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Figure 1. BCI wearable headsets™: (a) Emotic EPOC+ , (b) Neurosky Mindwave, (¢c) OpenBCI System. In (d) we present the advertised battery
life and battery capacity of currently popular BCI wearables in the consumer market. OpenBCI system is also our experimental testbed where we
implement the wake-up command detection and evaluate the system performance. * Images for EPOC+ and Mindwave headsets are obtained from

https://www.emotiv.com/epoc/, and https://store.neurosky.com/ respectively.

ABSTRACT

Commercially available EEG-based Brain-Computer Interface
(BCI) wearable headsets are always-on and are thus power
hungry, requiring users to charge the headsets multiple times a
day. In this paper, we tackle the problem of wake-up command
design and detection for BCI headsets, and explore how battery
life can be made to last for approximately a whole day. The
key challenge that we address is enabling the headset to oper-
ate in a near-sleep mode but still reliably detect and interpret
an EEG-based wake-up command from the user. Towards ad-
dressing the challenge, we present a solution that is built upon
eye-blinks. Our core contribution is Trance, a user-friendly
and robust wake-up command for BCI headsets that is com-
putationally lightweight. We show using experimental results
coupled with multiple data sets collected through user-studies
that Trance can extend battery life by approximately 2.7x or to
approximately 10 hours for a typical wearable battery, while
remaining user-friendly.
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INTRODUCTION
In recent years, EEG-based brain-computer interfaces (BCls)
have had significant advances in hardware capability and us-

ability to become commercially relevant. Products like Neu-
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rosky Mindwave (Figure 1a), Muse, g.Tec Intendix and Emo-
tiv EPOC+ (Figure 1b) are all consumer grade solutions for
the use of EEG-based BCI in day-to-day applications such
as education, self-regulation (meditation), security, gaming,
and entertainment [83, 26, 31, 89, 15, 6]. BCIs' are being
increasingly seen as potential successors to traditional human-
computer interfaces. Open platforms like OpenBCI (Figure
1c)? have made BCI accessible to the casual developer, a key
driver for the widespread adoption of any new technology.

EEG-based BCI platforms conform to a typical architecture.
The user wears an electrode array (typically ranging from 2
to 32 electrodes)’. The electrodes are flat metal discs that can
sense the electrical activity, also referred to as brainwaves, on
the surface of the brain that occurs due to the electro-chemical
exchange of signals between neurons. Because of the inherent
complexity involved in the processing of the brainwaves to
extract meaningful information, very little processing actu-
ally happens on the BCI cap. The brainwave data is shipped
over a communication link to the “computer” where they are
interpreted to deduce the user’s thoughts. The link, espe-
cially in consumer-grade commercial solutions, is wireless
and typically uses Bluetooth Low Energy (BLE). This “sense-
ship-(remote)compute” model has a significant implication on
the energy consumption properties of the BCI headset, and
hence its battery life. Since the headset does not know when
the user will issue a command through brainwaves, it has to
listen on a continuous basis, capture the brainwaves, and ship
it to the computer; for remote interpretation. The always-on
mode of functioning limits the typical BCI wearable’s battery
life to only a few hours. At the same time, numerous studies
have established that battery life is a dominant factor in how
users rate their experience with wearables [71, 2, 45, 63, 53].

From now on we use term BCIs for EEG-based BClSs, as the scope
of this article is limited to EEG-based BClIs

Zhttps://openbci.com

3High density EEG sensor arrays can have up to 256 electrodes.
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H Dataset Blink type Users

EEG-MB Involuntary 16 external stimulation
EEG-VV Voluntary 12  watching a video
EEG-VR Voluntary 12  reading an article

Table 1. EEG datasets collected for Trance evaluation

Activity ‘

The advertised battery life for commercially popular wearable
EEG headsets are shown in Figure 1d and compared to the
total battery capacity in mAh*[24, 25, 57]. The battery life of
even a relatively simple 8-electrode cap, is less than 3.5 hours,
requiring users to charge their headsets multiple times a day,
which is undesirable and severely impacts usability [36, 72,
66]. We believe that a longer battery life between consecutive
recharges can be a critical feature to the end-user [63, 53].
Note that for non BCI wearables, the problem of battery life
is heavily impacted by the display, and hence solutions tend
to focus on intelligently switching off the display when not in
use [69, 23, 37]. However, BCI headsets do not have a display
and require a different solution to extend battery life.

Thus, in this paper, we tackle the battery life problem for the
BCI headset. We present the design of a wake-up command
for BCI that allows the headset to operate by default in a
near-sleep mode, and transition to a normal mode only when
the user issues the wake-up command. The key challenge
that we address is how the headset can operate in a near-
sleep mode, but yet reliably detect and interpret a wake-up
command (based on brain activity) from the user. Toward
addressing the challenge, we pursue a solution strategy that is
built upon the user’s eye blinks. We present Trance, a solution
that includes a wake-up command design that balances false
positive rates with the simplicity required for user friendliness,
and a command detection algorithm® for BCI headsets.

We rely on three different user EEG datasets collected (Ta-
ble 1) to evaluate and validate the performance of the Trance
algorithm.We also implement the Trance algorithm on Open-
BCI and demonstrate the detectability and power-requirements
of Trance (in a resource-constrained environment). We
have made the source code for the implementation and an
anonymized version of the dataset publicly available®. We
experimentally validate that for typical active usage rates of
wearables (2%, [48]), Trance can extend battery life by ap-
proximately 2.7x, or to approximately 10 hours, allowing the
headset battery to last for practically an entire day of use.

THE CASE FOR A WAKE-UP COMMAND

We perform a detailed experimental analysis to verify that (a)
there is a limited battery life problem with BCI headsets, (b)
there are meaningful control knobs to improve battery life, and
(c) those control knobs are tunable to the optimal settings by
using a wake-up command. In the interest of space, we don’t
present the entire experimental methodology and analysis in
this section but instead, outline the salient learnings. For the

“4For advertised battery life, we use BLE based communication spec-
ification, and for OpenBCI, we conduct power analysis for typical
wearable battery power, as explained in the supplementary material

SWe call the wake-up command detection algorithm Trance, as it
enables the BCI wearable to operate in low-power mode while waiting
for the command.

