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differential privacy of training data. Functional mechanism
[10], which adds noise to the objective function rather than
parameters of built models, has also been shown great success
in deep learning [11].

Recently, several works propose to train privacy preserving
models in the decentralized settings. Research in [12] proposes
a collaborative deep learning framework in which participants
train independently and share only subsets of updates of
parameters in the horizontally distributed setting. However,
it is not applicable in the vertically partitioned setting. This
is because we cannot partition the gradients based on features
and each local party needs to collect raw data of those features
owned by other parties, which requires extensive use of secure
multiparty computation to update gradients in each iteration.

There have been several research works on building pri-
vacy preserving models in the vertically partitioned setting.
Research in [13] develops a framework for private data sharing
for the purpose of statistical estimation. Each party communi-
cates perturbed random projections of their locally held fea-
tures to ensure differential privacy. However, the task focuses
on the statistical estimation of coefficients rather than releasing
a jointly trained model in our context. Research in [14]
develops a distributed private block-coordinate Frank-Wolfe
algorithm under arbitrary sampling. They design an active fea-
ture sharing scheme by utilizing private Johnson-Lindenstrauss
transform to update local partial gradients in a differentially
private and communication efficient manner. However, the
gradient perturbation requires noise addition in each iteration,
which is difficult to achieve good utility-privacy tradeoff, as
shown in our evaluation. In ensemble learning, research in
[15] proposes to enhance privacy preserving logistic regression
by feature-wise partitioned stacking. The proposed method is
combined with hypothesis transfer learning to enable learning
across different organizations. However, this research does not
really apply to vertical partitioned learning as the high-level
model still needs to access all data to construct meta-data set
when training private logistic regression.

In this work, we propose a new framework for differential
privacy preserving multiparty learning in the vertically parti-
tioned setting. Our core idea is based on the functional mecha-
nism that achieves differential privacy of the released model by
adding noise to the objective function. In the framework, we
show the server can simply dissect the objective function into

Abstract—Preserving differential privacy has been well studied 
under the centralized setting. However, it’s very challenging to 
preserve differential privacy under multiparty setting, especially 
for the vertically partitioned case. In this work, we propose a 
new framework for differential privacy preserving multiparty 
learning in the vertically partitioned setting. Our core idea is 
based on the functional mechanism that achieves differential 
privacy of the released model by adding noise to the objective 
function. We show the server can simply dissect the objective 
function into single-party and cross-party sub-functions, and 
allocate computation and perturbation of their polynomial co-
efficients t o l ocal p arties. O ur m ethod n eeds o nly o ne r ound of 
noise addition and secure aggregation. The released model in our 
framework achieves the same utility as applying the functional 
mechanism in the centralized setting. Evaluation on real-world 
and synthetic datasets for linear and logistic regressions shows 
the effectiveness of our proposed method.
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I. INTRODUCTION

Rapid growth of modern technology is largely driven by 
data. In most industries, data exist in the form of isolated 
islands. Federated learning is proposed to build machine
learning models based on distributed datasets across multiple 
parties [1], [2]. In particular, vertically partitioned multiparty 
learning is applicable when parties share the same record 
ID space but differ in the feature space, such as using user 
experience on the web to support decisions on healthcare. 
Understandably, parties do not want to share raw data or
statistics due to privacy concerns. How to build an efficient 
global model through data barrier while preserving local
parties’ privacy is a challenging problem.

Differential privacy is a standard privacy preserving scheme
to achieve opt-out right of individuals [3]. In general, dif-
ferential privacy guarantees the query results or the released 
model cannot be exploited by attackers to derive whether one
particular record is present or absent in the underlying dataset. 
Many mechanisms have been proposed to achieve differential
privacy [4]–[7]. For example, the classic Laplace mechanism
injects random noise into the released results such that the
inclusion or exclusion of a single record makes no statistical
difference [3]. For machine learning models, research in [8],
[9] develops methods of adding noise to gradients to preserve
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single-party and cross-party sub-functions and rewrite them
in the polynomial form. For the coefficients in the polynomial
form related to one single party, they can be calculated by each
party in a differentially private manner. For those coefficients
related to two or multiple parties, we apply secure vector
multiplication and then add noise before sending to server.
The server then solves the perturbed objective function in
the server side and releases the private model. Our method
needs only one round of noise addition and secure aggregation.
Hence, both good privacy-utility tradeoff and computational
efficiency can be achieved. In fact, the released model in our
framework achieves the same utility as applying the functional
mechanism in the centralized setting. Our evaluation on real-
world and synthetic datasets for linear and logistic regressions
shows the effectiveness of our proposed method. Our novelty
and contributions are summarized below:
(1) We propose a novel framework to achieve differential

privacy in the vertically partitioned setting. The developed
method perturbs the single-party and cross-party coeffi-
cients in one single round and hence achieves differential
privacy for all parties with minimal communication cost.

(2) Our approach adds less noise than state-of-the-art ap-
proaches to achieve the same level of differential privacy,
e.g., we reduce noise addition by a magnitude of the num-
ber of total iterations compared with gradient perturbation
approaches.

(3) Our framework only needs one round of secure vector
multiplication to prevent the disclosure of raw data be-
tween the server and the participating parties. All se-
cure vector multiplications occur at the beginning of our
approach. We use the standard MPC protocol based on
Shamir’s secret sharing scheme and evaluate its execution
performance in our framework.

(4) Different from the horizontally partitioned setting, the
levels of differential privacy achieved with respect to
global data and local data are different. Our work is
the first to study this problem. We provide theoretical
analysis on the levels of differential privacy achieved by
our algorithm with respect to global data (Theorem 1) and
local data (Theorem 2).

(5) We propose two protocols, top-down protocol when the
server selects the privacy budget (Section III-A to III-C),
and bottom-up protocol when local parties select their
privacy budgets (Section III-D).

