

pubs.acs.org/joc Article

Conformationally Biased Ketones React Diastereoselectively with Allylmagnesium Halides

Nicole D. Bartolo, Krystyna M. Demkiw, Jacquelyne A. Read, Elizabeth M. Valentín, Yingying Yang, Alexandra M. Dillon, Chunhua T. Hu, Michael D. Ward,* and K. A. Woerpel*

Cite This: https://doi.org/10.1021/acs.joc.1c02844

ACCESS

Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: The addition of the highly reactive reagent allylmagnesium halide to α -substituted acyclic chiral ketones proceeded with high stereoselectivity. The stereoselectivity cannot be analyzed by conventional stereochemical models because these reactions do not conform to the requirements of those models. Instead, the stereoselectivity arises from the approach of the nucleophile to the most accessible diastereofaces of the lowest-energy conformations of the ketones. High stereoselectivity is expected, and the stereochemical outcome can be predicted, with conformationally biased ketones that have sterically distinguishable diastereofaces wherein only one face is accessible for nucleophilic addition. The conformations of the ketones can be determined

$$R^{1} = Br$$

$$R^{2} = Me$$

$$R^{2} = Me$$

$$R^{1} = Ph$$

$$R^{1} = Ph$$

$$R^{2} = HC = CH_{2}$$

$$R^{1} = Ph$$

$$R^{2} = HC = CH_{2}$$

$$R^{1} = Ph$$

$$R^{2} = HC = CH_{2}$$

$$R^{2} = HC = SH_{2}$$

$$R^{3} = HC$$

$$R^{2} = HC$$

$$R^{3} = HC$$

$$R^{4} = Ph$$

$$R^{2} = HC$$

$$R^{3} = Ph$$

$$R^{4} = Ph$$

$$R^{2} = HC$$

$$R^{3} = Ph$$

$$R^{4} = Ph$$

$$R^{2} = HC$$

$$R^{3} = Ph$$

$$R^{4} = Ph$$

$$R^{4} = Ph$$

$$R^{5} = HC$$

by a combination of computational modeling and, in some cases, structure determination by X-ray crystallography.

■ INTRODUCTION

The stereochemical outcomes of nucleophilic additions to carbonyl compounds are typically analyzed using stereochemical models such as the Felkin-Anh^{1,2} and chelationcontrol models.^{3,4} These models require that the widest range of competing transition states are accessible, leading to product distributions that reflect the relative energies of different transition states.4 In the reactions of ketones with highly reactive nucleophiles, such as allylmagnesium halides, the chelation-control and Felkin-Anh models fail to explain the observed stereoselectivities, however. 4,5 This inability to follow the models occurs because the rate of carbon-carbon bond formation is so fast that each encounter complex between the electrophile and the nucleophile proceeds to the product before it can dissociate and form a new complex that might lead to a lower-energy transition state. 3,5,6 Considering that the complexation step is itself not likely to be stereoselective, low diastereoselectivity is observed in many cases.^{3–5} Nevertheless, stereoselectivity is observed for some reactions, usually for transformations involving particularly sterically hindered ketones.^{7–16} When a sterically hindered ketone is energetically restricted to a conformation in which one diastereoface of the carbonyl compound is inaccessible to the nucleophile, high diastereoselectivity can be achieved.4

Herein, we provide evidence that reactions of highly reactive nucleophiles with relatively unhindered acyclic chiral ketones can be stereoselective even if they do not conform to accepted models for stereoselection. Reactions with highly reactive nucleophiles, exemplified by allylmagnesium chloride, cannot be analyzed by considering all the possible competing lowenergy transition states. Instead, few reaction pathways are

available. The stereoselectivity is high if the ketone substrate is generally biased to one particular conformation (or closely related conformers), resulting in preferential addition to only one diastereoface of the carbonyl group. Considering how rapidly the carbon–carbon bond-forming reaction occurs, interconversion between stereoisomeric encounter complexes must be slower than irreversible bond formation. It is only the destabilizing steric interactions that develop upon the approach of the reagent to one diastereoface of the carbonyl group (that is, steric-approach control)^{17–19} that prevent attack from that face, resulting in a stereoselective reaction.²⁰

RESULTS AND DISCUSSION

In contrast to many examples of poorly selective additions of highly reactive Grignard reagents to chiral acyclic ketones, $^{21-28}$ the addition reactions to some acyclic α -substituted ketones proceeded with high stereoselectivity (Scheme 1). The addition of allylmagnesium chloride 3,5,29 to racemic 30 α -halogenated propiophenones 1 and 3 produced alcohols 2 and 4, respectively, with high stereoselectivity. The reaction of α -bromoketone 3 also formed the 1,2-cis epoxide 5, which would be formed by cyclization of the intermediate magnesium alkoxide. 31 The cyclization was slower than the addition, however, as the amount of 5 increased when the reaction

Received: November 22, 2021

Scheme 1. Selective Additions of Allylmagnesium Chloride to α -Substituted Propiophenones

mixture was stirred for a longer time prior to the addition of methanol to quench any unreacted reagent. Adding methanol only five seconds after the addition of the reagent resulted in a small amount (\sim 5%) of epoxide 5 along with a 95% conversion to the addition product, suggesting that cyclization was still rapid. Epoxide 5 was not observed in the reaction with the α -chloroketone 1, however, likely because the magnesium alkoxide was not sufficiently nucleophilic to displace the weaker leaving group, namely the chloride ion.³² Allylation of the related α -thiophenyl ketone 6 also occurred with high diastereoselectivity, forming alcohol 7 as a single diastereomer (dr >99:1).

The reactions of all three ketones proceeded with the same 1,2-anti stereochemistry. The configurations of alcohols 2 and 4 were determined by chemical correlation of the halohydrins and epoxide 5 (Scheme 2). 33,34 X-ray crystallographic analysis

Scheme 2. Stereochemical Proofs of Additions to α -Substituted Propiophenones

HO Me
$$\frac{K_2CO_3}{MeOH, 0-20 °C}$$
 Ph Me $\frac{C}{100\% conv}$ Me $\frac{K_2CO_3}{100\% conv}$ Me $\frac{K_2CO_3}{MeOH, 0-20 °C}$ Me $\frac{K_2CO_3}{100\% conv}$ Me $\frac{K_2CO_3}{MeOH, 0-20 °C}$ Ph Me $\frac{K_2CO_3}{MeOH, 0-20 °C}$ Me $\frac{K_$

of sulfone 8, formed from the oxidation of thioether 7, established the relative stereochemistry of this product. The stereochemical courses of these reactions are consistent with nucleophilic addition to the same face of each ketone (i.e., addition *anti* to the α -substituent), as might be expected from addition through the favored transition state of the polar Felkin–Anh model (Figure 1, transition state 9). This

Figure 1. Polar Felkin—Anh transition state of *α*-halopropiophenones and *α*-thiopropiophenones.

explanation for the stereocontrol for the reactions of α -halopropiophenones 1 and 3 is unsatisfying, however, considering that many additions of nucleophiles to acyclic³⁵ and cyclic⁴ α -halogenated ketones occur with low stereoselectivity.

The conventional explanation to explain stereoselectivity by invoking reaction through transition state 9 also is unlikely considering the stereoselectivities observed with other nucleophiles. It was not possible to compare the stereoselectivities of the additions to α -halogenated ketones 1 and 3 with allylmagnesium chloride to the stereoselectivities observed with other Grignard reagents such as MeMgCl and n-PrMgCl because the dehalogenation of the ketones occurred faster than the addition with those reagents. 7,36,37 The additions of an alkynyllithium reagent to α -haloketones 1 and 3, however, were highly diastereoselective (Scheme 3).³⁸ Unlike the reactions of organomagnesium reagents illustrated in Scheme 1, these reactions formed epoxide 10 directly, likely because lithium alkoxides are more nucleophilic than magnesium alkoxides. 39,40 The stereochemical outcomes of these reactions were assigned by comparing the spectra of epoxide 10 with the spectra of the known epoxide.³⁸ In the

Scheme 3. Additions of Organometallic Reagents to α -Substituted Propiophenones

case of α -bromoketone 3, small quantities of an additional epoxide, 11, were formed. This product likely forms by lithium—halogen exchange to form the enolate, which then adds to ketone 3 and then cyclizes. The configuration of epoxide 11 was not proven but was assigned by analogy to the configuration of epoxide 10.

Finding a comparison between the reactions of allylmagnesium reagents and other Grignard reagents was more straightforward for α -thiophenyl ketone 6 than it was for the halogenated ketones. The addition of methylmagnesium chloride to ketone 6 occurred cleanly but with low stereoselectivity (dr = 67:33). This low selectivity was also observed for the addition of MeLi to this ketone.⁴¹

The configurations of the products formed by the addition of the alkynyllithium reagent to ketones 1 and 3 are opposite to those observed for the reactions involving the allylmagnesium reagent. Justifying these results would require applying the Felkin–Anh model (Figure 2), where the methyl group

Figure 2. Felkin—Anh transition state of α -halopropiophenones and α -thiopropiophenones.

serves as the large substituent, and not the polar Felkin–Anh model, where the heteroatom serves as the large substituent (that is, transition state 13, not transition state 9).

Collectively, the results in Schemes 1 and 3 suggest that caution should be exercised when using the Felkin–Anh stereochemical model, in either of its forms, to predict stereoselectivities. The reactions of the allylmagnesium reagent usually do not occur with high diastereoselectivity. In this case, however, the major products are consistent with the polar Felkin–Anh model wherein the heteroatom occupies a position nearly perpendicular to the π -system of the carbonyl group. On the other hand, the additions of the alkynyllithium reagent to α -haloketones 1 and 3 suggest that the Felkin–Anh model, not its polar variant, would be consistent with these results. Finally, the low stereoselectivity in the case of the addition of MeMgCl to the α -thiophenyl ketone 6 illustrates the difficulty of predicting the outcomes of reactions.

Competition experiments revealed that applying the polar Felkin-Anh model to understand the diastereoselectivities of additions of allylmagnesium chloride (Scheme 1) would be difficult. This model requires that the additions occur under a Curtin-Hammett kinetic scenario, 42 but experiments show that complexation between the two reagents is likely not reversible. The competition experiments performed under optimized conditions⁵ provided reproducible, although likely approximate, values for the relative rates considering how rapid the reactions are.²⁹ Additions of the allylmagnesium reagent to the α -substituted ketones and propiophenone (14) occurred at comparable rates (Scheme 4). These competition experiments reveal that the rate of carbon-carbon bond formation from an encounter complex or a Lewis acid-base complex is faster than the rate of dissociation of that complex; thus, the overall rate of addition occurs at rates approaching diffusion.^{5,2}

Competition experiments between ketone 6 and benzaldehyde (16) with MeMgCl, however, demonstrate that additions

Scheme 4. Competition Experiments^a between α -Substituted Ketones and Propiophenone or Benzaldehyde with Organometallic Reagents^b

^aCompetition experiments involved the dropwise addition (one drop every minute) of the diluted nucleophile (≤0.2 M) to a rapidly stirring mixture of 4 equiv of each electrophile at a low concentration (≤1.0 M). ^bRatios for all competition experiments were determined by ${}^{13}C{}^{1}H$ NMR spectroscopy. ⁴³

of this Grignard reagent can be analyzed by models such as the Felkin—Anh or chelation-control models because the prerequisites of these models are met. The rates of complexation and decomplexation are faster than that of addition, so the full range of possible transition states can be accessed. Therefore, it is possible for addition to occur to any low-energy conformation. In this case, however, the reaction was not stereoselective.

Given that neither the Felkin–Anh model nor its polar variant can be used to predict stereoselectivities, other possible origins of the stereoselectivity for the addition of nucleophiles, particularly for allylmagnesium halides, should be considered. In the case of highly hindered cyclic ketones, understanding the inherent conformations of the ketone led to explanations of the stereochemical outcome of the reaction through an attack on the more exposed diastereoface of the carbonyl group. ^{3,7,8,44} Although the energy of a conformer of a substrate contributes to the transition-state energies of its reactions, ⁴⁵ it is not obvious that conformational preferences could be the decisive factor in more conformationally flexible and relatively unhindered acyclic ketones.

Elucidating the conformational preferences of the ketones provided insight into the origin of the stereoselectivities

observed for the addition of allylmagnesium reagents to α substituted propiophenones. Calculations using density functional methods both in the gas phase and in THF as the solvent⁴⁶ revealed that the α -substituted ketones exhibited strong conformational biases. These ketones adopt a conformation in the ground state that resembles the conformer invoked in the transition state of the polar Felkin-Anh model (Figure 1, transition state 9). This conformer was the lowestenergy conformer, and the conformers resembling transition state 13 were >1 kcal/mol (X = Cl) and >2 kcal/mol (X = Bror SPh) higher in energy when calculated at the B3LYP/augcc-pVDZ level of theory⁴⁷ using the polarized continuum model to simulate THF as the solvent. This combination of functional and basis set has been used to determine the conformational preferences of other halogenated ketones.4 This orientation of the substituents in the lowest-energy conformer, which promotes hyperconjugative interactions of $\sigma_{\text{C-X}} \to \pi^*_{\text{C-O}}$, is often observed in computational studies, solution-phase experiments, and solid-phase structures of α -chloroketones, σ_{CO} and σ_{CO} ketones. $^{60-64}$ The greater preference for conformation 9 when X = Br and X = SPh compared to that when X = Cl can be attributed to the carbon-bromine bond and the carbon-sulfur bond being better electron donors than the carbon-chlorine bond.65-6

The calculated low-energy conformation of 2-chloropropiophenone (ketone 1) was nearly identical to that observed by single-crystal X-ray diffraction. Determining the molecular structure and analyzing the conformation of ketone 1 itself by X-ray diffraction was not feasible because the compound exists as an oil at room temperature. Using a single-step crystallization protocol, 68,69 ketone 1 was captured within a host framework generated from guanidinium (G) and organosulfonate (S) ions to produce a crystalline inclusion compound. The framework was selected from a family of hydrogen-bonded host frameworks that form persistent hydrogen-bonded sheets, which are connected by organosulfonate "pillars" that create cavities between the sheets. 70 This protocol is particularly useful for determining the molecular structure, as well as the relative stereochemistry and absolute configuration, of compounds that cannot be crystallized directly. 69 The slow evaporation of a methanolethanol solution containing a minute amount (<1 mg) of racemic ketone 1 and the guest-free apohost (guanidinium)₂biphenyl disulfonate (G₂BPDS, 18) afforded a colorless plate of an inclusion compound with the formula $G_2BPDS\supset (2$ chloropropiophenone).

Single-crystal X-ray diffraction revealed that the host framework adopted a bilayer architecture wherein BPDS pillars spanned the hydrogen-bonded GS sheets, creating cavities flanked by pillars that encapsulated two molecules of the ketone guest molecule (Figure 3). Water molecules incorporated into the GS sheets bridged the bilayers. The structure was refined in the space group Cc, with each cavity containing a pair of the enantiomers related by the c-glide operation. The conformation of the ketone guest (Figure 3B), as measured by the Cl-C-C-O dihedral angle of 98.5°, was nearly identical to that from the calculated structure, which had a dihedral angle of 103.7°. This conformation, which closely resembles the structure of the carbonyl compound in the polar Felkin-Anh transition state (conformer 9), positions the carbon-chlorine bond in an orientation that maximizes hyperconjugative interactions and suggests that the nucleophile

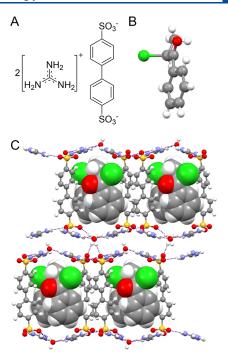


Figure 3. (A) Guanidinium and biphenyldisulfonate ions comprising the G_2BPDS apohost 18. (B) Ball-and-stick representation of one of the ketone 1 enantiomers confined within the G_2BPDS framework cavities, revealing the polar Felkin—Anh conformation. (C) Crystal structure of $G_2BPDS\supset(2\text{-chloropropiophenone})$. The host cavities contain racemic pairs of ketone 1. Guest molecules are rendered as space-filled models, and frameworks are rendered as ball-and-stick.

would need to attack from the diastereoface opposite that atom. Although the influence of the host framework on the conformation of the guest cannot be ignored, the agreement between the solid-state and calculated structures, combined with the stereochemical outcomes of the addition reactions, supports the argument that the conformational preference of the ketone plays a significant role in the observed stereoselectivity.

The calculated conformational preferences correlate with the observed diastereoselectivities. The higher selectivities observed in the reactions of α -bromo and α -thiophenyl ketones 3 and 6 with allylmagnesium chloride can be rationalized by considering the approach of the nucleophile to the sterically distinct diastereofaces of these more conformationally biased ketones (Figure 1). Mechanistically, the additions of allylmagnesium reagents to ketones should occur though a concerted transition state with allylic transposition. Addition through a six-membered-ring transition state 6,71 likely occurs more rapidly to the sterically accessible diastereoface of the ketone (the right side of the carbonyl group of structure 9) after complexation than to the face blocked by the α -substituent (the left side of structure 9).

Given the high diastereoselectivities of additions of allylmagnesium halides to ketones with Cl, Br, and S atoms at the α -position, subsequent experiments addressed the selectivities of additions to ketones with an O atom at the α -position. This possibility seemed likely to lead to a low diastereoselectivity considering that the presence of an α -alkoxy group in a ketone does not lead to stereoselective additions of allylmagnesium reagents. ^{21–23} By contrast, the addition of allylmagnesium chloride to α -silyloxy acyclic ketones, which were prepared according to Scheme 5, occurred

Scheme 5. Preparation of α -Silyloxy-Substituted Ketones

rapidly and, in many cases, stereoselectively at -78 °C (Scheme 6).³ The only cases where reactions were not stereoselective were for ketones where the stereogenic center had two larger groups (ketone 31, which had a silyloxy group and a phenyl group) and an aldehyde (33). The reactions of a silyloxy ketone, 26, with a less reactive Grignard reagent, MeMgCl, did not occur at -78 °C. The addition of this reagent required warming the reaction mixture to room temperature, but this reaction was not stereoselective (dr = 52:48).

The configurations of the products of these reactions were established by a combination of crystallography and chemical correlation (Scheme 7). The relative configuration of alcohol 25 was determined through chemical correlation. Silyloxy-protected alcohol 27, whose stereochemistry was previously reported,³ and OTBDPS-protected alcohol 25 were both deprotected to yield alcohol 35. Crystalline carbamate 40, prepared from silyloxy-protected alcohol 30, was analyzed by X-ray crystallography. The relative stereochemistry of alcohol 29 was not established but was tentatively assigned by analogy to alcohols 27 and 30.

Competition experiments using α -silyloxy ketones 26 and 31 indicated that the allylmagnesium reagents reacted rapidly with the ketones after complexation, precluding the equilibration of the complexes (Scheme 8). Considering that propiophenone (14) and deoxybenzoin (41) react at rates that approach the diffusion limit, additions to ketones 26 and 31 also must occur upon the encounter of the reagent and the ketone. Consequently, these reactions do not occur in a Curtin–Hammett kinetic scenario; thus, the selectivity cannot be rationalized by the Felkin–Anh model.

Just as with the α -halogenated and α -thiophenyl ketones, the conformation of the ketone and the steric hindrance provided by the silyloxy group could be responsible for the stereoselectivity. Unlike the halogenated ketones, however, hyperconjugative interactions would not determine the low-energy ground-state conformations of ketones **20** and **26** because the carbon—oxygen bond is not a strong electron donor. The selectivity also does not arise from chelation-control because the large silyloxy protecting groups prevent the oxygen atom

Scheme 6. Additions of Grignard Reagents to α -Silyloxy-Substituted Ketones and an α -Silyloxy-Substituted Aldehyde

from engaging in chelation. $^{73-76}$ Moreover, no kinetic acceleration 77 was noted in the competition experiments shown in Scheme 8.

Computational studies provide some insight into the origin of the stereoselectivity. Although α -silyloxy ketones can exhibit a range of conformers in the solid state, ^{78–82} calculations for ketone **20** in THF (B3LYP/6-31G* with the polarized continuum model⁸³ to account for the influence of solvent)⁸⁴ suggest that the conformer with the dipoles aligned, as illustrated by conformer **43** (Figure 4), represents the lowest-energy family of conformers (by more than 1 kcal/mol). These conformers position the silyloxy group on one face of the carbonyl group and the alkyl group on the other face, differing

Scheme 7. Derivatizations and Chemical Correlations of α -Silyloxy-Substituted Propiophenone Addition Products

only in the orientation of the groups on silicon. In the case of ketone 20, addition would be expected to occur from the more exposed face (Figure 4). This mode of attack is indistinguishable from addition through a Felkin—Anh transition state (44), although the energies of conformers resembling 44 are >2 kcal/mol higher than those of the lower-energy structures resembling 43. Attack through transition state 43 is consistent with the major products observed with ketones 23, 24, and 26.

This analysis also explains the lack of stereoselectivity for the addition of allylmagnesium chloride to ketone 31 (Scheme 6). In that case, the approach of the nucleophile from either face would be sterically disfavored due to unfavorable steric interactions with large substituents, such as Ph and $OSi(i-Pr)_3$, from either face. As a result, allylmagnesium chloride would add to ketone 31 from either diastereoface of a conformer resembling 43 with comparable difficulty.

