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Abstract— Eye-blinks are known to substantially contaminate
EEG signals, and thereby severely impact the decoding of EEG
signals in various medical and scientific applications. In this
work, we consider the problem of eye-blink detection that can
then be employed to reliably remove eye-blinks from EEG
signals. We propose a fully automated and unsupervised eye-
blink detection algorithm, Blink that self-learns user-specific
brainwave profiles for eye-blinks. Hence, Blink does away
with any user training or manual inspection requirements.
Blink functions on a single channel EEG, and is capable of
estimating the start and end timestamps of eye-blinks in a
precise manner. We collect four different eye-blink datasets
and annotate 2300+ eye-blinks to evaluate the robustness
performance of Blink across headsets (OpenBCI and Muse),
eye-blink types (voluntary and involuntary), and various user
activities (watching a video, reading an article, and attending
to an external stimulation). The Blink algorithm performs
consistently with an accuracy of over 98% for all the tasks with
an average precision of 0.934. The source code and annotated
datasets are released publicly for reproducibility and further
research. To the best of our knowledge, this is the first ever
annotated eye-blink EEG dataset released in the public domain.

I. INTRODUCTION

Electroencephalography (EEG) signals captured from the

scalp of the brain in the form of non-stationary electric

potentials provides a window into the neural activity in

the brain. Until two decades ago, the applications for EEG

were limited to clinical and medical diagnostics, includ-

ing epilepsy, Alzheimer’s, coma, brain disorder, etc. More

recently, significant advances in wearable hardware and

sensing technologies have enabled the recording of high-

quality EEG data using off-the-shelf headsets. EEG measures

are typically recorded and correlated with cognitive and

physiological processes to gain deeper insights into the func-

tionality of such processes. The Human Connectome Project

(HCP)1 is one such initiative to map the human brain on

a neuronal level through various neural measures, including

EEG. Meanwhile, the widespread availability of wearable

EEG headsets is also gaining the attention of consumers

interested in the analysis of their mental health, mindfulness,

meditation and sleep statistics.

However, EEG signals are quite vulnerable to distortion

caused by other interfering electrical fields. Specifically, eye-

blinks produce a very strong interfering electric field (as the

retina and cornea form an electric dipole [1], [2]) severely

impacting the signal-to-noise ratio (SNR) of recorded EEG

1http://www.humanconnectomeproject.org/

measurements. The presence of eye-blink artefacts in the

EEG signal leads to confused or possibly false EEG inter-

pretations. Hence, the detection and removal of eye-blink

components can be significantly useful in any EEG analysis.

Several algorithms have been proposed in the literature to

identify eye-blinks, but they are characterized by one or

more of the following limiting requirements - (i) a partly

manual inspection for thresholds or template selection, (ii)

a user training phase, (iii) a high number of EEG channels,

and (iv) Electrooculography (EOG) data requiring additional

electrodes above and below the eyes.

In this context, we first show that the brainwaves generated

when a user eye-blinks are detectable with a high degree of

robustness. We then propose a fully automatic and unsu-

pervised (i.e. without requiring any training from the user)

eye-blink detection algorithm, Blink, to identify accurate

timestamps of eye-blinks in the EEG data. The precise

timestamping of eye-blinks in the EEG data maximizes the

availability of clean EEG for analysis, and can provide

insights into eye-blink duration and eye-blink interval. Blink

relies on the natural frequency of occurrence of eye-blinks

to self-learn brainwave profiles for each specific user’s eye-

blinks, and hence does away with any user training require-

ments. Blink’s design requires only a single EEG channel to

operate.

Through extensive user experiments, we show that Blink

can detect eye-blinks robustly across different EEG headsets

and various user activities. We use two different commer-

cially available BCI platforms—Muse and OpenBCI—to

show the generalizability of Blink over EEG headsets. We

use controlled and uncontrolled user studies to evaluate the

performance of Blink over involuntary and voluntary eye-

blinks, respectively. Overall, we collected four different user

EEG datasets (Table I) with real users containing more than

2300 eye-blink waveforms. We show that Blink detects eye-

blinks with an accuracy of over 98% for all four datasets

along with a high degree of precision.

