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Abstract. Medical image segmentation has been so far achieving promis-
ing results with Convolutional Neural Networks (CNNs). However, it is
arguable that in traditional CNNs, its pooling layer tends to discard
important information such as positions. Moreover, CNNs are sensitive
to rotation and affine transformation. Capsule network is a data-efficient
network design proposed to overcome such limitations by replacing pool-
ing layers with dynamic routing and convolutional strides, which aims to
preserve the part-whole relationships. Capsule network has shown a great
performance in image recognition and natural language processing, but ap-
plications for medical image segmentation, particularly volumetric image
segmentation, has been limited. In this work, we propose 3D-UCaps, a 3D
voxel-based Capsule network for medical volumetric image segmentation.
We build the concept of capsules into a CNN by designing a network
with two pathways: the first pathway is encoded by 3D Capsule blocks,
whereas the second pathway is decoded by 3D CNNs blocks. 3D-UCaps,
therefore inherits the merits from both Capsule network to preserve the
spatial relationship and CNNs to learn visual representation. We con-
ducted experiments on various datasets to demonstrate the robustness
of 3D-UCaps including iSeg-2017, LUNA16, Hippocampus, and Cardiac,
where our method outperforms previous Capsule networks and 3D-Unets.
Our code is available at https://github.com/VinAIResearch/3D-UCaps.
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1 Introduction

Medical image segmentation (MIS) is a visual task that aims to identify the
pixels of organs or lesions from background medical images. It plays a key
role in medical analysis, computer-aided diagnosis, and smart medicine due
to the great improvement in diagnostic efficiency and accuracy. Thanks to
recent advances of deep learning, convolutional neural networks (CNNs) can
be used to extract hierarchical feature representation for segmentation, which
is robust to image degradation such as noise, blur, contrast, etc. Among many
CNNs-based segmentation approaches, FCN [19], Unet [5], and Auto-encoder-like
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architecture have become the desired models for MIS. Particularly, such methods
achieved impressive performance in brain tumor [15,16], liver tumor [2,18], optic
disc [23,28], retina [17], lung [26,12], and cell [8,20]. However, CNNs are limited
in their mechanism of aggregating data at pooling layers. Notably, pooling
summarizes features in a local window and discards important information such
as pose and object location. Therefore, CNNs with consecutive pooling layers are
unable to perverse the spatial dependencies between objects parts and wholes.
Moreover, the activation layer plays an important role in CNNs; however, it is
not interpretable and has often been used as a black box. MIS with CNNs is thus
prone to performance degradation when data undergoes some transformations
such as rotations. A practical example is during an MRI scan, subject motion
causes transformations to appear in a subset of slices, which is a hard case for
CNNs [29].

To overcome such limitations by CNNs, Sabour et al. [24] developed a novel
network architecture called Capsule Network (CapsNet). The basic idea of Cap-
sNet is to encode the part-whole relationships (e.g., scale, locations, orientations,
brightnesses) between various entities, i.e., objects, parts of objects, to achieve
viewpoint equivariance. Unlike CNNs which learn all part features of the objects,
CapsNet learns the relationship between these features through dynamically
calculated weights in each forward pass. This optimization mechanism, i.e., dy-
namic routing, allows weighting the contributions of parts to a whole object
differently at both training and inference. CapsNet has been mainly applied to
image recognition; its performance is still limited compared to the state-of-the-art
by CNNs-based approaches. Adapting CapsNet for semantic segmentation, e.g.,
SegCaps [13,14], receives even less attention. In this work, we propose an effective
3D Capsules network for volumetric image segmentation, named 3D-UCaps. Our
3D-UCaps is built on both 3D Capsule blocks, which take temporal relations
between volumetric slices into consideration, and 3D CNNs blocks, which extract
contextual visual representation. Our 3D-UCaps contains two pathways, i.e.,
encoder and decoder. Whereas encoder is built upon 3D Capsule blocks, the
decoder is built upon 3D CNNs blocks. We argue and show empirically that using
deconvolutional Capsules in the decoder pathway not only reduces segmentation
accuracy but also increases model complexity.