The rest of this paper is organized as follows. Section II
introduces backgrounds on differential privacy, functional
mechanism, and secure vector multiplication. Section III
shows our framework of achieving differential privacy in the
vertically partitioned multiparty learning based on functional
mechanism. Section IV reports our evaluation results in terms
of privacy-utility tradeoff and execution time. Finally, the
conclusions are summarized in Section V.

II. PRELIMINARIES

In this section, we revisit how to achieve differential privacy
in the centralized setting. Consider a dataset D with n users.

Each user’s information is a record ti = {xi, yi}, where
xi is the user’s feature information and yi is the user’s
label. The total number of features is d. We assume that
xia ∈ [−1, 1] for a ∈ [1, d] and y ∈ [−1, 1] for linear
regression or y ∈ {0, 1} for logistic regression. The objective
is to build a model ŷ = q(x; w) from dataset D that achieves
differential privacy. To fit the model parameter w, we have
an objective function fD(w) =

∑n
i=1 f(ti; w) that takes ti

and w as input. The optimal model parameter w is defined
as: w = arg min

w

∑n
i=1 f(ti; w). We use linear regression and

logistic regression as examples in this paper.

A. Differential Privacy

Differential privacy guarantees output of a query q be
insensitive to the presence or absence of one record in a
dataset.

Definition 1. Differential privacy [3]. A mechanism M sat-
isfies ε-differential privacy, if for all neighboring datasets D
and D′ that differ in exactly one record and all subsets Z of
M’s range:

Pr(M(D) ∈ Z) ≤ exp(ε) · Pr(M(D′) ∈ Z).

The parameter ε denotes the privacy budget (smaller values
indicate stronger privacy guarantee).

Definition 2. Global sensitivity [3]. Given a query q:
D → Rd, the global sensitivity ∆ is defined as ∆ =
maxD,D′ ||q(D)− q(D′)||1.

The global sensitivity measures the maximum possible
change in q(D) when one record in the dataset changes. The
Laplace mechanism is a popular method to achieve differential
privacy. It adds identical independent noise into each output
value of q(D).

Definition 3. Laplace mechanism [3]. Given a dataset D
and a query q, a mechanism M(D) = q(D) + η satisfies
ε-differential privacy, where η is a random vector drawn from
Lap(∆

ε ) 1.

Alternately, adding Gaussian noise N(0, σ2) with σ cal-
ibrated to ∆ ln (1/δ)/ε, one can achieve (ε, δ)-differential
privacy, where δ > 0 gives relaxed differential privacy.

B. Functional Mechanism

Functional mechanism [10] is a differentially private
method designed for optimization-based models. It achieves
ε-differential privacy by injecting noise into the objective
function and returns privacy preserving parameter w̄ that
minimizes the perturbed objective function.

Because the objective function fD(w) is a complicated
function of w, the functional mechanism exploits the poly-
nomial representation of fD(w). The model parameter w is a
vector that contains d values w1, w2, · · · , wd. Let φ(w) denote

1The Laplace distribution Lap(η|µ, σ) with mean µ and scale σ has
probability density function Lap(η|µ, σ) = 1

2σ
exp(

|x−µ|
σ

). Its variance
is 2σ2. Note µ = 0 if not specified.

Authorized licensed use limited to: University of Arkansas. Downloaded on February 28,2022 at 23:15:40 UTC from IEEE Xplore.  Restrictions apply. 



5476

a product of w1, w2, · · · , wd, i.e., φ(w) = wc11 · w
c2
2 · · ·w

cd
d

for some c1, c2, · · · , cd ∈ N. Let Φj(j ∈ N) denote the
set of all products of w1, w2, · · · , wd with degree j, i.e.,
Φj = {wc11 w

c2
2 · · ·w

cd
d |
∑d
l=1 cl = j}. For example, Φ1 =

{w1, w2, · · · , wd}, and Φ2 = {wa · wb|a, b ∈ [1, d]}.
Based on the Stone-Weierstrass Theorem [16], any continu-

ous and differentiable function can be expressed in the polyno-
mial representation. Hence, the objective function fD(w) can
be expressed as a polynomial of w1, w2, · · · , wd, for some
J ∈ N:

fD(w) =

n∑
i=1

J∑
j=0

∑
φ∈Φj

λφtiφ(w), (1)

where λφti ∈ R denotes the coefficient of φ(w).
Functional mechanism perturbs the objective function

fD(w) by injecting Laplace noise into its polynomial coef-
ficients λ̄φ =

∑n
i=1 λφti + Lap(

∆f

ε ), where the global sensi-
tivity of fD(w) is

∆f = 2 max
t

J∑
j=1

∑
φ∈Φj

||λφt||1.

Then the model parameter w̄ is derived by minimizing the
perturbed function f̄D(w).

1) Application to Linear Regression: A linear regression
on D returns a prediction function ŷi = q(xi; w) = xTi w. The
objective function of linear regression is defined as:

fD(w) =

n∑
i=1

(yi − xTi w)2

=

n∑
i=1

(yi)
2 −

d∑
a=1

(2

n∑
i=1

yixia)wa

+
∑

1≤a,b≤d

(

n∑
i=1

xiaxib)wa · wb.

(2)

We get different order polynomial coefficients λφ0
=

n∑
i=1

(yi)
2,

λwa = −2
n∑
i=1

yixia, and λwa·wb =
∑

1≤a,b≤d

n∑
i=1

xiaxib. Then

we add Lap(
∆f

ε ) to the coefficients, where the global sen-
sitivity of fD(w) for linear regression is

∆f = 2(1 + 2d+ d2).

2) Application to Logistic Regression: A logistic regression
on D returns a function which predicts ŷi = 1 with probability
ŷi = q(xi; w) = exp(xTi w)/(1 + exp(xTi w)). The objective
function of logistic regression is defined as:

fD(w) =

n∑
i=1

[
log(1 + exp(xTi w))− yixTi w

]
. (3)

As the polynomial form of Equation 3 contains terms with
unbounded degrees, to apply the functional mechanism, it is

rewritten as the approximate polynomial representation based
on Taylor expansion [10]:

fD(w) =
( n∑
i=1

2∑
j=0

f
(j)
1 (0)

j!