The presence of a heteroatom at the α -carbon atom of a ketone is not required for stereoselective reactions of allylmagnesium reagents to be observed. Ketone 46, bearing a phenyl group and a vinyl group at the stereogenic center, reacted with allylmagnesium chloride with high diastereoselectivity to form alcohol 47 (Scheme 9, dr = 93:7). The

Scheme 8. Competition Experiments^a between α -Silyloxy Ketones and Unhindered Ketones with Allylmagnesium Chloride^b

"Competition experiments involved the dropwise addition (one drop every minute) of the diluted nucleophile (\leq 0.2 M) to a rapidly stirring mixture of 4 equiv of each electrophile at a low concentration (\leq 1.0 M). ^bRatios for all competition experiments were determined by $^{13}C\{^{1}H\}$ NMR spectroscopy. ⁴³

$$\begin{bmatrix} t\text{-BuPh}_2\text{Si-OO} \\ Ph \\ Me \\ Nu \end{bmatrix}^{\ddagger} \begin{bmatrix} O \\ Me \\ V \\ Ph \\ Nu \end{bmatrix}^{\ddagger}$$

$$\begin{bmatrix} t\text{-BuPh}_2\text{Si} \\ Ph \\ Nu \end{bmatrix}$$

$$43$$

Figure 4. Conformational preferences of α -silyloxy-substituted propiophenones.

relative stereochemistry of the addition product was determined by X-ray crystallographic analysis of epoxide 49, which was synthesized from alcohol 47 (Scheme 10). Competition experiments revealed that, just as for the ketones with a heteroatom at the α -carbon atom, the addition cannot be explained by the Felkin–Anh model because the rates of addition of allylmagnesium chloride were the same for ketone 46 and propiophenone.

The stereoselectivity observed with allylmagnesium reagents was also observed with an alkyl Grignard reagent. The addition of *n*-propylmagnesium chloride to ketone **46** yielded both the addition product, alcohol 50, and the reduction product, 85 alcohol 45, with high diastereoselectivity (Scheme 11). Chemical correlation of the addition product 50 with allylated alcohol 47, whose structure was established by X-ray crystallography (Scheme 10), confirmed that the configurations of the two products were consistent with nucleophilic addition from the same face (Scheme 12). Unlike the reaction with allylmagnesium chloride, the reaction with n-propylmagnesium chloride does conform to the conditions of the Felkin-Anh model. A competition experiment between ketone 46 and propiophenone (14) indicated that the addition of npropylmagnesium chloride to ketone 46 was considerably slower than the addition to propiophenone, suggesting that this reaction occurred under a Curtin-Hammett kinetic regime. As a result, this addition may proceed through a broad range of possible complexes en route to the lowestenergy transition state.

Scheme 9. Selective Addition of Allylmagnesium Chloride to α -Vinyl-Substituted Ketone 46 and Competition Experiment^a between Ketone 46 and Propiophenone with Allylmagnesium Chloride^b

^aCompetition experiments involved the dropwise addition (one drop every minute) of the diluted nucleophile (≤0.2 M) to a rapidly stirring mixture of 4 equiv of each electrophile at a low concentration (≤1.0 M). ^bRatios for all competition experiments were determined by $^{13}C\{^{1}H\}$ NMR spectroscopy. ⁴³

Scheme 10. Stereochemical Proof of Alcohol 47

The stereoselectivity of additions of allylmagnesium reagents to α -phenyl-substituted ketone 46 can be explained by examining the preferred conformation of the carbonyl compound, just as it explained reactions with the heteroatom-substituted ketones. Computational analysis (B3LYP/6-31G* in THF)⁸⁴ of ketone **46** suggests that it favors conformer 54 by >1 kcal/mol over any conformer that places the phenyl group in another position (Figure 5).46 This orientation of an aromatic ketone is exhibited in X-ray crystal structures for many α -phenyl-substituted ketones. 86-90 Considering that ketone 46 likely exists predominantly in this conformation, complexation and a subsequent attack from the more accessible face would form the major product. Although this result can be interpreted using the Felkin-Anh model, the stereochemical outcome is not because this transition state is favored over all other possible ones. Instead, the ketone adopts the structure resembling the Felkin-Anh transition state, and rapid addition occurs only to the more accessible face. In the case of n-propylmagnesium chloride, however, this transition state could be the lowest-energy one considering that this reaction occurs in a Curtin-Hammett kinetic regime. Despite the difference in the reactivities of these nucleophiles, the Scheme 11. Addition of n-Propylmagnesium Chloride to α -Vinyl-Substituted Ketone 46 and Competition Experiment between Ketone 46 and Propiophenone with n-Propylmagnesium Chloride b

^aCompetition experiments involved the dropwise addition of the nucleophile to a rapidly stirring mixture of 4 equiv of each electrophile at a low concentration (≤1.0 M). ^bRatios for all competition experiments were determined by 13 C{ 1 H} NMR spectroscopy. ⁴³

Scheme 12. Stereochemical Correlation of Alcohols 47 and 50 to Alcohol 52

Figure 5. Conformational preferences of α -vinyl-substituted deoxybenzoin.

additions of allylmagnesium chloride and alkylmagnesium chloride to ketone **46** both proceed with high diastereoselectivities for the same diastereomer but for different reasons.

The above analyses of the reactions of acyclic ketones with allylmagnesium halides rely on the assumption that the highly reactive nucleophile can attack only from the more accessible face of a low-energy conformer. Nevertheless, these ketones are conformational flexible, and it is possible that the stereochemistry could result from other modes of attack. Consequently, the assumption that a sterically large group could hinder the attack of the highly reactive reagent was tested.

60

Reactions of cyclic ketones provide insight into the approach of nucleophiles that would not be evident with acyclic systems. The reactions of sulfur-containing substrates were chosen because these substrates were not subject to the reductions observed for the α -halogenated substrates. Initially, it was important to determine whether α -thiophenyl ketones could function as models for the halogenated ketones. This hypothesis was tested with reactions of medium-ring ketones, which were synthesized according to Scheme 13. Much like the

Scheme 13. Preparation of α -Thiophenyl Cyclic Ketones

reactions of α -halogenated cycloheptanone and α -halogenated cyclooctanone,⁷ the allylations of α -thiophenyl cyclic ketones 56 and 58 were stereoselective (Scheme 14).⁴¹ The formation

Scheme 14. Additions of Allylmagnesium Chloride to α -Thiophenyl Cyclic Ketones

of the 1,2-anti product as the major diastereomer was determined by X-ray crystallographic analysis of sulfoxides 61 and 62, which were formed by the oxidation of sulfides 59 and 60, respectively (Scheme 15).

Competition experiments involving hindered ketones 56 and 58 and cyclic ketones 63 and 65 illustrate that the additions of allylmagnesium chloride do not conform to a Curtin–Hammett kinetic scenario. The additions to substituted and unsubstituted ketones occurred at similar rates (Scheme 16), indicating that bond formation occurred rapidly once the two reactants approached each other. These cyclic substrates further exemplify an inability to apply the Felkin–Anh model because the constraints of the cyclized system preclude a Felkin–Anh transition state. Regardless of the α -substituent, the nucleophilic approach to the carbonyl group is governed by the ring itself, which blocks the nucleophile's approach to the internal face of the ketone and forces addition to occur from

Scheme 15. Stereochemical Proofs of Additions to α -Thiophenyl Cyclic Ketones

Scheme 16. Competition Experiments^a between Ketones 56 and 58 and Cyclic Ketones with Allylmagnesium Chloride^b

73%

^aCompetition experiments involved the dropwise addition (one drop every minute) of the diluted nucleophile (≤0.2 M) to a rapidly stirring mixture of 4 equiv of each electrophile at a low concentration (≤1.0 M). ^bRatios for all competition experiments were determined by 13 C{ 1 H} NMR spectroscopy. ⁴³

the external face. Selectivity in these larger ring systems arises from faster addition to the sterically uncongested face of the ketone (Figure 6).⁷

Figure 6. Nucleophilic approach to cyclooctanone.

In contrast to reactions of medium-ring cyclic ketones, reactions of α -thiophenyl cyclohexanone (68) with allylmagnesium chloride proceeded with low diastereoselectivity. The two diastereomers of the product could be formed by axial or equatorial attack on either the axial conformer, which should be favored in solution; ^{48,49} an attack on the equatorial conformer; or an attack on both. A competition experiment between ketone 68 and unhindered ketone 70 indicated that these two ketones reacted at the same rate (Scheme 17); thus,

Scheme 17. Addition of Allylmagnesium Chloride to α -Thiophenyl Ketone 68 and Competition Experiment^a between Ketone 68 and Cyclohexanone (70) with Allylmagnesium Chloride^b

^aCompetition experiments involved the dropwise addition (one drop every minute) of the diluted nucleophile (≤0.2 M) to a rapidly stirring mixture of 4 equiv of each electrophile at a low concentration (≤1.0 M). ^bRatios for all competition experiments were determined by ${}^{13}C\{{}^{1}H\}$ NMR spectroscopy. ⁴³

like the results with the acyclic ketones, these reactions do not conform to a Curtin–Hammett kinetic scenario. Attempts to compare these results with the reactions of other Grignard reagents, such as MeMgBr and n-PrMgCl, were unsuccessful because reactions with those reagents proceeded with low conversions under comparable conditions. The addition of MeLi, however, is known to proceed with high stereoselectivity (dr = 88:12).

Reactions of substituted cyclohexanones address the issue of which face is attacked. A nucleophile can approach an unhindered cyclohexanone from either the equatorial face or the axial face, but a suitably positioned axial substituent at C3 or C5 in cyclohexanone blocks the axial addition of the nucleophile, requiring addition to occur to the equatorial face (Figure 7). We therefore prepared α -substituted ketones 74

Figure 7. Sterically inaccessible addition due to axial substituents at C3 and C5 on cyclohexanone.

and 75 with axial substituents at C3 and C5 to determine if the orientation of a substituent at C2 had an impact on the preference for equatorial addition (Scheme 18).

Both the axial and equatorial conformers of ketones 74 and 75 are likely to be present in solution. Computations using the method used for the calculations of other α -halogenated carbonyl compounds (B3LYP/aug-cc-pVDZ in THF)⁴⁷ indicated that ketone 74 had a small preference (<0.3 kcal/mol) for the equatorial conformer, which was also favored in the solid state, as determined by X-ray crystallography (76, Figure 8). The bromine-substituted variant of this ketone also adopted the equatorial conformation in the solid state. ⁹¹ By contrast, the corresponding thiophenyl-substituted ketone 75

Scheme 18. Synthesis of α -Substituted Tetramethylcyclohexanones

Figure 8. X-ray crystal structure of ketone 74.

was an oil. Calculations (B3LYP/6-31G* in THF)⁸⁴ showed that it had a small (0.6 kcal/mol) preference for the equatorial conformer. Taken together, these calculations indicated that analysis of the reactivity of these cyclic ketones would need to consider both the axial and the equatorial conformers.

76

Additions of the highly reactive nucleophile allylmagnesium chloride to the sterically hindered α -substituted cyclohexanones 74 and 75 proceeded with high diastereoselectivity in both cases (Scheme 19). The major diastereomers of both

Scheme 19. Additions of Allylmagnesium Chloride to α -Substituted Tetramethylcyclohexanones

allylated products 77 and 78 were the 1,2-anti isomers. Chlorohydrin 77 could not be cyclized to the epoxide, suggesting that it had the illustrated stereochemistry. X-ray crystallographic analysis of sulfoxide 80 established the configuration of alcohol 78 (Scheme 20). The additions of less-reactive Grignard reagents (MeMgBr and PhMgBr) to ketone 75 proceeded with the same relative stereochemistry and with high stereoselectivity (dr \geq 97:3).

ı

Scheme 20. Stereochemical Proofs of Alcohols 77 and 78

The stereoselectivities of the reactions shown in Scheme 19 are consistent with either axial addition to the axial conformer or equatorial addition to the equatorial conformer. Axial addition to the axial conformer corresponds to a polar Felkin—Anh transition state. Such an addition, however, is unlikely because it would require the nucleophile to approach the carbonyl group over the two axial methyl groups (81 and 82, Figure 9), which is disfavored. Furthermore, the polar Felkin—

$$\begin{bmatrix} Me \\ Me \\ 5 | Me \\ Me \\ 3 \\ X \end{bmatrix}^{\ddagger} = \begin{bmatrix} H & O \\ R & R \end{bmatrix}^{\ddagger}$$

$$81 \qquad 82$$

$$\begin{bmatrix} Me \\ Me \\ 5 | Me \\ Me \\ 3 \\ X \end{bmatrix}^{\ddagger} = \begin{bmatrix} X & O \\ R & Nu \end{bmatrix}^{\ddagger}$$

$$83 \qquad 84$$

Figure 9. Possible modes for nucleophilic approach to ketones **74** and **75**.

Anh model cannot be evoked for these substrates because the reaction does not occur in a Curtin—Hammett kinetic regime, as indicated by competition experiments that demonstrate a similar rate of addition to sterically encumbered ketones 74 and 75 and propiophenone (Scheme 21).

Because axial attack is sterically inaccessible due to the axially substituted methyl groups at C3 and C5, equatorial addition is more likely. The configurations of the products 77 and 78 indicate that addition occurs to the equatorial conformer of the ketones 74 and 75, as illustrated in 83 and 84 (Figure 9). These results suggest that any electronic stabilization of the transition state that might occur upon nucleophilic addition *anti* to the heteroatom, which would be expected by the Felkin–Anh model, is not as important as steric effects. As a result, the avoidance of the axially substituted methyl groups defines which face of the ketone is attacked.

These results allow for the analysis of the reactions of the unhindered ketone, 2-thiophenylcyclohexanone (68), to be refined. The product *syn*-69, where the allyl group is positioned *syn* to the thiophenyl group, cannot be formed by equatorial

Scheme 21. Competition Experiment^a between Ketones 74 and 75 and Propiophenone with Allylmagnesium Chloride^b

^aCompetition experiments involved the dropwise addition (one drop every minute) of the diluted nucleophile (≤0.2 M) to a rapidly stirring mixture of 4 equiv of each electrophile at a low concentration (≤1.0 M). ^bRatios for all competition experiments were determined by 13 C{ 1 H} NMR spectroscopy. ⁴³

attack on the axial conformer (the nucleophilic approach represented by the dotted arrow on conformer 85, Figure 10).

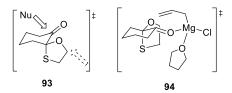
Figure 10. Nucleophilic approach on possible conformations of ketone **68**.

That mode of attack was available in the case of ketone 75, but the product from that transition state was not observed. Rather, the *syn*-addition product must be formed by axial attack on the equatorial conformer, a mode of attack possible for the unhindered ketone 68 but not for the hindered ketone 75. The formation of the 1,2-*anti* alcohol *anti*-69, however, can arise from either axial attack on the axial conformer or equatorial attack on the equatorial conformer of this unhindered ketone (Figure 10).

Just as the placement of the axial methyl substituents at C3 and C5 blocked one face of the carbonyl group, a geminal substitution at C2 also blocked the attack from one face. The addition of allylmagnesium chloride to sterically congested ketone 88⁹³ was highly diastereoselective for the 1,2-anti product 89 (Scheme 22). The configuration of alcohol 89 was

Scheme 22. Addition of Allylmagnesium Chloride to Cyclic Ketone 88 and Competition Experiment^a between Ketone 88 and 4-*tert*-Butyl Cyclohexanone with Allylmagnesium Chloride^b

89:91 = 37:63


"Competition experiments involved the dropwise addition (one drop every minute) of the diluted nucleophile (\leq 0.2 M) to a rapidly stirring mixture of 4 equiv of each electrophile at a low concentration (\leq 1.0 M). ^bRatios for all competition experiments were determined by $^{13}C\{^1H\}$ NMR spectroscopy. ⁴³

determined by X-ray crystallographic analysis of sulfone 92 (Scheme 23). This crystal structure provided the only example

Scheme 23. Stereochemical Proof of Alcohol 89

in this study where the allyl group was placed in an axial orientation on a six-membered ring. The same high preference for *anti*-addition was also observed for the reaction of MeMgCl with ketone 88.⁹³ Competition experiments suggest that, just as for the other ketones, carbon—carbon bond formation is faster than decomplexation once allylmagnesium chloride and the ketone encounter each other (Scheme 22).

The stereochemical course of the reaction that forms alcohol 89 can be explained by considering the possible steric hindrance between the nucleophile and the α -oxathiolane group on ketone 88. This approach should be particularly sterically hindered from the equatorial position, resulting in axial approach of the nucleophile through a six-membered-ring transition state⁶ (Figure 11). Calculations using optimized parameters that accounted for significant noncovalent interactions (ω B97X-D/cc-pVDZ in THF)⁹⁴ supported this

Figure 11. Sterically inaccessible equatorial addition due to the α -oxathiolane group on cyclohexanone.

prediction. The conformer with the sulfur atom of the oxathiolane ring positioned axially (as illustrated in transition state 94) was calculated to be favored by 1.3 kcal/mol. 49,93 Computational studies using this functional and basis set combination showed that the attack on 93 from both faces of the carbonyl group involved relatively low-energy sixmembered-ring transition states ($\Delta G^{\ddagger} < 8$ kcal/mol), indicating that the bond-forming step was competitive with dissociation of a complex between the reagent and the ketone. Nevertheless, the transition state for attack from the axial face (through a transition state resembling 94) was lower in free energy by 3 kcal/mol.

Collectively, these experiments with hindered cyclic ketones provide useful information regarding the reactions of acyclic ketones with highly reactive allylmagnesium reagents. When a large group is positioned on one face, as expected for acyclic ketones, that group is sufficient to block nucleophilic attack to that face.

CONCLUSION

Reactions of acyclic ketones with allylmagnesium chloride that do not conform to a Curtin—Hammett kinetic scenario can still proceed with high diastereoselectivity, provided that they meet some conditions. The ketone should favor a conformer or related conformers where one diastereoface of the carbonyl group is sufficiently hindered and inaccessible to nucleophilic attack, resulting in selective additions with reagents that form carbon—carbon bonds immediately upon complexation. When these conditions are met, the nucleophilic additions to ketones are likely to be stereoselective, even with highly reactive nucleophiles that react at rates approaching the diffusion rate limit.⁴

■ EXPERIMENTAL SECTION

General Experimental. ¹H NMR and ¹³C{¹H} NMR spectra were obtained at room temperature using Bruker AVIII-400 (400 and 100 MHz, respectively), AVIIIHD-400 (400 and 100 MHz, respectively), and AV-600 (600 and 150 MHz, respectively) spectrometers. Spectroscopic data are reported as follows: chemical shifts reported in parts per million (ppm) on the δ scale, 1H and ¹³C{¹H} NMR spectra internally referenced to tetramethylsilane (¹H NMR, CDCl₃ δ 0.00; ¹³C{¹H} NMR, CDCl₃ δ 0.00), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. Ratios of products were obtained from ¹H NMR or ¹³C{¹H} NMR integrations using diagnostic peaks in the unpurified reaction mixture. 43 One-pulse ¹H NMR spectra were taken when determining product ratios. Multiplicities of carbon peaks were determined using HSQC experiments. Infrared (IR) spectra were recorded using a Thermo Nicolet AVATAR Fourier Transform IR spectrometer using attenuated total reflectance (ATR). High-resolution mass spectra were acquired on an Agilent 6224 Accurate-Mass time-of-flight spectrometer and were obtained using peak matching. The ionization sources used were either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI), as indicated. Liquid

chromatography was performed using forced flow (flash chromatography) of the indicated solvent system on silica gel (SiO₂) 60 (230–400 mesh). Tetrahydrofuran, diethyl ether, dichloromethane, and methanol were dried and degassed using a solvent purification system before use. All dry reactions were run under a nitrogen atmosphere in glassware that had been flame-dried under reduced pressure. Unless otherwise noted, all reagents and substrates were commercially available. Ketones 1, 96 26, 3 31, 97 55, 7 and 57 7 were prepared using known methods. Ester 21, 98 aldehyde 33, 98 and alcohol 45 99 were prepared using known methods. Compounds 15, 3 17, 3 42, 100 51, 3 64, 7 66, 7 71, 101 and 91 102 are known in the literature. Spectroscopic data ($^1\mathrm{H}$ NMR or $^{13}\mathrm{C}^{\{1}\mathrm{H}\}$ NMR) for the formation of these products in the course of competition experiments are consistent with the data reported.

Representative Procedure for the Addition of Grignard Reagents to Ketones: (2R*,3R*)-2-Chloro-3-phenylhex-5-en-3ol (2) and (2R*,3S*)-2-Chloro-3-phenylhex-5-en-3-ol (2'). To a cooled (-78 °C) solution of ketone 1 (0.084 g, 0.50 mmol) in THF (5 mL) was added allylmagnesium chloride (300 μ L, 2.0 M solution in THF, 0.60 mmol). After 30 min, MeOH (2 mL) was added to the mixture, followed by concentration in vacuo. To the mixture were then added H₂O (10 mL) and HCl (5 mL, 1.0 M in H₂O), and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohols 2 were formed as an 88:12 mixture of diastereomers. Purification by flash chromatography (3:97 EtOAchexanes) afforded the alcohols 2 and 2' as a colorless oil (0.078 g, 74%) with a diastereomeric ratio of 88:12. This mixture was used for characterization. The relative stereochemical configurations of alcohols 2 were assigned by the derivatization of alcohol 2 to epoxide 5: IR (ATR) 3546, 2983, 1447, 998, 919, 767 cm⁻¹; HRMS (APCI) m/z calcd for $C_{12}H_{15}O$ [(M + H) - HCl]⁺ 175.1117, found

Major Diastereomer **2**. ¹H NMR (100 MHz, CDCl₃) δ 7.49–7.47 (m, 2H), 7.38–7.34 (m, 2H), 7.30–7.27 (m, 1H), 5.62–5.52 (m, 1H), 5.16–5.08 (m, 2H), 4.36 (q, J = 6.6, 1H), 2.87–2.82 (m, 1H), 2.74–2.68 (m, 1H), 2.50 (s, 1H), 1.48 (d, J = 6.8, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.2 (C), 132.7 (CH), 128.0 (CH), 127.4 (CH), 126.4 (CH), 119.8 (CH₂), 77.7 (C), 65.8 (CH), 42.1 (CH₂), 19.5 (CH₃).

