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ABSTRACT

To address the sample selection bias between the training and test
data, previous research works focus on reweighing biased training
data to match the test data and then building classification models
on the reweighed training data. However, how to achieve fairness
in the built classification models is under-explored. In this paper,
we propose a framework for robust and fair learning under sample
selection bias. Our framework adopts the reweighing estimation
approach for bias correction and the minimax robust estimation ap-
proach for achieving robustness on prediction accuracy. Moreover,
during the minimax optimization, the fairness is achieved under
the worst case, which guarantees the model’s fairness on test data.
We further develop two algorithms to handle sample selection bias
when test data is both available and unavailable.

CCS CONCEPTS

« Computing methodologies — Machine learning algorithms;
« Applied computing — Law, social and behavioral sciences;
« Theory of computation — Sample complexity and general-
ization bounds.
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1 INTRODUCTION

Traditional supervised machine learning assumes that training
data and test data are independently and identically distributed
(iid), i.e., each example t with pairs of feature input x and label y
drawn from the same distribution @ = P(x, y). The conditional label
distribution, P(y|x), is estimated as P(y|x) (aka, a classifier f(x))
from the given training dataset Ds. Similarly, in the fair machine
learning, we aim to learn a fair classifier f(x, a) from the training
dataset drawn from Q = P(x, a, y) where a is a protected attribute
such as gender or race. However, when the distributions on training
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and test data sets do not match, we are facing sample selection bias
or covariate shift. The classifier f simply learned from the training
dataset is vulnerable to sample selection bias and will incur more
accuracy loss over test data. Moreover, the fair classifier trained
with the biased data cannot guarantee fairness over test data. This
is a serious concern when it is critical and imperative to achieve
fairness in many applications.

In this paper, we develop a framework for robust and fair learning

under sample selection bias. We embrace the uncertainty incurred
by sample selection bias by producing predictions that are both
fair and robust in test data. Our framework adopts the reweighing
estimation approach for bias correction and the minimax robust es-
timation approach for achieving robustness on prediction accuracy.
Moreover, during the minimax optimization, the fairness is achieved
under the worst case, which guarantees the model’s fairness on
test data. To address the intractable issue, we approximate the fair-
ness constraint using the boundary fairness and combine into the
classifier’s loss function as a penalty. The modified loss function is
minimized in view of the most adverse distribution within a Wasser-
stein ball centered at the empirical distribution of the training data.
We present two algorithms for the scenarios where the unlabeled
test dataset O is either available or unavailable.
Related Work. Robust classification under covariate shift has been
studied recently. For example, Wen et al. [15] consider covariate
shift between the training and test data and apply Gaussian kernel
functions to reweigh the training examples and correct the shift.
Taskesen et al. [14] study fairness from the distributionally robust
perspective and assume the unknown true test distribution is con-
tained in a Wasserstein ball centered at the empirical distribution
on the observed training data. However the approach robustifies
the distribution at the individual data level and overlooks the over-
all distribution. Rezaei et al. [12] propose the use of ambiguity set
to derive the fair classifier based on the principles of distributional
robustness. The proposed approach incorporates fairness criteria
into a worst case logarithmic loss minimization but ignores the
distribution shift. There has been research on studying fairness
issues in domain adaptation, transfer learning, and federated learn-
ing [3, 5, 8, 10, 13]. However, they do not address the robustness in
learning under sample selection bias.

2 FAIR CLASSIFIER UNDER SELECTION BIAS

We first define notations throughout this paper. Let X denote the
feature space, A the protected attribute, and Y the label set. Let Q
denote the true distribution over X X A X Y according to which test
samples t = (x, a, y) are drawn. For simplicity, we assume both y
and a are binary where y = 1 (0) denotes the favorable (unfavorable)
decision and a = 1 (0) denotes the majority (minority) group. Under
the sample selection bias setting, the learning algorithm receives
a training dataset Ds of Np_ labeled points g, - - JtNp, drawn
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according to a biased distribution Qg over X x A x Y. This sample
bias can be represented by a random binary variable s that controls
the selection of points, i.e., s = 1 for selected and s = 0 otherwise.
Problem Formulation With the observed D, how to construct
a fair classifier f that minimizes E(y 4 4)eq[!/(f(x, a),y)] subject
to |[RD(Q)| < t where [ is the loss function, RD(Q) is the risk
difference over distribution Q, i.e., RD(Q) = |Po(j = 1la =1) —
Pq(3 =1la=0)|,and 7 € [0, 1] is a fairness threshold.