(
xTi w

)j )− ( n∑
i=1

yix
T
i

)
w, (4)

where f1(·) = log(1 + exp(·)), J = 2. We get different

order polynomial coefficients λwa =
n∑
i=1

( f(1)
1 (0)

1! − yi
)
xia and

λwa·wb =
∑

1≤a,b≤d

n∑
i=1

f
(2)
1 (0)

2! xiaxib, and then add Lap(∆f

ε ) to

the coefficients, where the global sensitivity of fD(w) for
logistic regression is

∆f =
d2

4
+ d.

C. Secure Vector Multiplication

Secure multiparty computation (MPC) allows a group of
mutually distrustful parties to jointly compute a function over
distributed data and provide confidentiality of inputs and
intermediate results as well as integrity of the final output.
Refer to [17] for a complete introduction. General purpose
MPC protocols can run arbitrary computation but impose
significant overhead. In our framework, we only need one
round of secure vector multiplication and hence we choose
one efficient MPC protocol based on Shamir’s secret sharing.

Shamir’s secret sharing protocols [18] allow a dealer to
break a secret value into shares and distribute these shares
to group of recipients with the property that any unqualified
set of recipients learns nothing about the secret, while any
qualified set of recipients can reconstruct the secret from
their share. MPC protocols based on Shamir’s secret sharing

enables two parties to compute the scalar product
n∑
i=1

vai · vbi
given the ciphertexts of two vectors va = {va1 , va2 , . . . , van}
and vb = {vb1, vb2, . . . , vbn}. Each participant first encrypts its
private data and then uploads the ciphertexts to the server.
The server then executes the operations over the ciphertexts
and returns the encrypted results to the participants. Each pair
of participants jointly decrypts the actual result. During this
process, the server learns no private data of any participants
even if they collude with all the rest participants. Through of-
floading the computation tasks to the resource-abundant cloud
server, this scheme makes the computation and communication
complexity on each participant independent to the number of
participants.

III. ACHIEVING DIFFERENTIAL PRIVACY IN THE
VERTICALLY PARTITIONED MULTIPARTY LEARNING

In this section, we propose a framework of achieving differ-
ential privacy in the vertically partitioned multiparty learning
based on functional mechanism.

A. Problem Statement

In the vertically partitioned multiparty setting, each user’s
information is held by K parties separately. Each party Pk
owns a disjoint dataset Dk on feature set Xk, where |Xk| =

Authorized licensed use limited to: University of Arkansas. Downloaded on February 28,2022 at 23:15:40 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1: The framework of achieving differential privacy in the
vertically partitioned multiparty learning based on functional
mechanism. (1) Dissect the objective function f into sum of
the single-party sub-function g and cross-party sub-function
h; (2) Collect the private single-party coefficients λ̄

k
φ from

each party Pk; (3) Secure vector multiplication and collect
the private cross-party coefficients λ̄

k∗
φ ; (4) Solve the private

objective function f̄ .

dk. Similarly, wk denotes a subset of w corresponding to Xk.
Label Y is not shared by all parties. Without loss of generality,
we simply assume party P1 holds the label.

A server coordinates K parties to build a multiparty learning
model. The server is honest but curious. It aims to release a
model trained from the whole dataset D and to ensure the
released model satisfies ε-differential privacy w.r.t. D. The
parties provide necessary information to the server and help
server to build the ε-differentially private global model. But
they do not trust the server or each other in terms of sharing
users’ private information from their local datasets. Each party
can share statistics in a differentially private manner. If a
computation involves at least two parties, it is conducted by
a secure multiparty computation. For party P1, it shares the
label with other parties upon request through secure multiparty
computation. On top of that, each party Pk cares about the
level of differential privacy achieved w.r.t. its sub-dataset Dk.
In the training process, the local party Pk achieves ε(k)-
differential privacy, where ε(k) is ideally a smaller privacy
level than ε.

The goal is to reduce the amount of secure multiparty
computation and noise addition to the minimum while keeping
local information secure and private.

B. General Model Framework

We apply functional mechanism in the vertically partitioned
multiparty learning. Functional mechanism does not inject
noise directly into the regression results, but ensures privacy
by perturbing objective function of the regression analysis.
The server only collects information of the objective function
at the beginning. The objective function can be dissected
based on features, so computation and perturbation of the
coefficients can be allocated to local parties by local feature
sets. For some operations involving multiple parties, the server

conducts secure multiparty computation with the parties. Once
the perturbed coefficients are collected from local parties, the
server solves the perturbed objective function and releases the
private model. Figure 1 illustrates our proposed framework of
functional mechanism in the vertically partitioned multiparty
learning. The procedure of our framework is shown as Algo-
rithm 1. Overall, there are four steps:
(1) The server dissects objective function f into the sum of

single-party sub-function g and cross-party sub-function h,
sets and allocates the corresponding coefficients {λkφ}K ,
{λk∗φ }K for each party Pk to compute (Line 1-2). We use
λkφ,λ

k∗
φ to denote all the single-party coefficients from

party Pk and all the cross-party coefficients involving
party Pk, respectively. The server calculates the scale of
noise needed to achieve ε-differential privacy and informs
all the parties (Line 3).

(2) Each party Pk computes polynomial coefficients λkφ in
single-party sub-function g from Dk and sends noisy
single-party coefficients λ̄

k
φ to the server (Line 6-8).

