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ABSTRACT

In this work, we consider the problem of detection and interpreta-

tion of user preferences using their brainwaves. The specific goal

in this context is to determine the preference ranking for a set

of objects by solely relying on the brain activity of a user who is

wearing an EEG headset wearable. We first establish the feasibility

of object ranking (based on an EEG wearable) by a trial and error

based analysis of the EEG signals. We then present a machine learn-

ing algorithm Cerebro, which can learn the specific nuances of the

user’s brainwaves for preferences to accurately rank the objects. We

measure the accuracy of the algorithm in terms of the Normalized

Discounted Cumulative Gain (NDCG), and show that it performs

well when trained on 7 objects, and evaluated on 3 objects for the

14 users.
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1 INTRODUCTION

Figure 1: EEG Headset

Wearable: Muse

Knowledge of a user’s prefer-

ences can be quite useful in sev-

eral different contexts. For exam-

ple, Amazon, the online retailer,

sells over 600 million products.

The Amazon landing page, on

the other hand, can reasonably

present only 50−60 different prod-

ucts on a computer, and fewer on

a mobile device. When a user ar-

rives at the landing page, Amazon

would ideally like to present those

products that are of relevance to the user. Knowing the user’s pref-

erences at that point in time can help Amazon do so effectively.

Sophisticated user personalization models are routinely em-

ployed today by a retailer such as Amazon based on cues such

as past purchases, searches, and items saved in cart. There are
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other contexts as well beyond online commerce where the ability

to understand user preferences has significance.

Meanwhile, over the last couple of decades, rapid strides have

been made in the domain of sensing and interpreting brain activity

using electroencephalogram (EEG). Unlike its more involved coun-

terparts such as magnetic resonance imaging (MRI) and functional-

MRI, one of the distinct advantages of EEG is that the sensors can

be used in a non-obtrusive user-friendly fashion. Figure 1 shows an

off-the-shelf EEG łheadsetž wearable (EHW) that looks no different

from audio headphones. This advantage makes EEG a prime candi-

date for mainstream applications that reliably rely on brainwaves

for understanding user thoughts. Advances in the understanding

of brain architecture and functioning, coupled with sophisticated

signal processing techniques, has allowed for EEG based detection

of user actions (e.g. blinks) and thoughts (e.g. motor imagery and

error response).

In this work, we consider the intersection of the aforementioned

domains. Specifically, we consider the detection and interpretation

of user preferences using only the brain waves of the user detected

using an off-the-shelf EEG wearable.

We consider this problem in the specific context of ranking a

given set of objects based on a user’s preferences. Thus, given a set

of objects OS = {o1,o2, . . . ,oN }, we consider the problem of de-

termining the respective ranks of the objects RS = {r1, r2, . . . , rN },

where 1 <= ri <= N , by only relying on the brain activity of a

user who is wearing an EEG headset wearable. The following is a

summary of our key contributions:

• Using an EEG dataset obtained from 14 users observing 10 differ-

ent objects (products), we first establish the feasibility of object

ranking based on an EEG wearable. We do so by relying on a

brute-force trial and error based analysis of the EEG signals and

comparing it to the ground truth of how the users explicitly

ranked the corresponding objects.

• We then present a machine learning algorithm, Cerebro, that

given a training set of EEG waveforms along with rankings from

a specific user, can learn the specific nuances of the user’s wave-

forms for preferences, and when provided with only the wave-

forms for a new set of objects can rank those objects accurately.

The key novelty of Cerebro lies in the combined use of multi-

ple aspects of the EEG signals (N200 mean, N200 minima, and

Event-related Spectral Power (ERSP)) to rank objects according

to user preferences, and a mechanism to self-determine when

the algorithm’s ranking are accurate enough to be actionable.

• We evaluate theCerebro solution by training the algorithm with

7 objects for the 14 users, and evaluating the accuracy with which

it ranks the remaining 3 objects as compared to the user-specified

rankings.
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• N200 mean: The mean amplitude of the waveform is computed

in the time interval of 200ms to 300ms (fig. 3).

• N200 minima:We also consider the minimum amplitude of the

N200 interval as an additional feature.

• Event Related Spectral Power (ERSP): The power spectral

density of the waveform is calculated in the time interval of

100ms to 400ms in the beta frequency range i.e. 13 to 26 Hz (fig.

3). This PSD is calculated relative to the pre-stimulus baseline of

500ms.

We compute the Pearson correlation coefficient to explore the rela-

tionship betweenN200 and ERSP features.We obtained a correlation

coefficient of 0.0025 for N200 mean and ERSP indicating that the

features are uncorrelated (p-value = 0.0237 < 0.05 ). During our

brute force trial and error analysis, we found that the combination

of these features presents the most distinctive variability in the

predictive analysis. The utility of N200 mean and ERSP in beta band

for predicting user preferences is also reported in [7, 8] and [11]

respectively.