The probability of drawing ¢ = (x, a, y) according to the true but
unobserved distribution Q is related to the observed distribution
Q;. By definition of the random selection variable s, the observed
biased distribution Qs can be expressed by Pq_(t) = Pq(t|s = 1)
or P (x,a,y) = Pq(x,a,yls = 1). Assuming P(s = 1|x,a) # 0
forallt € X x AXY, by the Bayes formula, we have Pg(t) =
P(t|s=1)P(s=1) _  P(s=1)

P(s=1|x,a) ~ P(s=1|x,a)
struct the new distribution és

P(s=1)
P(s=1|x,a,y)

Branca 1P @] = > 1(f(x.a),y)Pg (x.a.9)

x,a,y

- D@

oy 1|x,a,y)

P, s=1|x,a P (’ ? )
PGEINE “ 11|33é,):?)xa :
xa,y Q

Z [(f(x,0),y))Pq(x,a,y) = E(xq,y)cll(f(x.a),y)]

x,a.y

Pgq, (t). Hence, if we define and con-
as P}Z(ss 11|t)Q3’ ie., P (x ay) =

Pq, (x, a,y), we have:

Pq,(x,a,y)

P(s=1)
(s=1lxay)

Similarly we have RD(Q;) = RD(Q). Equivalently, if we define

and construct a modified training dataset D5 by introducing a
P(s=1)
P(s=1|x,a,y)
E(x!a!y) <o, [I(f(x,a),y)] using E(x’a)y) e, [I(f(x,a),y)], which

Nos DD (et a) yi).

1
N_@szizl P(s=1]t)
THEOREM 1. Under sample selection bias, the classifier f that
minimizes E(x,a,y,s)ei)s [I(f(x,a),y)] subject to RD(Ds) < tisa

weight to each record t € D, we can approximate

can be expressed as

fair classifier.

The sample selection bias causes training data to be selected
non-uniformly from the population to be modeled. In this paper,
we assume P(s = 1|x, a,y) = p(s = 1|x, a). Then the minimization
of the loss on D; subject to the fairness constraint is as:

min L(w) - ;NZ R
wew W T Np, L4 PG5 = 1xna Ba ) )
subject to RD(Dy) <t
where w are the parameters of the classifier f, and RD(Dy) is
2 Unpa) 0l Pmirean 2 Lan D PiiTeoa L@

s=1)

P s=1)
Z (xla)ED m

P(
21 (x1,a:) €DL P(s=1|x,a;)
In the above, 1 [] is an indicator function, Z)sj = {(xi, ai)|Y =i, A=
j} where i, j € {0,1}, D = {(xi,a;)|A = j} where j € {0,1} and -
represents {0, 1}.

3000

CIKM ’21, November 1-5, 2021, Virtual Event, Australia

3 ROBUST AND FAIR CLASSIFICATION

To obtain the optimal solution of Eq. 1, we need to derive the sample
selection probability P(s = 1|t). However, it is rather challenging
to get the true value practically because the selection mechanism
is usually unknown. We estimate the sample selection probability
and use the estimated probability P(s= 1|t) as the true P(s = 1]¢).

To take the estimation error between P(s 1]t) and P(s
1|t) into consideration, we adopt the approach of minimax robust
minimization [7, 11, 15] which advocates for the worst case of any
unknown true sample selection probability. We make an assumption
here that the true P(s = 1|x, a) is with the € range of the estimated
P(s = 1|x, a). Therefore, any value of P(s = 1|x, ) in this e range
represents the possible real unknown distribution Q. Following the
standard robust optimization approaches and taking the estimation
error into consideration, we reformulate Eq. 1:

. P(s=1)
min max
P(s = 1|xj,a;)

L(w,P) =
weW P(s=1|x;a;)

Z

i=1

—————1(f(xi,ai), yi)