Shttps://github.com/meagmohit/Trance
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interested reader, we present the detailed methodology and
analysis in the supplementary materials.

There is a limited battery life problem with BCI headsets:
We verify with the power experiments that a typical wear-
able BCI headset battery life is 3.4 hrs. The experimentation
involved the average current measurement and approximate
battery life projection by assuming the constant voltage.

Control knobs are available to improve battery life:

e We identify six different control knobs i.e. reconfigurable
micro-components of the BCI hardware which could have
a potential impact on BCI battery life, namely (i) micro-
controller (uC) clock rate, (ii) Analog to Digital Converter
(ADC) clock rate, (iii) ADC channels, (iv) data rate, (v) Pro-
grammable Gain Amplifier (PGA), and (vi) radio module.
Based on the datasheet based power-impact analysis and
allowed reconfigurability, we eliminate three control knobs
- ADC clock rate, data rate and radio module.

e We run an exhaustive experimental study of all combination
of settings of remaining 3 control knobs, (i) uC clock rate,
f, (ii)) number of ADC channels, ¢, and (iii) programmable
gain, g. We measure power for every (fj,cj,gx) set in an
exhaustive manner from, f; € {48,40,30,20,10,6}MHz,
gj € {24,12,1} and ¢ € {8,7,6,5,4,3,2,1}, and conclude
that PGA does not significantly impact the battery life.

e We capture the contribution of uC clock rate and ADC chan-
nels to power consumption in the form of a linear equation.

The case for a wake-up command:

e We show that it is possible to achieve over 10 hours of
battery life , if the impactful control knobs are tuned down
to their lowest setting when the headset is not being used.

e The main challenge is then to reliably detect the wake-up
command in the lowest parameter setting of the BCI headset
(low uC frequency, and sampling a few electrodes).

RELATED WORK

Enabling the power-saving mode in user-devices

The idea of keeping the systems always-on, staying default in
low-power mode to save battery life, is not new. From conven-
tional approaches like waking up at predefined intervals, and
button-press, it has more recently evolved to movement-based
triggering (gestures) [7] and hands-free wake-up commands
prominently implemented with speech recognition engines
[40, 32, 47]. Display based smart wearables typically take
advantage of low-power state by turning off the back-light and
display after a certain period of no user input [49]. Faceoff
[20] is a prototype system that saves power by turning the
display off in the absence of the user. For camera systems,
Anvesha et al. [7] proposed gesture detection in low-power
mode. Petsimpl’ provides 10x battery life by turning off the
CDMA and GPS modules, and wakes up when the pet device
leaves the safe area (determined through Bluetooth proximity
sensors in the near-sleep mode).

Natural voice recognition based smart speakers and personal
devices have gained wide popularity among the masses per-
taining to their ease of use and attractive performances. The

http://petsimpl.com/
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wake-up command can be reliably detected in near-sleep mode,
as in current popular smart home systems (Amazon Echo [22],
Google Home [29], etc.) or mobile devices (“Ok Google” [13],
Samsung S Voice [46], “Hey Siri”®). To detect the wake-up
command (e.g., “Alexa”), a deep neural network is trained
by collecting thousands of voice samples saying the partic-
ular wake-word (i.e., “Alexa”) [84]. In a study conducted
by vocalize.ai [44], Google Home, Amazon Echo and Apple
HomePod performed with an accuracy of 100%, 97.2% and
80.5% respectively in an isolated word recognition task. In
a different survey [90], 16% of smart speaker users reported
false positive experiences a couple of times a day.

In EEG-based BCI wearables, however, speech-based wake-up
commands are not suitable, due to the infeasibility of detection
with EEG electrodes. In section 3, we provide a qualitative
comparison of eye-blinks with other wake-up command modal-
ities (tactile input, gestures, natural voice, etc.). Additionally,
in section 8, we provide a side-by-side performance compar-
ison of the proposed system with state-of-the-art wake-up
systems to gauge the acceptability of the proposed system.

Eye-blinks as an input modality

Eye blinks are widely used as a communication modality in
smartphone and VR applications for home automation, gam-
ing, snapping photos, etc [42, 18, 88, 38]. The primary reason
behind this is their naturality and ease of use. Various eye-
based systems, e.g., eye-gaze, wink, blinks, eye-movement
tracking, are presented in the literature as an interaction modal-
ity between humans and machines [60, 1, 54, 30, 56]. Tag et al.
[85] proposed a real-time system adapting video settings as per
the viewer state. The viewer state is described as the average
eye-blink frequency measured through electro-oculography.
Pike et al. [68] used eye-blink, levels of attention and medita-
tion (recorded through EEG), to influence the adaptive media.
Huang et al. [34] presented PACE, to collect user-interaction
data unobtrusively by relying on the eye and facial analysis of
webcam data. In [17], Chatterjee et al. argued that combining
eye-gaze with gestures can outperform the individual, and
in general, approach the gold-standard performance of input
systems (e.g., mouse, trackpad, etc.). “Blink Link™ [30] was
designed by Grauman et al. leveraging a series of eye-blinks
as an alternative communication tool for users with severe
disabilities through computer vision processing. In our work,
we focus on using eye-blink detection through BCI wearables,
and only for the purpose of delivering a wake-up command.

RATIONALE FOR USING EYE-BLINKS

The first issue we tackle in designing the wake-up command
is the choice of the basic building block, or modality, for
the command. For e.g., '"Amazon Echo' and 'Google Home'
harness natural voice (or speech) as their command modality.
We build the foundation of our command solution in this
work on eye-blinks. Alternative control modalities have been
proposed for the wearable computers. The requirement of
these modalities have been laid out in the relevant literature
[16]. Building upon these existing works and our use case, we
formally list out the desired properties of an ideal modality

8http://apple.com/siri
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for the wake-up command - (i) it should be easy, comfortable,
inconspicuous and natural for the users, (ii) it should require
no external aids or stimulations (e.g., flashing strobes), and
(iii) the impact on the EEG signal must be pronounced enough
to be quickly and robustly detected in a low-power mode and
hence easy to detect.