In summary, our contributions are: (1) An effective 3D Capsules network for
volumetric image segmentation. Our 3D-UCaps inherits the merits from both 3D
Capsule block to preserve spatial relationship and 3D CNNs block to learn better
visual representation. (2) Extensive experiments on various datasets and ablation
studies that showcase the effectiveness and robustness of 3D-UCaps for MIS.

2 Background

In CNNs, each filter of convolutional layers works like a feature detector in a
small region of the input features and as we go deeper in a network, the detected
low-level features are aggregated and become high-level features that can be used
to distinguish between different objects. However, by doing so, each feature map
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only contains information about the presence of the feature, and the network
relies on fixed learned weight matrix to link features between layers. It leads to
the problem that the model cannot generalize well to unseen changes in the input
image and usually perform poorly in that case.

CapsNet [24] is a new concept that strengthens feature learning by retaining
more information at aggregation layer for pose reasoning and learning the part-
whole relationship, which makes it a potential solution for semantic segmentation
and object detection tasks. Each layer in CapsNet aims to learn a set of entities
(i.e., parts or objects) with their various properties and represent them in a high-
dimensional form, particularly vector in [24]. The length of this vector indicates
the presence of the entity in the input while its orientation encodes different
properties of that entity. An important assumption in CapsNet is the entity
in previous layer are simple objects and based on an agreement in their votes,
complex objects in next layer will be activated or not. This setting helps CapsNet
reflect the changes in input through the activation of properties in the entity and
still recognize the object successfully based on a dynamic voting between layers.
Let {cl1, cl2, . . . , cln} be the set of capsules in layer l, {cl+1

1 , cl+1
2 , . . . , cl+1

m } be the
set of capsule in layer l + 1, the overall procedure will be:

cl+1
j = squash
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where Wij is the learned weight matrix to linear mapping features of capsule
cli in layer l to feature space of capsule cl+1

j in layer l + 1. The rij are coupling
coefficients between capsule i and j that are dynamically assigned by a routing
algorithm in each forward pass such that

∑
j rij = 1.

SegCaps [13,14], a state-of-the-art Capsule-based image segmentation, has
made a great improvement to expand the use of CapsNet to the task of object
segmentation. This method functions by treating an MRI image as a collection
of slices, each of which is then encoded and decoded by capsules to output the
segmentation. However, SegCaps is mainly designed for 2D still images, and
it performs poorly when being applied to volumetric data because of missing
temporal information. Our work differs in that we build the CapsNet to consume
3D data directly so that both spatial and temporal information can be fully
used for learning. Furthermore, our 3D-UCaps is able to take both advantages of
CapsNet and 3D CNNs into consideration.

3 Our Proposed 3D-UCaps Network

In this work, we propose a hybrid 3D-UCaps network, which inherits the merits
from both CapsNet and 3D CNNs. Our proposed 3D-UCaps follows Unet-like
architecture [5] and contains three main components as follows.
Visual Feature Extractor: We use a set of dilated convolutional layers to
convert the input to high-dimensional features that can be further processed
by capsules. It contains three convolution layers with the number of channels
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Fig. 1. Our proposed 3D-UCaps architecture with three components: visual feature
extraction; capsule encoder, and convolution decoder. Number on the blocks indicates
number of channels in convolution layer and dimension of capsules in capsule layers.

increased from 16 to 32 then 64, kernel size 5×5×5 and dilate rate set to 1, 3, and
3, respectively. The output of this part is a feature map of size H ×W ×D × 64.

