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Abstract— In this paper, we consider the computational
complexity of formally verifying the behavior of Rectified
Linear Unit (ReLU) Neural Networks (NNs), where verification
entails determining whether the NN satisfies convex polytopic
specifications. Specifically, we show that for two different NN
architectures – shallow NNs and Two-Level Lattice (TLL) NNs
– the verification problem with (convex) polytopic constraints
is polynomial in the number of neurons in the NN to be
verified, when all other aspects of the verification problem
held fixed. We achieve these complexity results by exhibiting
explicit (but similar) verification algorithms for each type
of architecture. Both algorithms efficiently translate the NN
parameters into a partitioning of the NN’s input space by means
of hyperplanes; this has the effect of partitioning the original
verification problem into polynomially many sub-verification
problems derived from the geometry of the neurons. We show
that these sub-problems may be chosen so that the NN is purely
affine within each, and hence each sub-problem is solvable in
polynomial time by means of a Linear Program (LP). Thus, a
polynomial-time algorithm for the original verification problem
can be obtained using known algorithms for enumerating the
regions in a hyperplane arrangement. Finally, we adapt our
proposed algorithms to the verification of dynamical systems,
specifically when these NN architectures are used as state-
feedback controllers for LTI systems. We further evaluate the
viability of this approach numerically.

I. INTRODUCTION

Neural Networks (NNs) are increasingly used as feedback
controllers in safety-critical cyber-physical systems, so al-
gorithms that can verify the safety of such controllers are
of crucial importance. Despite this, relatively little attention
has been paid to an analysis of their computational com-
plexity. Such considerations are crucial in the verification of
controllers, since a verifier may be invoked many times to
verify a controller in closed loop ([13], [15] for example).

On the one hand, it is known that the satisfiability of any
3-SAT formula can be encoded as a NN verification problem,
but this result requires its variables to be in correspondence
with the input dimensions to the network [5]. This means
the complexity of verifying a NN depends unfavorably on
the dimension of its input space. On the other hand, this
result doesn’t address the relative difficulty of verifying a
NN with a fixed input dimension but an increasing number
of neurons. The only results in this vein exhibit networks for
which the number of affine regions grows exponentially in
the number of neurons in the network – see e.g. [7]. However,
these merely suggest that the verification problem is still
“hard” in the number of neurons in the network (input and
output dimensions are fixed). To our knowledge, there are
no polynomial complexity results for this second question.

In this paper, we prove two such concrete complexity
results that explicitly describe the computational complexity
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of verifying a NN as a function of its size. In particular,
we prove that the complexity of verifying either a shallow
NN or a Two-Level Lattice NN [3] grows only polynomially
with the number of neurons in the network to be verified, all
other aspects of the verification problem held fixed. These
results appear in Section III as Theorem 2 and Theorem 3 for
shallow NNs and TLL NNs, respectively. Our proofs for both
of these complexity results are existential: that is we propose
one concrete verification algorithm for each architecture.

By their mere existence, the complexity results we prove
herein demonstrate that the NN verification problem is not
per se a “hard” problem as a function of the size of the NN
to be verified. However, our results cannot contradict the
known results in [5], which specify verification complexity
in terms of input dimension: indeed, although we show that
the complexity of verifying a shallow or a TLL NN scales
polynomially with its size, our complexity claims necessarily
scale exponentially in the input dimension of the NN. One
further observation is in order: while our results do speak
directly to the complexity of the verification problem as
a function of the number of neurons, they do not address
the complexity of the verification problem in terms of the
expressivity of a particular network size; see Section III.

Moreover, the nature of our proposed algorithms means
they have direct applicability to verifying such NNs when they
are used as feedback controllers. In particular, they verify a
NN by dividing its input space into regions on which the NN
is affine; in this context, verifying an input/output property
requires one Linear Program (LP) on each such region,
but such an LP can easily be extended to verify certain
discrete-time dynamical properties for LTI systems. That is
our algorithm can verify whether the next state resulting from
a state-feedback NN controller lies in a particular polytopic
set (e.g. forward invariance of a (polytopic) set of states).

