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ABSTRACT

Neural network (NN) accelerators have been integrated into a wide-
spectrum of computer systems to accommodate the rapidly growing
demands for artificial intelligence (AI) and machine learning (ML)
applications. NN accelerators share the idea of providing native
hardware support for operations on multidimensional tensor data.
Therefore, NN accelerators are theoretically tensor processors that
can improve system performance for any problem that uses ten-
sors as inputs/outputs. Unfortunately, commercially available NN
accelerators only expose computation capabilities through AI/ML-
specific interfaces. Furthermore, NN accelerators reveal very few
hardware design details, so applications cannot easily leverage the
tensor operations NN accelerators provide.

This paper introduces General-Purpose Computing on Tensor
Processing Units (GPTPU), an open-source, open-architecture frame-
work that allows the developer and research communities to dis-
cover opportunities that NN accelerators enable for applications.
GPTPU includes a powerful programming interface with efficient
runtime system-level support—similar to that of CUDA/OpenCL
in GPGPU computing—to bridge the gap between application de-
mands and mismatched hardware/software interfaces.

We built GPTPU machine uses Edge Tensor Processing Units
(Edge TPUs), which are widely available and representative of many
commercial NN accelerators. We identified several novel use cases
and revisited the algorithms. By leveraging the underlying Edge
TPUs to perform tensor-algorithm-based compute kernels, our re-
sults reveal that GPTPU can achieve a 2.46X speedup over high-end
CPUs and reduce energy consumption by 40%.
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1 INTRODUCTION

The demand for artificial intelligence (AI) and machine learning
(ML) applications has exploded in recent years, and the increase in
AI/ML workloads has led to significant research advances in neural
network (NN) accelerators, including Google’s Edge Tensor Process-
ing Units (Edge TPUs) [1] and Apple’s Neural Engines [2] that are
already presented as auxiliary hardware components in commodity
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systems. These NN accelerators’ power/energy efficiency is orders-
of-magnitude better than that of conventional vector processors
(e.g., Graphics Processing Units [GPUs]) for the same workloads.
Despite the differences among microarchitectures, most NN acceler-
ators are essentially matrix processors that take tensors/matrices as
inputs, generate tensors/matrices as outputs, and provide operators
that facilitate NN computations.

Two decades ago, graphics processing units (GPUs) were just
domain-specific accelerators used for shading and rendering. But
intensive research into high-performance algorithms, architectures,
systems, and compilers [3-12] and the availability of frameworks
like CUDA [13] and OpenCL [14], have revolutionized GPUs and
transformed them into high-performance, general-purpose vector
processors. We expect a similar revolution to take place with NN
accelerators—a revolution that will create general-purpose matrix
processors for a broader spectrum of applications. However, de-
mocratizing these NN accelerators for non-AI/ML workloads will
require the system framework and the programmer to tackle the
following issues:

(1) The microarchitectures and instructions of NN accelerators
are optimized for NN workloads, instead of general matrix/tensor
algebra. These auxiliary NN accelerators focus on latency per infer-
ence, but not yet on delivering computation throughput comparable
to GPUs. Naively mapping conventional matrix/tensor algorithms
to AI/ML operations will lead to sub-optimal performance. (2) Be-
cause many AI/ML applications are error tolerant, NN accelerators
typically trade accuracy for area/energy-efficiency; when such a
trade-off produces undesirable results, additional mechanisms are
needed to make adjustments. (3) The programming interfaces of
existing NN accelerators are specialized for developling AI/ML ap-
plications. Existing frameworks expose very few details about the
hardware/software interfaces of NN accelerators, so programmers
are unable to customize computation and the application can suf-
fer from significant performance overhead due to adjusting the
parameters/data bound to the supported ML models. (4) Tensor
algorithms are traditionally time-consuming, so programmers have
tailored compute kernels in favor of scalar/vector processing. Such
tailoring makes applications unable to take advantage of tensor
operators without revisiting algorithms.

This paper bridges the gap between general-purpose programma-
bility and domain-specific NN accelerators by presenting a full-
stack system architecture that enables General-Purpose Computing
on Edge TPUs (GPTPU). GPTPU tackles all the aforementioned
challenges through providing a programming interface, a runtime
system, compiler and libraries. With the system this paper proposes,
programmers will be able to explore the enormous potential of the
matrix processing model inherent in Edge TPU, a commercially
available accelerator that can be part of a system-on-module (SOM)
or be easily attached to various forms of computer systems. A com-
mercialized Edge TPU can inference ML models at 4 TOPS (tera
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operations per second) with only 2 W of power consumption. The
design that GPTPU demonstrates can also work for NN accelerators
sharing similar architectures.

GPTPU provides a programming framework, including an Edge
TPU-specific C/C++ extension, OpenCtpu and a runtime system.
GPTPU offloads programmers from directly interacting with the
accelerator’s hardware to focus on the design of tensor-based al-
gorithms for applications. OpenCtpu achieves more programming
flexibility than existing domain-specific interfaces by exposing high-
level tensor/matrix algebra operators (e.g., matrix multiply) and
low-level accelerator operators (e.g., convolution and multiplication-
accumulation) to the programmer, so programmers can design ar-
bitrary tensor algorithms or customize operators that cannot be
easily achieved using domain-specific languages.