(3) For polynomial coefficients λk∗φ in cross-party sub-
function h, it involves data from Pk and P∗,
such as

n∑
i=1

yix
k
ia, where yi is from party P1, and∑

1≤a,b≤d

n∑
i=1

xkiax
l
ib, where Xa ∈ Xk, Xb ∈ Xl. Note that

λk∗φ is a scalar product of two vectors from party Pk and
P∗. All parties send encrypted vectors of user information
to the server and receive back the securely aggregated
polynomial coefficients λk∗φ following the MPC protocol
(Line 11). The parties add Laplace noise to the results and
send λ̄

k∗
φ back to server (Line 12-13).

(4) The server receives all λ̄φ, solves the noisy objective
function f̄ and releases the differentially private model
(Line 16-18).

1) Dissecting the Objective Function: In our framework,
we only need one round of noise addition. The for-loop
in Algorithm 1 (Lines 4-15) shows the noise addition and
calculation of different subpart/terms of the objective function,
all of which together accounts for one single round. In fact,
we take advantage that the overall objective function can be
dissected into two parts based on features,

fD(w) =

K∑
k=1

gDk +
∑

1≤k,∗≤K

hDkD∗ , (5)

where gDk is the single-party sub-function, and hDkD∗ is
the cross-party sub-function. Single-party sub-function g only
involves data in party Pk. Cross-party sub-function h involves
data in party Pk and at least one other party.

Similarly to objective function fD(w) in Equation 1, sub-
function g and h can also be expressed as polynomials of
w1, w2, · · · , wd. For the single-party sub-function,

gDk =

J∑
j=0

∑
φ∈Φk

j

λkφφ(wk).

Authorized licensed use limited to: University of Arkansas. Downloaded on February 28,2022 at 23:15:40 UTC from IEEE Xplore.  Restrictions apply. 



5478

Algorithm 1 Functional mechanism in vertically partitioned
multiparty learning (D, f , ε)

1: Set fD(w) by Equation 5. B Server
2: Allocate {λk}K , {λk∗}K to parties B Server
3: Set ∆f = 2 max

t

∑J
j=1

∑
φ∈Φj

||λφt||1 B Server
4: for each party Pk do
5: for each λkφ ∈ λkφ do
6: Compute λkφ =

∑n
i=1 λ

k
φti

B Party Pk
7: Set λ̄kφ = λkφ + Lap(

∆f

ε ) B Party Pk
8: Send λ̄kφ to server B Party Pk
9: end for

10: for each λk∗φ ∈ λk∗φ do
11: Compute λk∗φ =

∑n
i=1 λ

k∗
φti

using secure vector
multiplication B Party Pk, P∗

12: Set λ̄k∗φ = λk∗φ +Lap(
∆f

ε ) B Party Pk
13: Send λ̄k∗φ to server B Party Pk
14: end for
15: end for
16: Let f̄D(w) =

J∑
j=0

∑
φ∈Φj

[
λ̄kφφ(wk) + λ̄k∗φ φ(wk,w∗)

]
B Server

17: Compute w̄ = arg min
w

f̄D(w) B Server
18: Return w̄ B Server

For the cross-party sub-function,

hDkD∗ =

J∑
j=0

∑
φ∈Φk∗

j

λk∗φ φ(wk,w∗).

We use λkφ to denote the single-party coefficient and λk∗φ to
denote the cross-party coefficient. Note that φ(wk,w∗) can
be the first order parameter wk that needs label from P1, the
second order cross-party parameter wk · wl or higher order
parameter that involves more than two parties.

After dissecting the objective functions, there are two types
of polynomial coefficients required for the server to obtain the
overall objective function, i.e. single-party coefficients {λkφ}K
and cross-party coefficients {λk∗φ }K . Only sub-dataset Dk is
required to compute λkφ. The cross-party computation using
multiple sub-datasets Dk and D∗ is required to compute λk∗φ .
The server requests single-party coefficients λkφ from party Pk
and cross-party coefficients λk∗φ from party Pk and P∗. The
allocation of these single-party and cross-party coefficients is
different to each party. It depends on the type of model, the
order of parameters and the availability of label.

Take linear regression for an example. The objective func-
tion of linear regression fD(w) is defined as Equation 2. The
server dissects the objective function among the parties and
sends the formula of coefficients to inform the parties what
they need to compute.

The single-party sub-function for the label owner (party P1)
is

gD1 =

n∑
i=1

(yi)
2 +

(
−2

n∑
i=1

yix
1
i
T

)
w1 +

n∑
i=1

(
x1
i

)2 ◦ (w1)
2
,

thus λ1
φ = {λ1

φ0
,λ1

w1 ,λ1
(w1)2}.

The single-party sub-function for each party Pk(k 6= 1) is

gDk =

n∑
i=1

(
x1
i

)2
,

thus λkφ = {λk(wk)2}.
The cross-party sub-function for all the pairs of party Pk

and P∗ is

∑
1≤k,∗≤K

hDkD∗ =

K∑
k=1

(
−2

n∑
i=1

yix
k
i

T
wk

)

+
∑

1≤k,l≤K

(
n∑
i=1

(xki · xli) ◦ (wk ·wl)

)
,

thus {λk∗φ }K = {λ1k
wk ,λ

kl
wk·wl}K .

We can also look at it based on different orders of polyno-
mial coefficients. All (1+d+d2) coefficients in Equation 2 are
allocated as follow. For the zero-order coefficient λφ0

, it only
needs party P1. For the first order coefficients λΦ1

, λ1
w1 (of

size d1) from party P1 are single-party coefficients, and λ1k
wk

(of size dk) for each party Pk(k 6= 1) require communicated
information between P1 and Pk because Pk does not own the
label and need yi from P1. For the second order coefficients
λΦ2

, all λk(wk)2 (of size (d1)
2) are single-party coefficients for

each party Pk, and λklwk·wl (of size dk ·dl) require information
from two parties to compute coefficients of wk ·wl for each
pair of parties Pk, Pl.