We conclude this paper with a set of experimental results
that validate the claims we have made about our proposed
TLL verifier. First, we show that our implementation does in
fact scale polynomially. And second, we show that it can be
adapted to verify the forward invariance of a polytopic set of
states (on an LTI system with state feedback TLL controller).
Related work: The work on NN verification has gener-
ally focused on practical algorithms rather than theoretical
complexity results, although many have noticed empirically
that there is a significant complexity associated with the
input dimension; [5] is a notable exception, since it also
included an NP-completeness result based on the 3-SAT
encoding mentioned above. Other examples of pragmatic
NN verification approaches include: (i) SMT-based methods;
(ii) MILP-based solvers; (iii) Reachability based methods;
and (iv) convex relaxations methods. A good survey of
these methods an be found in [6]. By contrast, a number
of works have focused on the computational complexity of
various other verification-related questions for NNs ([5] is
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the exception in that it expressly considers the verification
problem itself). Some NN-related complexity results include:
computing the minimum adversarial disturbance to a NN is
NP hard [16]; computing the Lipschitz constant of a NN is
NP hard [14]; reachability analysis is NP hard [9], [12].

II. PRELIMINARIES

A. Notation
We will denote the real numbers by R. For an (n ×m)

matrix (or vector), A, we will use the notation JAK[i,j] to
denote the element in the ith row and jth column of A.
Analogously, the notation JAK[i,:] will denote the ith row of
A, and JAK[:,j] will denote the jth column of A; when A
is a vector instead of a matrix, both notations will return
a scalar corresponding to the corresponding element in the
vector. We will use bold parenthesis ⦗ · ⦘ to delineate the
arguments to a function that returns a function. We will use
two special forms of this notation: given an (m×n) matrix,
W , and an (m× 1) dimensional vector, b, define

L⦗W, b⦘ : x 7→Wx+ b (1)
Li⦗W, b⦘ : x 7→ JW K[i,:]x+ JbKi. (2)

We also use the functions First and Last to return the
first and last elements of an ordered list (or by overloading,
a vector in Rn). The function Concat concatenates two
ordered lists, or by overloading, concatenates two vectors
in Rn and Rm along their (common) nontrivial dimension
to get a third vector in Rn+m. Finally, an over-bar to indicate
(topological) closure of a set: i.e. A is the closure of A.

B. Neural Networks
We will exclusively consider Rectified Linear Unit Neural

Networks (ReLU NNs). A K-layer ReLU NN is specified
by K layer functions, {Lθ|i : i = 1, . . . ,K}, of which we
allow two kinds: linear and nonlinear. A nonlinear layer, i,
with i|i inputs and o|i outputs is specified by a (o|i × i|i)
matrix of weights, W |i, and a (o|i× 1) matrix of biases, b|i:

Lθ|i : Ri → Ro, Lθ|i : z 7→ max{Wz + b, 0} (3)

where the max function is taken element-wise, and θ|i ,
(W |i, b|i). A linear layer is the same as a nonlinear layer,
except it omits the nonlinearity max{·, 0} in its layer func-
tion; a linear layer will be indicated with a superscript lin
e.g. Llin

θ|i
Thus, a K-layer ReLU NN function is specified by

functionally composing K such layer functions whose input
and output dimensions satisfy ii = oi−1 : i = 2, . . . ,K . We
further adopt the convention that the final layer is always
a linear layer, so we may define:

NN = Llin
θ|K ◦ Lθ|K−1 ◦ · · · ◦ Lθ|1 (4)

To make the dependence on parameters explicit, we will
index a ReLU function NN by a list of matrices Θ , (θ|1,
. . . , θ|K);1 in this respect, we will often use NN = NN⦗Θ⦘.

The number of layers and the dimensions of the associated
matrices θ|i = ( W |i, b|i ) specifies the architecture of the
ReLU NN. Therefore, we will use:

Arch(Θ) , ((n, o|1), (i|2, o|2), . . . , (i|K ,m)) (5)

1That is Θ is not the concatenation of the θ(i) into a single large matrix,
so it preserves information about the sizes of the constituent θ(i).

to denote the architecture of the ReLU NN NN⦗Θ⦘.

Definition 1 (Shallow NN). A shallow NN is two-layer NN
whose first layer is nonlinear and whose second is linear.