Nop,

©)

subject to |P(s = 1|x, a;) — P(s = 1|x;,a;)| < €
RD(Dy) < 1

In fact, P(s = 1) is a constant and does not affect the problem
formulation and optimization. The robust minimax optimization
can be treated as an adversarial game by two players. One player
selects P(s = 1|x;, a;) within the e range of the estimated b(s =
1|x;, a;) to maximize the loss of the objective, which can be seen as
the worst case of Q. Another player minimizes the worst case loss
to find the optimal w. There are two advantages of robust minimax
optimization of Eq. 3. First, it takes the worst case induced by the
estimation error into consideration, thus the obtained classifier f is
robust to any possible Q within the error range of the estimation.
Second, during the minimax optimization, the fairness is achieved
under the worst case. Therefore, we can guarantee the fairness for
any possible Q within the error range of the estimation.

The computation of RD(Ds) involves the indicator function,
which makes it computationally intractable to reach the optimal
solution of Eq. 3. To address the intractable issue, we approximate
the fairness constraint using the boundary fairness [16]. We define
C(t,w) be the covariance between the sensitive attribute and the
signed distance from the non-sensitive attribute vector to the de-
cision boundary. Then we can write the boundary fairness on Ds

; ZND& (a; -

attribute value of t,, a=y- Z

as Cp (t,w) = a)dy (x;)» Where a; is the sensitive

N. . .
DS a; is the mean value of the sensi-

tive attribute and dy, (4,) is the dlstance to the decision boundary of
the classifier f and is formally defined as dy(x,) = wlx;. Similarly

we will have the boundary fairness on Ds as:

Npg

P(s=1)
Ca (t, a) ————————— 4
Ds( W) P(s—1|x a) w(x;)* ()
We enforce Cp, (t,w) < 0,0 € R* to achieve the fair classification.
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3.1 Solving Robust and Fair Optimization

The above optimization of involves two sets of parameters w and
P(s = 1|xj, a;). According to its minimax formulation, it is prefer-
able to obtain the optimal solution in an iterative manner by optimiz-
ing w and P(s = 1|x;, ;) alternatively. First, we fix P(s = 1|x1, a;)
and choose to transform the fairness constraint as a penalty term
and add to L(w), which can be expressed as:

Np,
_ 1 T P(s=1)
“xlreuqri/ L(w) = E Z m I(f (xi, ai), yi)
N )
N =1 2
Eyl o)

s s

where f is a hyperparameter that controls the utility and fairness
trade-off. By the transformation, standard optimization techniques
such as stochastic gradient decent can be used to solve Eq. 5. Second,
we fix w and derive the formula only related to P(s = 1|x;, a;) as:

1 Noy P(s=

L(P) = —l
P(sg11|aé,ai) (P) No, 4 Z PG = Tna) (f (xi, ai), yi)
subject to [P(s = 1|xj, a;) — P(s = 1|xs, a5)| < € 6)

Nop,
=1)
|—§ ;((h - a) m dw(xy)| <
The objective of Eq. 6 is a linear combination of % that

can be treated as one variable. P(s = 1) is a constant and does not af-
fect the optimization. For the first constraint, |P(s = 1|x;, a;) —P(s =
P(s=1)
P(s=1|x;,a;)
timate the range of each P(s = 1|x;,a;). The second constraint
1 Nopg
N T2

spect to

1|xi, a;)| < €, we can obtain the range of after we es-

S (aj—a) P(s1—|x))dW(X )| < o inEq. 6 is linear with re-

P(s=1)
P(s=1lxi.a;)
a standard linear programming problem and can be solved without
any additional relaxation.

when w is fixed. Therefore, the optimization is

3.2 RFLearn!: Bias Correction with D

Our previous formulation assumes the estimated B(s 1|x, a)
is obtained. In this section, we discuss how to estimate the true
P(s = 1|x, a) by using the unlabeled test data D. For a particular
data record t, the ratio between the number of times ¢ in O and the
number of times ¢ in D; in terms of (a, x) is an estimation value
for P(s = 1|x, a). Formally, for t € D, let D’ denote the subset of
D containing exactly all the instances of t and n; = |D?|. Similarly,
let D! denote the subset of D containing exactly all the instances
|DE|. We then have P(s = 1|x,a) =

of t and m; =

Lemma 1 [2] Let § > 0, with probability at least 1— 5, the following
inequality holds for all ¢ € Dy:

’ 1
In2m’ + ln(S

PoNp

where m’ denotes the number of unique points in Ds and py =
ming e pP(t) # 0.
For notation convenience, we define 0(x;j, a;) = P(s = 1|xj, a;)

P(s = 1]x,a) — | < )
ng

and é(xi, a;j) = P(s = 1|x;, a;), where é(x,-, a;) is the empirical
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value based on the frequency estimation. Lemma 1 states that
|0(xi,a;) — é(x,-, a;)| is upper bounded by the right term in Eq.
7. Then we can apply the robust fairness aware framework by set-
ting 0(x;, a;) within e range of estimated é(xi, a;), where € is the
right term of Eq. 7. According to the Theorem 2 in [2], the general-
ization error between the true distribution 6(x;, a;) and distribution
using the estimated é(xi, a;) is expressed as: |Lg(w) — Ls (w)| <

In2m’+ln % . .
UA| % where 1 is a constant determined by o (Lemma 1) and

hyperparameter § (Eq. 5). Suppose the maximum value of L;(w) is
defined as L 7 (W)max and our robust fairness-aware optimization is
to minimize L (W)max per iteration. The loss L; (W) max consists of
both the prediction loss and fairness loss. Therefore, the minimiza-
tion of upper bound of the generalization error of true distribution
can provide robustness in terms of both prediction and fairness.

3.3 RFLearn®: Bias Correction without D

In this section, we focus on the scenario without unlabeled test
data D. The challenge is how to use D; alone to estimate the
true sample selection probability so that we can construct Ds to
resemble D). We assume that 1) there exist K clusters in Dg; 2) the
samples in the same cluster have the same selection probability;
and 3) the selection probability of each sample is within a range
of the uniform selection probability. Under these assumptions, the
% for each sample from the same cluster is the same.
The ratio vector for K clusters is defined as r = (ry,r2,- -+ ,rg). We
robustify the estimation by approximating r within a Wasserstein
ball B, [1] around the uniform ratio r,, where all of the values in
ry is 1. Formally we have |r — ry| < p, where p is the radius of
the Wasserstein ball. Suppose x; belongs to the k-th cluster where
k € [K], we have:

ratio

NZ)S
L ) i» i), Yi
vgré% 52%)( (w,r) = ) ; ril (f (x4, ai), yi)
N (8
DS

subject to |[r —ry| < p, —Aredy(x)l <0

4 EXPERIMENT

We use two benchmark datasets, Adult [6] and Dutch [17]. In both
datasets, we set gender as the protected attribute. We follow the
biased data generation approach in [9] and select the data based on
the education level (married status) for Adult (Dutch). We choose
the logistic regression (LR) to implement and evaluate different
algorithms. We consider the following baselines: (a) LR without
fairness constraint (LR); (b) LR with fairness constraint (FairLR); (c)
robust LR in [15] that uses kernel functions to reweigh samples un-
der covariate shift but ignores the fairness constraint. For RFLearn!
(RFLearn?), we also consider its variation RFLearn'” (RFLearn?®") that
optimizes the robust loss with unweighted fairness constraint. For
RFLearn®~ and RFLearn?, we apply K-means with K = 300 to cluster
the training data. We run all experiments 20 times and report the
average. The details of data preprocessing, biased data creation,
and hyperparameters are included in the report [4].
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Table 1: Model performance under data distribution shift (Adult and Dutch) Acc: accuracy

Methods Adult Dataset Dutch Dataset
Training Acc ‘ Test Acc ‘ Training RD ‘ Test RD | Training Acc ‘ Test Acc ‘ Training RD ‘ Test RD
LR (unbiased) 0.8124 0.8126 0.1562 0.1373 0.7493 0.7669 0.1498 0.1395
LR 0.8041 0.7882 0.1344 0.1228 0.7018 0.6821 0.0378 0.1012
FairLR 0.7823 0.7622 0.0231 0.0956 0.7006 0.6624 0.0289 0.0991
[15] 0.7883 0.8048 0.1348 0.1333 0.6812 0.7044 0.1421 0.1394
RFLearn!~ 0.7412 0.7875 0.0351 0.1048 0.6501 0.6879 0.0315 0.0809
RFLearn! 0.7484 0.7816 0.0281 0.0416 0.6673 0.6910 0.0317 0.0405
RFLearn®*~ 0.7473 0.7771 0.0321 0.0963 0.6457 0.6809 0.0411 0.0973
RFLearn? 0.7336 0.7678 0.0197 0.0238 0.6479 0.6755 0.0321 0.0373