2) Collecting the Single-party and Cross-party Coefficients:
Before each party Pk provides necessary information to the
server, the server decides the scale of noise needed for the
model to satisfy ε-differential privacy w.r.t. the whole dataset
D simply based on the input space (dimension d and range
of xi, yi). To achieve ε-differential privacy, the functional
mechanism adds Lap(∆f

ε ) noise to the polynomial coefficients
of the objective function. The server calculates the global
sensitivity ∆f of the objective function fD(w), and then
informs the parties the scale of noise that the parties need
to add when sending the results to the server.

Lemma 1. The global sensitivity of fD(w) is:

∆f = 2 max
t

J∑
j=1

∑
φ∈Φj

||λφt||1. (6)

Because the sensitivity considers the worst case in the input
space, the server can calculate the scale of noise needed for
global model without getting any raw data from local parties.

After the parties receive the coefficients they need to
compute and the amount of noise they need to add onto the
results, each party adds Laplace noise Lap(∆f

ε ) to both single-
party coefficients λkφ and cross-party coefficients λk∗φ , and then
sends noisy coefficients λ̄

k
φ, λ̄

k∗
φ to server.

Authorized licensed use limited to: University of Arkansas. Downloaded on February 28,2022 at 23:15:40 UTC from IEEE Xplore.  Restrictions apply. 
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3) Secure Vector Multiplication: When cross-party commu-
nication is needed, parties will not share detail data unless
through secure multiparty computation methods. Because each

cross-party coefficient λk∗φ =
n∑
i=1

vki · v∗i is a scalar product of

two vectors vk,v∗ from party Pk and P∗, the only secure
operation required to compute λk∗φ is the scalar product of
two vectors.

We run the MPC protocol based on Shamir’s secret sharing
to handle multiparty secure vector multiplication. Each party
sends the encrypted vector to the server. The server computes
all scalar products without actually knowing any information
in the vectors. The participating parties receive the encrypted
results back and jointly decrypt the actual results. The server
has zero-knowledge on the raw data during the secure vector
multiplication process. Then the parties add Laplace noise
Lap(

∆f

ε ) to these cross-party coefficients and send the noisy
results to server.

The total number of operations of secure vector multi-
plication is O(dJ), and all operations occur one and only
one round at the beginning of our approach. Take linear
regression for an example, if the features are evenly distributed
among parties, the total number of operations of secure vector
multiplication is K−1

K d+
(
K
2

) (
d
K

)2
=
(
1− 1

K

) (
d+ d2

2

)
. For

other approaches using secure aggregation scheme to update
gradients [19], the number of operations of secure vector
multiplication increases by at least a magnitude of the number
of iterations.

Theorem 1. Algorithm 1 satisfies ε-differential privacy w.r.t.
the whole dataset D.

Proof. Assume D and D′ are two neighbouring datasets.
Without loss of generality, D and D′ differ in exact one row
tr and t′r. The global sensitivity ∆f is calculated by Equation
6. We have

Pr{f̄(w)|D}
Pr{f̄(w)|D′}

=

∏J
j=1

∏
φ∈Φj

exp
(
ε
∣∣∣∣∑

ti∈D
λφti−λ̄φ

∣∣∣∣
1

∆f

)
∏J
j=1

∏
φ∈Φj

exp
( ε∣∣∣∣∑t′

i
∈D′ λφt′i

−λ̄φ
∣∣∣∣

1

∆f

)
≤

J∏
j=1

∏
φ∈Φj

exp
( ε

∆f
·
∣∣∣∣∣∣ ∑
ti∈D

λφti −
∑
t′i∈D′

λφt′i

∣∣∣∣∣∣
1

)

=

J∏
j=1

∏
φ∈Φj

exp
( ε

∆f
·
∣∣∣∣λφtr − λφt′r ∣∣∣∣1)

= exp
( ε

∆f
·
J∑
j=1

∑
φ∈Φj

∣∣∣∣λφtr − λφt′r ∣∣∣∣1)

≤ exp
( ε

∆f
· 2 max

t

J∑
j=1

∑
φ∈Φj

||λφt||1
)

= exp(ε).

In Theorem 1, Algorithm 1 satisfies ε-differential privacy
w.r.t. the whole dataset D, which is the same as the cen-

tralized scenario. In comparison to the centralized functional
mechanism, the proposed framework adds the same amount of
noise to achieve ε-differential privacy and uses secure vector
multiplication to achieve the same utility. In comparison to the
methods that add noise onto gradients for each iteration, our
framework only needs one round of noise addition and one
round of secure multiparty computation.

Claim 1. Algorithm 1 achieves the same utility in the mul-
tiparty setting in comparison to the centralized setting. The
utility of Algorithm 1 does not change along with the number
of participating parties K.

4) Differential Privacy for Local Parties: Each party Pk
cares about all the coefficients that involve Dk, i.e. the single-
party coefficients for party Pk λkφ in the sub-function g and
the cross-party coefficients involving party Pk λk∗φ in the sub-
function h.

Lemma 2. The sensitivity of fD(w) w.r.t. the sub-dataset Dk

belonging to party Pk is

∆k
f = 2 max

t

J∑
j=1

∑
φ∈Φ

(k)
j

||λ(k)
φt ||1, (7)

where λ(k)
φ indicates either λkφ or λk∗φ .

The availability of labels makes significant difference in
∆k
f . Because only party P1 owns the label and the label is

granted access to other parties, there are more cross-party
coefficients for party P1 than other parties, which increases
its corresponding sensitivity ∆1

f .

Theorem 2. Algorithm 1 satisfies ε(k)-differential privacy
w.r.t. the sub-dataset Dk belonging to party Pk, where ε(k) =
∆k
f

∆f
ε.