Minor Diastereomer **2**′. ¹H NMR (100 MHz, CDCl₃, diagnostic peaks) δ 2.30 (s, 1H), 1.25 (d, J = 6.7, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.7 (C), 132.9 (CH), 128.3 (CH), 127.2 (CH), 125.7 (CH), 119.3 (CH₂), 77.6 (C), 66.7 (CH), 45.5 (CH₂), 19.6 (CH₃).

(2R*,3R*)-2-Bromo-3-phenylhex-5-en-3-ol (4) and (2R*,3S*)-2-Allyl-3-methyl-2-phenyloxirane (5). Alcohol 4 and epoxide 5 were prepared using the representative procedure for the addition of Grignard reagents to ketones using 2-bromopropiophenone (300 μ L, 1.97 mmol) and allylmagnesium chloride (1.47 mL, 2.0 M solution in THF, 3.0 mmol) in THF (19 mL) at -78 °C for 30 min. ¹H NMR and $^{13}\text{C}\{^1\text{H}\}$ NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 4 and epoxide 5 were formed as an 86:14 mixture of products (4:5). Alcohol 4 and epoxide 5 were formed as a single diastereomer (dr >99:1). Purification by flash chromatography (5:95 EtOAc-hexanes) afforded alcohol 4 as a colorless oil (0.285 g, 57%) and epoxide 5 as a light yellow oil (0.032 g, 9%). The relative stereochemical configuration of alcohol 4 was assigned by the derivatization of alcohol 4 to epoxide 5. The spectroscopic data (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) for epoxide 5 are consistent with the data reported in the literature: 34 1H NMR (400 MHz, CDCl₃) δ 7.36–7.27 (m 5H), 5.79–5.68 (m, 1H), 5.08-5.03 (m, 2H), 3.21 (q, J = 5.5, 1H), 2.83 (dd, J = 14.7, 6.6, 1H), 2.50 (dd, J = 14.7, 7.4, 1H), 0.98 (d, J = 5.4, 3H); ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, CDCl₃) δ 138.3, 132.8, 128.0, 127.2, 127.0, 118.2, 65.0, 59.3, 42.0, 14.5; HRMS (APCI) m/z calcd for $C_{12}H_{15}O$ [M + H] 175.1117, found 175.1114.

Alcohol 4. ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.44 (m, 2H), 7.38–7.34 (m, 2H), 7.31–7.26 (m, 1H), 5.61–5.50 (m, 1H), 5.15–5.06 (m, 2H), 4.52 (q, J = 6.8, 1H), 2.87–2.81 (m, 1H), 2.77–2.72

(m, 1H), 2.51 (s, 1H), 1.72 (d, J=6.8, 3H); $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) δ 142.7 (C), 132.8 (CH), 128.0 (CH), 127.4 (CH), 126.2 (CH), 119.6 (CH₂), 77.5 (C), 60.8 (CH), 42.1 (CH₂), 20.7 (CH₃); IR (ATR) 3521, 1447, 1178, 994, 918, 765 cm⁻¹; HRMS (ESI) m/z calcd for $C_{12}H_{14}Br$ [(M + H) $-H_{2}O$]⁺ 237.0273, found 237.0271.

1-Phenyl-2-(phenylthio)propan-1-one (6). A reported procedure 103 was adapted to prepare ketone 6. To a solution of sodium hydride (0.480 g, 60% in mineral oil, 12.0 mmol) in THF (12 mL) was added thiophenol (1.2 mL, 12.0 mmol) dropwise over 5 min. After 30 min, a solution of 2-bromopropiophenone (1.5 mL, 10.0 mmol) in THF (5 mL) was added by cannula to the reaction mixture. After 3 h, HCl (30 mL, 1.0 M in H₂O) was added to the mixture. The layers were separated, and the aqueous layer was extracted with Et₂O $(2 \times 30 \text{ mL})$. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (5:95 EtOAc-hexanes) afforded ketone 6 as a yellow oil (0.962 g, 40%). The spectroscopic data (¹H NMR, ¹³C(¹H) NMR, and HRMS) are consistent with the data reported in the literature: 104 1 H NMR (400 MHz, CDCl₃) δ 7.96–7.94 (m, 2H), 7.58–7.54 (m, 1H), 7.46-7.43 (m, 2H), 7.36-7.34 (m, 2H), 7.31-7.27 (m, 3H), 4.63 (q, J = 6.9, 1H), 1.54 (d, J = 6.9, 3H); ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, $CDCl_3$) δ 196.3, 135.7, 134.6, 133.1, 131.8, 128.9, 128.63, 128.60, 128.57, 46.2, 17.0; HRMS (ESI) m/z calcd for $C_{15}H_{15}OS$ [M + H]⁺ 243.0838, found 243.0835.

(2R*,3R*)-3-Phenyl-2-(phenylthio)hex-5-en-3-ol (7). Alcohol 7 was prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 6 (0.125 g, 0.51 mmol) and allylmagnesium chloride (300 μ L, 2.0 M solution in THF, 0.60 mmol) in THF (5 mL) at -78 °C for 30 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 7 was formed as a single diastereomer (dr > 99:1). Purification by flash chromatography (3:97 EtOAc-hexanes) afforded alcohol 7 as a yellow oil (0.113 g, 77%). The relative stereochemical configuration of alcohol 7 was assigned by the derivatization of alcohol 7 to sulfone 8: ¹H NMR (600 MHz, CDCl₃) δ 7.49-7.47 (m, 2H), 7.35-7.31 (m, 4H), 7.25-7.18 (m, 4H), 5.62-5.55 (m, 1H), 5.16-5.08 (m, 2H), 3.52 (q, J = 6.9, 1H), 2.99-2.95(m, 1H), 2.73 (s, 1H), 2.70-2.67 (m, 1H), 1.32 (d, J = 6.9, 3H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (125 MHz, CDCl₃) δ 143.3, 135.7, 133.5, 132.3, 129.0, 128.0, 127.2, 127.1, 126.5, 119.7, 77.9, 56.9, 42.8, 17.5; IR (ATR) 3485, 1438, 996, 746, 700, 691 cm $^{-1}$; HRMS (APCI) m/zcalcd for $C_{18}H_{19}S$ [(M + H) - H_2O]⁺ 267.1202, found 267.1199. Anal. Calcd for C₁₈H₂₀OS: C, 76.01; H, 7.09. Found: C, 75.87; H,

Reaction of Alcohol 2 with Potassium Carbonate. To a solution of alcohol 2 (0.022 g, 0.10 mmol, dr 88:12) in MeOH (1.0 mL) was added K_2CO_3 (0.056 g, 0.40 mmol) at 0 °C. After 1 h, the reaction mixture was warmed to 20 °C and stirred for an additional 16 h. To the mixture was then added H_2O (5 mL). The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 \times 10 mL). The combined organic layers were dried over Na_2SO_4 , filtered, and concentrated in vacuo. 1H NMR and $^{13}C\{^1H\}$ NMR spectroscopic analysis of the unpurified reaction mixture revealed the presence of only epoxide 5 (dr 89:11). The spectroscopic data (1H NMR, $^{13}C\{^1H\}$ NMR, IR, and HRMS) for epoxide 5 are consistent with the data reported. 34

Reaction of Alcohol 4 with Potassium Carbonate. To a solution of alcohol 4 and epoxide 5 (0.012 g, 0.05 mmol, 86:14 ratio; dr of alcohol 4 >99:1) in MeOH (1.0 mL) was added $\rm K_2CO_3$ (0.030 g, 0.21 mmol) at 0 °C. After 1 h, the reaction mixture was warmed to 20 °C and stirred for an additional 16 h. To the mixture was then added $\rm H_2O$ (5 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 \times 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. $^1\rm H$ NMR and $^{13}\rm C\{^1\rm H\}$ NMR spectroscopic analysis of the unpurified reaction mixture revealed the presence of only epoxide 5 (dr >99:1). The spectroscopic data ($^1\rm H$ NMR, $^{13}\rm C\{^1\rm H\}$ NMR, IR, and HRMS) for epoxide 5 are consistent with the data reported. 34

(2R*,3R*)-3-Phenyl-2-(phenylsulfonyl)hex-5-en-3-ol (8). To a solution of alcohol 7 (0.028 g, 0.10 mmol) in CH_2Cl_2 (1 mL) was added 3-chloroperbenzoic acid (0.049 g, 70% in H_2O , 0.20 mmol) at 0 °C. After 1 h, the mixture was warmed to 20 °C and stirred for an additional 1 h. To the mixture were then added saturated aqueous NaHSO₃ (2 mL) and H₂O (5 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 \times 10 mL). The combined organic layers were washed with brine (1 × 15 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The organic layer was washed with saturated aqueous NaHCO₃ (3 × 5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (33:67 EtOAc-hexanes) afforded sulfone 8 as a white solid (0.033 g, 99%). X-ray quality crystals were grown by the slow evaporation of a solution of sulfone 8 in a 33:67 mixture of EtOAc-hexanes. The relative stereochemical configuration of sulfone 8 was assigned by X-ray crystallographic analysis: mp = 109-113 °C; 1 H NMR (600 MHz, CDCl₃) δ 7.66–7.64 (m, 2H), 7.55–7.52 (m, 1H), 7.42-7.39 (m, 2H), 7.32-7.31 (m, 2H), 7.19-7.13 (m, 3H), 5.60-5.53 (m, 1H), 5.11-5.08 (m, 1H), 5.02-5.00 (m, 1H), 3.55 (q, J = 7.2, 1H), 3.06-3.02 (m, 1H), 2.94-2.90 (m, 1H), 1.35 (d, J = 7.2, 3H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 141.7 (C), 139.9 (C), 133.3 (CH), 132.6 (CH), 129.0 (CH), 128.0 (CH), 127.9 (CH), 127.4 (CH), 126.6 (CH), 118.8 (CH₂), 77.8 (C), 68.5 (CH), 41.8 (CH₂), 10.9 (CH₃); IR (ATR) 3501, 1284, 1130, 911, 770, 701 cm⁻¹; HRMS (ESI) m/z calcd for $C_{18}H_{20}NaO_3S$ [M + Na]⁺ 339.1025, found 339.1033.

Representative Procedure for the Addition of Lithium Phenylacetylide to Ketones ((2R*,3S*)-3-Methyl-2-phenyl-2-(phenylethynyl)oxirane (10)). To a solution of phenylacetylene (110 μ L, 1.00 mmol) in THF (5 mL) was added *n*-butyllithium (550 μ L, 1.5 M solution in hexanes, 0.99 mmol) dropwise over 5 min at −78 °C. After 1 h, the solution was warmed to 20 °C and added by cannula to a cooled (-78 °C) solution of ketone 1 (119 mg, 0.705 mmol) in THF (7 mL). After 1 h, the reaction mixture was warmed to 20 $^{\circ}\text{C}$ and stirred for an additional 3 h. To the mixture were then added H₂O (10 mL) and HCl (10 mL, 1.0 M in H₂O). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 \times 10 mL). The combined organic layers were washed with brine (1 \times 15 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. ¹H NMR spectroscopic analysis of the unpurified reaction mixture revealed that epoxide 10 was formed as a single diastereomer (dr >99:1). Purification by flash chromatography (3:97 EtOAc-hexanes) afforded epoxide 10 as a colorless oil (0.081 g, 49%). The spectroscopic data (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) are consistent with the data reported in the literature:³⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.52 (m, 2H), 7.47–7.45 (m, 2H), 7.41–7.30 (m, 6H), 3.69 (q, J = 5.4, 1H), 1.10 (d, J = 5.3, 3H); ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, CDCl₃) δ 135.5, 132.0, 128.7, 128.3, 128.1, 128.0, 127.1, 122.2, 88.9, 82.9, 63.4, 56.2, 13.3; HRMS (ESI) m/z calcd for $C_{17}H_{15}O [M + H]^+ 235.1117$, found 235.1126.

(2R*,3S*)-3-Methyl-2-phenyl-2-(phenylethynyl)oxirane (10) and (R*)-2-((2S*,3S*)-3-Methyl-2-phenyloxiran-2-yl)-1-phenylpropan-1-one (11). Epoxides 10 and 11 were prepared using the representative procedure for the addition of lithium phenylacetylide to ketones. Lithium phenylacetylide was generated using phenylacetylene (110 μ L, 1.00 mmol) and n-butyllithium (550 μ L, 1.5 M solution in hexanes, 0.99 mmol) in THF (5 mL). This mixture was then added to a solution of 2-bromopropiophenone (100 μ L, 0.66 mmol) in THF (7 mL) at -78 °C for 1 h, and the reaction mixture was then warmed to 20 °C for 2 h. ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 97:3 mixture of products (10:11). Epoxides 10 and 11 were formed as a single diastereomer (dr >99:1). Purification by flash chromatography (3:97 EtOAc-hexanes) afforded epoxide 10 as a colorless oil (0.123 g, 80%) and epoxide 11 as a colorless oil (0.007 g, 4%). The spectroscopic data (1H NMR, 13C{1H} NMR, IR, and HRMS) for epoxide 10 (shown above) are consistent with the data reported in the literature.³⁸

Epoxide 11. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.1, 2H), 7.58–7.54 (m, 1H), 7.47–7.43 (m, 2H), 7.26–7.18 (m, 5H), 3.91 (q,

J = 7.0, 1H), 3.37 (q, J = 5.3, 1H), 1.29 (d, J = 7.0, 3H), 1.03 (d, J = 5.7, 3H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 200.7 (C), 137.4 (C), 137.1 (C), 133.1 (CH), 128.64 (CH), 128.57 (CH), 128.0 (CH), 127.6 (CH), 127.5 (CH), 66.3 (C), 58.3 (CH), 47.9 (CH), 15.1 (CH₃), 13.4 (CH₃); IR (ATR) 2973, 1681, 1447, 1212, 1033, 760 cm⁻¹; HRMS (ESI) m/z calcd for C₁₈H₁₉O₂ [M + H]⁺ 267.1380, found 267.1384.

(2R*,3R*)-2-Phenyl-3-(phenylthio)butan-2-ol and (2R*,3S*)-2-Phenyl-3-(phenylthio)butan-2-ol (12). Alcohols 12 were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 6 (0.061 g, 0.25 mmol) and methylmagnesium chloride (0.25 mL, 2.0 M solution in THF, 0.50 mmol) in THF (1 mL) at -78 °C for 30 min. The reaction mixture was warmed to 20 °C and stirred for an additional 1 h. ¹H NMR and $^{13}\text{C}\{^1\text{H}\}$ NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohols 12 were formed as a 67:33 mixture of diastereomers. Purification by flash chromatography (30:70 EtOAchexanes) afforded alcohols 12 as a colorless oil (0.051 g, 80%) with a diastereomeric ratio of 67:33. A mixture with a diastereomeric ratio of 85:15 was used for characterization: IR (ATR) 3461, 1438, 1023, 745, 699, 566 cm⁻¹; HRMS (ESI) m/z calcd for $C_{16}H_{18}NaOS$ [M + Na]⁺ 281.0971, found 281.0960. Anal. Calcd for C₁₆H₁₈OS: C, 74.38; H, 7.02. Found: C, 74.42; H, 6.95.

Major Diastereomer. ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, J = 7.7, 2H), 7.40–7.39 (m, 2H), 7.31 (t, J = 7.7, 2H), 7.26–7.21 (m, 4H), 3.54 (q, J = 7.1, 1H), 3.05 (br s, 1H), 1.63 (s, 3H), 1.24 (d, J = 7.1, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 145.4, 135.6, 132.2, 129.05, 128.2, 127.3, 127.2, 125.8, 76.5, 58.9, 24.6, 18.2.

Minor Diastereomer. ¹H NMR (600 MHz, CDCl₃, diagnostic peaks) δ 7.45–7.42 (m, 4H), 3.58 (q, J = 7.0, 1H), 2.65 (br s, 1H), 1.68 (s, 3H), 1.16 (d, J = 7.0, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, diagnostic peaks) δ 145.5, 136.0, 132.0, 129.12, 127.1, 127.0, 125.2, 76.8, 57.0, 29.4, 17.8.

Representative Procedure for the Competition Experiment between Two Ketones for Allylmagnesium Chloride (Ketone 1 and Propiophenone). To a rapidly stirring and cooled (-78 °C) solution of ketone 1 (0.051 g, 0.30 mmol) and propiophenone (40 μ L, 0.30 mmol) in THF (3 mL) was added allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) dropwise over 45 min by a syringe pump. After the full volume of the nucleophile was added to the mixture, MeOH (1 mL) was added. The reaction mixture was warmed to 20 °C over 15 min, then concentrated *in vacuo*. The resulting oil was dissolved in CDCl₃, then filtered through a plug of SiO₂. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 60:40 mixture of products (2:15). Alcohol 2 was formed as a 91:9 mixture of diastereomers.

Competition Experiment between Ketone 3 and Propiophenone for Allylmagnesium Chloride. The competition experiment with ketone 3 and propiophenone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 3 (46 μ L, 0.30 mmol) and propiophenone (40 μ L, 0.30 mmol) in THF (3 mL) with allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 62:38 mixture of products (4:15). Alcohol 4 was formed as a single diastereomer (dr >99:1).

Competition Experiment between Ketone 6 and Propiophenone for Allylmagnesium Chloride. The competition experiment with ketone 6 and propiophenone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 6 (0.074 g, 0.30 mmol) and propiophenone (40 μ L, 0.30 mmol) in THF (3 mL) with allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 58:42 mixture of products (7:15). Alcohol 7 was formed as a single diastereomer (dr >99:1).

Competition Experiment between Ketone 6 and Benzaldehyde for Methylmagnesium Chloride. To a rapidly stirring

solution of ketone 6 (0.072 g, 0.30 mmol) and benzaldehyde (31 μ L, 0.30 mmol) in THF (3 mL) was added methylmagnesium chloride (25 μ L, 3.0 M solution in THF, 0.075 mmol) dropwise over 5 min at 20 °C. After 5 h, MeOH (100 μ L) was added, and the reaction mixture was concentrated in vacuo. The resulting oil was dissolved in CDCl₃, then filtered through a plug of SiO₂. ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed the presence of only alcohol 17. The spectroscopic data (¹H NMR, ¹³C{¹H} NMR, IR, and HRMS) of alcohol 17 are consistent with the data reported in the literature.³

2-((tert-Butyldiphenylsilyl)oxy)-1-phenylpropan-1-one (20). A reported procedure³ was adapted to prepare ketone 20. To a solution of 2-hydroxypropiophenone (0.270 g, 1.80 mmol) in DMF (1 mL) was added imidazole (0.410 g, 6.02 mmol) and tert-butyl(chloro)-diphenylsilane (560 μ L, 2.15 mmol). After 24 h, HCl (10 mL, 1.0 M in H₂O) was added. The layers were separated, and the aqueous layer was extracted with Et₂O (3 × 15 mL). The combined organic layers were washed with brine (1 × 10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (5:95 EtOAc—hexanes) afforded ketone 20 as a colorless oil (0.644 g, 92%). The spectroscopic data (¹H NMR, ¹³C{¹H} NMR) are consistent with the data reported in the literature:⁷⁷ IR (ATR) 2932, 1700, 1428, 1112, 957, 704 cm⁻¹; HRMS (ESI) m/z calcd for C₂₅H₂₈NaO₂ [M + Na]⁺ 388.1859, found 388.1871. Anal. Calcd for C₂₅H₂₈O₂Si: C, 77.27; H, 7.26. Found: C, 76.99; H, 6.99.

N-Methoxy-N-methyl-2-((triisopropylsilyl)oxy)propenamide (22). To a solution of N,O-dimethylhydroxylamine hydrochloride (0.980 g, 10.0 mmol) and ester 21 (1.100 g, 4.01 mmol) in THF (12 mL) was added isopropylmagnesium chloride (10.0 mL, 2.0 M in THF, 20 mmol) dropwise over 20 min at -30 °C. After 1.5 h, the reaction mixture was warmed to -5 °C and stirred for an additional 3 h. To the mixture was then added saturated aqueous NH₄Cl (4 mL) dropwise. The reaction mixture was poured into a 1:4 Et₂O-NH₄Cl solution (40 mL), and the layers were separated. The aqueous layer was extracted with Et₂O (1 \times 50 mL) and CH₂Cl₂ (1 \times 40 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. Purification by flash chromatography (20:80 EtOAc-hexanes) afforded Weinreb amide 22 as a colorless oil (1.156 g, 99%): 1 H NMR (400 MHz, (CD₃)₂SO) δ 4.76–4.71 (m, 1H), 3.66 (s, 3H), 3.10 (s, 3H), 1.27 (d, I = 6.4, 3H), 1.06–1.00 (m, 21H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, (CD₃)₂SO) δ 172.9, 65.4, 60.4, 32.1, 20.4, 17.11, 17.09, 11.3; IR (ATR) 2867, 1690, 1158, 997, 883, 682 cm⁻¹; HRMS (ESI) m/z calcd for $C_{14}H_{32}NO_3Si [M + H]^+$ 290.2146, found 290.2143. Anal. Calcd for C₁₄H₃₁NO₃Si: C, 58.09; H, 10.79. Found: C, 58.13; H, 10.75.