Scahffer et al. [77] highlights the importance of input perfor-
mance, for modality usage. In [16], Calhoun et al. argues that
the input device needs to be inconspicuous (thus, avoiding any
negative social consequences) while being obvious, natural
and should require little to less training. Simultaneously, it
should be oblivious to the environmental factors, e.g., ambient
noise, light, temperature, etc. Simpson et al. [80] reflects on
the unwillingness of users to use the intrusive modalities at-
tracting attention. Additionally, users tend to prefer modalities
that avoid inconvenient interaction steps, even if it increases
the interaction time [92, 75].

The key benefits of relying on eye-blink based command are
as follows:

e Signal consistency: The act of eye blinking affects the EEG
in a distinct manner as compared to the other modalities.
The opposite electric polarity between the cornea and retina
essentially turns the eye into an electric dipole, distorting
the electric field around the eyes. This electric field change
captured at the frontal electrodes in EEG, manifests a con-
sistent change in EEG, and thus makes it feasible to detect
without any user-training and data-driven learning [5].

o Absence of the hardware control: A survey of off-the-shelf
BCI headsets (e.g., Emotiv EPOC+, Insight, Muse, Mind-
wave mobile 2, Intendix Speller, Neocomimi, Mindflex, etc.)
shows that the headsets do not readily come equipped with
other input modalities like buttons or touch interfaces. Thus,
relying on EEG and Eye-blinks which the BCI hardware is
already equipped to support, is considerably more desirable
from the standpoint of necessary hardware modifications.

o Competition for the action: In mobile scenarios (e.g., run-
ning, driving, etc.), users need to pay attention to the envi-
ronment, and taking hand-based actions might be dangerous
[95]. Eye-blink based command provides a convenient way
to wake-up the BCI device in such scenarios.

o Non-intrusive: One of the central goals of the BCI wearable
is to allow a non-intrusive way of communication between
users and computers. Relying on button or touch, gestures,
or natural voice disrupts the environmental state around the
user. Huang et al. [34, 30] supports the non-intrusiveness
of eye-blinks as communication modality.

The act of blinking can be performed without any external aid.
Such qualities make eye blink a perfect fit for the command
modality. We now provide a qualitative comparison with the
other possible wake-up command modalities. The candidate
space for the command modality can be broadly classified
into two categories, (i) user-action based commands, and (ii)
user-thought based commands.

Comparison with user-action based modalities
Calhoun et al. [16] describes the hands-free input interfaces
for the wearable devices. Within user-actions, we consider
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Input Performance Natural False
/ Effectiveness

User

Positive Rate Training requirement (comfortability) for action

Hardware Cognitive effort Competition Intrusive

Tactile input ol J ol J o J
EMG (Facial/Jaw) @ J ©] ) oe ] J 00 o]
Gestures oo (3] J @ J (3] ) @] ) o] )
Natural Voice @ J o] J (3] ) o] )

Table 2. Preference for different wake-up command modality (in comparison to eye-blinks) over various design parameters.

: Preferred O: Not Preferred ©: Comparable or can’t say

(i) tactile input (e.g., button or touch), (b) EMG based facial,
jaw or head movements, (c) gestures (motion-sensor based),
and (d) natural voice. Schaffer et al. [77], presented various
factors considered by the users for input modality selection .
We select multiple user- and system- based factors to provide a
qualitative comparison for the preference of user-action based
modalities against the eye-blinks in Table 2.

Tactile input provides the best input performance with the
fastest task completion time [75, 78, 9, 14]. However, it re-
quires hardware modification on the BCI wearables and is
intrusive to the user-environment. Convenience to deliver
command plays a significant role in user adoption in hands-
free approaches [70] against button or touch modalities. Facial
muscle contractions, raising an eyebrow, clenching the jaw are
detectable through electromyography (EMG) sensors, which
can also be picked up by EEG electrodes [87, 28, 33]. These
qualities make EMG based muscle movement compatible with
existing BCI headsets. They are inherently inconsistent in
terms of the signal signatures across users and across time,
even for a single user. Hence, true proportional control is
difficult and requires training [16]. Such inconsistencies are
typically addressed through sophisticated algorithms [76, 81]
that cannot be accommodated by limited computational ca-
pabilities. Thus, we argue that such user-actions are also not
firmly suitable candidates for the wake-up command modal-
ity. Another issue is to select a body (or muscle) movement
that does not interfere with the normal functions of the user
or can be discriminated robustly against the inadvertent one.
Additionally, the anticipated frequency of use must be taken
into account, as frequent uses of jaw clenches can aggravate
Tempero-Mandibular Joint (TMJ) disorder [79].

Existing BCI headsets are equipped with motion-based sen-
sors (e.g., accelerometer, gyroscope), hence, compatible with
detecting movement-triggered gestures. Kela et al. [39] sug-
gested gestures as a natural modality for commands with a
spatial association in design environmental control. Voice-
based systems are the most natural way of human-computer
interaction, as it is similar to the ways humans interact with
each other [40]. They are easy to perform and present a com-
parable time for command delivery. For BCI headsets, the
primary issue is the installation of additional hardware on the
BCI headsets. They must perform in highly noisy and dynamic
environments, and should not interfere with regular human
communication. Considering privacy, speech or gestures may
not be appropriate to use [16]. Noronha et al. [60] showed
that users perceived eye-wink based modality at least as or
more safe, easy and effective to use as the other modalities
(i.e., voice, EMG gesture control) through subjective assess-
ment and user questionnaires in a Human-Robot Interaction
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(HRI) task. Novanda et al. [61] found no significant differ-
ence between human efforts for completing a task in HRI over
voice, touch and gestures. However, a significant difference
was found in terms of human enjoyability, where touch as the
input modality was least enjoyable for the users. Rudnicky et
al. [75] showed users’ strong preferences towards voice-based
systems despite them being less efficient in terms of error and
task completion time, over tactile input interfaces.