We have publicly released our collected datasets, and

code2 for the Blink algorithm so that the results presented in

this paper can be reproduced3. To the best of our knowledge,

this is the first-ever annotated eye-blink EEG dataset released

in the public domain. We later discuss a methodology for

2Datasets and code are available at https://github.com/

meagmohit/BLINK.
3User data is anonymized to ensure the privacy
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Dataset Device Type Users Total Activity

EEG-IO OpenBCI Involuntary 20 500 external stimulation

EEG-IM Muse Involuntary 20 500 external stimulation

EEG-VV OpenBCI Voluntary 12 750 watching video

EEG-VR OpenBCI Voluntary 12 600 reading article

TABLE I: EEG datasets collected for Blink evaluation

using Blink as-is in an online fashion to enable real-time

eye-blink detection. This can widen the applicability of

Blink in the domains of Brain-Computer Interface (BCI)

based communication and control, and real-time EEG data

processing.

The rest of the paper is organized as follows; in Section

2 we review the related work at the intersection of EEG

and eye-blinks. In Section 3, we describe the manifestations

of eye-blinks on EEG data, and discuss the complexity of

the problem in hand. Section 4 presents the Blink algorithm,

followed by its evaluation in Section 5. Finally, we discuss

the limitations of Blink and future work in Section 6 and

conclude the paper.

II. RELATED WORK

Several related works lie at the intersection of EEG

and eye-blinks, which can be broadly classified into two

categories: (i) removing eye-blink artifacts from the EEG

signal, and (ii) detecting the time instants of eye-blinks

in EEG. From a technical perspective, both categories are

quite different from each other. The former removes the

eye-blink components from EEG resulting in pure cerebral

data, however, is unable to locate the time instants of eye-

blinks. The latter locates the time instants but is incapable

of removing the distortion without losing the cerebral data

within the eye-blink duration. Several hybrid approaches

have been proposed in the literature first to identify the

eye-blinks and removing the related component to clean the

signal [3], [4].

A. Eye-Blink component removal methods

Multiple strategies are proposed in the literature to purify

the EEG waveform using Blind Source Separation (BSS)

based methods. These methods [5], [6], [7], [8], [9] vivisect

EEG waveform into additive subcomponents using BSS

algorithms like Independent Component Analysis (ICA) and

remove the non-cerebral (mostly eye-blink) component from

the EEG using template matching. The templates are created

with labeled eye-blink examples which are proved to be

consistent across users. These methods perform very well

but require maintaining a large database of templates, and

sampling from a large number of electrodes to find the

multiple subcomponents. [10] is one such semi-automatic

process requiring the manual labeling and selection of a

template. Some of these works even require putting extra

electrodes over and above the eye, also known as Electroocu-

lography (EOG) [7]. EyeCatch [11] uses a similar strategy

to detect eye-blinks specifically. It analyses and compares

the IC scalp maps with the half-million scalp maps present

in their database. ICA based approaches are advantageous

in circumventing the limitations of conventional artifact

detection methods, however, the can be only used in dense

EEG systems due to their strict requirements of a high

number of EEG channels.

B. Eye-blink identification methods

A very trivial approach to detect eye-blink timestamps is

to continuously monitor the EEG signal and detect eye-blink

if the amplitude crosses a preset threshold value. Improved

approaches in the literature extract relevant features to apply

a threshold. In [12], various statistic based features were

calculated for data artifacts in five aspects of the EEG data:

channels, epochs, ICs, single-channel single-epochs, and

aggregated data (i.e., across subjects). A threshold of ±3 was

used for the Z-score for each feature to detect the eye-blink

artifact. [12] was shown to perform with a score of 94.47 and

98.96 for sensitivity and specificity respectively on simulated

data over 128-channels. The performance of [12] drops

significantly with a reduced number of electrodes (i.e., 32).

[13] employs the use of extreme statistics and used p-value

as the threshold parameter to detect the eye-blink artifacts

on 29-channel EEG data. An automatic threshold of µ+ 2σ
is used along with channel correlation (in Fp1 and Fp2)

electrodes in [14]. [15] proposed the use of multi-window

summation of derivatives approach and compared against

the correlation, Dynamic Time Warping (DTW) and Root

Mean Square Error (RMSE) based approaches. The Similar

threshold-based approach was used in [16] along with DTW.