3-((Triisopropylsilyl)oxy)butan-2-one (23). To a solution of Weinreb amide 22 (0.576 g, 1.99 mmol) in THF (3.5 mL) was added methylmagnesium chloride (5.0 mL, 2.0 M in THF, 10 mmol) at 0 °C. After 5 h, saturated aqueous NH₄Cl (5 mL) was added, and the layers were separated. The aqueous layer was extracted with Et₂O (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash chromatography (5:95 EtOAc–hexanes) afforded ketone 23 as a colorless oil (0.417 g, 86%): ¹H NMR (600 MHz, CDCl₃) δ 4.23 (q, J = 6.7, 1H), 2.22 (s, 3H), 1.31 (d, J = 6.7, 3H), 1.11–1.05 (m, 21H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 213.0, 75.6, 24.3, 21.3, 18.1, 18.0, 12.3; IR (ATR) 2945, 2868, 1720, 1125, 883, 682 cm⁻¹; HRMS (ESI) m/z calcd for C₁₃H₂₈NaO₂Si [M + Na]⁺ 267.1751, found 267.1755. Anal. Calcd for C₁₃H₂₈O₂Si: C, 63.87; H, 11.55. Found: C, 63.85; H, 11.67.

2-Methyl-4-((triisopropylsilyl)oxy)pentan-3-one (24). To a solution of Weinreb amide 22 (2.895 g, 10.00 mmol) in THF (20 mL) was added isopropylmagnesium chloride (25.0 mL, 2.0 M in THF, 50.0 mmol) at 0 °C. After 4 h, saturated aqueous NH₄Cl (5 mL) was added, and the layers were separated. The aqueous layer was extracted with Et₂O (3 × 30 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (5:95 EtOAc–hexanes) afforded ketone 24 as a colorless oil (0.700 g, 26%): ¹H NMR (400 MHz, CDCl₃) δ 4.34 (q, J = 6.9, 1H), 3.29–3.18 (m, 1H), 1.36 (d, J = 6.8, 3H), 1.13–1.05 (m, 27H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 217.8, 75.1, 34.7, 21.9,

19.5, 18.3, 18.13, 18.10, 12.4; IR (ATR) 2944, 2868, 1716, 1122, 883, 682 cm⁻¹; HRMS (ESI) m/z calcd for $C_{15}H_{32}NaO_2Si$ [M + Na]⁺ 295.2064, found 295.2071. Anal. Calcd for $C_{15}H_{32}O_2Si$: C, 66.11; H, 11.84. Found: C, 66.41; H, 11.79.

(2R*,3R*)-2-((tert-Butyldiphenylsilyl)oxy)-3-phenylhex-5-en-3-ol (25) and (2R*,3S*)-2-((tert-Butyldiphenylsilyl)oxy)-3-phenylhex-5en-3-ol (25'). Alcohols 25 and 25' were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 20 (0.195 g, 0.502 mmol) and allylmagnesium bromide (1.00 mL, 1.0 M solution in Et₂O, 1.0 mmol) in Et₂O (1 mL) at -78 °C for 15 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 25 was formed as an 85:15 mixture of diastereomers (25:25'). Purification by flash chromatography (3:97 EtOAchexanes) afforded alcohols 25 and 25' as a colorless oil (0.201 g, 93%) with a diastereomeric ratio of 85:15. This mixture was used for characterization. The relative stereochemical configurations of alcohol 25 were assigned by the derivatization of alcohol 25 to alcohol 35: IR (ATR) 2931, 1471, 1428, 1111, 740, 702 cm⁻¹; HRMS (ESI) m/zcalcd for $C_{28}H_{33}OSi [(M + H) - H_2O]^+ 413.2295$, found 413.2293. Anal. Calcd for $C_{28}H_{34}O_2Si$: C, 78.09; H, 7.96. Found: C, 78.14; H,

Major Diastereomer **25**. ¹H NMR (600 MHz, CDCl₃) δ 7.60–7.58 (m, 2H), 7.55–7.53 (m, 2H), 7.44–7.37 (m, 4H), 7.34–7.21 (m, 7H), 5.62–5.51 (m, 1H), 5.06–4.97 (m, 2H), 4.00 (q, J = 6.4, 1H), 2.79 (s, 1H), 2.79–2.71 (m, 1H), 2.63–2.56 (m, 1H), 0.94 (d, J = 6.2, 3H), 0.93–0.92 (m, 9H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 144.0, 136.07, 136.06, 134.4, 133.9, 133.0, 129.9, 129.7, 127.92, 127.8, 127.5, 126.8, 126.7, 118.6, 78.4, 76.4, 42.0, 27.0, 19.4, 17.96;

Minor Diastereomer **25**′. ¹H NMR (600 MHz, CDCl₃, diagnostic peaks) δ 7.73–7.71 (m, 2H), 7.67–7.64 (m, 2H), 5.91–5.78 (m, 1H), 4.04 (q, J = 6.4, 1H), 2.90–2.85 (m, 1H), 2.56–2.51 (m, 1H), 1.10 (s, 9H), 0.74 (d, J = 6.2, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, diagnostic peaks) δ 142.7, 134.2, 133.3, 130.1, 129.8, 128.0, 127.91, 127.6, 126.6, 126.0, 117.9, 78.7, 76.2, 44.3, 27.3, 19.7, 18.02.

(2R*,3R*)-3-Phenyl-2-((triisopropylsilyl)oxy)hex-5-en-3-ol (27) and (2R*,3S*)-3-Phenyl-2-((triisopropylsilyl)oxy)hex-5-en-3-ol (27'). Alcohols 27 and 27' were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 26 (0.048 g, 0.16 mmol) and allylmagnesium chloride (120 μ L, 2.0 M solution in THF, 0.24 mmol) in THF (2 mL) at -78 °C for 30 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 27 was formed as an 83:17 mixture of diastereomers (27:27'). Purification by flash chromatography (3:97 EtOAc-hexanes) afforded alcohol 27 as a colorless oil (0.049 g, 89%). The spectroscopic data (1H NMR, ¹³C{¹H} NMR, IR, and HRMS) are consistent with the data reported in the literature: 3 ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.46 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, 1H), 5.67-5.56 (m, 1H), 5.10-5.00 (m, 2H), 4.10 (q, J = 6.2, 1H), 2.88 (s, 1H), 2.81-2.76 (m, 1H), 2.64-2.58 (m, 1H), 1.14 (d, J = 6.3, 3H), 1.02-0.99 (m, 21H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) δ 143.7, 134.1, 127.7, 126.65, 126.64, 118.3, 78.2, 75.9, 40.8, 18.14, 18.09, 12.7; HRMS (APCI) m/ z calcd for $C_{21}H_{35}OSi[(M + H) - H_2O]^+$ 331.2452, found 331.2446. (2R*,3S*)-2-Phenyl-3-((triisopropylsilyl)oxy)butan-2-ol and (2R*,3R*)-2-Phenyl-3-((triisopropylsilyl)oxy)butan-2-ol (**28**). Alco-

(2R*,3S*)-2-Phenyl-3-((triisopropylsilyl)oxy)butan-2-ol and (2R*,3R*)-2-Phenyl-3-((triisopropylsilyl)oxy)butan-2-ol (28). Alcohols 28 were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 26 (0.154 g, 0.502 mmol) and methylmagnesium chloride (500 μL, 2.0 M solution in THF, 1.00 mmol) in THF (1 mL) at 20 °C for 15 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohols 28 were formed as a 52:48 mixture of diastereomers. Purification by flash chromatography (5:95 EtOAchexanes) afforded alcohols 28 as a colorless oil (0.155 g, 96%) with a diastereomeric ratio of 52:48. This mixture was used for characterization: ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H), 7.41–7.39 (m, 2H), 7.33–7.29 (m, 4H), 7.24–7.19 (m, 2H), 4.17–4.10 (m, 2H), 3.11 (s, 1H), 2.89 (s, 1H), 1.59 (s, 3H), 1.47 (s, 3H), 1.15–1.13 (m, 4H), 1.12–1.10 (m, 19H), 1.01–0.98 (m, 22H), 0.89 (d, J = 6.2, 3H); 13 C{¹H} NMR (100 MHz, CDCl₃) δ 128.1, 128.0, 126.8,

126.6, 125.9, 125.3, 77.0, 76.7, 76.3, 75.8, 28.3, 23.0, 18.41, 18.39, 18.38, 18.3, 18.23, 18.19, 13.0, 12.8; IR (ATR) 3559, 2944, 1110, 1060, 883, 700 cm $^{-1}$; HRMS (ESI) m/z calcd for $C_{19}H_{34}NaO_2Si$ [M + Na] $^+$ 345.2220, found 345.2233. Anal. Calcd for $C_{19}H_{34}O_2Si$: C, 70.75; H, 10.62. Found: C, 71.01; H, 10.72.

(2R*,3S*)-3-Methyl-2-((triisopropylsilyl)oxy)hex-5-en-3-ol (29) and (2R*,3R*)-3-Methyl-2-((triisopropylsilyl)oxy)hex-5-en-3-ol (29'). Alcohols 29 and 29' were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 23 (0.112 g, 0.458 mmol) and allylmagnesium bromide (1.0 mL, 1.0 M solution in Et₂O, 1.0 mmol) in Et₂O (1 mL) at -78 °C for 15 min. 1 H NMR and 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 29 was formed as a 80:20 mixture of diastereomers (29:29'). Purification by flash chromatography (3:97 EtOAc-hexanes) afforded alcohols 29 and 29' as a colorless oil (0.097 g, 74%) with a diastereomeric ratio of 82:18. This mixture was used for characterization: IR (ATR) 3476, 2944, 2868, 1116, 882, 678 cm $^{-1}$; HRMS (ESI) m/z calcd for $C_{16}H_{33}$ OSi $[(M + H) - H_2O]^+$ 269.2295, found 269.2289. Anal. Calcd for $C_{16}H_{34}$ O₂Si: C, 67.07; H, 11.96. Found: C, 67.37; H, 11.87.

Major Diastereomer **29**. ¹H NMR (400 MHz, CDCl₃) δ 5.98–5.88 (m, 1H), 5.11–5.09 (m, 2H), 3.83 (q, J = 6.3, 1H), 2.41–2.36 (m, 2H), 2.16–2.11 (m, 1H), 1.20 (d, J = 6.2, 3H), 1.123–1.08 (m, 24H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 134.6, 117.9, 75.7, 74.6, 41.2, 23.3, 18.4, 18.30, 12.9;

Minor Diastereomer **29**. ¹H NMR (400 MHz, CDCl₃, diagnostic peaks) δ 4.12 (q, J = 7.1, 1H), 1.16 (d, J = 6.4, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃, diagnostic peaks) δ 134.5, 117.6, 74.7, 74.4, 43.4, 21.3, 18.32.

(2R*,3R*)-3-Isopropyl-2-((triisopropylsilyl)oxy)hex-5-en-3-ol (30) and (2R*,3S*)-3-Isopropyl-2-((triisopropylsilyl)oxy)hex-5-en-3-ol (30'). Alcohols 30 and 30' were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 24 (0.033 g, 0.12 mmol) and allylmagnesium bromide (300 μ L, 1.0 M solution in Et₂O, 0.30 mmol) in Et₂O (1 mL) at -78 °C for 30 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 30 was formed as a 90:10 mixture of diastereomers (30:30'). Purification by flash chromatography (2:98 EtOAc-hexanes) afforded alcohols 30 and 30^{\prime} as a colorless oil (0.034 g, 90%) with a diastereomeric ratio of 85:15 (30:30'). This mixture was used for characterization. The relative stereochemical configurations of alcohol 30 were assigned by the derivatization of alcohol 30 to carbamate 40: IR (ATR) 3568, 2944, 1125, 1015, 998, 883 cm⁻¹; HRMS (ESI) m/z for $C_{18}H_{38}NaO_2Si [M + Na]^+$ 337.2533, found 337.2541. Anal. Calcd for C₁₈H₃₈O₂Si: C, 68.72; H, 12.18. Found: C, 68.91; H, 12.34.

Major Diastereomer **30.** ¹H NMR (600 MHz, CDCl₃) δ 6.02–5.95 (m, 1H), 5.07–5.01 (m, 2H), 4.08 (q, J = 6.5, 1H), 2.54 (s, 1H), 2.39–2.31 (m, 2H), 1.86–1.83 (m, 1H), 1.21 (d, J = 6.5, 3H), 1.10–1.08 (m, 21H), 1.00 (d, J = 7.1, 3H), 0.95 (d, J = 6.8, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 135.8, 116.8, 77.2, 73.0, 37.9, 33.1, 18.9, 18.4, 18.3, 17.8, 17.5, 12.9.

Minor Diastereomer 30'. 1H NMR (600 MHz, CDCl₃, diagnostic peaks) δ 2.56 (s, 1H), 0.91 (d, J = 6.9, 3H); $^{13}C\{^{1}H\}$ NMR (150 MHz, CDCl₃, diagnostic peaks) δ 135.7, 116.5, 76.8, 73.6, 40.0, 32.7. (1R*,2R*)-1,2-Diphenyl-1-((triisopropylsilyl)oxy)pent-4-en-2-ol and (1R*,2S*)-1,2-Diphenyl-1-((triisopropylsilyl)oxy)pent-4-en-2-ol (32). Alcohols 32 were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 31 (0.152 g, 0.412 mmol) and allylmagnesium chloride (310 μ L, 2.0 M solution in THF, 0.62 mmol) in THF (4 mL) at -78 °C for 20 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohols 32 were formed as a 55:45 mixture of diastereomers. Purification by flash chromatography (5:95 EtOAc-hexanes) afforded alcohols 32 as a colorless oil (0.147 g, 87%) with a diastereomeric ratio of 52:48. This mixture was used for characterization: 1 H NMR (400 MHz, CDCl₃) δ 7.27–7.25 (m, 4H), 7.23-7.20 (m, 2H), 7.15-7.05 (m, 12H), 6.97-6.95 (m, 2H), 5.70-5.60 (m, 1H), 5.59-5.48 (m, 1H), 5.09-5.04 (m, 1H), 5.01-4.98 (m, 1H), 4.97–4.90 (m, 3H), 4.88 (s, 1H), 3.14 (s, 1H), 2.98 (s, 1H),

2.92–2.79 (m, 2H), 2.64 (dd, J = 14.3, 6.5, 1H), 2.38 (dd, J = 14.3, 7.3, 1H), 0.99–0.98 (m, 11H), 0.94–0.93 (m, 9H), 0.90–0.88 (m, 22H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 143.2, 141.7, 140.1, 140.0, 134.1, 134.0, 128.42, 128.41, 127.7, 127.6, 127.4, 127.3, 127.2, 127.0, 126.85, 126.84, 126.79, 126.5, 118.1, 118.0, 83.2, 82.2, 78.95, 78.94, 42.7, 41.0, 18.1, 18.0, 17.90, 17.89, 12.6, 12.5; IR (ATR) 3563, 2866, 1091, 1058, 881, 844 cm $^{-1}$; HRMS (ESI) m/z calcd for $C_{26}H_{38}NaO_2Si$ [M + Na] $^{+}$ 433.2533, found 433.2529.

(2R*,3S*)-2-((Triisopropylsilyl)oxy)hex-5-en-3-ol and (2R*,3R*)-2-((Triisopropylsilyl)oxy)hex-5-en-3-ol (34). Alcohols 34 were prepared using the representative procedure for the addition of Grignard reagents to ketones using aldehyde 33 (0.026 g, 0.11 mmol) and allylmagnesium bromide (400 µL, 1.0 M solution in Et₂O, 0.40 mmol) in Et_2O (1 mL) at -78 °C for 15 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 34 was formed as a 51:49 mixture of diastereomers. Purification by flash chromatography (2:98 EtOAchexanes) afforded alcohols 34 as a colorless oil (0.022 g, 72%) with a diastereomeric ratio of 47:53. The mixture was used for characterization: 1 H NMR (600 MHz, CDCl₃) δ 5.93–5.81 (m, 2H), 5.15– 5.08 (m, 4H), 3.95-3.92 (m, 1H), 3.89-3.85 (m, 1H), 3.71-3.68 (m, 1H), 3.44-3.41 (m, 1H), 2.49 (d, J = 4.6, 1H), 2.36-2.31 (m, 2H), 2.27-2.20 (m, 1H), 2.16-2.12 (m, 2H), 1.20 (d, J = 6.2, 3H), 1.14 (d, J = 6.3, 3H), 1.09–1.06 (m, 42H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 135.4, 135.1, 117.3, 117.1, 75.6, 74.6, 71.4, 70.9, 37.7, 36.9, 20.1, 18.3, 18.25, 18.24, 18.20, 16.7, 12.8, 12.5; IR (ATR) 3470, 2942, 1086, 1067, 881, 676 cm⁻¹; HRMS (ESI) m/z calcd for $C_{15}H_{32}NaO_2Si [M + Na]^+ 295.2064$, found 295.2063.

 $(2R^*,3R^*)$ -3-Phenylhex-5-ene-2,3-diol (35) and $(2R^*,3S^*)$ -3-Phenylhex-5-ene-2,3-diol (35'). To a solution of silyl ether 25 (0.008 g, 0.02 mmol, dr = 86:14) in THF (100 μ L) was added tetrabutylammonium fluoride (30 μ L, 1.0 M solution in THF, 0.03 mmol). After 2 h, the mixture was concentrated *in vacuo*. Purification by flash chromatography (33:67 EtOAc—hexanes) afforded diol 35 as a colorless oil (0.005 g, 13%) as an 85:15 mixture of diastereomers (35:35'). The spectroscopic data are consistent with those of the same diol prepared from silyl ether 27 and tetrabutylammonium fluoride.

(2*R**,3*R**)-3-Phenylhex-5-ene-2,3-diol (35) and (2*R**,3*S**)-3-Phenylhex-5-ene-2,3-diol (35'). To a solution of silyl ether 27 (0.174 g, 0.50 mmol, dr 91:9) in THF (3 mL) was added tetrabutylammonium fluoride (600 μL, 1.0 M solution in THF, 0.60 mmol). After 1 h, the mixture was concentrated in vacuo. 1 H NMR spectroscopic analysis of the unpurified reaction mixture revealed that diol 35 was formed as a 91:9 mixture of diastereomers (35:35'). Purification by flash chromatography (33:67 EtOAchexanes) afforded diol 35 as a colorless oil (0.067 g, 70%) as a 91:9 mixture of diastereomers. The mixture was used for characterization: IR (ATR) 3443, 2979, 1447, 1066, 992, 703 cm $^{-1}$; HRMS (ESI) m/z calcd for $C_{12}H_{16}NaO_2$ [M + Na] $^+$ 215.1043, found 215.1040.

Major Diastereomer **35**. ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H), 7.38–7.34 (m, 2H), 7.29–7.24 (m, 1H), 5.62–5.52 (m, 1H), 5.16–5.07 (m, 2H), 3.93 (q, J = 6.4, 1H), 2.86–2.76 (m, 1H), 2.62–2.56 (m, 2H), 2.10 (br s, 1H), 1.14 (d, J = 6.6, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 143.3, 133.4, 128.4, 127.3, 126.5, 119.9, 78.2, 74.0, 40.0, 16.5.

Minor Diastereomer **35**′. ¹H NMR (400 MHz, CDCl₃, diagnostic peaks) δ 0.93 (d, J = 6.4, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 143.0, 133.6, 128.3, 127.0, 125.8, 119.8, 77.9, 73.6, 43.5, 17.9.

 $(2R^*,3R^*)$ -3-Isopropylhex-5-ene-2,3-diol (36) and $(2R^*,3S^*)$ -3-Isopropylhex-5-ene-2,3-diol (36'). To a solution of silyl ether 30 (0.487 g, 1.55 mmol, dr 88:12) in THF (3 mL) was added tetrabutylammonium fluoride (2.0 mL, 1.0 M solution in THF, 2.0 mmol). After 1 h, the mixture was concentrated *in vacuo*. Purification by flash chromatography (25:75 EtOAc—hexanes) afforded alcohol 36 as a colorless oil (0.189 g, 77%) as an 88:12 mixture of diastereomers (36:36'). This mixture was used for characterization: IR (ATR) 3424, 3076, 2977, 1386, 992, 913 cm $^{-1}$; HRMS (ESI) m/z calcd for $C_9H_{17}O$ [(M + H) $-H_2O$] $^+$ 141.1274, found 141.1273.

Major Diastereomer **36.** ¹H NMR (400 MHz, CDCl₃) δ 6.03–5.92 (m, 1H), 5.17–5.12 (m, 2H), 3.92–3.85 (m, 1H), 2.35 (d, J = 7.5, 2H), 2.11–2.07 (m, 2H), 1.91–1.84 (m, 1H), 1.20 (d, J = 6.5, 3H), 0.99 (d, J = 7.0, 3H), 0.95 (d, J = 7.0, 3H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 135.7, 118.6, 77.2, 71.0, 37.4, 34.0, 17.9, 17.7, 17.5. *Minor Diastereomer* **36**′. 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 135.0, 118.1, 77.0, 72.0, 38.6, 33.5, 17.6, 17.4, 17.3.

(4R*,5R*)-4-Allyl-4-isopropyl-2,2,5-trimethyl-1,3-dioxolane (37) and (4R*,5S*)-4-Allyl-4-isopropyl-2,2,5-trimethyl-1,3-dioxolane (37'). To a solution of alcohol 36 (0.189 g, 1.19 mmol, dr 88:12) in CH₂Cl₂ (7 mL) was added 2,2-dimethoxypropane (0.391 g, 3.75 mmol) and p-toluenesulfonic acid monohydrate (0.027 g, 0.14 mmol). After 19.5 h, the reaction mixture was diluted with CH₂Cl₂ (30 mL). The organic layer was washed with saturated aqueous NaHCO₃ (2 × 30 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. ¹H NMR spectroscopic analysis of the unpurified reaction mixture revealed that acetal 37 was formed as an 88:12 mixture of diastereomers. Purification by flash chromatography (3:97 EtOAchexanes) afforded acetal 37 as a colorless oil (0.152 g, 64%) as an 88:12 mixture of diastereomers (37:37'). This mixture was used for characterization: IR (ATR) 2984, 1239, 1215, 1031, 1000, 908 cm⁻¹; Anal. Calcd for C₁₂H₂₂O₂: C, 72.68; H, 11.18. Found: C, 72.74; H, 11.14.