Comparison with user-thought based commands

In the context of BCIs, user-thought based commands can
either be aided (or triggered) by an external stimulus (e.g.,
strobe light flashing at a certain frequency) or based on only
thoughts (e.g., imagining limb movements). Any user-thought
modality that is dependent on an external stimulus will not
satisfy the independence requirement i.e., users would not be
able to issue wake-up commands unless the external stimulus
exists in the environment. The detection of pure user-thoughts
(e.g., motor imagery [3], P300, etc.) is heavily dependent on
statistical learning methods due to the inconsistency in the
features exhibited across the users. Hence, the detection of
such modalities [51, 50, 94, 55, 86, 19, 43, 65, 11, 12, 35]
demand extensive user-training and require highly sophisti-
cated filtering and machine learning algorithms. The limited
hardware capability in a typical off-the-shelf BCI hardware
makes it infeasible to train and run such algorithms directly on
the hardware especially when operating in low-power mode.
This is in accordance with the detection latency of over 300ms
[8] on a GHz scale machine. The latency of command de-
tection in an MHz scale processor in the order of seconds,
is not desirable for real-time detection. The buffering aspect
in the continuous processing raises broader issues, when the
detection time is more than the time the user takes to issue the
command. Hence, such thought modalities (from the perspec-
tive of their state-of-the-art) are not practical for the wake-up
command detection in a resource-constrained environment.

An Ultra-low Power Digital Signal Processor (ULP DSP)
could be used to tackle the battery life problem in BCI head-
sets. If the ULP DSP were to support a thought-based wake-up
command (e.g. motor imagery), the challenges discussed ear-
lier would still remain significant - burdensome user-training,
lack of consistency in signals across time, computational com-
plexity of the detection mechanism, and the need to sample
from a large number of electrodes [62, 41]. While more ex-
ploration of this approach is needed, we believe that a ULP
DSP system based on thought-based wake-up commands is
unlikely to be easily realizable. On the other hand, if the ULP
DSP were to be designed for use with eye-blinks, the system
presented in this paper could serve as a candidate design for
the implementation.
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TRANCE: WAKE-UP COMMAND AND ALGORITHM

We now proceed to tackle the challenge of designing a wake-
up command and a robust detection strategy, i.e., how BClIs
can detect wake-up command in the resource-constrained en-
vironment. The next subsection explains the inefficacy of the
single blink as a wake-up command and presents the design
choice based on the multiple eye blinks.

Learnings from natural eye-blink patterns

According to the various studies [58, 10], it is estimated that
a healthy adult blinks every 3-4 seconds. The blinking rate
is highly variable across different people and tasks. In [10],
Bentivoglio et al. states that the blinking rate is 17 blinks/min
at rest, 4.5 blinks/min while reading, and 26 blinks/min while
talking. We use the EEG-VV and EEG-VR dataset (Table
1) to study natural blink characteristics. We show the blink
rate statistics in Figure 2a. From these experiments, it can be
easily noticed that the natural blinking rate is very high. (8.57
blinks/min averaged on both activities). This is in accordance
with our day-to-day experience, and thus a standalone single
blink is an unfeasible candidate for the wake-up command.

We analyzed the recorded data for blink duration and frequency
of the multiple blinks. Figure 2a also shows the variation in
blink duration. We notice that this deviation is high (standard
deviation is greater than 30% of the mean blink duration),
thereby restraining us from fiddling with blink duration for
the command design. Figure 2b presents the cumulative
frequency of multiple blinks. It is evident from the above
result that multiple blinks can be leveraged for the command
design, which is researched in detail in the next subsection.

Wake-Up Command Design Rationale

We consider an array of multiple eye-blinks based commands
as the candidate space for wake-up commands, and analyze
them in terms of their False Positive Rate (FPR) to select a
default wake-up command. The natural FPR is the frequency
with which the wake-up command will be detected due to
the natural blinking pattern of the user, i.e., user performs the
wake-up command without any intention of using the wearable
device. We study the natural FPR for video ( EEG-VV) and
read (EEG-VR) datasets (Table 1). For 2-blinks, natural FPR
was 42.86 and 17.14 (per hour) for video and read task respec-
tively. The natural FPR for 3-blinks dramatically reduces to
2.86 and O for video and read, respectively. Comparing the
average natural FPR of 2-blinks (29.99 per hour) and (1.43 per
hour), as also analyzed later in Figure 9, we select 3-blinks
as our default wake-up command. In section 6, we conduct
user studies to establish that 3-blink command is comfortable
for the users to perform (Figure 6). However, due to the indi-
vidual differences between user preferences [4], we provide
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the users with the choice of switching to other multiple-blink
commands. This enables the BCI wearable users to tune the
wake-up command according to their natural blinking pat-
terns, comfortability and performance (discussed in section 6).
Hence, in the following sections, we provide a generic algo-
rithm to detect k-blinks (k-consecutive eye-blinks) wake-up
command and later evaluate the performance for 2 < k < 6.

Design Goals: (i) universality: a single universal algorithm
that can account for the user and state variability, and would
not explicitly require training or fine-tuning, (ii) small form-
factor: must function on one or two EEG channels, (iii)
lightweight: the algorithm has to be simple (lightweight) and
yet effective and should be able to operate in real-time (online)
while relying only on limited hardware resources.

Trance Algorithm: Wake-Up Command Detection
Algorithm 1: Trance Algorithm

:E: EEG raw Data , k: number of blinks in
command, f;: sampling frequency
Parameters :delta_init : initial threshold for peak
detection, inf: influence factor, corrpresh:
correlation threshold
Output :True if command is present otherwise False
Initialize: delta < delta_init, found < False
Preprocess: lowpass filter (using moving average) E with
cut-off frequency of 10Hz
[tpeaks) = peak_detect (E,delta)
if size([tpears])|” < k then return False; ;
(tsiart]s [tmin], [tena] < identify_blink_candidates(E, [fpeqrs),
delta)
valid < validate_blink_candidates(E, [tsart]s [fmin], [tend])
if not valid then return False; ;
fori=1,2,--- size([tyin] — 1) do
corr +— correlate(E, ts<,l2,,, : tr(,il)n : te(;l)d,
(i+1) , (i+1) , (i+1)
Lsiart” *lpin tend )
if corr > corrjes, then
blinkgyp <— compute_amplitude(E,
oty s Niart e L)
delta < blinkgy), - inf +delta- (1 —inf)
else
| found < False
end