Capsule Encoder: The visual feature from the previous component can be
cast (reshaped) into a grid of H ×W ×D capsules, each represented as a single
64-dimensional vector. Our capsule layer is a 3D convolutional capsule, which
consumes volumetric data directly instead of treating it as separate slices as in
SegCaps [13]. The advantage of our 3D capsule layer is that contextual information
along the temporal axis can be included in the feature extraction. In additional
to increasing the dimensionality of capsules as we ascend the hierarchy [24], we
suggest to use more capsule types in low-level layers and less capsule types in
high-level layers. This is due to the fact that low-level layers represent simple
object while high-level layers represent complex object and the clustering nature
of routing algorithm [9]. The number of capsule types in the encoder path of
our network are set to (16, 16, 16, 8, 8, 8), respectively. This is in contrast to the
design in SegCaps, where the numbers of capsules are increasing (1, 2, 4, 4, 8, 8)
along the encoder path. We make sure that the number of capsule types in
the last convolutional capsule layer is equal to the number of categories in the
segmentation, which can be further supervised by a margin loss [24]. The output
from a convolution capsule layer has the shape H ×W ×D×C ×A, where C is
the number of capsule types and A is the dimension of each capsule.

Convolutional Decoder: We use the decoder of 3D Unet [5] which includes
deconvolution, skip connection, convolution and BatchNorm layers [10] to generate
the segmentation from features learned by capsule layers. Particularly, we reshape
the features to H×W ×D× (C ?A) before passing them to the next convolution
layer or concatenating with skip connections. The overall architecture can be seen
in Fig. 1. Note that in our design, we only use capsule layers in the contracting
path but not expanding path in the network. Sabour et al. [24] point out that
”routing-by-agreement” should be far more effective than max-pooling, and
max-pooling layers only exist in the contracting path of Unet.
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This contradicts to the design by LaLonde et al. [13], where capsules are used
in the expanding path in the network as well. We empirically show that using
capsules in the expanding path has negligible effects compared to the traditional
design while incurring high computational cost due to routing between capsule
layers.
Training Procedure. We supervise our network with ground truth segmentation
as follows. The margin loss is applied at the capsule encoder with downsampled
ground truth segmentation. The weighted cross entropy loss is applied at the
decoder head to optimize the entire network. To regularize the training, we
also use an additional branch to output the reconstruction of the original input
image as in previous work [24,13]. We use masked mean-squared error for the
reconstruction. The total loss is the weighted sum of the three losses.

4 Experimental Results

Evaluation Setup
We perform experiments on various MIS datasets to validate our method.

Specifically, we experiment with iSeg-2017 [29], LUNA16 [1], Hippocampus, and
Cardiac [25]. iSeg is a MRI dataset of infant brains that requires to be segmented
into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). A
recent analysis [29] shows that previous methods tend to perform poorly on
subjects with movement and unusual poses. We follow the experiment setup by
3D-SkipDenseSeg [3] to conduct the report on this dataset where 9 subjects are
used for training and 1 subject (subject #9) is for testing.

Additionally, we experiment on LUNA16, Hippocampus, and Cardiac [25] to
compare with other capsule-based networks [13,27]. We follow a similar experiment
setup in SegCaps [13] to conduct the results on LUNA16. We also use 4-fold
cross validation on training set to conduct the experiments on Hippocampus and
Cardiac.
Implementation Details

We implemented both 3D-SegCaps and 3D-UCaps in Pytorch. The input
volumes are normalized to [0, 1]. We used patch size set as 64 × 64 × 64 for
iSeg and Hippocampus whereas patch size set as 128× 128× 128 on LUNA16
and Cardiac. Both 3D-SegCaps and 3D-UCaps networks were trained without
any data augmentation methods. We used Adam optimization with an initial
learning rate of 0.0001. The learning rate is decayed by a factor of 0.05 if Dice
score on validation set not increased for 50,000 iterations and early stopping
is performed with a patience of 250,000 iterations as in [13]. Our models were
trained on NVIDIA Tesla V100 with 32GB RAM, and it takes from 2-4 days
depends on the size of the dataset.
Performance and Comparison

In this section, we compare our 3D-UCaps with both SOTA 3D CNNs-based
segmentation approaches and other existing SegCaps methods. Furthermore, we
have implemented 3D-SegCaps which is an extension version of 2D-SegCaps [13]
on volumetric data to prove the effectiveness of incorporating deconvolution
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Method
Depth Dice Score