[17] applies threshold-based peak detection technique for

activating the home lighting system. Such threshold-based

techniques were also used in [18], [13] over the frequency

spectrum. Power Spectrum Density (PSD) of a moving

window was compared to a threshold to detect eye-blink

artifacts. The performance of such methods suffer due to a

high variance in eye-blink duration, and the peak not falling

in the middle of the window. Threshold-based approaches are

highly sensitive to the chosen features and preset threshold,

which could vary highly across devices and subjects.

Fingerprint or template matching based methods are

widely used in the field of pattern recognition. In these

approaches, an eye-blink template (or fingerprint) is first

obtained and then matched with the continuous EEG data

using a moving window. If the similarity measure crosses

a preset threshold value, an eye-blink signal is detected in

the particular window. These methods are highly sensitive to

the chosen template and the similarity metric. [19] applied

Dynamic Positional Warping (DPW), a variant of DTW

and demonstrated the accuracy improvements over DTW

[20], RMSE and correlation [21] as the similarity metric.

The templates are typically chosen either through manual

inspection or generated with an algorithm. [19] selected five

templates from the ground truth dataset, and hence is not

fully unsupervised.

Supervised learning based methods design a specific kind

of neural network architecture (or deep architecture) for

learning the distinctive and similar patterns based on the

training data [3], [22], [23]. [23] uses Support Vector Ma-

chines (SVMs) for identification of eye-blink artifacts with
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a moving window of 450ms. [24] uses segmentation of a 1-

second window, and applies RBF network on three extracted

features achieving an accuracy of 75.3%. Such techniques

demand user training and are heavy in computation (for

training) and memory (weight storage).

Other algorithms that work on purely statistical tech-

niques do not estimate the eye-blink positions but rather

count them [25], [26] or are highly sensitive to the input

parameters. [26] does not specifically detect eye-blinks but

any spiked artifacts. This can result in high false positives

as a result of the eye and head movements. Sensitivity

to the input parameters defeats the universality point. [4]

proposed a complicated approach of combining high-speed

eye tracker to timestamp eye-blinks and further removed

artifacts caused by eye-blinks and movements. [27] proposed

a novel combination of ICA with mutual information and

wavelet analysis to achieve 97.8% accuracy using 6 EEG

and 2 EOG electrodes. [28] detects eye-blink artifacts with

90% specificity and 65% sensitivity using extended Kalman

filter. [29] performs DTW score clustering during wearable

EEG-based cognitive workload assessment tests to achieve an

accuracy of 96.42%. Despite the attractive performance rates,

the proposed method is not suitable due to the requirements

of user training and 7- EEG channels. [30] relies purely on

statistical techniques but requires EEG signal for an extended

period (offline), to extract eye-blink profile.

Regression-based methods require measuring EOG elec-

trodes to correctly estimate the regression coefficients [31],

[32], [33]. This again puts additional hardware requirements

on the available EEG architectures in the market and are not

suitable for our case, hence, we skip the discussion of such

approaches.

Thus, there does not exist any eye-blink detection al-

gorithm (through EEG) that fits the requirements of uni-

versality, no supervised-training, no manual involvement,

small form-factor, and near-perfect detection accuracy. In this

context, we later present in the paper, a novel solution and

compare against a specific related work, BLINKER [30].

III. EYE-BLINK CHARACTERISTICS AND DETECTION

CHALLENGES

A. Blink waveform characteristics

A typical eye-blink waveform on the frontal EEG is

visually similar to a trough waveform in the voltage-time

domain. Fig. 1 shows a snapshot of such waveform at frontal

electrode position (Fp1 in this case, according to the 10-20

electrode system) referenced to the earlobe electrodes (x-

axis: time-domain, y-axis: voltage-domain). The eye-blink

waveform can be characterized by its (i) waveform pattern,

(ii) eye-blink amplitude, and (iii) eye-blink duration. An eye-

blink waveform pattern is defined as the voltage variation

with time during a natural or forced eye-blink. The depth

of the trough in the waveform pattern is known as the eye-

blink amplitude. Eye-blink duration is simply the time taken

by the user to perform the eye-blink.