Input

end
return found

We present our lightweight and online command detection
algorithm, Trance, in Algorithm 1. Trance is a simple yet ef-
fective online algorithm, capable of detecting a series of blinks
in the EEG data. In order to build an eye-blink fingerprint in
an online fashion, Trance leverages the fact that the issued
wake-up command will always have two or more consecutive
blinks. Trance is built upon the robust noise handling and peak
detection methodologies proposed in the signal processing
literature [64]. Trance takes raw EEG data and the chosen
wake-up command k as an input, and returns 7'rue if the input

9[X] represents a set (an array) of elements X x@) ... x(size(X)
where size(X) operation denotes the total number of elements in [X]
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Figure 4. Trance performance on k-blinks wake-up command

data contains the k-blinks command. It identifies the candidate
blink signals using a peak detection methodology based on a
threshold parameter (delta). These candidate blink signals are
identified and validated based on their unique characteristics
(e.g., pattern, slope, etc.) when the signals recover from the
blink trough. The consecutive blink signals are correlated to
perform blink detection. Further, the threshold value (delta)
is dynamically updated according to the amplitude of detected
blinks to adapt for the future wake-up command detection. In
this manner, Trance detects a pair of blinks, and groups k — 1
consecutive pairs to detect k-blinks.

The parameters of this algorithm are (i) initial peak detection
threshold (delta;y; ), (ii) influence factor (inf), and (iii) corre-
lation threshold (corr pyes,). deltaiy;, initializes the threshold
to detect local peaks (between minima and maxima). A low
value of this parameter successfully works for all users and
blinks, as the threshold value is updated with an inf factor
with each successful detection of a blink pair. Correlation
threshold controls the trade-off between the accuracy and the
false positives. A very low value of this threshold provides
near-perfect accuracy with high false positives. These parame-
ters can be set and fixed offline as per the device noise level
(during the device testing) and according to the required trade-
off in detection performance, before releasing the firmware
for use. Trance is agnostic to the user and state with respect
to parametric changes, and thus is a universal algorithm. For
implementation and evaluation of Trance , the delta;,;; param-
eter was initialized to 2001 V. The correlation threshold and
influence factor were set to 0.6 and 0.05, respectively.

EXPERIMENTS

EEG-based user experiments

First, we conducted two EEG-based user experiments to eval-
uvate the algorithms, wake-up commands, and prototype pre-
sented in this work. In this study, we decided to focus on two
experiments, with one task for a controlled environment and
two tasks for an uncontrolled environment, as it allowed us
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to study the user characteristics and assess the system perfor-
mance in controlled and uncontrolled environments.

Participants

All the research protocols for the user data collection were re-
viewed and approved by the Georgia Tech Institutional Review
Board. A total of 20 subjects were recruited for the first task,
and 12 subjects for the other two tasks. The subjects fwere
recruited from mixed demographics with a mean age of 26.75
years old (% 2.17) and were either full-time students or full-
time employees. 30% of the recruited subjects were females.
All participants could communicate well in English and un-
derstood the experimental protocol. They were compensated
with $10 Amazon gift cards for their participation.

Apparatus

For the EEG data collection, we used BIOPAC 100C electrode
cap'®. The electrode cap was attached with the OpenBCI
platform, which was further connected to a desktop machine
over the wireless channel (using BLE). A Windows system
(Dell Precision T3610) with a 27 monitor was used. We used
OpenViBE software (developed by Inria [73]) to present the
on-screen stimulations and collect the user EEG data with
synchronized timestamps. A Logitech webcam was used to
record the video of the subjects performing the experiments.
We used Flashback Express, a screen recording software, to
record the screen output along with the webcam output.

Task and Stimuli

In the first task, the raw EEG traces were collected from
20 subjects in a guided (i.e., software instructed) environ-
ment. Subjects were asked to perform multiple-blinks when
instructed. A green plus marker was shown to guide the user
to perform two sets of triple-blinks with a small gap in be-
tween i.e., 3-blinks followed by 3-blinks. The frequency of
the green plus was once in every 15-25s, and a total of 10 such
stimulations were provided. In the second task and third task,
twelve subjects were asked to (i) watch a video, and (ii) read
an article, respectively. The duration of each task was five
minutes. While users were watching the video and reading
an article, their EEG data was collected and the video feed
was recorded. Users were asked to select a video and reading
article of their choice, which would take at least 5 minutes to
watch or read, respectively. Uncontrolled user experiments
were conducted for 12 subjects to study the natural blink char-
acteristics and test the natural and Trance false positive rate in
such an uncontrolled environment.

10https://www.biopac.com/product/eeg-caps-for-cap100c/.
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Procedure

Upon arrival, the experimental protocol was explained to the
subjects, and the subjects were provided with consent forms
and a demographic questionnaire. Subjects were asked to
sit comfortably in front of a computer screen and wear the
electrode cap. Electrode gel was used to facilitate the surface
contact between the Fpl and Fp2 (as per the 10-20 electrode
system) electrodes on the scalp and forehead. After setup, an
OpenBCI GUI software was used to verify the signal quality
manually. Task-specific applications were initiated along with
the camera feed and screen recording. For both experiments,
the video feed was manually reviewed, and true labels of the
eye-blinks were marked for providing the ground truth'!.

For the first task, upon analyzing the video feed, we rejected
the dataset of 4 subjects due to excessive head movements
(essentially corrupting the EEG data), or improper placement
of the electrodes for the controlled experiments. We term this
EEG dataset of 16 users with multiple-blinks in controlled
environment as EEG-MB (Table 1). For the second and third
tasks, no external stimulations were provided, hence, manual
annotation was done through the video feed. As the manual
annotation process was demanding, we annotated only the first
200s of data for the evaluation. We term datasets obtained
from these two tasks as EEG-VV and EEG-VR (Table 1).

User comfortability survey

We performed an experimental survey to study the user-
comfort level of eye-blink based wake-up commands. We
prepared an instructional survey form on Qualtrics where we
explained the motivation of the study, and instructions to per-
form the series of blinks. In the questionnaires, the participants
were presented with three different blink patterns to perform,
and rate them on a Likert scale ranging from 1 to 5 with
5 being extremely comfortable!?. The three different blink
patterns were chosen randomly from 1-blink, 2-blinks, - - -, 6-
blinks. The survey was designed to take less than two minutes
to complete. To ensure that participants were paying atten-
tion (and performing the tasks), we included two validation
questions, (i) number of blinks the participant performed in
the first question, and (ii) to re-rate its comfortability score.
The participants were recruited through Amazon MTurk!3,
and were each compensated with $0.02 conditioned upon the
successful pass of the validation questions. A total of 209
responses were received; we removed 21 responses, due to
incorrectly answering the validation questions.