C. Special NN Operations
The operations in this section will be used to define a

Two-Layer Lattice network in Section II-D.

Definition 2 (Sequential (Functional) Composition).
Let NN⦗Θ1⦘ and NN⦗Θ2⦘ be two NNs where
Last(Arch(Θ1)) = (i, c) and First(Arch(Θ2)) = (c, o)
for some nonnegative integers i, o and c. Then the
sequential (or functional) composition of NN⦗Θ1⦘ and
NN⦗Θ2⦘, i.e. NN⦗Θ1⦘ ◦ NN⦗Θ2⦘, is a well defined
NN, and can be represented by the parameter list
Θ1 ◦Θ2 , Concat(Θ1,Θ2).

Definition 3. Let NN⦗Θ1⦘ and NN⦗Θ2⦘ be two K-layer
NNs with parameter lists:

Θi = ((W |1
i , b

|1
i ), . . . , (W |K

i , b|Ki )), i = 1, 2. (6)

Then the parallel composition of NN⦗Θ1⦘ and NN⦗Θ2⦘ is
a NN given by the parameter list

Θ1 ‖ Θ2 ,
(([W |11

W
|1
2

]
,

[
b
|1
1

b
|1
2

])
, ...,

([
W
|K
1

W
|K
2

]
,

[
b
|K
1

b
|K
2

]))
. (7)

That is Θ1‖Θ2 accepts an input of the same size as (both) Θ1

and Θ2, but has as many outputs as Θ1 and Θ2 combined.

Definition 4 (n-element min/max NNs). An n-element
min network is denoted by the parameter list Θminn .
NN⦗Θminn⦘ : Rn → R such that NN⦗Θminn⦘(x) is the
minimum from among the components of x (i.e. minimum
according to the usual order relation < on R). An n-
element max network is denoted by Θmaxn , and functions
analogously. These networks are described in [3].

D. Two-Level-Lattice (TLL) Neural Networks
In this paper, we will be especially concerned with ReLU

NNs that have the Two-Level Lattice (TLL) architecture, as
introduced with the AReN algorithm in [3]. Here we describe
both scalar output TLL NNs and multi-output TLL NNs.

1) Scalar TLL NNs: From [3], a scalar-output TLL NN
can be described as follows.

Definition 5 (Scalar TLL NN [3, Theorem 2]). A NN that
maps Rn → R is said to be TLL NN of size (N,M) if the
size of its parameter list ΞN,M can be characterized entirely
by integers N and M as follows.

ΞN,M ,ΘmaxM◦
(
(ΘminN◦ΘS1

)‖ ...‖(ΘminN◦ΘSM)
)
◦Θ` (8)

where
• Θ` , ((W`, b`));
• each ΘSj has the form ΘSj =

(
Sj ,0N,1

)
; and

• Sj =
[

JIN K[ι1,:]
T
... JIN K[ιN ,:]

T
]T

for some sequence {ιk} ⊆
{1, . . . , N} (IN is the (N ×N) identity matrix).

The linear functions implemented by the mapping
Li⦗W`, b`⦘ for i = 1, . . . , N will be referred to as the
local linear functions of ΞN,M ; we assume for simplic-
ity that these linear functions are unique. The matrices
{Sj |j = 1, . . . ,M} will be referred to as the selector
matrices of ΞN,M . Each set sj , {k ∈ {1, . . . , N}|∃ι ∈
{1, . . . , N}.JSjKι,k = 1} is said to be the selector set of Sj .
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2) Multi-output TLL NNs: We will define a multi-output
TLL NN with range space Rm using m equally sized scalar
TLL NNs. That is we denote such a network by Ξ

(m)
N,M , with

each output-components denoted by ΞkN,M , k = 1, . . . ,m.

E. Hyperplanes and Hyperplane Arrangements
Here we review notation for hyperplanes and hyperplane

arrangements; [10] is the main reference for this section.

Definition 6 (Hyperplanes and Half-spaces). Let ` : Rn → R
be an affine map. Then define:

Hq
` ,


{x|`(x) < 0} q = −1

{x|`(x) > 0} q = +1

{x|`(x) = 0} q = 0.