Major Diastereomer **37**. ¹H NMR (600 MHz, CDCl₃) δ 5.97–5.89 (m, 1H), 5.13–5.08 (m, 2H), 4.14–4.11 (m, 1H), 2.38–2.34 (m, 1H), 2.30–2.26 (m, 1H), 2.07–2.00 (m, 1H), 1.45 (s, 3H), 1.35 (s, 3H), 1.26 (d, J = 6.4, 3H), 0.99 (d, J = 7.1, 3H), 0.90 (d, J = 7.1, 3H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 134.6, 117.6, 106.4, 85.8, 73.9, 36.3, 31.7, 28.7, 26.8, 17.8, 17.3, 15.8.

Minor Diastereomer **37**′. ¹H NMR (600 MHz, CDCl₃, diagnostic peaks) δ 5.89–5.82 (m, 1H), 1.97–1.92 (m, 1H), 1.44 (s, 3H), 1.29 (d, J = 6.5, 3H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 134.3, 117.9, 106.3, 85.0, 77.3, 37.7, 30.6, 27.7, 26.7, 18.7, 18.5, 15.1.

3-((4R*,5R*)-4-Isopropyl-2,2,5-trimethyl-1,3-dioxolan-4-yl)propan-1-ol (38). To a solution of acetal 37 (0.397 g, 2.00 mmol, dr >99:1) in THF (4 mL) was added a borane dimethyl sulfide complex (2.0 mL, 2.0 M in THF, 4.0 mmol) dropwise at 0 °C. After 1 h, the reaction mixture was warmed to 20 °C and stirred for an additional 16 h. The reaction mixture was cooled to 0 °C, and to the mixture were then added NaOH (3 mL, 1.0 M in H₂O) and H₂O₂ (13 mL, 30% solution in H₂O). After 30 min, the reaction mixture was warmed to 20 °C, and to the mixture was added H₂O (10 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (2 \times 30 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. ¹H NMR spectroscopic analysis of the unpurified reaction mixture revealed that acetal 38 was formed as a single diastereomer (dr >99:1). Purification by flash chromatography (33:67 EtOAc-hexanes) afforded acetal 38 as a colorless oil (0.243 g, 56%): ¹H NMR (500 MHz, CDCl₃) δ 4.14 (q, J = 6.2, 1H), 3.67 (t, J= 5.9, 2H), 2.14 (br s, 1H), 2.12-2.07 (m, 1H), 1.78-1.54 (m, 4H), 1.44 (s, 3H), 1.35 (s, 3H), 1.25 (d, J = 6.6, 3H), 1.00 (d, J = 6.9, 3H), 0.90 (d, J = 7.3, 3H); ${}^{13}C\{{}^{1}H\}$ NMR (150 MHz, CDCl₃) δ 106.3, 85.9, 74.1, 63.7, 31.5, 28.5, 28.1, 26.8, 26.5, 18.0, 17.3, 15.9; IR (ATR) 3386, 2983, 1212, 1009, 754, 527 cm $^{-1}$; HRMS (ESI) m/zcalcd for C₁₂H₂₄NaO₃ [M + Na]⁺ 239.1618, found 239.1619.

3-((4R*,5R*)-4-Isopropyl-2,2,5-trimethyl-1,3-dioxolan-4-yl)-propyl(4-nitrophenyl)carbamate (39). A reported procedure was adapted to prepare carbamate 39. To a solution of acetal 38 (0.100 g, 0.462 mmol) in THF (2 mL) were added 4-nitrophenyl isocyanate (0.127 g, 0.774 mmol) and tin(II) 2-ethylhexanoate (1 drop). After 24 h, the reaction mixture was concentrated in vacuo and then used directly without purification: H NMR (600 MHz, CDCl₃) δ 8.20–8.18 (m, 2H), 7.61–7.59 (m, 2H), 7.47 (br s, 1H), 4.28–4.22 (m, 2H), 4.16–4.12 (m, 1H), 2.04–1.99 (m, 1H), 1.93–1.86 (m, 1H), 1.78–1.71 (m, 1H), 1.65–1.55 (m, 2H), 1.42 (s, 3H), 1.35 (s, 3H), 1.25 (d, J = 6.4, 3H), 1.00 (d, J = 6.8, 3H), 0.91 (d, J = 7.3, 3H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 153.2, 144.3, 142.9, 125.2, 117.9, 106.2, 85.5, 74.2, 66.8, 31.8, 28.4, 27.3, 26.7, 22.7, 18.0, 17.3, 15.7.

(4R*,5R*)-4,5-Dihydroxy-4-isopropylhexyl(4-nitrophenyl)carbamate (40). To a 10% HCl solution in MeOH (5.5 mL) was added carbamate 39 (0.209 g, 0.549 mmol). After 1 h, the reaction mixture was concentrated in vacuo. To the mixture were then added CH₂Cl₂ (10 mL) and H₂O (10 mL). The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. Purification by flash chromatography (33:67 EtOAc-hexanes) afforded carbamate 40 as a white solid (0.101 g, 54%). X-ray-quality crystals were grown by the slow evaporation of a solution of carbamate 40 in MeOH. The relative stereochemical configuration of carbamate 40 was assigned by X-ray crystallographic analysis: mp = 92–94 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, J = 9.1, 2H), 7.66 (s, 1H), 7.58 (d, I = 9.1, 2H), 4.20 (t, I = 6.6, 2H), 3.95-3.91 (m, 1H), 2.57 (s, 1H), 2.37 (s, 1H), 1.93-1.85 (m, 2H), 1.82-1.77 (m, 1H), 1.65-1.59 (m, 2H), 1.20 (d, J = 6.4, 3H), 0.99(d, J = 6.9, 3H), 0.95 (d, J = 6.9, 3H); $^{13}C\{^{1}H\}$ NMR (150 MHz, $CDCl_3$) δ 153.3, 144.4, 142.9, 125.3, 117.9, 77.3, 70.9, 66.8, 33.7, 28.7, 23.5, 18.2, 17.61, 17.56; IR (ATR) 3494, 3214, 1716, 1499, 1235, 749 cm⁻¹; HRMS (ESI) m/z calcd for $C_{16}H_{24}N_2NaO_6$ [M + Na]+ 363.1527, found 363.1538.

Competition Experiment between Ketone 26 and Propiophenone for Allylmagnesium Chloride. The competition experiment with ketone 26 and propiophenone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 26 (0.092 g, 0.30 mmol) and propiophenone (40 μ L, 0.30 mmol) in THF (3 mL) with allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 30:70 mixture of products (27:15). Alcohol 27 was formed as an 85:15 mixture of diastereomers.

Competition Experiment between Ketone 31 and Benzophenone for Allylmagnesium Chloride. The competition experiment with ketone 31 and benzophenone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 31 (0.073 g, 0.32 mmol) and benzophenone (0.040 g, 0.21 mmol) in THF (2 mL) with allylmagnesium chloride (250 μ L, 0.20 M solution in THF, 0.050 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 49:51 mixture of products (32:42). Alcohol 32 was formed as an 52:48 mixture of diastereomers.

1,2-Diphenylbut-3-en-1-one (46). To a solution of alcohol 45 (0.227 g, 1.01 mmol) in CH₂Cl₂ (2 mL) was added Dess-Martin periodinane (0.529 g, 1.25 mmol). After 4 h, a 1:1 saturated aqueous NaHCO₃-saturated aqueous Na₂S₂O₃ (10 mL) was added and the resulting mixture was stirred for an additional 16 h. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (5:95 EtOAc-hexanes) afforded ketone 46 as a yellow solid (0.189 g, 85%). The spectroscopic data (¹H NMR, ¹³C(¹H) NMR, IR, HRMS) are consistent with the data reported in the literature: 106 ^{1}H NMR (400 MHz, CDCl₃) 7.98-7.96 (m, 2H), 7.53-7.49 (m, 1H), 7.42-7.39 (m, 2H), 7.34-7.31 (m, 4H), 7.25-7.21 (m, 1H), 6.41-6.32 (m, 1H), 5.29 (d, J = 7.7, 1H), 5.23 (d, J = 10.2, 1H), 5.12-5.07 (m, 1H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) δ 198.5, 138.4, 137.2, 136.4, 133.0, 129.0, 128.9, 128.6, 128.4, 127.2, 117.2, 58.0.

 $(3R^*,4R^*)$ -3,4-Diphenylhepta-1,6-dien-4-ol (47) and (3R*,4S*)-3,4-Diphenylhepta-1,6-dien-4-ol (47'). Alcohols 47 and 47' were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 46 (0.114 g, 0.50 mmol) and allylmagnesium chloride (380 μL, 2.0 M solution in THF, 0.76 mmol) in THF (5 mL) at -78 °C for 30 min. 1 H NMR and 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 47 was formed as a 93:7 mixture of diastereomers (47:47'). Purification by flash chromatography (5:95 EtOAc-hexanes) afforded alcohols 47 and 47' as a colorless oil (0.124 g, 94%) with a diastereomeric ratio of 93:7. The mixture was

used for characterization. The relative stereochemical configuration of alcohol 47 was assigned by the derivatization of alcohol 47 to epoxide 49: IR (ATR) 3554, 2977, 1446, 997, 915, 742 cm⁻¹; HRMS (APCI) m/z calcd for $C_{10}H_{19}$ [(M + H) - H_2O]⁺ 247.1481, found 247.1486.

Major Diastereomer **47**. ¹H NMR (400 MHz, CDCl₃) δ 7.21–7.18 (m, 2H), 7.15–7.08 (m, 6H), 6.93–6.91 (m, 2H), 6.38–6.29 m, 1H), 5.53–5.42 (m, 1H), 5.23–5.04 (m, 4H), 3.60 (d, J = 9.7, 1H), 2.84 (dd, J = 14.0, 5.4, 1H), 2.68 (dd, J = 14.0, 9.0, 1H), 2.25 (br s, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.9 (C), 140.2 (C), 137.7 (CH), 133.7 (CH), 129.4 (CH), 127.7 (CH), 127.5 (CH), 126.4 (CH), 126.34 (CH), 126.28 (CH), 119.6 (CH₂), 117.6 (CH₂), 77.3 (C), 61.7 (CH), 44.8 (CH₂).

Minor Diastereomer **47**. ¹H NMR (400 MHz, CDCl₃, diagnostic peaks) δ 6.14–6.05 (m, 1H), 3.66 (d, J = 8.4, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃, diagnostic peaks) δ 137.5 (CH), 133.4 (CH), 129.9 (CH), 128.1 (CH), 127.8 (CH), 126.8 (CH), 126.6 (CH), 126.2 (CH), 119.5 (CH₂), 117.5 (CH₂), 61.3 (CH), 45.1 (CH₂).

Competition Experiment between Ketone 46 and Propiophenone for Allylmagnesium Chloride. The competition experiment with ketone 46 and propiophenone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 46 (0.045 g, 0.19 mmol) and propiophenone (27 μ L, 0.20 mmol) in THF (2 mL) with allylmagnesium chloride (250 μ L, 0.20 M solution in THF, 0.050 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 51:49 mixture of products (47:15). Alcohol 47 was formed as a single diastereomer (dr >99:1).

(1R*,2R*)-1,2-Diphenylcyclopent-3-en-1-ol (48). A reported procedure⁴⁴ was adapted to prepare alcohol 48. To a solution of Grubbs II catalyst (0.010 g, 0.012 mmol) in CH₂Cl₂ (1.5 mL) was added a solution of alcohol 47 (0.060 g, 0.23 mmol, dr >99:1) in CH₂Cl₂ (0.5 mL). The resulting mixture was heated to 40 °C in a silicone oil bath. After 3 h, the mixture was cooled to 20 °C and concentrated in vacuo. Purification by flash chromatography (10:90 Et₂O-pentanes) afforded alcohol 48 as a colorless oil (0.044 g, 81%): ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (m, 2H), 7.37–7.33 (m, 2H), 7.28-7.26 (m, 4H), 7.02-6.99 (m, 2H), 6.07-6.04 (m, 1H), 5.89-5.87 (m, 1H), 4.41 (br s, 1H), 3.07-3.02 (m, 1H), 2.89-2.84 (m, 1H), 1.54 (s, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, CDCl₃) δ 147.0 (C), 136.9 (C), 131.2 (CH), 130.3 (CH), 128.8 (CH), 128.5 (CH), 128.0 (CH), 127.6 (CH), 126.6 (CH), 125.2 (CH), 83.0 (C), 64.1 (CH), 50.7 (CH₂); IR (ATR) 3556, 1601, 1446, 1059, 899, 756 cm⁻¹; HRMS (ESI) m/z calcd for $C_{17}H_{15}$ [(M + H) - H_2O]⁺ 220.1202, found 220.1209.

(1R*,2S*,3R*,5S*)-2,3-Diphenyl-6-oxabicyclo[3.1.0]hexan-3-ol (49). To a solution of alcohol 48 (0.026 g, 0.12 mmol, dr >99:1) in CH₂Cl₂ (1 mL) was added 3-chloroperoxybenzoic acid (0.036 g, 70-75% in H₂O, 0.14 mmol). After 16 h, to the mixture was added saturated aqueous Na2SO3 (10 mL), and the layers were separated. The organic layer was washed with saturated aqueous NaHCO₃ (2 \times 10 mL) and brine (1 × 10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (10:90 EtOAc-hexanes) afforded epoxide 49 as a white solid (0.024 g, 80%). X-ray-quality crystals were grown by the slow evaporation of a solution of epoxide 49 in MeOH. The relative stereochemical configuration of epoxide 49 was assigned by X-ray crystallographic analysis: mp = 104–105 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38– 7.31 (m, 4H), 7.28–7.24 (m, 1H), 7.21–7.19 (m, 3H), 7.00–6.96 (m, 2H), 4.05 (d, J = 2.7, 1H), 3.88 (d, J = 2.9, 1H), 3.68 (s, 1H), 3.26 (s, 1H), 2.59 (s, 2H); $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) δ 143.5 (C), 135.8 (C), 128.7 (CH), 128.04 (CH), 127.97 (CH), 127.0 (CH), 126.8 (CH), 125.6 (CH), 78.9 (C), 60.4 (CH), 57.5 (CH), 54.9 (CH), 45.6 (CH₂); IR (ATR) 3697, 2967, 1033, 941, 826, 756 cm⁻¹; HRMS (ESI) m/z calcd for $C_{17}H_{15}O$ [(M + H) - H_2O]⁺ 235.1117, found 235.1123.

(3R*,4R*)-3,4-Diphenylhept-1-en-4-ol (50) and (1R*,1R*)-1,2-Diphenylbut-3-en-1-ol (45). Alcohols 50 and 45 were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 46 (0.114 g, 0.50 mmol) and n-propylmagne-

sium chloride (380 μ L, 2.0 M solution in THF, 0.76 mmol) in THF (5 mL) at 20 °C for 16 h. 1 H NMR and $^{13}C\{^1$ H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol **50** was formed as a single diastereomer (dr >99:1). Analysis of the $^{13}C\{^1$ H} NMR spectrum also revealed the formation of the 1,2-reduction product **45** (dr >99:1). Purification by flash chromatography (5:95 EtOAc–hexanes) afforded alcohol **50** as a colorless oil (0.033 g, 24%) and alcohol **45** as a colorless oil (0.042 g, 33%). The spectroscopic data (1 H NMR, $^{13}C\{^1$ H} NMR, IR, and HRMS) of alcohol **45** are consistent with the data reported in the literature. 107

Alcohol **50**. ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.19 (m, 2H), 7.16–7.14 (m, 1H), 7.11–7.09 (m, 5H), 6.90–6.88 (m, 2H), 6.34–6.25 (m, 1H), 5.24–5.15 (m, 2H), 3.62 (d, J = 9.8, 1H), 2.09 (s, 1H), 1.93–1.88 (m, 2H), 1.35–1.23 (m, 1H), 1.00–0.93 (m, 1H), 0.84 (t, J = 7.0, 3H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 144.1 (C), 140.1 (C), 137.4 (CH), 129.3 (CH), 127.8 (CH), 127.5 (CH), 126.4 (CH), 126.3 (CH), 126.1 (CH), 117.9 (CH₂), 78.5 (C), 62.1 (CH), 42.3 (CH₂), 16.9 (CH₂), 14.4 (CH₃); IR (ATR) 3543, 1677, 1447, 1207, 920, 751 cm $^{-1}$; HRMS (ESI) m/z calcd for C₁₉H₂₁ [(M + H) – H₂O] $^{+}$ 249.1638, found 249.1636.

Competition Experiment between Ketone 46 and Propiophenone for n-Propylmagnesium Chloride. To a rapidly stirring solution of ketone 46 (0.045 g, 0.19 mmol) and propiophenone (27 μ L, 0.20 mmol) in THF (2 mL) was added n-propylmagnesium chloride (250 μ L, 0.20 M solution in THF, 0.050 mmol) dropwise over 5 min at 20 °C. After 16 h, MeOH (1 mL) was added, and the reaction mixture was concentrated in vacuo. The resulting oil was dissolved in CDCl₃ and then filtered through a plug of SiO₂. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 51 was the only product formed.

 $(3R^*,4R^*)$ -3,4-Diphenylheptan-4-Ol (52) and $(3R^*,4S^*)$ -3,4-Diphenylheptan-4-Ol (52'). To a solution of alcohol 47 (0.013 g, 0.049 mmol, dr 92:8) in MeOH (1 mL) was added palladium (10%) on carbon (0.005 g, 0.005 mmol), and the reaction mixture was pressurized with H₂ (1 atm). After 20 h, the reaction mixture was filtered over Celite, rinsed with MeOH (10 mL), and concentrated *in vacuo*. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 52 was formed as a 91:9 mixture of diastereomers. Alcohols 52 and 52' were collected as a white solid (0.012 g, 92%) with a diastereomeric ratio of 91:9 (52:52'). This mixture was used for characterization: IR (ATR) 3681, 2958, 2844, 2361, 1056, 1014 cm⁻¹; HRMS (ESI) m/z calcd for $C_{19}H_{24}NaO$ [M + Na]* 291.1719, found 291.1724.

Major Diastereomer **52.** ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.21 (m, 2H), 7.18–7.15 (m, 6H), 6.93–6.92 (m, 2H), 2.82 (dd, J = 11.5, 2.2, 1H), 2.06–1.99 (m, 1H), 1.93–1.80 (m, 3H), 1.67–1.57 (m, 1H), 1.31–1.21 (m, 1H), 1.03–0.94 (m, 1H), 0.85 (t, J = 7.1, 3H), 0.65 (t, J = 7.1, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.5 (C), 139.9 (C), 130.1 (CH), 127.6 (CH), 127.4 (CH), 126.5 (CH), 126.4 (CH), 126.2 (CH), 79.0 (C), 59.7 (CH), 40.9 (CH₂), 21.5 (CH₂), 16.9 (CH₂), 14.5 (CH₃), 12.62 (CH₃).

Minor Diastereomer **52**′. ¹H NMR (400 MHz, CDCl₃, diagnostic peaks) δ 0.54 (t, J = 7.2, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, diagnostic peaks) δ 145.5 (C), 140.8 (C), 128.1 (CH), 127.9 (CH), 126.6 (CH), 126.1 (CH), 125.6 (CH), 79.2 (C), 59.1 (CH), 44.2 (CH₂), 22.4 (CH₂), 16.7 (CH₂), 14.3 (CH₃), 12.58 (CH₃).

(3R*,4R*)-3,4-Diphenylheptan-4-ol (52) and (1R*,2R*)-1,2-Diphenylbut-3-en-1-ol (53). To a solution of alcohols 50 and 51 (0.020 g, 0.075 mmol, ratio 60:40; dr 90:10 for alcohol 50) in MeOH (1 mL) was added palladium (10%) on carbon (0.007 g, 0.007 mmol), and the reaction mixture was pressurized with H₂ (1 atm). After 20 h, the reaction mixture was filtered over Celite, rinsed with MeOH (10 mL), and concentrated in vacuo. 1 H NMR and 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 62:38 mixture of products (52:53). Alcohols 52 were formed as an 89:11 mixture of products (52:52'). Alcohol 53 was formed as a single diastereomer (dr >99:1). The spectroscopic data (1 H NMR, 13 C{ 1 H} NMR, IR, and HRMS) of alcohol 52 are consistent with the data reported for the reduction of alcohol 47 with palladium (10%) on carbon. The spectroscopic data (1 H NMR, IR, and

HRMS) of alcohol 53 are consistent with the data reported previously. 108

2-(Phenylthio)cycloheptan-1-one (56). A reported procedure 103 was adapted to prepare ketone 56. To a solution of sodium hydride (0.352 g, 60% in mineral oil, 8.22 mmol) in THF (7 mL) was added thiophenol (0.140 mL, 1.27 mmol) dropwise over 5 min. After 30 min, a solution of ketone 55 (1.012 g, 6.93 mmol) in THF (4 mL) was added to the stirring reaction mixture dropwise over 5 min. After 16 h, to the mixture was added HCl (5 mL, 1.0 M in H₂O). The layers were separated, and the aqueous layer was extracted with Et₂O $(2 \times 15 \text{ mL})$. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (5:95 EtOAc-hexanes) afforded ketone 56 as a colorless oil (1.088 g, 71%). The spectroscopic data (¹H NMR, ¹³C{¹H} NMR, and HRMS) are consistent with the data reported in the literature: 10 1 H NMR (400 MHz, CDCl₃) δ 7.42–7.40 (m, 2H), 7.31–7.27 (m, 2H), 7.26-7.22 (m, 1H), 3.78 (dd, J = 10.7, 5.6, 1H), 2.82-2.75 (m, 1H), 2.42-2.37 (m, 1H), 2.29-2.22 (m, 1H), 1.98-1.91 (m, 2H), 1.83-1.79 (m, 1H), 1.67-1.26 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 209.0 (C), 133.8 (CH), 131.9 (CH), 129.0 (CH), 127.6 (CH), 57.4 (CH), 40.0 (CH₂), 30.4 (CH₂), 30.0 (CH₂), 27.1 (CH₂), 25.5 (CH₂); HRMS (APCI) m/z calcd for C₁₃H₁₇OS [M + H]⁺ 221.0995, found 221.0991.