RESULTS

Trance Algorithm Performance

The performance of the Trance algorithm is evaluated using
three different metrics, namely recall, precision and F1 score.
Recall measures the percentage of correctly detected k-blinks
out of the total given k-blinks. Precision refers to the number

1I'\We performed the manual labeling as we found from the video feed
that subjects blinked their eyes even when the green plus was not
shown on the screen

2The five rating choices were- 1: Extremely Discomfortable 2:
Slightly Discomfortable 3: Neutral 4: Slightly Comfortable 5: Ex-
tremely Comfortable

Bhttps://www.mturk.com/
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of correctly detected k-blinks out of the total detected k-blinks.
F1 score represents the harmonic mean of precision and recall.

Performance over the default wake-up command

The multiple-blink EEG dataset (EEG-MB, table 1) was used
to evaluate Trance algorithm on the default wake-up command
(3-blinks) mode. The dataset contains the ground truth labels
for multiple eye-blinks in the form of the timestamps of each
single-blink. As our default wake-up command is defined as 3-
blinks with consecutive blinks within one second, we mark the
ground truth in a similar manner. Specifically, in the ground
truth labels, we mark 3 single-blinks (with consecutive blinks
happening within one second) as one wake-up command. We
present the cumulative distribution of (i) accuracy, (ii) preci-
sion, and (iii) F1 score in Figure 3 for 16 subjects. The mean
recall obtained for the default wake-up command detection
is 0.89%, with (top-5, worst-5) subject mean being (0.97%,
0.74%). We obtain a mean precision of 0.99, with a precision
of 1.0 and 0.967 for the top-5 and the worst-5 subjects. Similar
results are obtained for the F1 score, i.e., 0.93 averaged over
all subjects, and the top-5 and worst-5 F1 scores are 0.99 and
0.85. For the wake-up command, we can see that there are
moderate user variations in the best-5 and worst-5 for all three
metrics. The users can tune the wake-up command as per their
comfortability and performance.

Performance over the k-blinks wake-up command

In Figure 4, we compare the recall and precision of k-blinks
wake-up commands. The 2-blinks command has the highest
recall of 0.95, with a precision of 0.98. Recall decreases with
an increase in k, as for detecting a k-blink command, Trance
has to detect k — 1 consecutive pair of blinks accurately. For the
3-blinks command, we obtain a recall of 0.87, which decreases
to 0.86, 0.82, and 0.78 for 4-, 5- and 6-blinks respectively. We
obtain a very high precision value for all k- commands, which
indicates that the false positives are very rare in Trance based
wake-up command detection. For 3-blinks, precision is 0.97,
and > 0.98 for the other wake-up commands.
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System Performance

We implement the Trance algorithm on the OpenBCI board
(Software platform: Arduino, Coding Language: C) to exper-
imentally verify the overall system performance in terms of
(i) latency in command detection, (ii) memory requirements,
and (iii) power implications. For this experiment, we modify
the OpenBClI architecture to run at (6MHz, 2 electrodes), and
to receive raw EEG trace from the computer via RFDuino,
instead of the electrodes. The trace-based analysis enables the
correct measurement and replication of results which would
not have been possible if evaluated directly on the prototype.

Latency in command detection

We fed the OpenBCI board with 10s snapshots of collected
EEG traces (from the guided experiments), and measure the
time taken by the algorithm to declare command or non-
command (absence of command). We start the timer as soon as
the OpenBClI receives the last bit of externally fed EEG trace.
We repeat this experiment for multiple snapshots of commands
and non-commands. Trance takes an average of 121.4 ms (+
19.06) to detect a command. Detecting a non-command is sig-
nificantly faster (due to the multiple earlier exit routines), i.e.,
24.13 ms (&£ 17.4 ms). The quick blink detection in order of a
few ms, enables the real-time operation without adding any de-
tectable lag for users. Along with latency measurement, while
passing randomly interspersed EEG traces, we also re-verified
the correctness of the Trance algorithm on the OpenBCI board.
Thus, Trance is certainly viable on a lightweight platform (in
terms of both computational power and memory) to perform
real-time command detection.

Memory requirements

The memory required by the Trance algorithm on the OpenBCI
hardware is 106.71 KB as compared to the default OpenBCI
firmware (94.36 KB) out of a maximum possible 128KB. The
dynamic memory requirement of our program is 11.73 KB,
which is also only a slightly higher (and feasible) than the
default value of 11.23 KB. This shows that Trance memory
requirements are only marginally higher than default OpenBCI
firmware (due to the additional Trance code) and within the
maximum capacity of OpenBCI architecture.
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Power implications

We transfer a 40s trace of previously collected user data (cor-
responding to Trance performance) to an OpenBCI device
running the Trance algorithm. The trace contains two wake-up
commands (randomly picked from 10 available commands
from each user) interspersed randomly in the interval of 40s.
The rest of the trace contains the noisy (non-command) data
randomly sampled from the specific user data. This trace
is processed by Trance algorithm running on the OpenBCI
(low-power mode) and generates the timestamps when the
command is detected on the board. To measure the energy
savings when using Trance, we run the OpenBCI device on
low-power mode, and switch it to the high-power mode for a
time duration corresponding to activity ratio (the percentage of
the time, the wearable device is on high-power mode) for each
detected command. We measure the average current drawn
during the experiment duration (for different activity ratios)
and compare with the average current drawn in the absence
of our solution (i.e., always in high-power- mode, 43.85mA).
Figure 5 shows the battery life of OpenBCI for various activity
ratios. With the power experiments, average current consump-
tion over the users was found to be 16.22mA ( 9.3hrs for 2%
activity ratio), experimentally verifying that with Trance, BCI
wearables can last for single day usage. This compares to a
theoretical projected lifetime of 11 hours for 2% activity ratio.
Liu et al. [48] establishes that wearable’s wake-up periods
account for only 2% of the overall usage.