WM GM CSF Average

Qamar et al. [22] 82 90.50 92.05 95.80 92.77
3D-SkipDenseSeg [3] 47 91.02 91.64 94.88 92.51
VoxResNet [4] 25 89.87 90.64 94.28 91.60
3D-Unet [5] 18 89.83 90.55 94.39 91.59
CC-3D-FCN [21] 34 89.19 90.74 92.40 90.79
DenseVoxNet [11] 32 85.46 88.51 91.26 89.24

SegCaps (2D) [13] 16 82.80 84.19 90.19 85.73
Our 3D-SegCaps 16 86.49 88.53 93.62 89.55
Our 3D-UCaps 17 90.95 91.34 94.21 92.17

Table 1. Comparison on iSeg-2017 dataset. The first group is 3D CNN-based networks.
The second group is Capsule-based networks. The best performance is in bold.

layers into 3D-UCaps. Our 3D-SegCaps share similar network architecture with
2D-SegCaps [13] and implemented with 3D convolution layers. This section is
structured as follows: We first provide a detailed analysis on iSeg with different
criteria such as segmentation accuracy, network configurations, motion artifact,
and rotation invariance capability. We then report segmentation accuracy on
various datasets, including LUNA16, Hippocampus, and Cardiac.

Accuracy: The comparison between our proposed 3D-SegCaps, 3D-UCaps
with SOTA segmentation approaches on iSeg dataset [29] is given in Table 1.
Thanks to taking both spatial and temporal into account, both 3D-SegCaps,
3D-UCaps outperforms 2D-SegCaps with large margin on iSeg dataset. More-
over, our 3D-UCaps consisting of Capsule encoder and Deconvolution decoder
obtains better results than 3D-SegCaps, which contains both Capsule encoder
and Capsule decoder. Compare to SOTA 3D CNNs networks our 3D-UCaps
achieves compatible performance while our network is much shallower i.e our
3D-UCaps contains only 17 layers compare to 82 layers in [22]. Compare to SOTA
3D CNNs networks which has similar depth, i.e. our 3D-UCaps with 18 layers,
our 3D-UCaps obtains higher Dice score at individual class and on average.

Method
Dice Score

WM GM CSF Average

change number of capsule (set to 4) 89.02 89.78 89.95 89.58
without feature extractor 89.15 89.66 90.82 89.88
without margin loss 87.62 88.85 92.06 89.51
without reconstruction loss 88.50 88.96 90.18 89.22
3D-UCaps 90.95 91.34 94.21 92.17

Table 2. Performance of 3D-UCaps on iSeg with different network configurations
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Network configuration: To prove the effectiveness of the entire network archi-
tecture, we trained 3D-UCaps under various settings. The results are given in
Table 2. We provide a baseline where we change the number of capsules at the
first layer from 16 capsules (our setting in Section 3) to 4 capsules (similar to
SegCaps). We also examine the contribution of each component by removing
feature extraction layer, margin loss, reconstruction loss, respectively. The result
shows that each change results in accuracy drop, which validates the competence
of our network model.

Method x-axis y-axis z-axis

CSF GM WM CSF GM WM CSF GM WM

3D-SkipDenseSeg [3] 83.93 88.76 88.52 78.98 87.80 87.89 82.88 88.38 88.27
SegCaps (2D) [13] 88.11 83.01 82.01 86.43 81.80 80.91 89.36 83.99 82.76
Our 3D-SegsCaps 90.70 86.15 84.24 87.75 84.21 82.76 89.77 85.54 83.92
Our 3D-UCaps 91.04 88.87 88.62 90.31 88.21 88.12 90.86 88.65 88.55

Table 3. Performance on iSeg with motion artifact on different axis. The experiment was
conducted 5 times and report average number to minimize the effect of randomization

Moving artifact: Motion artifact caused by patient moving when scanning
was reported as a hard case in [29]. We examine the influence of motion artifact
to our 3D-UCaps in Table 3. In this table, motion artifact at each axis was
simulated by randomly rotating 20% number of slices along the axis with an
angle between -5 and 5 degree. As can be seen, 3D-based capsules (3D-SegCaps
and 3D-UCaps) both outperforms SegCaps in all classes in all rotations.