(9)

We say that H0
` is the hyperplane defined by ` in dimension

n, and H−1
` and H+1

` are the negative and positive half-
spaces defined by `, respectively.

Definition 7 (Hyperplane Arrangement). Let L be a set of
affine functions where each ` ∈ L : Rn → R. Then {H0

` |` ∈
L} is an arrangement of hyperplanes in dimension n.

Definition 8 (Region of a Hyperplane Arrangement). Let H
be an arrangement of N hyperplanes in dimension n defined
by a set of affine functions, L. Then a non-empty open subset
R ⊆ Rn is said to be a (n-dimensional) region of H if
there is an indexing function s : L → {−1,+1} such that
R =

⋂
`∈LH

s(`)
` and B(x, δ) ⊂ R for some x and δ. The

set of all regions of arrangement H will be denoted RH.

Theorem 1 ([10]). Let H be an arrangement of N hyper-
planes in dimension n. Then |RH| is at most

∑n
k=0

(
N
k

)
.

Remark 1. Note that for a fixed dimension, n, the bound∑n
k=0

(
N
k

)
grows like O(Nn/n!), i.e. sub-exponentially in N .

III. MAIN RESULTS

A. NN Verification Problem
We will consider the following NN verification problem.

Problem 1. Let NN⦗Θ⦘ : Rn → Rm be a NN with at least
two layers. Furthermore, assume that there are two convex,
bounded, full-dimensional polytopes Px ⊂ Rn and Py ⊂ Rm
represented as follows:

• Px , ∩Nxi=1H
−1
`x,i
⊂ Rn where `x,i : Rn → R is an

affine map for each i = 1, . . . ,Nx; and
• Py , ∩Nyi=1H

−1
`y,i
⊂ Rm where `y,i : Rm → R is an

affine map for each i = 1, . . . ,Ny .
Then the verification problem is to decide whether the
following formula is true:

∀x ∈ Px ⊂ Rn.
(
NN⦗Θ⦘(x) ∈ Py ⊂ Rm

)
. (10)

If (10) is true, the problem is SAT; otherwise,it is UNSAT.

We proceed with this formulation of Problem 1 for simplicity,
and to emphasize the verification complexity in terms of NN
parameters. Even so, our proposed algorithm evaluates
NNs on regions where they are affine, and on such regions,
verifying the input/output property in (10) is essentially the
same as verifying a control-relevant property such as

L(x,NN⦗Θ⦘(x)) ∈ Py (11)

(for a linear function L). Examples of (11) appear in forward
invariance verification of LTI systems (see Section VI-C) and
verifying autonomous robots controlled by NNs [11].

B. Main Theorems
The main results of this paper consist of showing that

Problem 1 can be solved in polynomial time complexity
in the number of neurons for two classes of networks. In
particular, we state the following two theorems.

Theorem 2. Let Arch(Θ) = ((n, n), (n,m)) define a shal-
low network with n neurons. Now consider an instance of
Problem 1 for NN⦗Θ⦘: i.e. fixed dimensions n and m, and
fixed constraint sets Px and Py . Then there is an algorithm
that solves this instance of Problem 1 in polynomial time
complexity in n. This algorithm has a worst case runtime of

Ny ·O(m · n2 · nn+2/n!) · Cplxty(LP(n + Nx, n)) (12)

where Cplxty(LP(N,n)) is the complexity of solving a
linear program in dimension n with N constraints.

Theorem 3. Let Ξ
(m)
N,M define a multi-output TLL network.

Now consider an instance of Problem 1 for NN⦗Ξ
(m)
N,M⦘: i.e.

fixed dimensions n and m, and fixed constraint sets Px and
Py . Then there is an algorithm that solves this instance of
Problem 1 in polynomial time complexity in N and M . This
algorithm has a worst case runtime of

Ny ·O(mn+2 ·n·M ·N2n+3/n!)·Cplxty(LP(m·N2+Nx, n))

where Cplxty(LP(N,n)) is the complexity of solving a linear
program in dimension n with N constraints. The algorithm
is polynomial in the number of neurons in NN⦗Ξ

(m)
N,M⦘, since

the number of neurons depends polynomially on N and M .