Proof. Assume that Dk and Dk′ are two neighbouring
datasets. Without loss of generality, Dk and Dk′ differ in
row tr and t′r. The sensitivity ∆k

f w.r.t. the sub-dataset Dk is
calculated by Equation 7. We have

Pr{f̄(w)|Dk}
Pr{f̄(w)|Dk′}

=

J∏
j=1

∏
φ∈Φ

(k)
j

exp
(
ε
∣∣∣∣∑

ti∈Dk
λ
(k)
φti
−λ̄(k)

φ

∣∣∣∣
1

∆f

)
J∏
j=1

∏
φ∈Φ

(k)
j

exp
( ε∣∣∣∣∑

t′
i
∈Dk′ λ

(k)

φt′
i
−λ̄(k)

φ

∣∣∣∣
1

∆f

)

≤ exp
( ε

∆f
· 2 max

t

J∑
j=1

∑
φ∈Φ

(k)
j

||λ(k)
φt ||1

)
= exp(

∆k
f

∆f
ε).

To build an ε-differential privacy global model, the local
party Pk can achieve ε(k)-differential privacy, where ε(k) =
∆k
f

∆f
ε < ε, which means stronger privacy guarantee.

Again, take linear regression for an example. To achieve
ε-differential privacy w.r.t. the whole dataset D, functional

Authorized licensed use limited to: University of Arkansas. Downloaded on February 28,2022 at 23:15:40 UTC from IEEE Xplore.  Restrictions apply. 



5480

mechanism adds Lap(∆f

ε ) noise to polynomial coefficients.
The global sensitivity ∆f of fD(w) w.r.t. the whole dataset
D is ∆f = 2(1+2d+d2). Party P1 cares about the coefficients
related to D1: λ1

φ0
,λ1

w1 ,λ1k
wk ,λ

1
(w1)2 and λ1k

w1·wk(k 6= 1). So
the sensitivity of fD(w) w.r.t. sub-dataset D1 is

∆1
f = 2(1 + 2d1 + 2(d− d1) + (d1)

2
+ d1(d− d1))

= 2(1 + 2d+ d1d).

For party P1, Algorithm 1 achieves (
∆1
f

∆f
ε)-differential privacy

w.r.t. D1. Party Pk(k 6= 1) cares about the coefficients related
to Dk: λ1k

wk ,λ
k
(wk)2 and λklwk·wl . So the sensitivity of fD(w)

w.r.t. Dk(k 6= 1) is

∆k
f = 2(2dk + (dk)

2
+ dk(d− dk)) = 2(2dk + dkd).

For party Pk(k 6= 1), Algorithm 1 achieves (
∆k
f

∆f
ε)-differential

privacy w.r.t. Dk.
The interesting observation is that: when party P1 shares

label with other parties, P1 has 4(d−d1) more sensitivity. ∆k
f

for other parties does not change as the label |y| ≤ 1. Thus,
cross-party communication only costs P1 extra sensitivity. By
sharing the label, party P1 achieves relatively weaker privacy
in comparison to other parties.

C. Application to Logistic Regression

For logistic regression, to achieve ε-differential privacy, the
functional mechanism adds Lap(∆f

ε ) noise to the polynomial
coefficients in Equation 4. More specifically, the first order
coefficients λΦ1

contains single-party coefficients λ1
w1 =

n∑
i=1

( f(1)
1 (0)

1! −yi
)
x1
i from party P1 and cross-party coefficients

λ1k
wk =

n∑
i=1

( f(1)
1 (0)

1! − yi
)
xki where party Pk(k 6= 1) does not

own the label and need (
f
(1)
1 (0)

1! − yi) from party P1. The sec-
ond order coefficients λΦ2

contains single-party coefficients

λk(wk)2 =
n∑
i=1

f
(2)
1 (0)

2!

(
xki
)2

from party Pk and cross-party

coefficients λklwk·wl =
n∑
i=1

f
(2)
1 (0)

2! xki · xli from party Pk, Pl.

By applying Algorithm 1, the derived w̄ of the global
model satisfies ε-differential privacy w.r.t. the whole dataset
D according to Theorem 1.

On the other hand, for party P1, the sensitivity of fD(w)

w.r.t. the sub-dataset D1 is ∆1
f = d + d1(2d−d1)

4 . For party
Pk(k 6= 1), the sensitivity of fD(w) w.r.t. the sub-dataset Dk

is ∆k
f = dk+ dk(2d−dk)

4 . According to Theorem 2, Algorithm 1

also achieves (
∆1
f

∆f
ε)-differential privacy w.r.t. D1 and (

∆k
f

∆f
ε)-

differential privacy w.r.t. Dk. When party P1 shares label with
other parties, party P1 has (d− d1) more sensitivity, and ∆k

f

for other parties does not change as the label y ∈ {0, 1} does

not change |( f
(1)
1 (0)

1! − y)| = 1
2 .

D. Extension to the Bottom-up Case
So far, we have discussed the framework from the top-

down case, where the server selects the privacy budget to
achieve on the whole dataset and informs the parties the
scale of noise based on the global sensitivity of objective
function. We can also achieve differential privacy from the
bottom-up case, where each party selects their own level of
differential privacy ε(k) that they want to achieve for their
sub-dataset and the server adjusts the global privacy budget
ε accordingly. In practice, the choice between top-down and
bottom-up approaches depends on the agreement between the
server and participating parties.

In the bottom-up case, each party Pk splits their privacy
budget ε(k) onto sending single-party coefficients λkφ and
cross-party coefficients λk∗φ separately in a differentially pri-
vate manner, i.e. ε(k) = εk+

∑K
l=1 ε

kl, where εk is the privacy
budget for single-party coefficients λkφ, and εkl is the privacy
budget for cross-party coefficients λklφ ⊂ λk∗φ . Party Pk and
Pl jointly decide the value of εkl. The sensitivity of λkφ is
∆k
g = 2 max

t

∑J
j=1

∑
φ∈Φk

j
||λkφt||1. The sensitivity of λklφ is

∆kl
h = 2 max

t

∑J
j=1

∑
φ∈Φkl

j
||λklφt||1.