2-(Phenylthio)cyclooctan-1-one (58). A reported procedure 103 was adapted to prepare ketone 58. To a solution of sodium hydride (0.48 g, 60% in mineral oil, 12.0 mmol) in THF (12 mL) was added thiophenol (1.2 mL, 12.0 mmol) dropwise over 5 min. After 30 min, a solution of ketone 57 (1.347 g, 10.2 mmol) in THF (5 mL) was added to the reaction mixture by cannula. After 3 h, to the mixture was added HCl (30 mL, 1.0 M in $\rm H_2O$). The layers were separated, and the aqueous layer was extracted with $\rm Et_2O$ (2 × 30 mL). The combined organic layers were dried over $\rm Na_2SO_4$, filtered, and concentrated in vacuo. Purification by flash chromatography (5:95 EtOAc—hexanes) afforded ketone 58 as a yellow oil (0.846 g, 72%). The spectroscopic data ($^1\rm H$ NMR, $^{13}\rm C\{^1\rm H\}$ NMR) are consistent with the data reported in the literature: 110 HRMS (APCI) m/z calcd for $\rm C_{14}H_{19}OS$ [M + H] $^+$ 235.1151, found 235.1150.

(1R*,2R*)-1-Allyl-2-(phenylthio)cycloheptan-1-ol(**59**)and (1R*,2S*)-1-Allyl-2-(phenylthio)cycloheptan-1-ol (59'). Alcohols 59 and 59' were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 56 (0.110 g, 0.50 mmol) and allylmagnesium chloride (375 μ L, 2.0 M solution in THF, 0.75 mmol) in THF (5 mL) at -78 °C for 30 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 59 was formed as a 92:8 mixture of diastereomers (59:59'). Purification by flash chromatography (5:95 EtOAc-hexanes) afforded alcohol 59 as a colorless oil (0.069 g, 53%) with a diastereomeric ratio of 89:11. This mixture was used for characterization. The relative stereochemical configurations of the two diastereomers were assigned by the derivatization of alcohol 59 to sulfoxide **61**: IR (ATR) 3476, 2926, 1438, 1025, 914, 736 cm⁻¹; HRMS (APCI) m/z calcd for $C_{16}H_{21}S[(M + H) - H_2O]^+ 245.1358$, found 245.1356.

Major Diastereomer **59**. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.41 (m, 2H), 7.31–7.27 (m, 2H), 7.23–7.21 (m, 1H), 5.96–5.86 (m, 1H), 5.17–5.08 (m, 2H), 3.27 (dd, J = 8.9, 1.6, 1H), 2.62–2.56 (m, 1H), 2.53–2.48 (m, 1H), 2.32 (s, 1H), 2.07–2.00 (m, 1H), 1.93–1.87 (m, 3H), 1.78–1.84 (m, 3H), 1.55–1.28 (m, 3H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 136.7 (C), 133.89 (CH), 131.3 (CH), 129.1 (CH), 127.0 (CH), 118.9 (CH₂), 76.3 (C), 61.7 (CH), 45.0 (CH₂), 38.8 (CH₂), 30.6 (CH₂), 28.5 (CH₂), 26.8 (CH₂), 21.5 (CH₂).

Minor Diastereomer **59**′. ¹H NMR (400 MHz, CDCl₃, diagnostic peaks) δ 3.35 (dd, J = 9.9, 2.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.3 (C), 133.86 (CH), 131.4 (CH), 129.2 (CH), 126.7 (CH), 118.8 (CH₂), 76.6 (C), 63.1 (CH), 43.2 (CH₂), 38.4 (CH₂), 31.6 (CH₂), 28.0 (CH₂), 27.4 (CH₂), 21.3 (CH₂).

(1R*,2R*)-1-Allyl-2-(phenylthio)cyclooctan-1-ol (60) and (1R*,2S*)-1-Allyl-2-(phenylthio)cyclooctan-1-ol (60'). Alcohols 60 and 60' were prepared using the representative procedure for the

addition of Grignard reagents to ketones using ketone **58** (0.118 g, 0.504 mmol) and allylmagnesium chloride (380 μ L, 2.0 M solution in THF, 0.76 mmol) in THF (5 mL) at -78 °C for 30 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol **60** was formed as an 86:14 mixture of diastereomers (**60:60**′). Purification by flash chromatography (5:95 EtOAc–hexanes) afforded alcohol **60** as a yellow oil (0.088 g, 63%). The relative stereochemical configurations of the two diastereomers were assigned by the derivatization of alcohol **60** to sulfoxide **62**: IR (ATR) 3462, 2917, 1438, 988, 912, 736 cm⁻¹; HRMS (APCI) m/z calcd for $C_{17}H_{23}S$ [(M + H) $-H_{2}O$] ⁺ 259.1515, found 259.1512.

Major Diastereomer **60.** ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.41 (m, 2H), 7.31–7.27 (m, 2H), 7.22–7.18 (m, 1H), 5.96–5.85 (m, 1H), 5.15–5.10 (m, 2H), 3.38 (d, J = 8.0, 1H), 2.86–2.80 (dd, J = 14.1, 6.8, 1H), 2.33 (dd, J = 14.1, 7.8, 1H), 2.28–2.19 (m, 1H), 2.07 (s, 1H), 2.02–1.95 (m, 1H), 1.90–1.71 (m, 3H), 1.67–1.61 (m, 2H), 1.58–1.30 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.8 (C), 134.0 (CH), 131.1 (CH), 129.0 (CH), 126.5 (CH), 118.5 (CH₂), 76.5 (C), 59.2 (CH), 43.2 (CH₂), 33.4 (CH₂), 32.0 (CH₂), 29.6 (CH₃), 26.4 (CH₃), 25.5 (CH₃), 22.8 (CH₃).

29.6 (CH₂), 26.4 (CH₂), 25.5 (CH₂), 22.8 (CH₂). Minor Diastereomer **60'**. 13 C{ 1 H} NMR (100 MHz, CDCl₃, diagnostic peaks) δ 136.7, 133.8, 131.8, 129.3, 127.4, 119.3, 77.7, 42.7, 26.0, 25.9.

(1R*,2R*)-1-Allyl-2-((R*)-phenylsulfinyl)cycloheptan-1-ol (61). To a solution of alcohol 59 (0.048 g, 0.18 mmol, dr 89:11) in CH₂Cl₂ (2 mL) was added 3-chloroperbenzoic acid (0.046 g, 70-75% in H₂O, 0.20 mmol) at 0 °C. After 1 h, the mixture was warmed to 20 $^{\circ}\text{C}$ and stirred for an additional 6 h. To the mixture was then added H₂O (3 mL), and the layers were separated. The organic layer was washed with saturated aqueous NaHCO₃ (3 × 5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (from 20:80 EtOAc-hexanes to 25:75 EtOAchexanes) afforded sulfoxide 61 as a white solid (0.032 g, 64%). X-rayquality crystals were grown by the slow evaporation of a solution of sulfoxide 61 in a 25:75 mixture of EtOAc-hexanes. The relative stereochemical configuration of sulfoxide 61 was assigned by X-ray crystallographic analysis: mp = 131-132 °C; ¹H NMR (400 MHz, $CDCl_3$) δ 7.53-7.52 (m, 4H), 7.50-7.46 (m, 1H), 6.06-5.95 (m, 1H), 5.30-5.26 (m, 2H), 3.02 (s, 1H), 2.88-2.78 (m, 2H), 2.49 (dd, J = 9.5, 1.6, 1H), 2.00-1.84 (m, 2H), 1.79-1.63 (m, 4H), 1.54-1.52(m, 1H), 1.49-1.38 (m, 1H), 1.30-1.21 (m, 1H), 0.95-0.84 (m, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, CDCl₃) δ 142.6 (C), 133.5 (CH), 130.4 (CH), 129.1 (CH), 124.3 (CH), 120.0 (CH₂), 76.2 (C), 71.8 (CH), 46.8 (CH₂), 40.3 (CH₂), 28.6 (CH₂), 27.7 (CH₂), 21.8 (CH₂), 18.6 (CH₂); IR (ATR) 3336, 2924, 1144, 1034, 1021, 753 cm⁻¹; HRMS (ESI) m/z calcd for $C_{16}H_{23}O_2S$ [M + H]⁺ 279.1413, found 279.1417.

(1R*,2R*)-1-Allyl-2-((R*)-phenylsulfinyl)cyclooctan-1-ol (62)(1R*,2S*)-1-Allyl-2-((R*)-phenylsulfinyl)cyclooctan-1-ol (62'). To a solution of alcohol 60 (0.137 g, 0.494 mmol, dr 87:13) in CH₂Cl₂ (3 mL) was added 3-chloroperbenzoic acid (0.085 g, 70-75% in H₂O, 0.49 mmol) at 0 °C. After 1 h, the mixture was warmed to 20 °C and stirred for an additional 15 h. To the mixture were then added saturated aqueous Na₂S₂O₃ (10 mL) and Et₂O (20 mL), and the layers were separated. The organic layer was washed with saturated aqueous NaHCO₃ (2 × 10 mL), dried over MgSO₄, filtered through a short path of silica, and concentrated in vacuo. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 62 was formed as an 87:13 mixture of diastereomers (62:62'). Purification by flash chromatography (from 25:75 EtOAc-hexanes to 50:50 EtOAc-hexanes) afforded sulfoxide 62 as a white solid (0.105 g, 73%). X-ray-quality crystals were grown by the slow evaporation of a solution of sulfoxide 62 in a 50:50 mixture of EtOAc-hexanes. The relative stereochemical configuration of sulfoxide 62 was assigned by X-ray crystallographic analysis: IR (ATR) 3360, 2920, 1443, 1021, 910, 730 cm⁻¹; HRMS (APCI) m/zcalcd for $C_{17}H_{23}OS$ [(M + H) - H_2O]⁺ 275.1464, found 275.1471.

Major Diastereomer **62.** ¹H NMR (600 MHz, CDCl₃) δ 7.52–7.46 (m, 4H), 7.45–7.42 (m, 1H), 6.07–6.00 (m, 1H), 5.27–5.21 (m, 2H), 3.10–3.07 (m, 1H), 2.68–2.64 (m, 1H), 3.59 (dd, J = 6.0,

2.0, 1H), 2.00–1.95 (m, 1H), 1.88–1.76 (m, 3H), 1.63–1.50 (m, 6H), 1.39–1.21 (m, 2H), 0.35–0.27 (m, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 142.4, 133.8, 130.5, 129.2, 124.2, 119.1, 76.2, 70.8, 44.5, 35.1, 29.7, 26.3, 25.0, 22.6, 17.8.

Minor Diastereomer **62**′. ¹H NMR (600 MHz, CDCl₃, diagnostic peaks) δ 5.95–5.88 (m, 1H), 5.21–5.15 (m, 2H), 2.90 (dd, J = 7.5, 1.6, 1H), 2.43–2.39 (m, 1H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 144.0, 133.6, 131.3, 129.1, 126.7, 119.2, 76.5, 72.5, 42.6, 34.9, 29.1, 26.0, 25.8, 23.70, 23.66.

Competition Experiment between Ketone 56 and Cycloheptanone for Allylmagnesium Chloride. The competition experiment with ketone 56 and cycloheptanone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 56 (0.067 g, 0.30 mmol) and cycloheptanone (35 μ L, 0.30 mmol) in THF (3 mL) with allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 59:41 mixture of products (59:64). Alcohol 59 was formed as a single diastereomer (dr > 99:1).

Competition Experiment between Ketone 58 and Cyclooctanone for Allylmagnesium Chloride. The competition experiment with ketone 58 and cyclooctanone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 58 (0.071 g, 0.30 mmol) and cyclooctanone (0.038 g, 0.30 mmol) in THF (3 mL), where allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) was added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 55:45 mixture of products (60:66). Alcohol 60 was formed as a single diastereomer (dr >99:1).

(1R*,2R*)-1-Allyl-2-(phenylthio)cyclohexan-1-ol and (1R*,2S*)-1-Allyl-2-(phenylthio)cyclohexan-1-ol (69). Alcohols 69 were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 68 (0.133 g, 0.51 mmol) and allylmagnesium chloride (380 μL, 2.0 M solution in THF, 0.76 mmol) in THF (5 mL) at -78 °C for 30 min. 1 H NMR and 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 69 was formed as a 68:32 mixture of diastereomers. Purification by flash chromatography (3:97 EtOAchexanes) afforded the major diastereomer alcohol 69 as a yellow oil (0.055 g, 43%). A mixture of the minor diastereomer alcohol 69 and ketone 68 (ratio 92:8) was isolated as a yellow oil (0.058 g, 46%):

Major Diastereomer. ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.43 (m, 2H), 7.30–7.20 (m, 3H), 5.87–5.76 (m, 1H), 5.10–5.04 (m, 2H), 3.17 (dd, J = 9.4, 5.0, 1H), 2.53–2.42 (m, 2H), 2.11 (br s, 1H), 1.91–1.83 (m, 2H), 1.74–1.68 (m, 2H), 1.65–1.56 (m, 1H), 1.51–1.43 (m, 2H), 1.34–1.24 (m, 1H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 135.7 (C), 133.5 (CH), 131.9 (CH), 128.95 (CH), 126.90 (CH), 118.6 (CH₂), 73.2 (C), 57.3 (CH), 45.0 (CH₂), 36.2 (CH₂), 30.4 (CH₂), 25.0 (CH₂), 21.4 (CH₂); IR (ATR) 3466, 2931, 1438, 1025, 913, 736 cm⁻¹; HRMS (APCI) m/z calcd for C₁₅H₁₉S [(M + H) – H₂O]⁺ 231.1202, found 231.1199.

Minor Diastereomer. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.44 (m, 2H), 7.31–7.21 (m, 3H), 5.97–5.87 (m, 1H), 5.18–5.14 (m, 2H), 3.17 (dd, J = 10.1, 3.9, 1H), 2.43 (d, J = 7.3, 2H), 2.38 (br s, 1H), 2.10–2.06 (m, 1H), 1.94–1.91 (m, 1H), 1.78–1.73 (m, 1H), 1.68–1.60 (m, 2H), 1.39–1.30 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 135.8 (C), 133.2 (CH), 131.8 (CH), 129.01 (CH), 126.94 (CH), 118.8 (CH₂), 73.6 (C), 60.1 (CH), 39.9 (CH₂), 35.4 (CH₂), 30.8 (CH₂), 24.7 (CH₂), 22.2 (CH₂).

Competition Experiment between Ketone 68 and Cyclohexanone for Allylmagnesium Chloride. The competition experiment between ketone 68 and cyclohexanone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 68 (0.079 g, 0.30 mmol) and cyclohexanone (31 μ L, 0.30 mmol) in THF (3 mL) with allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a

61:39 mixture of products (69:71). Alcohol 69 was formed as a 67:33 mixture of diastereomers.

2-Chloro-3,3,5,5-tetramethylcyclohexan-1-one (74). A reported procedure was adapted to prepare ketone 74. To a solution of 3,3,5,5-tetramethylcyclohexanone (570 μ L, 3.26 mmol) in MeCN (4 mL) was added N-chlorosuccinimide (0.475 g, 3.56 mmol) and ptoluenesulfonic acid monohydrate (0.033 g, 0.37 mmol). The mixture was heated to 82 °C in a silicone oil bath and stirred for 2 h. After cooling to 20 °C, to the mixture was added H₂O (10 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (5:95 EtOAc-hexanes) afforded ketone 74 as a white solid (0.331 g, 54%). X-ray-quality crystals were grown by the slow evaporation of a solution of ketone 74 in a 5:95 mixture of EtOAchexanes: mp = 48–50 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.23 (br s, 1H), 2.56 (dd, J = 13.0, 1.8, 1H), 2.25 (d, J = 13.0, 1H), 1.82 (dd, J = 14.4, 1.6, 1H), 1.67 (d, *J* = 14.6, 1H), 1.18 (s, 3H), 1.08 (s, 3H), 1.06 (s, 3H), 1.05 (s, 3H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃) δ 203.6 (C), 73.2 (CH), 51.7 (CH₂), 50.6 (CH₂), 41.3 (C), 36.1 (C), 32.6 (CH₃), 30.6 (CH₃), 29.8 (CH₃), 24.5 (CH₃); IR (ATR) 2953, 1715, 1368, 902, 811, 739 cm⁻¹; HRMS (APCI) m/z calcd for $C_{10}H_{17}O$ $((M + H) - HCl)^{+}$ 153.1274, found 153.1272.

3,3,5,5-Tetramethyl-2-(phenylthio)cyclohexan-1-one (75). A reported procedure 103 was adapted to prepare ketone 75. To a solution of sodium hydride (0.063 g, 60% in mineral oil, 1.5 mmol) in THF (2 mL) was added thiophenol (140 μ L, 1.37 mmol) dropwise over 5 min. After 30 min, a solution of 3,3,5,5-tetramethylcyclohexanone (0.150 mg, 0.795 mmol) in THF (1 mL) was added to the reaction mixture by cannula. After 21 h, HCl (5 mL, 1.0 M in H₂O) was added. The layers were separated, and the aqueous layer was extracted with Et₂O (2 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (5:95 EtOAc—hexanes) afforded ketone 75 as a colorless oil (0.087 g, 42%). The spectroscopic data (1 H NMR, 13 C{ 1 H} NMR, and HRMS) are consistent with the data reported in the literature. 92

(1R*,2S*)-1-Allyl-2-chloro-3,3,5,5-tetramethylcyclohexan-1-ol (77). Alcohol 77 was prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 74 (0.198 g, 1.05 mmol) and allylmagnesium chloride (360 μ L, 2.0 M solution in THF, 1.3 mmol) in THF (10 mL) at -78 °C for 25 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 77 was formed as a single diastereomer (dr >99:1). Purification by flash chromatography (5:95 EtOAchexanes) afforded alcohol 77 as a colorless oil (0.168 g, 69%). The relative stereochemical configuration of alcohol 77 was assigned by the attempted derivatization of alcohol 77 to epoxide 79: ¹H NMR (400 MHz, CDCl₃) δ 5.85–5.75 (m, 1H), 5.15–5.11 (m, 2H), 3.72 (s, 1H), 2.41-2.35 (m, 1H), 2.30-2.25 (m, 1H), 1.88 (d, J = 2.4, 1H), 1.75 (dd, J = 14.7, 3.2, 1H), 1.57 (dd, J = 14.2, 3.2, 1H), 1.32 (dd, I = 14.6, 2.2, 1H), 1.29 (s, 3H), 1.27-1.24 (m, 1H), 1.24 (s, 1.27-1.24)3H), 1.02 (s, 3H), 0.88 (s, 3H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 133.3 (CH), 119.0 (CH₂), 78.1 (CH), 75.5 (C), 53.3 (CH₂), 48.3 (CH₂), 46.8 (CH₂), 37.5 (C), 35.9 (CH₃), 33.9 (CH₃), 30.5 (C), 27.9 (CH₃), 23.1 (CH₃); IR (ATR) 3569, 2953, 1368, 1080, 997, 814 cm⁻¹; HRMS (ESI) m/z calcd for $C_{13}H_{22}Cl [(M + H) - H_2O]^+$ 213.1405, found 213.1409.

(1R*,2S*)-1-Allyl-3,3,5,5-tetramethyl-2-(phenylthio)cyclohexan-1-ol (78) and (1R*,2R*)-1-Allyl-3,3,5,5-tetramethyl-2-(phenylthio)cyclohexan-1-ol (78'). Alcohols 78 and 78' were prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 75 (0.035 g, 0.15 mmol) and allylmagnesium chloride (150 μ L, 2.0 M solution in THF, 0.30 mmol) in THF (2 mL) at -78 °C for 15 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 78 was formed as a 94:6 mixture of diastereomers (78:78'). Purification by flash chromatography (3:97 EtOAchexanes) afforded alcohol 78 as a colorless oil (0.023 g, 50%). The

relative stereochemical configuration of alcohol 78 was assigned by the derivatization of alcohol 78 to sulfoxide 80.

Major Diastereomer **78.** ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.45 (m, 2H), 7.29–7.25 (m, 2H), 7.20–7.16 (m, 1H), 5.57–5.47 (m, 1H), 4.93 (dd, J = 10.4, 0.7, 1H), 4.77 (dd, J = 17.0, 0.9, 1H), 2.86 (s, 1H), 2.49 (dd, J = 13.4, 7.5, 1H), 2.12 (s, 1H), 2.05 (dd, J = 13.4, 7.1, 1H), 1.71 (dd, J = 14.4, 2.7, 1H), 1.57 (dd, J = 14.2, 2.7, 1H), 1.32–1.26 (m, 5H), 1.24 (s, 3H), 1.22 (s, 3H), 0.88 (s, 3H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 138.4 (C), 133.7 (CH), 130.6 (CH), 129.0 (CH), 126.3 (CH), 118.4 (CH₂), 76.8 (C), 68.2 (CH), 54.2 (CH₂), 49.0 (CH₂), 47.3 (CH₂), 36.8 (C), 36.2 (CH₃), 35.1 (CH₃), 30.3 (C), 27.6 (CH₃), 24.4 (CH₃); IR (ATR) 3529, 1479, 1365, 913, 735, 689 cm⁻¹; HRMS (ESI) m/z calcd for C₁₉H₂₈NaOS [M + Na]⁺ 327.1753, found 327.1755. Anal. Calcd for C₁₉H₂₈OS: C, 74.95; H, 9.27. Found: C, 74.86; H, 9.08.