The Study of Usability

In this subsection, we look at the Trance solution through
the lens of end-user usability. Specifically, we investigate (i)
user-comfortability with the proposed wake-up command, (ii)
time taken by the user to deliver the command, and (iii) false
positive rate of the system.

User comfortability

We use the Likert scale ratings from 188 valid responses col-
lected in the user-comfortability survey. We present the cu-
mulative distribution of 188 responses for each wake-up com-
mand in Figure 8. We also present the mean and standard
deviation of the comfortability score of each wake-up com-
mand in Figure 6. 78.05% participants said that the default
wake-up command (3-blinks) was not discomfortable. This
compares to the 96.6% of participants, who did not find the
2-blinks command discomfortable. The average user-comfort
score for 2-blinks was obtained as 4.17, a little higher than
Slightly Comfortable. Similarly, for 3-blinks, we obtained a
user-comfort score of 3.68, somewhat less than Slightly Com-
fortable but considerably higher than Neutral. For 4-blinks and
5-blinks, the comfortability score is very close to Neutral. We
obtained a mean comfortability score of 3.69 (£ 1.11, close
to slightly comfortable) and 4.17(+£ 0.87) for 3-blinks and
2-blinks respectively. We performed the t-test on responses of
two groups (i.e., 2-blinks and 3-blinks) and found the differ-
ence to be statistically significant (p < 0.05). This supports
our intuition that the user comfortability in delivery of the
default wake-up command (3-blinks) is less than 2-blinks. In
summary, we found through survey-based user studies, that
the wake-up command is reasonably comfortable to perform
for the purpose of waking up the BCI wearables.
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Time to deliver the wake-up command

For each trial, we measure the action time as the duration
between the appearance of the stimulus (i.e., green cross) to
the completion of the 3-blinks for the wake-up commands
delivered in EEG-MB task. We present the action time for
15 subjects in Figure 7. Large variability is observed across
subjects. Subject 10 took 1.47 (& 0.43) seconds, while sub-
ject 14 took 3.31 (£ 0.28) seconds to deliver the command.
Across all trials and subjects, a mean action time of 2.25 (£
0.59) seconds was obtained. The command delivery time is
comparable to the delivery time of other hands-free control
modalities.

False Positive Rate (FPR)

The total FPR for a wake-up command is the sum of Trance
FPR (per hour) and natural FPR (per hour). The natural FPR is
when the user issues the wake-up command as per their natural
blinking pattern, without any explicit intention of waking up
the device. Trance FPR is the result of Trance algorithm
misinterpreting signals as the wake-up command. To evaluate
both, we use the dataset from uncontrolled experiments (Table
1) when subjects were watching a video (EEG-VV) and reading
an article (EEG-VR). We present the FPR in Figure 9. 2-blinks
has the highest total FPR of 29.99 per hour (the natural FPR
contributes 80.62% of it). With the increase in k, both natural
and Trance FPR decreases. For detecting a k-blink command,
Trance has to accurately detect k — 1 consecutive pair of blinks,
which results in a drop in the FPR. 3-blinks command performs
accurately with a natural and Trance FPR of 1.43 and 1.46 per
hour, respectively. A zero FPR (for both natural and Trance)
was obtained for 4- or more blinks.

DISCUSSION AND FUTURE WORK

Implications of the False Positive Rate

In the previous section, based on the experiment-based evalua-
tion, we concluded that the proposed system performs with an
FPR of 2.89 per hour. Here, we discuss the negative implica-
tion of this FPR. Firstly, an important thing to note here is that
unlike other command modalities, the FPR of eye-blink based
command modality does not have any negative implications
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Natural voice Eye-blink
(state-of-the-art) (Proposed)
Recall 0.963 0.89
FPR (per hour) 0.11 291
delivery time (in s) <2s 2.25 (£ 0.59)
processing time (%) 24.82% 5.39%
per delivery time (on 1.4GHz CPU) (on 6MHz CPU)

Table 3. Comparing proposed system with state-of-the-art wake-up com-
mand modality

on the user experience. In the case of a false positive, the
BCI wearable will wake-up (i.e., switch to high-power mode)
and wait for thought-based communication command from
the user. If the system does not detect any ongoing communi-
cation, it will go back to sleep. Hence, a high FPR will have
negative implications only on the battery life of the BCI wear-
able as the BCI wearable will keep switching to high-power
mode needlessly. To quantitatively evaluate the impact of FPR
on the battery life, we assume a simple scenario where the
user is not issuing any wake-up command intentionally, i.e.,
we consider the scenario where the BCI wearables wake up
either due to natural FPR or due to Trance FPR. We define
a parameter ¢, as the duration of time BCI wearable will be
awake (in high-power mode) before going back to sleep (low-
power mode). In Figure 10, we show the projected impact of
FPR on the battery life for the different awake duration (o).
This curve is computed based on the current measurements
obtained in low-power mode and high-power mode in section
2. In this scenario (& = 30 sec), the estimated battery life is 7
hrs and 12.36 hrs, for 2-blinks (total FPR = 2.89 per hour) and
3-blinks (total FPR = 37.2 per hour) respectively. Similarly,
for @ = 1 min, the battery life for 2-blinks reduces to 4.76
hours, while 3-blinks would last for 11.61 hours.

Comparison with popular wake-up command systems

To gauge the social acceptability of a novel wake-up command
modality, we compare the proposed wake-up command sys-
tem against voice-based wake-up systems (the widely adopted
among masses). We take Amazon Alexa as a representative
example (with wake-word “Alexa”) for comparison. We re-
viewed the testing performance of Amazon Alexa [90, 67] and
compare it side-by-side with the proposed system in Table
3. Specifically, we use, recall, false positive rate, delivery
and processing time of command. We can see from Table
3 that the recall and command delivery time is comparable.
FPR for Alexa is very low (once every 9.1 hrs) as compared
to the proposed system. However, we argue that the Trance
FPR is acceptable and usable as it is not intrusive (no negative
effect on user-experience). In terms of processing time, the
proposed system is very fast (takes 121ms on an average for
6MHz CPU) as compared to Alexa on a GHz scale processor.
Translating on the same CPU scale, Trance performs an order
of magnitude faster than voice-based wake-up command.