68.4 68.6 68.8 69 69.2 69.4 69.6 69.8 70 70.2

-1.78

-1.76

-1.74

-1.72

-1.7
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Stable
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Fig. 1: A typical eye-blink waveform

B. Detection Challenges

Detecting eye-blinks is ostensibly easy as eye-blink wave-

forms are visually prolific in features (as in Fig.1). The

normalized eye-blink waveform pattern (in time and volt-

age domains, i.e., single-unit time duration and single-unit

voltage deviation) is consistent across multiple eye-blinks

of a single user, and also across different users. We can

see this from Fig. 2, that the similarity (correlation) of eye-

blink templates without considering amplitude deviation in

correlation metric is similar for intra-subject eye-blinks (mul-

tiple eye-blinks of a single user) and inter-subject (eye-blinks

across users). In reality, state-of-the-art technologies present

EEG waves inter-weaved with high-power noise (including

inherent signal noise and measurement sensor noise). The

variability across user-specific eye-blink waveforms are so

high across users (considering the amplitude deviation for

eye-blink waveforms) that if compared on the same scale,

what looks like an eye-blink waveform for one user is simply

noisy perturbations for another user. The high variability is

not just limited to across users, but also is exhibited across

different eye-blink waveforms of a specific user (Fig. 2 shows

that when amplitude deviation is considered in the correlation

metric, the correlation drops significantly in the case of eye-

blinks across users (inter-subject))4. This high variability

among the eye-blink patterns poses the first challenge of

designing a single universal algorithm that can account for

the user and state variability, without an explicit requirement

of fine-tuning algorithmic parameters.

One might argue for the deployment of supervised training

based approaches (e.g., neural networks, deep learning) to

tackle the user-variability and noise issues like in the image

or speech recognition problems. However, such a solution

strategy is undesirable for wearable BCIs, where user com-

fort is an important consideration. Supervised training based

approaches require users to go through an extensive training

phase that directly impacts the usability and hence, the

consumer adoption of such devices. The second challenge,

thus, is to devise solutions that eliminate the user-training

phase (essentially eliminating all supervised training based

approaches).

The above challenges when coupled with the small form-

factor constraints (usage of fewer channels), and high accu-

4For this result, we used EEG-VR dataset (Table I)
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racy requirements with low false positives (high precision

- robust detection to avoid user frustration), considerably

elevates the complexity of this problem. In summary, the key

challenges in developing an eye-blink detection algorithm are

the following: (i) Universality, (ii) No supervised training,

(iii) Small form-factor and (iv) Accurate performance.

IV. THE Blink DETECTION ALGORITHM

We propose an algorithm Blink that is capable of robust

eye-blink detection without requiring any training from the

user. Blink is presented in Algorithm 1 along with subroutine

1.

A. Assumptions

Blink operates on two assumptions

1) Consistency of eye-blink patterns: It assumes that the

eye-blink patterns are consistent for a single user for a short

period (i.e., during data recording). However, no such as-

sumption is made for different users (or different recordings)

and hence allows for user and session variability. To validate

this assumption, we utilize the EEG-IO dataset (Table I),

which provides us with the timestamps of true eye-blinks.

For the user EEG data with given eye-blink waveforms, we

extract a template eye-blink signal (or fingerprint) based on

the given eye-blinks, and compute the correlation of template

with (a) noise waveforms (but similar to trough pattern)

shown as crosses and (b) the given eye-blink waveforms

shown as circles in Fig. 3. Based on the correlation threshold

comparison5, if the waveforms are classified as eye-blink

or noise using a threshold, we mark the corresponding

incorrectly classified waveforms using red ink. The template

extraction and correlation is done for users separately (total

10 subjects are shown in Fig. 3, best-5 and worst-5 are

shown) in Fig. 3(i) and Fig. 3(iii), and finally for all the

subjects together i.e., one template eye-blink waveform for

all users (global fingerprint) in Fig. 3(ii). When subjects

are treated separately, eye-blink waveforms can be assumed

consistent i.e., a single template can represent all the eye-

blink waveforms robustly and hence can distinguish from the

noisy trough patterns. However, this is not true for multiple

users due to the high overlap between eye-blink and noise

correlation with the template, as in Fig. 3(ii). Similarly,

if amplitude deviation is not considered, the overlap be-

tween noise and eye-blink waveforms is significantly high,

adversely affecting the detection performance (Fig. 3(iii)).