In particular, Theorem 2 and Theorem 3 explicitly indicate
that the difficulty in verifying their respective classes of NNs
grows only polynomially in the complexity of the network,
all other parameters of Problem 1 held fixed. Note also that
the polynomial complexity of these algorithms depends on
the existence of polynomial-time solvers for linear programs,
but such solvers are well known to exist (see e.g. [8]).

Note that Theorem 2 and Theorem 3 do not contradict the
3-SAT embedding of [5], since both algorithms are exponen-
tial in the input dimension to the network. Indeed, given that
a TLL NN can represent any Continuous, Piecewise Affine
(CPWA) function [3] – including the 3-SAT gadgets used in
[7] – it follows directly that the satisfiability of any 3-SAT
formula can be encoded as an instance of Problem 1 for a
TLL NN. Since the input dimensions of both NNs are the
same, the conclusion of [5] is preserved.

Finally, it is essential to note that the results in Theorem
2 and Theorem 3 connect the difficulty of verifying a TLL
NN (resp. shallow NN) to the size of the network not
the expressivity of the network. The semantics of the TLL
NN in particular make this point especially salient, since
each distinct affine function represented in the output of a
TLL NN can be mapped directly to parameters of the TLL
NN itself (see Proposition 3 in Section V). In particular,
consider the deep NNs exhibited in [7, Corrollary 6]: this
parameterized collection of networks expresses a number
of unique affine functions that grows exponentially in the
number of neurons in the network (i.e. as a function of
the number of layers in the network). Consequently, the
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size of a TLL required to implement one such network
would likewise grow exponentially in the number of neurons
deployed in the original network. Thus, although a TLL
NN may superficially seem “easy” to verify because of
Theorem 3, the efficiency in verifying a TLL NN form could
mask the fact that a particular TLL NN implementation is
less parameter efficient than some other representation (in
terms of neurons required). Ultimately, this trade-off will
not necessarily be universal, though, since TLL NNs also
have mechanisms for parametric efficiency: for example, a
particular local linear function need only be implemented
once in a TLL NN, no matter how many disjoint regions
on which it is activated (as in the case of implementing
interpolated zero-order-hold functions, such as in [4]).

C. Proof Sketch of Main Theorems
1) Core Theorem: Polynomial-time Enumeration of Hy-

perplane Regions: The algorithms that witness the claims in
Theorem 2 and 3 have the same broad structure:
Step 1: For the architecture in question, choose (in poly-

nomial time) a hyperplane arrangement with the
following two properties:

(a) The number of hyperplanes is polynomial in the
number of network neurons;

(b) Problem 1 can be solved in polynomial time on
the closure of any region in this arrangement in-
tersected with Px; i.e. Problem 1 with Px replaced
by R ∩ Px can be solved in polynomial time.

Step 2: Iterate over all of the regions in this arrangement,
and for each region, solve Problem 1 with Px
replaced by R ∩ Px.

The details of Step 1 vary depending on the architecture of
the network being verified.However, no matter the details of
Step 1, this proof structure depends on a polynomial time
algorithm to traverse the regions in a hyperplane arrange-
ment. But it is known that there exist polynomial algorithms
to perform such enumerations. The following result from [1]
is one example; an “optimal”, if not practical, option is [2].

Theorem 4 ([1] Theorem 3.3). Let L = {`1, . . . , `N} be a
set of affine functions, `i : Rn → R, that can be accessed
in O(1) time, and let HL = {H0

` |` ∈ L} be the associated
hyperplane arrangement.

Then there is an algorithm to traverse all of the regions
in HL that has runtime

O(n ·Nn+1/n!) · Cplxty(LP(N,n)) (13)

where Cplxty(LP(N,n)) is the complexity of solving a
linear program in dimension n with N constraints.

Note that there is more to Theorem 4 than just the sub-
exponential bound on the number of regions in a hyperplane
arrangement (see Theorem 1 in Section II). Indeed, although
there are only O(Nn/n!) regions in an arrangement of N
hyperplanes in dimension n, it must be inferred which of
the 2N possible activations correspond to valid regions. That
this is possible in polynomial time is the main contribution
of Theorem 4, and thus facilitates the results in this paper.