3.3 Establishing Feasibility

In this subsection, we use the aforementioned features in the EEG

signals to determine pairwise preference with two objects at a time.

We thus establish the feasibility of rank ordering the objects using

the pairwise results.

The task of pairwise choice classification involves mapping the neu-

ral measurement orderings to the preference amongst the consumer

products. Thus, each neural feature (i.e. N200 mean, minima and

ERSP) is independently used to predict the more preferred product

in each product-pair. Specifically, the products having higher ERSP

or higher magnitude of N200 mean were found to have a lower

preference, and the products with higher N200 minima had a higher

preference. These comparison rules provide an accuracy of 63.38%,

64.01%, and 59.40% respectively for N200 mean, N200 minima, and

ERSP.A voting classifier combining all three features performed

with an accuracy of 66.7%. These metrics were computed on all pair

of products. As the difference between the preference scores be-

tween the two products compared increases, the accuracy increases

as well (as can be seen in fig. 4). The maximum accuracy achieved

is 82%.

Once pairwise preference can be determined, a naive ranking

algorithm can be designed based on the relative ordering of one of

the neural features. However, combining all of the three features is

not as trivial as designing the decision classifier for the pairwise

classification task. In addition, a fixed-comparison rule-based rank-

ing algorithm will be oblivious to the individual differences (e.g.

users with higher ERSP variations in comparison to N200), and

hence, will not be able to generalize over a large set of users. We

address these issues in the next section by presenting the Cerebro

solution.

4 THE Cerebro SOLUTION

Having established the feasibility of object ranking based on an EEG

wearable, in this section, we presentCerebro, a machine learning al-

gorithm that can learn the specific nuances of the user’s waveforms

for preferences, and is thus capable of ranking objects accurately.

4.1 Ranking Algorithm

As described in section 3, the processed data for user u and product

i , is a vector of neural features (Xu,i ) and the preference score

(yu,i ). N200 mean and N200 minima are transformed using function,

f (x) = 10loд(1 + x2), to express N200 features on the same scale as

of ERSP. We build on the pairwise transformation ideas of learning

to rank [12], and transform our dataset for each subject as,

{X
′

u,k
,y

′

u,k
} = {Xu,i − Xu, j , siдn(yu,i − yu, j )}, i , j (1)

i.e. for each product-pair, we use the relative differences in neural

features, as our transformed set of features. The labels are also

transformed to +1 or -1 indicating if the ith product was preferred

more or less. This pairwise transformation enables the prediction

of the relative order of products (which is critical in ranking) rather

than the pointwise approach which approximates the preference

scores using neural features.

Based on the results in section 3.3, the relative order of the

products is assumed to be linear with the given neural features.

Hence, we fit a linear regression model3 on the transformed set

of features to predict the products with higher preferences. The

regression model outputs a scalar value, which if positive, can be

interpreted as the ith product is more preferable (or vice-a-versa,

if negative). The linear model parameter β , on a conceptual level

models the individual differences in terms of the importance of

each feature for comprehending the user preferences. In the loss

function of linear regression L(β), we add a linear combination of

L1 and L2 penalties for regularization in order to achieve a robust

prediction.

L(β) =
1

|K |

|K |∑

k

| |y
′

k
− X

′

k
β | |2 + λ1 | |β | |1 + λ2 | |β | |

2 (2)

L2 penalty (also known as Ridge regression) regulates the magni-

tude of the parameter β to tackle the over-fitting issue. L1 penalty

(also known as Lasso regression) shrinks the coefficients of less

important features to zero, thus, acts as a feature selection step.

The optimal β∗ is learned by minimizing the overall loss function

eq. (2) over the training samples, β∗ = argminL(β). We learn a

unique and optimal β∗u for each subject u. Now, for user u, given

the neural measure of a new product p (i.e. X
′

u,p ), the preference

score can be calculated by projecting the neural feature vector onto

β∗u i.e.
X

′

u,p .β
∗
u

| |β ∗
u | |

. The predicted preference scores are then compared

to rank order the products.

4.2 Evaluation

Methodology: The ElasticNet [13] model was used to combine the

L1 and L2 penalties in the linear regression model. λ1 and λ2 were

set to 0.5. For each subject, we train the algorithm with 7 products,

providing 42 training samples with pairwise transformation for

the linear regression model. The algorithm was evaluated on the

remaining 3 products by comparing the predicted ranking with the

user-specified rankings. A total of 120 different training-testing sets

are possible, hence, we present the performance metrics averaged

over all the possible combinations.

3A classification model (e.g. RankSVM) is also an appropriate alternative.
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