Table 2: Model performance of RFLearn!' under sample selection bias with different § (Adult and Dutch). Acc: accuracy

s Adult Dataset Dutch Dataset
Training Acc | Test Acc | Training RD | Test RD | Training Acc | Test Acc | Training RD | Test RD
0.025 0.7181 0.7601 0.0189 0.0219 0.6521 0.6812 0.0291 0.0326
0.05 0.7217 0.7673 0.0239 0.0398 0.6521 0.6812 0.0321 0.0326
0.1 0.7484 0.7816 0.0307 0.0416 0.6673 0.6910 0.0378 0.0405
0.15 0.7239 0.7768 0.0277 0.0333 0.6701 0.6994 0.0275 0.0379

Table 3: Model performance of RFLearn® under sample selection bias with different p (Adult and Dutch). Acc: accuracy

Adult Dataset Dutch Dataset
P Training Acc | Test Acc | Training RD | Test RD | Training Acc | Test Acc | Training RD | Test RD
0.2 0.7229 0.7558 0.0178 0.0114 0.6401 0.6543 0.0175 0.0214
0.4 0.7336 0.7628 0.0197 0.0238 0.6479 0.6755 0.0321 0.0373
0.6 0.7428 0.7724 0.0269 0.0361 0.6544 0.6792 0.0301 0.0314

4.1 Accuracy vs. Fairness

Table 1 shows prediction accuracy and risk difference of each model
on training and test data for both Adult and Dutch.

Accuracy. First, the testing accuracy of LR is lower than that of
LR (unbiased), which demonstrates that the model prediction per-
formance degrades under sample selection bias. Second, with the
use of robust learning, the prediction accuracy of RFLearn'” and
RFLearn® outperforms FairLR, which demonstrates that the robust
learning can provide robust prediction under the sample selection
bias. Third, the testing accuracy from robust learning methods
is higher than the training accuracy, which further demonstrates
the advantage of robust learning under the sample selection bias.
Fourth, the accuracy of RFLearn! is higher than that of RFLearn?. It
is reasonable as we leverage the unlabeled test data in our RFLearn!.
Fairness. First, all of FairLR, RFLearn!” and RFLearn* can only
achieve fairness on the training data with RD < 0.05, but none
of these approaches can guarantee the fairness on the test data.
The method proposed by [15] only considers the robustness of
prediction error but ignores the fairness, so that it cannot achieve
the fairness on the test data as well. Second, RFLearn! and RFLearn?
can achieve fairness on both training and test data as they enforce
the fairness under any possible adverse distribution.

4.2 Effects of the Hyperparameters

Table 2 shows the performance of RFLearn! with different § values.
Note that in Lemma 1 the estimation error of the sample selection
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probability is upper bounded with the probability greater than 1 - 4.
A larger upper bound indicates that the adversary can generate
more possible distributions during the robust optimization, hence
helping achieve better prediction accuracy on test data. However,
when the upper bound is too large, excessive possible distributions
may reduce the prediction accuracy on test data. Table 3 shows the
result of RFLearn? under different radius p. We can see that the
testing accuracy increases with the increasing p. Larger p indicates
more possible generated distributions which are more likely to
cover the test distribution and improve the model performance.
Moreover, the proposed RFLearn' and RFLearn? can achieve both
fairness on the training and test data with different § and p.

5 CONCLUSION

In this paper we have developed a robust and fair learning frame-
work with two algorithms to deal with the sample selection bias.
Our framework adopts the reweighing estimation approach for bias
correction and the minimax robust estimation for achieving robust-
ness on prediction accuracy and fairness on test data. In our future
work, we will investigate the sample selection bias under missing
not at random, i.e., the sample selection probability also depends
on the label, and study how to enforce other fairness notions.
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