Corollary 1. The global model achieves ε-differential privacy
w.r.t. the whole dataset D in the bottom-up case, where

ε =

K∑
k=1

∆f

∆k
g

εk +
∑

1≤k,l≤K

∆f

∆kl
h

εkl.

E. Discussion
The objective of our work is to preserve differential privacy

for regression models trained on vertically partitioned data. We
have theoretical proofs (Theorems 1 and 2) that our algorithm
guarantees to satisfy differential privacy. We protect differ-
ential privacy of the whole training data such that attackers
cannot derive the presence or absence of any single record
(with all feature values and label) in the training data from the
released jointly-learnt regression model (as shown in Theorem
1). As training data is vertically split into K parties, we further
show in Theorem 2 each party k also achieves differential
privacy against attackers w.r.t. its own data Dk.

Our contribution is that we add less noise than state-of-the-
art approaches to achieve the same level of differential privacy,
e.g., our approach reduces noise addition by a magnitude of the
number of total iterations compared with gradient perturbation
approaches. Furthermore, the secure vector computation also
protects the disclosure of raw data between the server and
the participating parties. We use the standard MPC protocol
based on Shamir’s secret sharing scheme in our framework.
The number of inner products in our algorithm is bounded by
dJ .

IV. EXPERIMENTS

We evaluate our proposed framework of achieving dif-
ferential privacy in vertically partitioned multiparty learning
based on functional mechanism (FM) for linear regression and
logistic regression.
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TABLE I: Mean square error of linear regression on US and Brazil datasets under different privacy budgets ε (δ = 1
n for

DPFW)

Data ε non-private DPFW-C DPFW-2 FM

US
0.1

0.0044±0.0132
0.0912±0.0007 0.1286±0.0154 0.0101±0.0305

1 0.0905±0.0008 0.1334±0.0235 0.0087±0.0261
10 0.0903±0.0008 0.1329±0.0204 0.0086±0.0259

Brazil
0.1

0.0044±0.0132
0.0470±0.0007 0.1502±0.0921 0.0070±0.0230

1 0.0454±0.0007 0.1989±0.1390 0.0045±0.0136
10 0.0453±0.0006 0.2013±0.1469 0.0044±0.0132

TABLE II: Mean square error of linear regression on synthetic datasets under different sparsity s (δ = 1
n for DPFW, ε = 1)

s non-private DPFW-C DPFW-2 DPFW-4 FM
0.1 0.0033±0.0101 0.5487±0.1907 1.2980±0.4537 2.2719±0.7423 0.0035±0.0107
0.5 0.0052±0.0157 40.392±5.132 85.264±10.560 164.95±19.60 0.0058±0.0174
1.0 0.0050±0.0154 271.09±27.75 638.66±59.70 1206.4±66.2 0.0056±0.0172

A. Experiment Setup
1) Dataset: For linear regression, we evaluate on two real-

world census datasets US and Brazil [20] datasets. US has
370,000 records and 14 features and Brazil has 190,000
and 14 features. The decisions in US and Brazil datasets
are both income (real number). We also evaluate on three
synthetic datasets that are sparse and high dimensional. All
three synthetic datasets have 80,000 records and 800 features
and their sparsity values are s = 0.1, 0.5, 1.0, respectively. The
sparsity here is both the ratio of nonzero entries in datasets
and the ratio of non-zero ground-truth parameters.

For logistic regression, we evaluate on two real-world
census datasets Adult [21] and Dutch [22] datasets. Adult has
45,222 samples and 41 features and Dutch has 60,420 records
and 36 features. The label in Adult is income (>50k, ≤50k).
The label in Dutch is Occupation (occupation w/ low income,
occupation w/ high income). We normalize all the numerical
features into [−1, 1] and convert all the categorical features to
binary variables using one-hot encoding.

We split each dataset into 80% training data and 20% testing
data. We replicate experiment for 10 times and report mean
and standard deviation.

2) Baseline: For linear regression, we compare with the
non-private linear regression and DPFW [14]. DPFW achieves
(ε, δ)-differential privacy and has two versions, DPFW-C in
the centralized setting and DPFW-K in the multiparty setting.
We evaluate our algorithm on varying privacy budget epsilon,
the number of parties K and sparsity s. We specify the number
of parties K = 2, 4 in our comparison, where we randomly
partition the datasets into K parts with each party owning the
same number of features.

For logistic regression, we compare with the non-private
logistic regression and DPSGD [9]. DPSGD adds Laplace
noise onto gradients for each iteration. DPSGD does not apply
to multiparty setting.

We evaluate utility of linear regression by mean square error
(MSE) and utility of logistic regression by accuracy. For the
runtime evaluation, we use a secure multiparty computation
package MPyC in Python [23], which is based on Shamir’s
secret sharing scheme. We use a key size of 128-bit in the

experiment. We run our algorithim with the number of parties
K = 2, 4, and compare its runtime to the runtime of the
centralized functional mechanism (K = 1). Our experiments
were carried out on the Dell PowerEdge C4130 with 2 Nvidia
Tesla M10 GPU.

B. Utility

1) Linear Regression: For linear regression, we first eval-
uate our method on two real-world datasets. Table I shows
the results on US and Brazil datasets under different values
(0.1, 1, 10) of privacy budget ε. We set δ = 1

n for DPFW.
Our FM method satisfies (ε, 0)-differential privacy whereas
DPFW satisfies (ε, δ)-differential privacy. So our FM method
is more restricted in terms of privacy protection. However, our
FM method still significantly outperforms DPFW with much
smaller MSE in the settings of all three ε values for both
datasets, as shown in Table I. In fact, the utility of our method
is very close to the non-private linear regression even when
the privacy budget ε is small. For example, our FM achieves
the MSE of 0.0070 when ε = 0.1 for Brazil data, which is
very close to 0.0044 from non-private linear regression. As we
discussed previously, our method achieves the same MSE in
the decentralized setting as in the centralized setting.