Rationale for using OpenBCl as an experimental platform
This article is motivated with the examples of commercial BCI
headsets (e.g., Neurosky, EPOC+), while the experimental
and evaluation studies have been conducted on the OpenBCI
platform. One might argue the disconnect between these BCI
headsets, and hence, we provide the rationale for using Open-
BCI as our experimental platform, and discuss the applicability
of the proposed solution across BCI platforms.

Page 9



CHI 2020 Paper

While OpenBCl is a research-friendly BCI platform, it is also
a consumer-grade wearable headset that competes against the
other commercial platforms [27]. Vourvopoulos et al. [91]
compared OpenBCI with Emotiv, in terms of signal quality
(classification accuracy) and usability (comfort, appearance,
ease of setup), and found OpenBClI to be similar to that of
EPOC+. Second, the hardware architecture of the OpenBCI
is quite representative of those of the other wearable headsets.
Specifically, the three key control-knobs (uC clock rate, ADC
channels, and wireless radio) that we rely on to make Open-
BCI operate in low-power mode are all present in Muse [82],
EPOC+ [21], and Neurosky [93]. Also, the signal quality pro-
vided by devices such as EPOC+ and Muse is rich enough for
eye-blink detection [74, 52]. Hence, we are confident that the
contributions in the paper are applicable to the other wearable
headsets. Finally, the critical reason that we did not use any
of the other headsets as the experimental platform is that their
firmware is not open source, and they do not have developer
APIs to flash the firmware. The SDKs for Emotiv and Muse
are available for developing applications, but not for firmware
re-programming. While we could have explored if reverse-
engineering and hacking the firmware was a possibility, it was
an ethical boundary that we did not want to cross.

SCOPE AND LIMITATIONS

The context for the paper is a scenario where the user wears
a single EEG headset throughout the day (similar to smart-
watches) and uses it to interact with multiple applications and
tasks. By default, the EEG headset will be in low-power mode.
The user would use the wake-up command to turn the headset
on, before using it to issue an explicit command to an appli-
cation. However, when the BCI commands are issued in the
context of a specific application (e.g. a BCI-controlled text
entry interface, a game or meditation program), the BCI would
likely be active constantly while this application is running
and disabled constantly (or not worn at all) while not, hence
limiting the scope. The assumed scenarios do not accommo-
date all possible BCI applications and hence, its scope can be
further refined. Briefly, the scope for the paper’s contribution
can be defined along four dimensions as follows,

1. User-capabilities: Trance applies only to scenarios where
users are able to physically blink. Users suffering from
conditions such as Eyelid Coloboma (where the eyelid is
absent) will not be able to use Trance. Further studies
have to be done to explore if Trance can be used by users
suffering from other conditions such as Lagophthalmos or
Bell’s palsy disorders that cause weak blinks.

2. Input modality: Trance applies only to scenarios where the
user is explicitly providing input using the BCli.e., active
BCI. There are BCI applications where implicit input from
the users is used (e.g., evoked potentials). For such appli-
cations, the BCI headset cannot go to sleep or low-power
mode since the user does not actively issue the commands.
For passive BCI uses (e.g., meditation), Trance requires
an explicit wake-up signal, and thus, contradicts with the
passive BCI paradigm. Trance will not apply for such appli-
cations. Further, input modalities which require the system
to present stimuli (e.g., SSVEPs, P300), the application can
wake-up the device when the stimulus is shown, and hence,
Trance will be irrelevant.
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3. Frequency of use: Trance applies to scenarios where the
user relies on the BCI headset with medium frequency. If
the headset is either used all the time without any downtime
(e.g., implicit input) or if used very infrequently (e.g., only
two hours a day, in which case the user is more likely to put
on the headset only as needed), Trance will be irrelevant.

4. Duration of a command session: Trance applies to scenarios
where the command session duration is significant enough
for a wake-up command to not become a disproportional
burden for the user. If each command session lasts only for
a few seconds (for e.g., to send an occasional command to
the robot or another BCI-controlled device), the user might
not want to incur the additional burden of having to issue a
wake-up command.

The following are three example applications [with the four
dimensions] that fit the above scope definition are- (a) Elderly
assisted living [Capable, Explicit, 8-10 hours, 2-3 minutes] -
Provide elderly persons more autonomy and independence by
allowing them to complete otherwise difficult tasks through
a thought. (b) High-consequence workplace training [Capa-
ble, Explicit, 2-3 hours, > 15 mins] - Leverage brain signals
for high-consequence training to protect workers in high-risk
jobs. (c) Brain based security [Capable, Explicit, 2-3 hours,
1-2 minutes] - Using brain signals for security including in
authentication, non-repudiation, and identity-management.

Three example applications that do not fit the scope are - (a)
Neuromarketing [Capable, *Implicit*, 2-3 hours, 4-6 minutes]
- Leveraging brain signals to track user’s reactions to market
stimuli. (b) Neurogaming [Capable, Explicit, 4-6 hours, > 15
minutes] - BCI used as the primary or secondary controller
for users to interface with games. (c) Mindfulness [Capa-
ble, *Implicit*, 1-2 hours, 15-20mins] - Improving mental
concentration and meditation with tracking brain signals.

Further, the scope of our work is restricted to the EEG-based
BCI devices, and there are other BCI platforms (e.g. [59]) that
may not fit this paradigm.

CONCLUSIONS

In this work, we propose a wake-up command detection strat-
egy which enables always-on BCI platforms to run on low-
power mode and transition to active mode only when user
issues the command, solving the problem of charging BCI
headsets multiple times a day. We use eye-blinks as the build-
ing blocks to solve the challenge of designing command, and
detection strategy under the resource-constrained environment.
Based on user-characteristic analysis, we design a wake-up
command for the BCI wearable headsets that balances the re-
quirements of accuracy, false positives rate, and is comfortable
for the users to use. We also present the lightweight Trance
algorithm and through extensive experimental user studies, we
validate the performance of Trance, and show that Trance can
achieve 2.7x improvement in battery life.
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