Minor Diastereomer **78**′. ¹H NMR (500 MHz, CDCl₃, diagnostic peaks) δ 5.95–5.85 (m, 1H), 5.19 (dd, J = 10.3, 2.0 Hz, 1H), 5.12 (dd, J = 16.9, 1.7 Hz, 1H), 0.89 (s, 3H).

Reaction of Alcohol 77 with Potassium Carbonate. To a solution of alcohol 77 (0.062 g, 0.27 mmol, dr >99:1) in MeOH (15 mL) was added $\rm K_2CO_3$ (0.094 g, 0.68 mmol) at 0 °C. After 1 h, the reaction mixture was warmed to 20 °C and stirred for an additional 20 h. To the mixture was then added $\rm H_2O$ (5 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. $^1\rm H$ NMR and $^{13}\rm C\{^1\rm H\}$ NMR spectroscopic analysis of the unpurified reaction mixture revealed the presence of only alcohol 77 (dr >99:1).

 $(\bar{1}R*,2S*)-1-Allyl-3,3,5,5-tetramethyl-2-((S*)-phenylsulfinyl)$ cyclohexan-1-ol (80) and (1R*,2R*)-1-Allyl-3,3,5,5-tetramethyl-2-((S*)-phenylsulfinyl)cyclohexan-1-ol (80'). To a solution of alcohol 78 (0.060 g, 0.20 mmol, dr 92:8) in CH₂Cl₂ (1 mL) was added a solution of 3-chloroperbenzoic acid (0.049 g, 70% in H₂O, 0.20 mmol) in CH2Cl2 (1 mL) at 0 °C. After 1 h, the mixture was warmed to 20 °C and stirred for an additional 12 h. To the mixture were then added NaHSO₃ (0.030 g) and H₂O (5 mL), and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with brine $(1 \times 15$ mL), dried over Na2SO4, filtered, and concentrated in vacuo. Purification by flash chromatography (10:90 EtOAc-hexanes to 20:80 EtOAc-hexanes) afforded sulfoxide 80 as a white solid (0.046 g, 72%) with a diastereomeric ratio of 78:22 (80:80'). The mixture was used for characterization. X-ray-quality crystals were grown by the slow evaporation of a solution of sulfoxide 80 in a 20:80 mixture of EtOAc-hexanes. The relative stereochemical configuration of sulfoxide 80 was assigned by X-ray crystallographic analysis: mp = 124-126 °C; IR (ATR) 3498, 1285, 1130, 992, 687, 536 cm⁻¹; HRMS (ESI) m/z calcd for $C_{19}H_{28}NaO_2S$ [M + Na]⁺ 343.1702, found 343,1703.

Major Diastereomer **80**. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.58 (m 2H), 7.55–7.52 (m, 2H), 7.47–7.43 (m, 1H), 5.25–5.12 (m, 2H), 4.85–4.64 (m, 2H), 2.54–2.48 (m, 1H), 2.44 (s, 1H), 2.13–2.08 (m, 1H), 1.81 (s, 3H), 1.61–1.57 (m, 4H), 1.31 (s, 3H), 1.28 (s, 3H), 0.84 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 144.8, 133.4, 129.9, 129.25, 123.7, 117.9, 79.8, 75.1, 54.2, 49.6, 47.8, 36.0, 35.9, 34.9, 30.4, 27.6, 24.9;

Minor Diastereomer **80**′. ¹H NMR (400 MHz, CDCl₃, diagnostic peaks) δ 4.43 (d, J = 2.3, 1H), 1.73 (s, 3H), 0.83 (s, 3H); 13 C{ 1 H} NMR (150 MHz, CDCl₃) δ 144.7, 133.1, 132.7, 129.29, 126.9, 118.4, 77.3, 76.0, 57.7, 49.1, 48.5, 37.6, 35.7, 35.1, 29.8, 27.3, 23.9.

Competition Experiment between Ketone 74 and Propiophenone for Allylmagnesium Chloride. The competition experiment with ketone 74 and propiophenone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 74 (0.056 g, 0.30 mmol) and propiophenone (40 μ L, 0.30 mmol) in THF (3 mL) with allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a

51:49 mixture of products (77:15). Alcohol 77 was formed as a single diastereomer (dr >99:1).

Competition Experiment between Ketone 75 and Propiophenone for Allylmagnesium Chloride. The competition experiment with ketone 75 and propiophenone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 75 (0.082 g, 0.31 mmol) and propiophenone (40 μ L, 0.30 mmol) in THF (3 mL) with allylmagnesium chloride (380 μ L, 0.20 M solution in THF, 0.076 mmol) added dropwise over 45 min at -78 °C. 13 C{ 1 H} NMR spectroscopic analysis of the unpurified reaction mixture revealed a 48:52 mixture of products (78:15). Alcohol 78 was formed as a single diastereomer (dr >99:1).

(R*)-1-Oxa-4-thiaspiro[4.5]decan-6-one (88). A reported proce-

dure was adapted to prepare ketone 88. 112 A solution of 1,2cyclohexanedione (1.0 g, 9.0 mmol), 2-mercaptoethanol (0.69 mL, 9.9 mmol), and p-toluenesulfonic acid monohydrate (0.10 g, 0.53 mmol) in PhMe (150 mL) was heated to 80 °C in a silicone oil bath. After 16 h, the reaction mixture was filtered through 1 inch of silica. Purification by flash chromatography (from 0:100 Et₂O-hexanes to 10:90 Et₂O-hexanes) afforded ketone 88 as a colorless oil (0.61 g, 40%): ¹H NMR (400 MHz, CDCl₃) δ 4.40–4.37 (m, 1H), 4.28–4.22 (m, 1H), 3.07-3.04 (m, 2H), 2.78-2.70 (m, 1H), 2.44-2.38 (m, 1H), 2.30-2.15 (m, 2H), 2.03-1.95 (m, 2H), 1.74-1.53 (m, 2H); $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) δ 205.3 (C), 95.8 (C), 72.0 (CH₂), 40.4 (CH₂), 38.9 (CH₂), 33.0 (CH₂), 26.1 (CH₂), 25.0 (CH₂); IR (ATR) 2940, 1716, 1086, 1070, 885, 761 cm⁻¹; HRMS (ESI) m/z calcd for $C_8H_{13}O_2S$ [M + H]⁺ 173.0631, found 173.0631. (5R*,6R*)-6-Allyl-1-oxa-4-thiaspiro[4.5]decan-6-ol (89). Alcohol 89 was prepared using the representative procedure for the addition of Grignard reagents to ketones using ketone 88 (0.072 g, 0.42 mmol) and allylmagnesium chloride (305 μ L, 2.0 M solution in THF, 0.61 mmol) in THF (4 mL) at -78 °C for 15 min. ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis of the unpurified reaction mixture revealed that alcohol 89 was formed as a single diastereomer (dr >99:1). Purification by flash chromatography (5:95 EtOAc-hexanes) afforded alcohol 89 as a colorless oil (0.078 g, 87%). The relative stereochemical configurations of alcohol 89 was assigned by the derivatization of alcohol 89 to sulfoxide 92: ¹H NMR (600 MHz, CDCl₂) δ 5.96–5.87 (m, 1H), 5.12–5.09 (m, 2H), 4.42–4.39 (m, 1H), 4.08-4.04 (m, 1H), 2.97-2.95 (m, 2H), 2.60 (dd, J = 14.3, 6.2, 1H), 2.42 (dd, J = 13.8, 8.1, 1H), 2.21 (br s, 1H), 2.08-2.04 (m, 1H), 1.98-1.93 (m, 1H), 1.83-1.80 (m, 1H), 1.71-1.70 (m, 1H), 1.55-1.51 (m, 1H), 1.47-1.40 (m, 1H), 1.36-1.33 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 134.5 (CH), 118.0 (CH₂), 104.5 (C), 75.7 (C), 71.8 (CH₂), 37.9 (CH₂), 37.0 (CH₂), 36.1 (CH₂), 33.3 (CH₂), 24.1 (CH₂), 21.6 (CH₂); IR (ATR) 3485, 2933, 1075, 997, 911, 855 cm⁻¹; HRMS (ESI) m/z calcd for $C_{11}H_{17}OS$ [(M + H) – H₂O] + 197.0995, found 197.0995. Anal. Calcd for C₁₁H₁₈O₂S: C, 61.65; H, 8.47. Found: C, 61.36; H, 8.31.

Competition Experiment between Ketone 88 and 4-tert-Butylcyclohexanone for Allylmagnesium Chloride. The competition experiment with ketone 88 and 4-tert-butylcyclohexanone was performed following the representative procedure for competition experiments with allylmagnesium chloride using ketone 88 (0.030 g, 0.17 mmol) and 4-tert-butylcyclohexanone (277 g, 0.18 mmol) in THF (7 mL) with allylmagnesium chloride (230 μ L, 0.20 M solution in THF, 0.045 mmol) added dropwise over 45 min at $-78~^{\circ}\text{C}.^{13}\text{C}\{^1\text{H}\}$ NMR spectroscopic analysis of the unpurified reaction mixture revealed a 37:63 mixture of products (89:91). Alcohol 89 was formed as a single diastereomer (dr >99:1).

(5R*,6R*)-6-Allyl-6-hydroxy-1-oxa-4-thiaspiro[4.5]decane 4,4-dioxide (92). To a solution of alcohol 89 (0.060 g, 0.28 mmol, dr >99:1) in CH₂Cl₂ (3 mL) was added 3-chloroperbenzoic acid (0.070 g, 70–75% in H₂O, 0.28 mmol) at 0 °C. After 1 h, the mixture was warmed to 20 °C and stirred for an additional 17 h. To the mixture was then added H₂O (3 mL), and the layers were separated. The organic layer was washed with saturated aqueous NaHCO₃ (3 \times 5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by flash chromatography (30:70 EtOAc–hexanes)

afforded sulfone 92 as a white solid (0.042 g, 61%). X-ray-quality crystals were grown by the slow evaporation of a solution of sulfone 92 in MeOH. The relative stereochemical configuration of sulfone 92 was assigned by X-ray crystallographic analysis: mp = 141–143 °C;

¹H NMR (400 MHz, CDCl₃) δ 5.94–5.84 (m, 1H), 5.18–5.11 (m, 2H), 4.62–4.56 (m, 1H), 4.31–4.24 (m 1H), 3.31–3.20 (m, 2H), 2.82 (s, 1H), 2.72 (dd, J = 14.2, 5.4, 1H), 2.42–2.37 (m, 1H), 1.29–2.23 (m, 1H), 1.98–1.92 (m, 1H), 1.79–1.72 (m, 2H), 1.66–1.60 (m, 3H), 1.42–1.31 (m, 1H); 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 132.7 (CH), 118.8 (CH₂), 95.9 (C), 76.0 (C), 62.4 (CH₂), 49.9 (CH₂), 38.6 (CH₂), 34.4 (CH₂), 28.9 (CH₂), 21.8 (CH₂), 21.2 (CH₂); IR (ATR) 3509, 2934, 1280, 1116, 1044, 911 cm $^{-1}$; HRMS (ESI) m/z calcd for C₁₁H₁₇OS [(M + H) – H₂O] $^{+}$ 229.0893, found 229.0887

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c02844.

Stereochemical proofs, experimental information, crystallographic data, computational details, copies of 1H and $^{13}C\{^1H\}$ spectra (PDF)

Accession Codes

CCDC 2123655–2123663 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Michael D. Ward — Department of Chemistry, New York University, New York, New York 10003, United States; orcid.org/0000-0002-2090-781X; Email: mdw3@nyu.edu

K. A. Woerpel — Department of Chemistry, New York University, New York, New York 10003, United States; orcid.org/0000-0002-8515-0301; Email: kwoerpel@nyu.edu

Authors

Nicole D. Bartolo — Department of Chemistry, New York University, New York, New York 10003, United States; o orcid.org/0000-0002-9907-7774

Krystyna M. Demkiw – Department of Chemistry, New York University, New York, New York 10003, United States; occid.org/0000-0001-5457-3291

Jacquelyne A. Read — Department of Chemistry, New York University, New York, New York 10003, United States; orcid.org/0000-0002-0681-7703

Elizabeth M. Valentín — St. Mary's College of California, Moraga, California 94575, United States; orcid.org/ 0000-0002-8516-1369

Yingying Yang — Department of Chemistry, New York University, New York, New York 10003, United States

Alexandra M. Dillon – Department of Chemistry, New York University, New York, New York 10003, United States; orcid.org/0000-0003-4680-0284

Chunhua T. Hu — Department of Chemistry, New York University, New York, New York 10003, United States; orcid.org/0000-0002-8172-2202

Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.joc.1c02844

Note

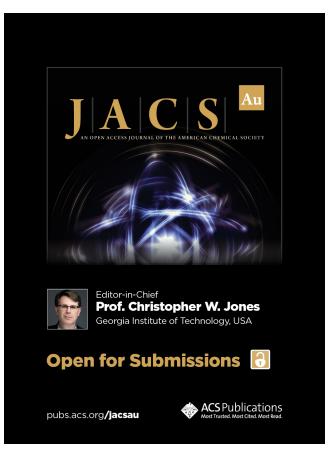
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the National Institutes of Health, National Institute of General Medical Sciences (1R01GM129286). K.M.D. acknowledges the NYU Department of Chemistry for support in the form of a Margaret Strauss Kramer Fellowship. A.M.D. and M.D.W. acknowledge support provided by the National Science Foundation, Divisions of Materials Research (DMR-2002964). We acknowledge NYU's Shared Instrumentation Facility and the support provided from NSF award CHE-01162222 and NIH award S10-OD016343. We thank Dr. Chin Lin (NYU) for his help with NMR data. The X-ray facility at NYU was supported partially by the National Science Foundation (NSF) Chemistry Research Instrumentation and Facilities Program (CHE-0840277) and the Materials Research Science and Engineering Center (MRSEC) Program (DMR-1420073).

REFERENCES

- (1) Chérest, M.; Felkin, H.; Prudent, N. Torsional strain involving partial bonds. The stereochemistry of the lithium aluminium hydride reduction of some simple open-chain ketones. *Tetrahedron Lett.* **1968**, *9*, 2199.
- (2) Chérest, M.; Felkin, H. Torsional strain involving partial bonds. The steric course of the reaction between allyl magnesium bromide and 4-t-butyl-cyclohexanone. *Tetrahedron Lett.* **1968**, *9*, 2205.
- (3) Read, J. A.; Yang, Y.; Woerpel, K. A. Additions of Organomagnesium Halides to α -Alkoxy Ketones: Revision of the Chelation-Control Model. *Org. Lett.* **2017**, *19*, 3346.
- (4) Bartolo, N. D.; Read, J. A.; Valentín, E. M.; Woerpel, K. A. Reactions of Allylmagnesium Reagents with Carbonyl Compounds and Compounds with C=N Double Bonds: Their Diastereoselectivities Generally Cannot Be Analyzed Using the Felkin–Anh and Chelation-Control Models. *Chem. Rev.* 2020, 120, 1513.
- (5) Read, J. A.; Woerpel, K. A. Allylmagnesium Halides Do Not React Chemoselectively Because Reaction Rates Approach the Diffusion Limit. *J. Org. Chem.* **2017**, *82*, 2300.
- (6) Bartolo, N. D.; Woerpel, K. A. Mechanistic Insight into Additions of Allylic Grignard Reagents to Carbonyl Compounds. J. Org. Chem. 2018, 83, 10197.
- (7) Bartolo, N. D.; Demkiw, K. M.; Valentín, E. M.; Hu, C. T.; Arabi, A. A.; Woerpel, K. A. Diastereoselective Additions of Allylmagnesium Reagents to α -Substituted Ketones When Stereochemical Models Cannot Be Used. *J. Org. Chem.* **2021**, *86*, 7203.
- (8) Bartolo, N. D.; Woerpel, K. A. Evidence against Single-Electron Transfer in the Additions of Most Organomagnesium Reagents to Carbonyl Compounds. J. Org. Chem. 2020, 85, 7848.
- (9) Landor, S. R.; O'Connor, P. W.; Tatchell, A. R.; Blair, I. Asymmetric synthesis. Part VI. Reactions of 3,3,5-Trimethylcyclohexanone with Grignard Reagents and Configurational Interrelationships of 1-Alkyl(alkenyl and alkynyl)-3,3,5-trimethylcyclohexanols and Compounds Derived from 1-Hydroxy-3,3,5-trimethylcyclohexanecarbonitriles. *J. Chem. Soc., Perkin Trans.* 1 1973, 473.
- (10) Fuganti, C.; Joulain, D.; Maggioni, F.; Malpezzi, L.; Serra, S.; Vecchione, A. 3-Alkyl-p-menthan-3-ol derivatives: synthesis and evaluation of their physiological cooling activity. *Tetrahedron: Asymmetry* **2008**, *19*, 2425.
- (11) Christoffers, J.; Scharl, H.; Frey, W.; Baro, A. Transformation of an Optically Active Decahydro-6-isoquinolone Scaffold: Perfect Felkin—Anh Diastereoselectivity. *Org. Lett.* **2004**, *6*, 1171.
- (12) Adam, J.; Klein, R.; Grabley, S.; Hammann, P. Chiral Building Blocks from Streptomyces-2. Stereoselective Transformation of Streptenol A into 3-Methyl- δ -Lactones. *Tetrahedron* **1995**, *51*, 8247.


- (13) Zhao, L.; Burnell, D. J. The stereochemistry of 1,2-additions of allylmagnesium, allylindium, and allylbismuth to cyclohexenones. *Tetrahedron Lett.* **2006**, *47*, 3291.
- (14) El Idrissi, M.; Santelli, M. Stereochemistry of Addition of Allyl Grignard Reagents to (R)-(+)-Pulegone and Other α,β -Ethylenic Ketones. *J. Org. Chem.* **1988**, *53*, 1010.
- (15) Ghosh, K.; Ghosh, A. K.; Ghatak, U. R. Highly Regioselective 8-endo-Aryl Radical Cyclisation: a New Synthetic Route to Decahydrodibenzo-[a,d]- and -[a,e]-Cyclooctenols. J. Chem. Soc., Chem. Commun. 1994, 629.
- (16) Maiti, S.; Drew, M. G. B.; Mukhopadhyay, R.; Achari, B.; Banerjee, A. K. Convenient Formation of Six- to Nine-Membered Carbocyclic Rings by 2-Pyridyl Radical Cyclization: A Generalized Synthesis of Pyridine-Fused Linear Tricyclic Systems. *Synthesis* **2005**, 3067
- (17) Dauben, W. G.; Fonken, G. J.; Noyce, D. S. The Stereochemistry of Hydride Reductions. *J. Am. Chem. Soc.* **1956**, 78, 2579. (18) Wigfield, D. C.; Phelps, D. J. Deuterium Isotope Effects in the Reduction of Cyclohexanones. The Concepts of Steric Approach Control and Product Development Control. *Can. J. Chem.* **1972**, 50, 388.
- (19) Wipke, W. T.; Gund, P. Simulation and Evaluation of Chemical Synthesis. Congestion: A Conformation-Dependent Function of Steric Environment at a Reaction Center. Application with Torsional Terms to Stereoselectivity of Nucleophilic Additions to Ketones. *J. Am. Chem. Soc.* 1976, 98, 8107.
- (20) Meyers, A. I.; Seefeld, M. A.; Lefker, B. A.; Blake, J. F.; Williard, P. G. Stereoselective Alkylations in Rigid Systems. Effect of Remote Substituents on π -Facial Additions to Lactam Enolates. Stereoelectronic and Steric Effects. *J. Am. Chem. Soc.* **1998**, 120, 7429.
- (21) Marco, J. A.; Carda, M.; González, F.; Rodríguez, S.; Castillo, E.; Murga, J. Diastereoselectivity in Organometallic Additions to the Carbonyl Group of Protected Erythrulose Derivatives. *J. Org. Chem.* **1998**, *63*, *698*.
- (22) El Bkassiny, S.; N'Go, I.; Sevrain, C. M.; Tikad, A.; Vincent, S. P. Synthesis of a Novel UDP-carbasugar as UDP-galactopyranose Mutase Inhibitor. *Org. Lett.* **2014**, *16*, 2462.
- (23) Mulzer, J.; List, B. Highly Stereoselective Synthesis of Tetrasubstituted Alkenes via [2,3]-Wittig Rearrangement. *Tetrahedron Lett.* **1994**, 35, 9021.
- (24) Charette, A. B.; Benslimane, A. F.; Mellon, C. The Tetrahydropyranyl Group as a Chiral Auxiliary for the Nucleophilic Addition to α -Alkoxy Ketones. *Tetrahedron Lett.* **1995**, 36, 8557.
- (25) Yoshida, K.; Toyoshima, T.; Imamoto, T. Efficient synthetic routes to aromatic compounds using ring-closing olefin metathesis followed by dehydration, oxidation, and tautomerization. *Chem. Commun.* **2007**, 3774.
- (26) Mulzer, J.; Pietschmann, C.; Buschmann, J.; Luger, P. Diastereoselective Grignard Additions to *O*-Protected Polyhydroxylated Ketones: A Reaction Controlled by Groundstate Conformation? *J. Org. Chem.* **1997**, *62*, 3938.
- (27) Liu, B.; Duan, S.; Sutterer, A. C.; Moeller, K. D. Oxidative Cyclization Based on Reversing the Polarity of Enol Ethers and Ketene Dithioacetals. Construction of a Tetrahydrofuran Ring and Application to the Synthesis of (+)-Nemorensic Acid. *J. Am. Chem. Soc.* 2002, 124, 10101.
- (28) El Karroumi, J.; El Haib, A.; Manoury, E.; Benharref, A.; Daran, J. C.; Gouygou, M.; Urrutigoïty, M. Selectivity controlled by ligand tuning in the palladium-catalysed cyclocarbonylation: Synthesis of new γ and δ lactones from a natural sesquiterpene. *J. Mol. Catal. A: Chem.* **2015**, 401, 18.
- (29) Holm, T. Use of Competition Kinetics with Fast Reactions of Grignard Reagents. J. Org. Chem. 2000, 65, 1188.
- (30) All carbonyl compounds used in the paper were used as racemic mixtures.
- (31) Yamamoto, Y.; Shimizu, M.; Ohara, A.; Miyawaki, A.; Tomioka, K. Addition and *in situ* halo-cyclization of ω -alkenyl Grignard reagents with aldehydes, ketones, carbon dioxide, and azodicarboxylate. *New J. Chem.* **2013**, *37*, 3873.