We then evaluate our method on high dimensional synthetic
datasets (d = 800). Table II shows the results on synthetic
datasets under different sparsity s. We set ε = 1 for FM and
ε = 1, δ = 1

n for DPFW. DPFW is designed to work for high
dimensional and sparse data. As shown in Table II, DPFW
works well with satisfactory MSE values when s = 0.1 but
has very poor utility with large MSE when s = 0.5, 1.0. On
the contrary, our FM method works consistently well across
all three datasets as the FM mechanism does not depend on
data sparsity. We emphasize even with s = 0.1, our FM
method incurs much smaller MSE (2 or 3 orders of magnitude
less) than DPFW. Moreover, our method preserves strict (ε, 0)-
differential privacy while DPFW preserves (ε, 1

n )-differential
privacy. For our method, MSE does not change along with the
number of participating parties K. On contrast, DPFW incurs
more utility loss as the number of parties increases.
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TABLE III: Classification accuracy of logistic regression on
Adult and Dutch datasets under different privacy budget ε

Data ε non-DP DPSGD-C FM

Adult
0.1

0.8368±0.0029
0.6000±0.0738 0.6412±0.1463

1 0.6956±0.0229 0.7315±0.0379
10 0.8023±0.0071 0.8132±0.0231

Dutch
0.1

0.8303±0.0040
0.5060±0.0684 0.5783±0.0572

1 0.6867±0.0373 0.7166±0.0489
10 0.8003±0.0182 0.8105±0.0086

TABLE IV: Runtime of linear regression on US and Brazil
datasets and logistic regression on Adult and Dutch datasets
(ε = 1, unit in seconds)

Model Data K=1 (centralized) K=2 K=4

Linear regression US 0.08 93.1 244.4
Brazil 0.06 47.4 124.5

Logistic regression Adult 0.39 122.7 350.7
Dutch 0.31 106.3 302.5

2) Logistic Regression: For logistic regression, we evaluate
our method on two real-world datasets. Table III shows the
results on Adult and Dutch datasets under different privacy
budget ε. DPSGD adds Laplace noise onto gradients for each
iteration, so the total amount of noise added into the model
increases proportionally with the number of iterations. On the
contrary, our FM only adds noise to the objective function
and only adds once. As shown in Table III, the utility of our
method is much better than the utility of DPSGD. Moreover,
DPSGD cannot apply to the multiparty setting while our
method is applicable and independent of K as the gradients
cannot be simply partitioned by features. We also would like
to point out that, compared to linear regression, the utility of
FM is relatively worse as privacy budget decreases. This is
because the order-2 Taylor expansion approximation is biased
to the original objective function.

C. Runtime

We evaluate our method on varying numbers of parties
K for both linear regression and logistic regression on real-
world datasets. The number of features owned by a party
is d/K when they are evenly distributed. Even though our
method achieves the same MSE (or accuracy) in the de-
centralized setting as in the centralized setting, the runtime
is not the same with different numbers of parties. Secure
inner product calculation is the bottleneck of our framework
as the noise addition of achieving differential privacy via
functional mechanism is insignificant in terms of computation
and communication cost. As we discussed previously, the total
number of operations of secure vector multiplication in this
case is K−1

K d +
(
K
2

) (
d
K

)2
=
(
1− 1

K

) (
d+ d2

2

)
. Thus, the

runtime increases with the number of parties K.
Table IV shows the runtime comparison of our method with

K = 2, 4 in comparison to the centralized setting (K = 1).
For example, the execution time of logistic regression on
Dutch dataset is 0.31, 106.3, and 302.5 seconds for K = 1,
K = 2, and K = 4 respectively. We emphasize the execution

time is dominated by the secure vector multiplication, which
can be reduced when more efficient protocols are adopted.
Furthermore, we emphasize again that our framework only
needs one round of noise addition and one round of secure
multiparty computation and achieves the same utility as the
centralized functional mechanism. On the contrary, differential
privacy preserving methods that add noise onto gradients for
each iteration suffer significant utility loss as shown in Section
IV-B.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new framework for differen-
tial privacy preserving multiparty learning in the vertically
partitioned setting based on the functional mechanism. Our
core idea is based on the functional mechanism that achieves
differential privacy of the released model by adding noise to
the objective function. In the framework, the server dissects
the objective function into single-party and cross-party sub-
functions and rewrites them in the polynomial form. For the
coefficients in the polynomial form related to one single party,
they can be calculated by each party. For those coefficients
related to two or multiple parties, we apply secure vector
multiplication. To achieve differential privacy, the parties add
noise to the coefficients according to global sensitivity and
send noisy coefficients back to server. The server then solves
the perturbed objective function and releases the private model.
Our method needs only one round of noise addition and secure
aggregation. The released model in our framework achieves
the same utility as applying the functional mechanism in the
centralized setting. We evaluate our method on real-world
and synthetic datasets for linear and logistic regressions. The
experiment results show the effectiveness of our proposed
method.

In our framework, we proposed the use of the MPC protocol
based on Shamir’s secret sharing and in particular chose
the secure multiparty computation package MPyC in Python
[23] for secure inner product calculation in our evaluation.
Secure calculation is the bottleneck of our framework as
the noise addition of achieving differential privacy via func-
tional mechanism is insignificant in terms of computation and
communication cost. In our experiment, we mainly evaluated
accuracy of regression models on varying numbers of parties
K (the number of features owned by a party when evenly
distributed is d/K). Our theoretical analysis also showed
that our algorithm can achieve the same accuracy as the
centralized private model regardless of the number of parties.
For execution time, we only evaluated the scenarios of up to
4 parties. In our future work, we will conduct comprehensive
evaluation of privacy-accuracy tradeoff and execution time due
to the change of the number of features d and the number
of parties K. We will also explore newly developed secure
multiparty computation protocols [24] in our framework.
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