2) Theorem 2 and Theorem 3: Given Theorem 4, the
proofs of Theorem 2 and Theorem 3 depend on finding a
suitable hyperplane arrangement, as described in Step 1.

In both cases, we note that the easiest closed convex
polytope on which to solve Problem 1 is one on which the

underlying NN is affine. Indeed, suppose for the moment
that NN⦗Θ⦘ is affine on the entire constraint set Px with
NN⦗Θ⦘ = `0 on this domain. Under this assumption, solving
the verification problem for a single output constraint, `y,i,
entails solving the following linear program:

yi = max(`y,i ◦ `0)(x)

s.t. `x,i′(x) ≤ 0 for i′ = 1, . . . ,Nx. (14)

Of course if yi > 0, then Problem 1 is UNSAT under these
assumptions; otherwise it is SAT for the constraint `y,i and
the next output constraint needs to be considered. Given the
known (polynomial) efficiency of solving linear programs,
it thus makes sense to select a hyperplane arrangement for
Step 1 with the property that the NN is affine on each region
of the arrangement. Although this is a difficult problem for a
general NN, the particular structure of shallow NNs and TLL
NNs allow such a selection to be accomplished efficiently.

To this end, we make the following definition.

Definition 9 (Switching Affine Function/Hyperplane). Let
NN⦗Θ⦘ : Rn → Rm be a NN. A set of affine functions
S = {`1, . . . , `N} with `ι : Rn → R is said to be a set of
switching affine functions for NN⦗Θ⦘ if NN⦗Θ⦘ is affine on
every region of the hyperplane arrangement HS = {H0

` |` ∈
S}. HS is then said to the be an arrangement of switching
hyperplanes of NN⦗Θ⦘.

For both shallow NNs and TLL NNs, we will show that
a set of switching hyperplanes is immediately evident (i.e.
in polynomial complexity) from the parameters of those
architectures directly; this satisfies Step 1(b). However it also
further implies that this choice of switching hyperplanes has
a number of hyperplanes that is polynomial in the number
of neurons in either network; this satisfies Step 1(a).

IV. POLYNOMIAL-TIME ALGORITHM TO VERIFY
SHALLOW NNS

This section consists of several propositions that address
the various aspects of Step 1, as described in Subsection III-
C.1. Theorem 2 is a direct consequence of these propositions.

Proposition 1. Let Θ = ((W |1, b|1), (W |2, b|2)) define a
shallow NN with Arch(Θ) = ((n, n), (n,m)). Then the set of
affine functions

S(Θ) , {Li⦗W |1, b|1⦘, i = 1, . . . , n} (15)

is a set of switching affine functions for NN⦗Θ⦘, and
HS(Θ) = {H0

` |` ∈ S(Θ)} is a set of switching hyperplanes.

Proof. A region in the arrangement HS(Θ) exactly assigns
to each neuron a status of strictly active or strictly inactive.
But forcing a particular activation on each of the neurons
forces the shallow NN to operate on an affine region.

Proposition 2. Let Θ = ((W |1, b|1), (W |2, b|2)) define a
shallow NN with Arch(Θ) = ((n, n), (n,m)), and let HS(Θ)
be as in Proposition 1. Then the complexity of determining
the active linear function of NN⦗Θ⦘ on a region of HS(Θ)
is at most

O(m · n · n). (16)

Proof. This runtime is clearly dominated by the cost of doing
the matrix multiplication W |2 ·W |1. Given that Arch(Θ) =
((n, n), (n,m)), this operation has the claimed runtime.
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Theorem 2 now follows.

Proof. (Theorem 2.) First note that |HS(Θ)| = n. Thus, by
Proposition 1, the closure of regions from HS(Θ) covers
Rn, and NN⦗Θ⦘ is an affine function on each such closure.

Thus, an algorithm to solve Problem 1 for NN⦗Θ⦘ can
be obtained by enumerating the regions in HS(Θ) using the
algorithm from Theorem 4, and for each such region, s (see
Definition 8), solving one linear program:

yi = max(`y,i ◦ `0)(x)

s.t. `x,i′(x) ≤ 0 for i′ = 1, . . . ,Nx
and s(`) · `(x) ≤ 0 for ` ∈ S(Θ). (17)

for each output polytope constraint i ∈ 1, . . . ,Ny . The
claimed runtime then follows directly by incorporating the
cost of computing the active affine function on each such
region (Proposition 2) and bounding the size of each enu-
meration LP (Theorem 4) by the size of the LP above, which
has at most n+Nx constraints in dimension n.