- (32) Conrad, M.; Brückner, C. Beiträge zur Bestimmung von Affinitätskoeffizienten: Über die Geschwindigkeit der Ätherbildung. Z. Phys. Chem. 1889, 4U, 631.
- (33) Hugelshofer, C. L.; Magauer, T. A Bioinspired Cyclization Sequence Enables the Asymmetric Total Synthesis of Dictyoxetane. *J. Am. Chem. Soc.* **2016**, *138*, 6420.
- (34) Yano, K.; Hatta, Y.; Baba, A.; Matsuda, H. The Formation of Cyclic Ethers from Diallyldibutyltin and Halo Ketones Catalyzed by Tetraethylammonium Chloride. *Synthesis* **1992**, 693.
- (35) Rosenberg, R. E.; Kelly, W. J. Felkin—Anh is not enough. *J. Phys. Org. Chem.* **2015**, 28, 47.
- (36) Jouha, J.; Khouili, M.; Hiebel, M.-A.; Guillaumet, G.; Suzenet, F. Room temperature dehalogenation of (hetero)aryl halides with magnesium/methanol. *Tetrahedron Lett.* **2018**, *59*, 3108.
- (37) Hutchins, R. O.; Suchismita; Zipkin, R. E.; Taffer, I. M. Reductions of Alkyl and Aryl Halides with Magnesium and Methanol. *Synth. Commun.* **1989**, *19*, 1519.
- (38) Kang, J. Y.; Connell, B. T. Synthesis of Substituted Acetylenic Epoxides Followed by Indium-Catalyzed Rearrangement to 2,3,5-Trisubstituted Furans. *J. Org. Chem.* **2011**, *76*, 2379.
- (39) Rathke, M. W.; Nowak, M. The Horner-Wadsworth-Emmons Modification of the Wittig Reaction Using Triethylamine and Lithium or Magnesium Salts. *J. Org. Chem.* **1985**, *50*, 2624.
- (40) Stork, G.; Hudrlik, P. F. Generation, Nuclear Magnetic Resonance Spectra, and Alkylation of Enolates from Trialkylsilyl Enol Ethers. J. Am. Chem. Soc. 1968, 90, 4464.
- (41) Hannaby, M.; Warren, S. Dehydration of Alcohols with an Adjacent Phenylthio (PhS) Group. *Tetrahedron Lett.* **1985**, 26, 3133.
- (42) Seeman, J. I. Effect of Conformational Change on Reactivity in Organic Chemistry. Evaluations, Applications, and Extensions of Curtin—Hammett/Winstein—Holness Kinetics. *Chem. Rev.* **1983**, 83, 83.
- (43) Otte, D. A.; Borchmann, D. E.; Lin, C.; Weck, M.; Woerpel, K. A. ¹³C NMR Spectroscopy for the Quantitative Determination of Compound Ratios and Polymer End Groups. *Org. Lett.* **2014**, *16*, 1566.
- (44) Sämann, C.; Knochel, P. A Convenient Synthesis of α -Substituted β , γ -Unsaturated Ketones and Esters via the Direct Addition of Substituted Allylic Zinc Reagents Prepared by Direct Insertion. *Synthesis* **2013**, *45*, 1870.
- (45) Frenking, G.; Köhler, K. F.; Reetz, M. T. On the Origin of π -Facial Diastereoselectivity in Nucleophilic Additions to Chiral Carbonyl Compounds. 2. Calculated Transition State Structures for the Addition of Nucleophiles to Propionaldehyde 1, Chloroacetyldehyde 2, and 2-Chloropropionaldehyde 3. *Tetrahedron* **1991**, 47, 9005.
- (46) Details provided in the Supporting Information.
- (47) Rozada, T. C.; Gauze, G. F.; Rosa, F. A.; Favaro, D. C.; Rittner, R.; Pontes, R. M.; Basso, E. A. The conformational analysis of 2-halocyclooctanones. *Spectrochim. Acta A: Mol. Biomol. Spectrosc.* **2015**, 137, 176.
- (48) Yoshinaga, F.; Tormena, C. F.; Freitas, M. P.; Rittner, R.; Abraham, R. J. Conformational analysis of 2-halocyclohexanones: an NMR, theoretical and solvation study. *J. Chem. Soc., Perkin Trans.* 2 2002, 1494.
- (49) Basso, E. A.; Kaiser, C.; Rittner, R.; Lambert, J. B. Axial/Equatorial Proportions for 2-Substituted Cyclohexanones. *J. Org. Chem.* 1993, 58, 7865.
- (50) Tan, Y.; Luo, S.; Li, D.; Zhang, N.; Jia, S.; Liu, Y.; Qin, W.; Song, C. E.; Yan, H. Enantioselective Synthesis of *anti–syn-Trihalides* and *anti–syn-anti-*Tetrahalides via Asymmetric β -Elimination. *J. Am. Chem. Soc.* **2017**, *139*, 6431.
- (51) Cai, Y.; Liu, X.; Jiang, J.; Chen, W.; Lin, L.; Feng, X. Catalytic Asymmetric Chloroamination Reaction of α,β -Unsaturated γ -Keto Esters and Chalcones. *J. Am. Chem. Soc.* **2011**, *133*, 5636.
- (52) Tan, X.-F.; Zhang, F.-G.; Ma, J.-A. Asymmetric synthesis of CF₂-functionalized aziridines by combined strong Brønsted acid catalysis. *Beilstein J. Org. Chem.* **2020**, *16*, 638.
- (53) Asgarova, A. R.; Khalilov, A. N.; Brito, I.; Maharramov, A. M.; Shikhaliyev, N. G.; Cisterna, J.; Cárdenas, A.; Gurbanov, A. V.;

- Zubkov, F. I.; Mahmudov, K. T. Hydrogen and halogen bonding in the haloetherification products of chalcone. *Acta Crystallogr., Sect. C: Struct. Chem.* **2019**, *75*, 342.
- (54) Canestrari, D.; Lancianesi, S.; Badiola, E.; Strinna, C.; Ibrahim, H.; Adamo, M. F. A. Desulfurative Chlorination of Alkyl Phenyl Sulfides. *Org. Lett.* **2017**, *19*, 918.
- (55) Vojáčková, P.; Chalupa, D.; Prieboj, J.; Nečas, M.; Švenda, J. Enantioselective Conjugate Additions of 2-Alkoxycarbonyl-3(2H)-furanones. *Org. Lett.* **2018**, *20*, 7085.
- (56) Bi, J.-L.; Li, F.; Bi, S. 3-(1H-Benzotriazol-1-yl)-2-bromo-1-o-tolylpropan-1-one. *Acta Crystallogr., Sect. E: Struct. Rep. Online* **2007**, 63, 04610.
- (57) Zhou, P.; Lin, L.; Chen, L.; Zhong, X.; Liu, X.; Feng, X. Iron-Catalyzed Asymmetric Haloazidation of $\alpha_n\beta$ -Unsaturated Ketones: Construction of Organic Azides with Two Vicinal Stereocenters. *J. Am. Chem. Soc.* **2017**, *139*, 13414.
- (58) Li, W.; Zhou, P.; Li, G.; Lin, L.; Feng, X. Catalytic Asymmetric Halohydroxylation of α,β -Unsaturated Ketones with Water as the Nucleophile. *Adv. Synth. Catal.* **2020**, 362, 1982.
- (59) Schobert, R.; Melanophy, C.; Maaref, F.; Hampel, F. An unusual hydrogenolysis of titana-2,9-dioxacyclonona-3,7-dienes producing *cis*-2-acylcyclopentanols. *Inorg. Chim. Acta* **2003**, 355, 454.
- (60) Denmark, S. E.; Rossi, S.; Webster, M. P.; Wang, H. Catalytic, Enantioselective Sulfenylation of Ketone-Derived Enoxysilanes. *J. Am. Chem. Soc.* **2014**, *136*, 13016.
- (61) do Nascimento, J. P.; Santos, L. S.; Santos, R. H. A.; Tozzo, É.; Ferreira, J. G.; do Carmo, M. C. L.; Brasil, D. S. B.; Alves, C. N. Synthesis, X-ray Crystal Structure and Theoretical Calculations of Antileishmanial Neolignane Analogues. *J. Braz. Chem. Soc.* **2010**, *21*, 1825.
- (62) Jana, A.; Bhaumick, P.; Choudhury, L. H. Microwave assisted synthesis of β -keto thioethers and furan derivatives by thiol directed multicomponent reactions. *New J. Chem.* **2020**, *44*, 8442.
- (63) Caracelli, I.; Olivato, P. R.; Traesel, H. J.; Valenca, J.; Rodrigues, D. N. S.; Tiekink, E. R. T. Crystal structure of 2-methoxy-2-[(4-methoxyphenyl)sulfanyl]-1-phenylethanone. *Acta Crystallogr., Sect. E: Crystallogr. Commun.* **2015**, *71*, 0657.
- (64) Caracelli, I.; Zukerman-Schpector, J.; Traesel, H. J.; Olivato, P. R.; Jotani, M. M.; Tiekink, E. R. T. 2-[(4-Chlorophenyl)sulfanyl]-2-methoxy-1-phenylethan-1-one: crystal structure and Hirshfeld surface analysis. *Acta Crystallogr., Sect. E: Crystallogr. Commun.* **2018**, 74, 703.
- (65) Hoffmann, R.; Radom, L.; Pople, J. A.; Schleyer, P. v. R.; Hehre, W. J.; Salem, L. Strong Conformational Consequences of Hyperconjugation. J. Am. Chem. Soc. 1972, 94, 6221.
- (66) Alabugin, I. V.; Zeidan, T. A. Stereoelectronic Effects and General Trends in Hyperconjugative Acceptor Ability of σ Bonds. *J. Am. Chem. Soc.* **2002**, *124*, 3175.
- (67) Bingham, R. C. Lone Pair-Polar Bond Hyperconjugation in Carbon-Halogen Chemistry. J. Am. Chem. Soc. 1975, 97, 6743.
- (68) Li, Y.; Tang, S.; Yusov, A.; Rose, J.; Borrfors, A. N.; Hu, C. T.; Ward, M. D. Hydrogen-bonded frameworks for molecular structure determination. *Nat. Commun.* **2019**, *10*, 4477.
- (69) Potter, T. J.; Li, Y.; Ward, M. D.; Ellman, J. A. Rh^{III}-Catalyzed Synthesis of Isoquinolones and 2-Pyridones by Annulation of *N*-Methoxyamides and Nitroalkenes. *Eur. J. Org. Chem.* **2018**, 4381.
- (70) Adachi, T.; Ward, M. D. Versatile and Resilient Hydrogen-Bonded Host Frameworks. *Acc. Chem. Res.* **2016**, *49*, 2669.
- (71) Felkin, H.; Frajerman, C. Competitive rate studies for some reactions involving the allyl, butenyl, $\alpha\gamma$ -dimethylallyl, and propyl Grignard reagents. The mechanism of the reactions of allylic Grignard reagents with electrophilic substrates. *Tetrahedron Lett.* **1970**, 1045.
- (72) Alabugin, I. V.; dos Passos Gomes, G.; Abdo, M. A. Hyperconjugation. WIREs Comput. Mol. Sci. 2019, 9, e1389.
- (73) Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. Are Chelates Truly Intermediates in Cram's Chelate Rule? *J. Am. Chem. Soc.* **1990**, *112*, 6130.
- (74) Frye, S. V.; Eliel, E. L. Prevention of chelation by an oxygen function through protection with a triisopropyl silyl group. *Tetrahedron Lett.* **1986**, 27, 3223.

- (75) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Studies with trialkylsilyltriflates: new syntheses and applications. *Tetrahedron Lett.* 1981, 22, 3455.
- (76) Stanton, G. R.; Johnson, C. N.; Walsh, P. J. Overriding Felkin Control: A General Method for Highly Diastereoselective Chelation-Controlled Additions to α -Silyloxy Aldehydes. *J. Am. Chem. Soc.* **2010**, 132, 4399
- (77) Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. Chelates as Intermediates in Nucleophilic Additions to Alkoxy Ketones According to Cram's Rule (Cyclic Model). *J. Am. Chem. Soc.* **1992**, *114*, 1778.
- (78) Ung, A. T.; Pyne, S. G.; Jeoffreys, G. R.; Skelton, B. W.; White, A. H. Synthesis of 2-acetyl-5-(1,2,3,4,5,6-hexahydroxyhexyl)thiazoles. *Monatsh. Chem.* **2011**, *142*, 297.
- (79) Manetto, A.; Georganakis, D.; Leondiadis, L.; Gimisis, T.; Mayer, P.; Carell, T.; Chatgilialoglu, C. Independent Generation of C5'-Nucleosidyl Radicals in Thymidine and 2'-Deoxyguanosine. J. Org. Chem. 2007, 72, 3659.
- (80) Marco, J. A.; Carda, M.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Roeper, H. Double Diastereoselection in Aldol Reactions Mediated by Dicyclohexylchloroborane between L-Erythrulose Derivatives and Chiral Aldehydes. The Felkin—Anh versus Cornforth Dichotomy. *J. Org. Chem.* **2003**, *68*, 8577.
- (81) Marco, J. A.; Carda, M.; Falomir, E.; Palomo, C.; Oiarbide, M.; Ortiz, J. A.; Linden, A. Erythrulose As a Multifunctional Chiron: Highly Stereoselective Boron Aldol Additions. *Tetrahedron Lett.* **1999**, 40, 1065.
- (82) Murga, J.; Ruiz, P.; Falomir, E.; Carda, M.; Peris, G.; Marco, J. A. Stereoselective Anti Aldol Reactions of Erythrulose Derivatives. Functionalized Chiral d^3 and d^4 Synthons. J. Org. Chem. **2004**, 69, 1987
- (83) Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. *Chem. Rev.* **1994**, *94*, 2027.
- (84) This functional and basis set combination is considered to be a useful balance of accuracy and the computational power required: Mazzanti, A.; Casarini, D. Recent trends in conformational analysis. WIRES Comput. Mol. Sci. 2012, 2, 613.
- (85) Miller, J.; Gregoriou, G.; Mosher, H. S. Relative Rates of Grignard Addition and Reduction Reactions. *J. Am. Chem. Soc.* **1961**, 83, 3966.
- (86) Alanthadka, A.; Bera, S.; Banerjee, D. Iron-Catalyzed Ligand Free α -Alkylation of Methylene Ketones and β -Alkylation of Secondary Alcohols Using Primary Alcohols. *J. Org. Chem.* **2019**, 84, 11676.
- (87) Sun, Q.; Yao, C. J.; König, B. A triphenylphosphine mediated photo-rearrangement and methanol addition of aryl chalcones to 1-propanones. *Photochem. Photobiol. Sci.* **2015**, *14*, 948.
- (88) Ariel, S.; Trotter, J. 2-Cyclohexyl-1-(4-methoxyphenyl)-2-phenylethanone. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* 1986, 42, 485.
- (89) Yu, Y.; Tambar, U. K. Palladium-catalyzed cross-coupling of α -bromocarbonyls and allylic alcohols for the synthesis of α -aryl dicarbonyl compounds. *Chem. Sci.* **2015**, *6*, 2777.
- (90) Zhang, D.-Y.; Zhang, Y.; Wu, H.; Gong, L.-Z. Organoiodine-Catalyzed Enantioselective Alkoxylation/Oxidative Rearrangement of Allylic Alcohols. *Angew. Chem., Int. Ed.* **2019**, *58*, 7450.
- (91) Goaman, L. C. G.; Grant, D. F. The Crystal Structure of 2-Bromo and 2,6-Dibromo-3,3,5,5-tetramethylcyclohexanone. *Acta Crystallogr.* **1964**, 17, 1604.
- (92) Billings, S. B.; Woerpel, K. A. Nucleophilic Substitution Reactions of Sulfur-Substituted Cyclohexanone Acetals: An Analysis of the Factors Controlling Stereoselectivity. *J. Org. Chem.* **2006**, *71*, 5171.
- (93) Dimitroff, M.; Fallis, A. G. Studies of π -Diastereofacial Selectivity: The Influence of α -Oxathiolane Ketals on Cyclic Ketones. *Tetrahedron Lett.* **1998**, 39, 2527.
- (94) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom—atom dispersion corrections. *Phys. Chem. Phys.* **2008**, *10*, 6615.

- (95) Peltzer, R. M.; Gauss, J.; Eisenstein, O.; Cascella, M. The Grignard Reaction Unraveling a Chemical Puzzle. *J. Am. Chem. Soc.* **2020**, *142*, 2984.
- (96) Ahlsten, N.; Bermejo Gómez, A.; Martín-Matute, B. Iridium-Catalyzed 1,3-Hydrogen Shift/Chlorination of Allylic Alcohols. *Angew. Chem., Int. Ed.* **2013**, *52*, 6273.
- (97) Khalafi-Nezhad, A.; Fareghi Alamdari, R.; Zekri, N. Efficient and Selective Protection of Alcohols and Phenols with Triisopropylsilyl Chloride/Imidazole Using Microwave Irradiation. *Tetrahedron* **2000**, *56*, 7503.
- (98) Rotsides, C. Z.; Woerpel, K. A. Diastereoselective silylene transfer reactions to chiral enantiopure alkenes: effects of ligand size and substrate bias. *Dalton Trans.* **2017**, *46*, 8763.
- (99) Tan, X.-H.; Hou, Y.-Q.; Huang, C.; Liu, L.; Guo, Q.-X. SnCl₂-mediated carbonyl allylation in fully aqueous media. *Tetrahedron* **2004**, *60*, *6129*.
- (100) Barnett, D. S.; Moquist, P. N.; Schaus, S. E. The Mechanism and an Improved Asymmetric Allylboration of Ketones Catalyzed by Chiral Biphenols. *Angew. Chem., Int. Ed.* **2009**, *48*, 8679.
- (101) Yin, J.; Stark, R. T.; Fallis, I. A.; Browne, D. L. A Mechanochemical Zinc-Mediated Barbier-Type Allylation Reaction under Ball-Milling Conditions. *J. Org. Chem.* **2020**, *85*, 2347.
- (102) Bellomo, A.; Daniellou, R.; Plusquellec, D. Allylation of cyclohexanones in aqueous media and influence of facial amphiphilic fructopyranosides. *Tetrahedron Lett.* **2010**, *51*, 4934.
- (103) Zhang, G.-B.; Wang, F.-X.; Du, J.-Y.; Qu, H.; Ma, X.-Y.; Wei, M.-X.; Wang, C.-T.; Li, Q.; Fan, C.-A. Toward the Total Synthesis of Palhinine A: Expedient Assembly of Multifunctionalized Isotwistane Ring System with Contiguous Quaternary Stereocenters. *Org. Lett.* **2012**, *14*, 3696.
- (104) Arisawa, M.; Toriyama, F.; Yamaguchi, M. Rhodium-Catalyzed Organothio Exchange Reaction of α -Organothioketones with Disulfides. *Chem. Pharm. Bull.* **2010**, *58*, 1349.
- (105) Stevens, A. C.; Pagenkopf, B. L. Diels—Alder Chemistry of Siloles and Their Transformation into Cyclohex-2-ene-1,4-cis-diols. *Org. Lett.* **2010**, *12*, 3658.
- (106) Chen, Q.-A.; Cruz, F. A.; Dong, V. M. Alkyne Hydroacylation: Switching Regioselectivity by Tandem Ruthenium Catalysis. *J. Am. Chem. Soc.* **2015**, *137*, 3157.
- (107) Andrade, C. K. Z.; Azevedo, N. R.; Oliveira, G. R. NbCl₅: A Novel Lewis Acid in Allylation Reactions. *Synthesis* **2002**, 928.
- (108) Schneider, C.; Brauner, J. Lewis Base-Catalyzed Addition of Trialkylaluminum Compounds to Epoxides. *Eur. J. Org. Chem.* **2001**, 4445.
- (109) Yoshikawa, T.; Mori, S.; Shindo, M. The effects of C–S and C–Se bonds on torquoselectivity: stereoselective olefination of α -thio and α -selenoketones with ynolates. *Tetrahedron* **2009**, *65*, 8832.
- (110) Vaquer, A. F.; Frongia, A.; Secci, F.; Tuveri, E. Disulfide-based metal-free α -sulfanylation of ketones. *RSC Adv.* **2015**, *5*, 96695.
- (111) Guo, W.; Martínez-Rodríguez, L.; Kuniyil, R.; Martin, E.; Escudero-Adán, E. C.; Maseras, F.; Kleij, A. W. Stereoselective and Versatile Preparation of Tri- and Tetrasubstituted Allylic Amine Scaffolds under Mild Conditions. *J. Am. Chem. Soc.* **2016**, *138*, 11970.
- (112) Jaeger, R. H.; Smith, H. Syntheses using Monoketals of cycloHexane-1:2-dione. Part I. 2-Oxocyclohexane-1-spiro-2'-1': 3'-Dioxolan and the corresponding Oxathiolan and Dithiolan. *J. Chem. Soc.* 1955, 160.