This establishes the consistency in eye-blink patterns for a

particular user and can be leveraged to detect eye-blinks from

the raw EEG feed efficiently.

2) No other repetitive waveforms: There are no other

repetitive waveforms in the input signal that present the same

characteristics as an eye-blink waveform. This is a valid as-

sumption, as frontal electrodes are mostly corrupted by eye-

blinks, eye movements, facial muscles, and head movements.

The pattern of other waveforms is either non-repetitive and

5A threshold was selected to minimize the number of incorrect classifica-
tions. For each waveform, its correlation was compared with the threshold
to label as eye-blink waveform or noise waveform

Algorithm 1: Blink6: an eye-blink detection algorithm

based on feature detection and cluster-analysis

Input : E: EEG raw data, fs: Sampling frequency

Output : [tstart]: start time of all eye-blinks, [tend]:
end time of all eye-blinks

1 Preprocess: lowpass filter E

2 [tpeaks]← peak detect(E, delta = 0)
3 [tstart], [tmin], [tend]←

identify stable points(E, delta = 0, [tpeaks])
4 for i = 1, 2, · · · , size([tmin]) do

5 for j = i+ 1, i+ 2, · · · , size([tmin]) do

6 siga ← E[t
(i)
start : t

(i)
min : t

(i)
end]

7 sigb ← E[t
(j)
start : t

(j)
min : t

(j)
end]

8 corrmat[i, j]← correlate(E, siga, sigb)

9 powermat[i, j]← max( std(siga)
std(sigb)

,
std(sigb)
std(siga)

)

10 end

11 end

12 [indexblinks]←
high corr comp([[corrmat]], [[powermat]])

13 stableth, delta←

blink typify([tstart], [tmin], [tend], [indexblinks])
14 [tpeaks]← peak detect(E, delta)
15 [tstart], [tmin], [tend]←

stable points(E, stableth, tpeaks)
16 Repeat steps 5 to 15

17 return [tstart], [tend]

random or dissimilar to the eye-blink waveform (trough-

shaped).

B. Blink Algorithm

Some properties of Blink algorithm are, (i) Blink relies

on the natural frequency of occurrence of eye-blinks to self-

learn brainwave profiles for each specific user’s eye-blinks,

and hence does away with any user training requirements (it

performs unsupervised learning); (ii) Blink requires raw EEG

data as input and returns the start and end positions of the

eye-blinks in the EEG data. Thus, Blink can easily provide

insights into the eye-blink duration, and eye-blink interval;

(iii) Blink design requires only single-channel data. However,

in the case of multiple channels the results can be combined

(in an OR fashion) to achieve more accurate results;

Algorithm Explanation: The pre-processing step (line 1) is to

apply a low-pass filter to suppress high-frequency noise and

smoothening the signal. The first step of the algorithm is to

find local minimas and stable points (Fig. 1). Subroutine 1

(peak detect) finds the local minimum points in the signal

separated at least by 2w units in the time-domain (line 2).

With each minimum point found, the algorithm searches for

nearby stable points (line 3), where the signal fully recovers

from the eye-blink trough (as shown in Fig. 1). This is

performed in function (stable points) where the vicinity of

6[] and [[]] represents 1-D and 2-D array respectively in the algorithm,
std represents the standard deviation
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Fig. 2: Correlation of eye-blink waveforms for

(i) multiple eye-blinks of a single user, (ii)

eye-blinks across users, each with and without

considering the amplitude deviation
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Fig. 3: Correlation with template eye-blink waveform for given eye-blinks

and trough-shaped noise, (i) template is constructed independently with

amplitude deviation (intra-subject with amplitude deviation) , (ii) template

is constructed together for all subjects with amplitude deviation (inter-

subject with amplitude deviation), (iii) template is constructed indepen-

dently without amplitude deviation in correlation (intra-subject)