V. POLYNOMIAL-TIME ALGORITHM TO VERIFY TLL NN
This section consists of several propositions that address

the various aspects of Step 1, as described in Subsection III-
C.1. Theorem 3 is a direct consequence of these propositions.

Proposition 3. Let Ξ
(m)
N,M define a TLL NN. Then define

S(ΞκN,M),{Li⦗Wκ
` ,b

κ
` ⦘−Lj⦗Wκ

` ,b
κ
` ⦘|i < j∈{1, ..,N}} (18)

and HS(ΞκN,M),{H0
` |` ∈ S(ΞκN,M)}. Furthermore, define

S(Ξ
(m)
N,M),∪mκ=1S(ΞκN,M) and HS(Ξ

(m)
N,M),∪mκ=1HS(ΞκN,M).

Then S(Ξ
(m)
N,M) is a set of switching affine functions for

Ξ
(m)
N,M , and the κth component of Ξ

(m)
N,M is an affine func-

tion on each region of HS(Ξ
(m)
N,M) and is exactly equal to

Li⦗Wκ
` , b

κ
` ⦘ for some i.

Proof. Let R be a region in HS(Ξ
(m)
N,M). Each such region

is contained in exactly one region from each of the arrange-
ments HS(ΞκN,M), so it suffices to show that each component
TLL is linear on the regions of its own arrangement.

Thus, let Rκ be a region in HS(ΞκN,M). We claim that
NN⦗ΞκN,M⦘ is linear on Rκ. To see this, note by definition
of a region, there is an indexing function s : S(ΞκN,M) →
{−1,+1} such that Rk =

⋂
`∈S(ΞκN,M )H

s(`)
` . Thus, Rk is

a unique order region by construction: each such half-space
identically orders the outputs of two linear functions, and
since Rk is n-dimensional it is contained in just such a half
space for each and every possible pair. Applying the unique
ordering property of Rκ to the definition of the TLL NN
implies that there exists an index ι ∈ {1, . . . , N} such that
NN⦗ΞκN,M⦘(x) = JWκ

` x+ bκ` Kι for all x ∈ Rκ.

Proposition 4. Let Ξ
(m)
N,M define a multi-output TLL NN, and

let HS(Ξ
(m)
N,M) be as in Proposition 3. Then for any region R

of HS(Ξ
(m)
N,M) the affine function of NN⦗Ξ

(m)
N,M⦘ that is active

on R can be found by a polynomial algorithm of runtime

O(m ·M · (N + 1)). (19)

Proof. From the proof of Proposition 3 we know that a
region in HS(Ξ

(m)
N,M) is a unique order region for the linear

functions (Wκ
` , b

κ
` ) of each component. In other words, the

indexing function of the region R specifies a strict order-
ing of each pair of linear functions from each component
of NN⦗Ξ

(m)
N,M⦘, and hence the component-wise local linear

functions of NN⦗Ξ
(m)
N,M⦘ are pairwise-ordered on R.

These pairwise comparisons can be used to identify the
active affine function on each min group, ΘminN (of each
output component) by means of successive comparison in
a bubble-sort-type way. Thus, resolving the active function
on each min group requires N comparisons, each of which
is a direct look up in the region indexing function, and
hence O(1). Moreover, the same argument applies to the
max operation for each component, only resolving the active
affine function there requires M comparisons instead. Since
there are m ·M min groups in total, and there are m max
groups in total, resolving the active affine function runs in
O(m ·M ·N+m ·M) = O(m ·M ·(N+1)) as claimed.

Theorem 3 now follows from these propositions.

Proof. (Theorem 3.) This proof follows exactly the same
structure as the proof of Theorem 2. The salient differences
are that |S(Ξ

(m)
N,M)| = m · N · (N − 1)/2 = O(m · N2)

(Proposition 3), and the cost of obtaining the active affine
function on each region thereof is now specified as O(m ·
M · (N + 1)) (Proposition 4). The claimed runtime for TLL
networks follows mutatis mutandis from Theorem 4.