Fig. 2. Comparison on iSeg with test object rotated about z-axis from zero to 90 degree.
Best view in zoom.

Rotation invariance: To further study rotation equivariance and invariance
properties in our 3D-UCaps, we trained our network without any rotation data
augmentation. During testing, we choose an axis to rotate the volume, and apply
the rotation with angle values fixed to 5, 10, 15, .., 90 degrees. Here we conduct
the experiment on iSeg and choose z-axis as the rotation axis. We choose 3D
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SkipDense [3] as 3D CNNs-based segmentation method and compare robustness
to rotations between our 3D-UCaps, our 3D-SegCaps, 2D-SegCaps, and 3D
SkipDense [3]. The segmentation accuracy of rotation transformation on each
target class is reported in Figure 2. We found that the performance tends to
drop slightly when the rotation angles increases. Except 2D-SegCaps, there is
no significant difference in performance between 3D CNNs-based network and
Capsule-based networks even though traditional 3D CNN-based network is not
equipped with learning rotation invariance property. This could be explained
by that the networks perform segmentation on a local patch of the volume at a
time, making them resistant to local changes. Further analysis of the robustness
of capsule network on the segmentation task would be necessary, following some
recent analysis on the classification task [6,7].

Results on other datasets: Besides iSeg, we continue benchmarking our 3D-
UCaps on other datasets. The performance of 3D-UCaps on LUNA16, Hippocam-
pus, and Cardiac is reported in Table 4, 5, 6. Different from other datasets,
LUNA16 was annotated by an automated algorithm instead of a radiologist.
When conducting the report on LUNA16, SegCaps [13] removed 10 scans with
exceedingly poor annotations. In Table 4, we compare our performance in two
cases: full dataset and remove 10 exceedingly poor annotations. The results show
that our 3D-UCaps outperforms previous methods and our 3D-SegCaps baseline,
respectively.

Method Split-0 Split-1 Split-2 Split-3 Average

SegCaps (2D) [13] 98.50 98.52 98.46 98.47 98.48
Our 3D-UCaps 98.49 98.61 98.72 98.76 98.65

SegCaps* (2D) [27] 98.47 98.19 98.07 98.24 98.24
Our 3D-UCaps* 98.48 98.60 98.70 98.76 98.64

Table 4. Comparison on LUNA16 in two cases where * indicates full dataset. The best
score is in bold.

Method Anterior Posterior

Recall Precision Dice Recall Precision Dice

Multi-SegCaps (2D) [13] 80.76 65.65 72.42 84.46 60.49 70.49
EM-SegCaps (2D) [27] 17.51 20.01 18.67 19.00 34.55 24.52
Our 3D-SegCaps 94.70 75.41 83.64 93.09 73.20 81.67
Our 3D-UCaps 94.88 77.48 85.07 93.59 74.03 82.49

Table 5. Comparison on Hippocampus dataset with 4-fold cross validation.
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Method Recall Precision Dice

SegCaps (2D) [13] 96.35 43.96 60.38
Multi-SegCaps (2D) [27] 86.89 54.47 66.96
Our 3D-SegCaps 88.35 56.40 67.20
Our 3D-UCaps 92.69 89.45 90.82

Table 6. Comparison on Cardiac dataset with 4-fold cross validation.

5 Conclusion

In this work, we proposed a novel network architecture that can both utilize 3D
capsules for learning features for volumetric segmentation while retaining the
advantage of traditional convolutions in decoding the segmentation results. Even
though we use capsules with dynamic routing [24,13] only in the encoder of a
simple Unet like architecture, we can achieve competitive result with the state-
of-the-art models on iSeg-2017 challenge while outperforming SegCaps [13] on
different complex datasets. Exploring hybrid architecture between Capsule-based
and traditional neural network is therefore a promising approach to medical
image analysis while keeping model complexity and computation cost plausible.
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