training data with 𝑅𝐷 ≤ 0.05, but none

of these approaches can guarantee the fairness on the test data.

The method proposed by [15] only considers the robustness of

prediction error but ignores the fairness, so that it cannot achieve

the fairness on the test data as well. Second, RFLearn1 and RFLearn2

can achieve fairness on both training and test data as they enforce

the fairness under any possible adverse distribution.

4.2 Effects of the Hyperparameters
Table 2 shows the performance of RFLearn1 with different 𝛿 values.

Note that in Lemma 1 the estimation error of the sample selection

probability is upper bounded with the probability greater than 1−𝛿 .
A larger upper bound indicates that the adversary can generate

more possible distributions during the robust optimization, hence

helping achieve better prediction accuracy on test data. However,

when the upper bound is too large, excessive possible distributions

may reduce the prediction accuracy on test data. Table 3 shows the

result of RFLearn2 under different radius 𝜌 . We can see that the

testing accuracy increases with the increasing 𝜌 . Larger 𝜌 indicates

more possible generated distributions which are more likely to

cover the test distribution and improve the model performance.

Moreover, the proposed RFLearn1 and RFLearn2 can achieve both

fairness on the training and test data with different 𝛿 and 𝜌 .

5 CONCLUSION
In this paper we have developed a robust and fair learning frame-

work with two algorithms to deal with the sample selection bias.

Our framework adopts the reweighing estimation approach for bias

correction and the minimax robust estimation for achieving robust-

ness on prediction accuracy and fairness on test data. In our future

work, we will investigate the sample selection bias under missing

not at random, i.e., the sample selection probability also depends

on the label, and study how to enforce other fairness notions.
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