VI. NUMERICAL RESULTS

To validate the claims we have made about the polynomial
efficiency of the TLL verification problem, we implemented
a version of the algorithm described in Section V. Then
we conducted three separate experiments on a selection of
randomly generated TLL networks of various sizes.

A. We used our tool to merely enumerate the regions in
HS(Ξ

(1)
N,M) (see Proposition 3); this verifies that our

implemented hyperplane-region enumeration algorithm
is in fact polynomial, and confirms Theorem 1.

B. For each TLL NN, we randomly generated a polytope in
its domain to serve as an input constraint for an instance
of Problem 1. We verified each network/input constraint
with a single, randomly generated output constraint.

C. Finally, we randomly generated an LTI system, and used
our tool to check whether the same polytope associated
with each TLL network was forward invariant when said
network was used as a state feedback controller.

These experiments were conducted on randomly generated
TLL networks with n = 2 and m = 1 for sizes N =
8, 16, 24, 32, 40, 48, 56, and 64, with M = N for each
network. We generated 20 instances of each size. A 3D plot
of one such network is depicted in Figure 1 (d).

We implemented a polynomial-time enumerator for the
regions in a hyperplane arrangement that was further able to
evaluate the verification LP on each such region. We used
Python and a parallelism abstraction library, charm4py; all
experiments were conducted on a system with a total of 24
Intel E5-2650 v4 2.20GHz cores (48 virtual cores) of which
our tool was allocated 24. The system had 256 GB of RAM.

A. Region Enumeration
Figure 1 (a) shows the number of regions our tool found

in HS(Ξ
(1)
N,M) for each TLL network, as well as the exe-

cution time required. For reference, the maximum number
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Fig. 1: (a) Polynomial growth in number of regions and time needed to enumerate them (red curve is an exponential best-fit
to execution time for reference); (b) Box plot of execution times to verify a single random output constraint for each of
several TLL sizes; (c) Box plot of execution time to verify forward invariance of a polytopic set for each of several size
TLLs; (d) a TLL network and input constraint polytope used in output-constraint/forward-invariance experiments (N = 64).

of regions possible is shown for each size, as determined
by Theorem 1; note that HS(Ξ

(1)
N,M) has degeneracy in it,

because its hyperplanes are differences between a common
set of affine functions. Hence, HS(Ξ

(1)
N,M) has slightly fewer

regions than the theoretical maximum that would be expected
for a random arrangement. Also shown is an exponential
best-fit to the execution time of our tool (red curve): it attests
that our tool has a polynomial region enumeration implemen-
tation (compare to the number of regions enumerated).

B. Output Constraint Verification
For each example TLL network, we randomly generated

an input constraint polytope and an output constraint to
verify. Since m = 1, an output constraint amounts to a
random threshold, combined with a random choice of ≤
or ≥ to specify the constraint. A box-and-whisker plot of
our tool’s execution time on these verification problems is
shown in Figure 1 (b). The variability in execution time is
due to the fact that our tool terminates early when a region of
HS(Ξ

(1)
N,M) is found to generate a violation of the constraint.

C. LTI System Forward Invariance Verification
For each of the TLL networks, we randomly generated

LTI system matrices of the appropriate dimension for the
TLL network to serve as a state-feedback controller. Then we
used our tool to verify that each input polytope Px satisfies

∀x ∈ Px .
(
Ax+BNN⦗Ξ

(1)
N,M)⦘(x)

)
∈ Px. (20)

That is Px is forward invariant for the system (A,B) with
closed-loop controller NN⦗Ξ

(1)
N,M)⦘. This is easily accom-

plished since we consider only affine regions of Ξ
(1)
N,M : the

verification LP from before can be amended with a new ob-
jective function as follows, one for each of the i = 1, . . . ,Nx
constraints comprising Px: max(`x,i ◦ (A+B`0))(x).

The results of this experiment are shown in Figure 1 (c).
The execution times are generally better than in the previous
experiment, despite the fact that twice as many “output”
constraints are checked. This is because all input polytopes
were not invariant, so the algorithm was able to find a counter
example early.
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