Subroutine 1: Subroutine peak detect for Blink algo-

rithm

Input : E: EEG raw data, delta: threshold for

peak detection

Parameters: w : size of the moving window

1 Initialize [tmin] with all local minimas in E

2 if delta is 0 then

3 return subset of [tmin] such that consecutive

elements are separated by w units in time-domain
4 else

5 return subset of [tmin] such that consecutive

elements are separated by delta units in

voltage-domain
6 end

each local minima is scanned to estimate the noise power (or

stableth), which in turn is used to compute aforementioned

stable points such that the signal power from minima to

a stable point crosses stable th, but is limited after stable

points. If, for any particular minima two stable points are

not found (one on the left, and other on the right), such

local minimum points are discarded for further eye-blink

investigation, and a set of stable points are returned for every

other local minimum.

At this point (line 3), the algorithm has a set of trough

patterns (each pattern consists of one local minimum and

two stable points), which are further interpolated (as time

length is different for each pattern) and linearly correlated on

a one-to-one basis (line 4-11) to compute the cross similarity

matrix in the time-domain (eye-blink shape) and the voltage-

domain (eye-blink amplitude).

Further, highly correlated components of such patterns is

computed (line 12, high corr comp) based on the time-

domain similarity and a correlation threshold (which is kept

low for robust detection) to find the matching repetitive

patterns. The repetitive patterns might look similar (in the

time-domain) but could correspond to eye-blink waveform

(high amplitude) or simply noise (less amplitude), which is

further separated into two different clusters, and the high

trough amplitude cluster is returned as potential eye-blinks.

To make the algorithm more robust, resultant eye-blink

patterns are profiled (smartly characterized) to have a better

estimate of the noise power and the eye-blink amplitude

(line 17 blink typify). Finally, a second pass is done to

recover any missed eye-blink patterns (line 14-16), with

the additional information of eye-blink SNR (signal-to-noise

ratio) and user eye-blink profile. Thus, in the end, Blink

algorithm robustly detects all eye-blink patterns along with

their start and end times.

Subroutine peak det detects the minimas in the signal data

separated at least by 2w units. The subroutine, if provided

with a non-zero delta threshold, identifies the minimas which

have at least of delta-amplitude difference with immediate

maximas.

A careful inspection of the algorithm reveals that the

parameters of the Blink algorithm (and corresponding sub-

routines) are filter orders, different moving window sizes

(time-domain), and correlation thresholds, which are not

required to be tuned to different users, and thus allowing

for the user-agnostic universality of the algorithm.

V. EVALUATION

In this section, we first explain the user experiments

conducted along with the correspondingly collected EEG

data. We then evaluate the Blink algorithm to validate its

near-zero detection error with low false positives.

A. Experimental Protocol and EEG Dataset Description

We have conducted four different user experiments to

evaluate the robustness of the Blink algorithm under a variety
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Fig. 4: User-Evaluation Setup

of EEG headsets and tasks. All the research protocols for

the user data collection were reviewed and approved by the

Institutional Review Board of Georgia Institute of Technol-

ogy. The subjects for the study were recruited from mixed

demographics with an age range between 22 to 30 years old

and were either full-time students or full-time employees.

Upon arrival, the experimental protocol was explained to the

subjects, and the subjects were provided with consent forms

and a demographic questionnaire. They were compensated

with Amazon gift cards (10 USD value) for their successful

participation in the study. The experimental paradigms and

the collected EEG datasets are explained below:

A. Guided single eye-blink experiments: We collected raw

EEG traces from 20 subjects in a guided (i.e., software in-

structed) environment where subjects were asked to perform

a single eye-blink when instructed. Subjects were asked to

sit comfortably in front of a computer screen and wear a

BIOPAC 100C electrode cap [34]. Electrode gel was used

to ensure the surface contact between the Fp1 and Fp2 (as

per the 10-20 electrode system) electrodes on the scalp and

forehead. Two silver ear-clip electrodes were additionally

placed on the left and right earlobes to serve as a reference

and to aid in the noise cancellation. The electrode cap

was attached with the OpenBCI platform, which sampled

the raw EEG at 250Hz. The digital signals were shipped

to a desktop machine over the wireless channel. We used

OpenViBE software (developed by Inria [35]) to present

the on-screen stimulations and collect the user EEG data

with synchronized timestamps. We also recorded a video of

the subjects performing the experiments. The subjects were

asked to perform a single eye-blink ONLY if a green plus

appears on the screen (fig. 4). One experimental session

presented 25 such external stimulations to perform eye-blinks

every 3-4s depending on the subject’s preference, resulting

in the experiments lasting for 75 to 100 seconds per user. We

repeated the same experimental protocol with Muse headset

[36]. Muse headset is a dry-electrode headset and does not

require a sticky gel to maintain the scalp contact. The Muse

electrodes were moistened with water before the headset was

worn by the user. We used the Muse Monitor application

[37] on an Android platform to collect the user EEG data,

however, the stimulations on a computer screen were still

provided using the OpenViBE platform7. For both of the

experiments, the video feed was manually reviewed, and

7OpenViBE software does not provide the drivers of Muse headset for
collecting EEG directly from the headset and hence, we used the Muse
Monitor application.

true labels of the eye-blinks were marked for providing the

ground truth8. These datasets collected from OpenBCI and

Muse headsets were termed as EEG-IO and EEG-IM (Table

I), and were used to evaluate the performance of Blink on

involuntary eye-blinks and different EEG headsets.

B. Unguided eye-blink experiments: We also conducted

uncontrolled user experiments with 12 subjects for the Open-

BCI device where subjects were asked to (i) watch a video,

and (ii) read an article, each for 5 minutes. These datasets

were termed as EEG-VV and EEG-VR (Table I). In unguided

experiments, no external stimulations were provided. Other

experimental and annotation methodologies were similar to

the previous experiment. As the manual annotation process

was time demanding, we annotated only first 200 seconds of

the unguided data, to use it for evaluating Blink on voluntary

eye-blinks and different user activities.

For all the collected datasets, ground truth, i.e., annotation

was performed before evaluating the Blink algorithm to

ensure the unbiased evaluation.

B. Blink Algorithm Performance

We evaluate the performance of Blink algorithm using

three different metrics. Accuracy measures the percentage

of correctly detected eye-blinks out of total given eye-blinks

(true positives). Precision refers to the number of correctly

detected eye-blinks out of the total detected eye-blinks. F1

score represents the harmonic mean of precision and recall.

An ideal detection algorithm would perform with 100%

accuracy, with precision and F1 score of 1 and 1 respectively

The collected EEG datasets were analyzed offline by

implementing Blink algorithm (algorithm 1) in Python. We

analyzed the results for two frontal channels (Fp1 and Fp2)

whose results were combined in an OR fashion. We used

a 4th order Butterworth low pass filter (algorithm 1: line

1) with a frequency of 10 Hz. The correlation threshold for

computing highly correlated components (high corr comp,

algorithm 1: line 12), was kept to 0.2 (low value), as to allow

more potential eye-blinks for robust profiling.

1) Involuntary Eye-Blinks: We compute and present the

detection performance of the Blink algorithm on involuntary

eye-blinks (i.e., EEG-IO and EEG-IM dataset from Table

I) in fig. 5 in the form of cumulative distribution for both

platforms. The mean algorithm accuracy for all 20 subjects

is near perfect (98.96% for OpenBCI, and 99.2% for Muse).

The mean accuracy of (top-5, worst-5) subjects is (100%,

96.00%) for OpenBCI traces, and (100%, 97.2%) for Muse

traces. The top-5 and worst-5 accuracies do not differ much,

which validates the universality of the algorithm. Mean pre-

cision is above 0.9 for both the devices (0.951 for OpenBCI,

0.913 for Muse). Similar (top-5, worst-5) precision scores

are (1.0, 0.858) for OpenBCI and (0.993, 0.801) for Muse.

F1 score assigns a weighted score of accuracy and false

positives. We received an average F1 score of 0.968 and

0.944 for OpenBCI and Muse, respectively, which confirms

8We performed the manual labeling as we found from the video feed that
subjects blinked their eyes even when the green plus was not shown on the
screen
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