The core of the GPTPU runtime system is our proposed Ten-
sorizer, a module that dynamically evaluates input data and trans-
forms data into ML models that the underlying Edge TPUs or other
NN accelerators can efficiently perform inference operations on.
Tensorizer handles quantization and calibration of input datasets
and computation results, thereby minimizing the impact of limited
precision on NN accelerators. The GPTPU runtime also schedules
computation tasks and distributes prepared data to available NN
accelerators in a manner that minimizes the data movement over-
head.

Despite the Edge TPU’s promising energy efficiency and recently
open-sourced C++ API, documentation is vague regarding the Edge
TPU’s hardware/software interface and architecture. This lack of
detail complicates the design of systems that fully exploit the Edge
TPU’s capabilities. To develop GPTPU, we measured the perfor-
mance of available Edge TPU operators, reverse-engineered the
Edge TPU hardware/software interface for data exchanges, and an-
alyzed the Edge TPU architecture. We applied our understanding of
the Edge TPU to optimize the backend runtime system for efficient
task creation and data transformation. We then built a prototype
GPTPU system with 8 Edge TPUs to allow concurrent GPTPU task
execution.

We demonstrate the potential of the GPTPU system by modify-
ing several key applications for financial computing, linear algebra,
physics simulations and graph analytics. By revisiting the algo-
rithms at the heart of these applications and using OpenCtpu, we
show that GPTPU can simplify compute kernels; GPTPU preserves
the nature of the application’s tensor/matrix inputs and avoids
explicit decompositions of datasets and algorithms into vector or
scalar data. When used with the GPTPU-integrated applications,
our prototype GPTPU system exhibits a 2.46x speedup and 40%
reduction in energy consumption relative to modern CPUs.

By introducing the GPTPU system architecture, this paper makes
the following contributions: (1) The paper introduces a novel full-
stack system architecture to efficiently support general-purpose
programming on Edge NN accelerators. (2) The paper characterizes
the capabilities and previously unidentified architectural details of
an inferencing hardware so that future research may exploit and
optimize the GPTPU concept. (3) The paper proposes and imple-
ments Tensorizer to demonstrate the mechanism of dynamically
and transparently mapping operators to NN models and Edge TPU
instructions that lead to efficient use of underlying NN accelerators.
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(4) The paper demonstrates algorithm design for non-NN applica-
tions on NN accelerators by revisiting application algorithms to
wisely use available accelerator instructions. (5) The paper provides
an open-source framework working on commercially available
components that will allow the community to reproduce the pro-
posed system architecture and explore additional applications on
the GPTPU platform !. (6) The paper shows the performance and
energy-consumption benefits of the prototype GPTPU system.

2 BACKGROUND

This section briefly highlights TPU architectures and introduces
alternative NN accelerators where GPTPU can potentially work.

2.1 TPU Architecture

As most NN applications take matrix/tensor inputs and iteratively
update parameters/weights from previous outcomes, the TPU mi-
croarchitecture accelerates NN tasks for modern ML applications
by creating a systolic array that performs operations on the units of
matrices/tensors. For inferencing tasks, the TPU treats one of the
input matrices as the trained model and the other as the samples
to predict or classify. Taking matrices/tensors as the default inputs
and outputs makes the TPU architecture and its corresponding exe-
cution model fundamentally different from conventional CPU/GPU
architectures that compute on scalar/vector data pairs. TPUs also
incorporate large on-chip memory to hold the intermediate results
that later iterations reuse. Unlike conventional processors, TPUs do
not contain on-chip instruction caches but simply use a CISC-style
instruction-set architecture and rely on the host program to issue
instructions through the system interconnect. And whereas conven-
tional processors aim for precise computation results, TPU matrix
units only support operations on a limited level of precision that is
sufficient to satisfy the demands of modern ML applications while
significantly reducing both TPU costs and energy requirements.

2.2 Edge TPU

This paper uses Edge TPUs, the trimmed-down versions of the
Google Cloud TPU to build our system. Compared with Cloud
versions, Edge TPUs contain smaller data memory (i.e., 8 MB). The
documented peak TOPS of Edge TPU is 4 TOPS under a 2 W TDP,
while Cloud TPUs can achieve up to 90 TOPS under a 250 W TDP.

Although Google Cloud TPUs offer higher performance, we
chose the Edge TPUs for the following reasons: (1) The Edge TPU
hardware is publicly available, whereas Cloud TPU hardware is
available exclusively through Google services; our use of Edge
TPUs will therefore allow the developer and research communi-
ties to easily replicate, utilize, and optimize the system that this
paper describes. (2) The current version of the Edge TPU software
framework has a partially open-sourced C++ backend that enables
language front-end and runtime-system customization, whereas the
Google Cloud TPU only provides a TensorFlow front-end without
the backend source code. (3) Each Edge TPU offers better perfor-
mance per watt than Cloud TPUs (i.e., 2 TOPS/W v.s. 0.36 TOPS/W)
with just 2 W of power consumption and costs as little as USD 29,
making a platform like GPTPU applicable to a broader range of

!The entire codebase of GPTPU is available in a public repository (https://github.com/
escalab/GPTPU).
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Figure 1: The custom-built quad-EdgeTPU PCle card

computer systems than would be possible with the Google Cloud
TPU alone.

2.3 Alternatives to TPUs

In addition to TPUs, several other hardware-accelerator architec-
tures can improve tasks in AI/ML workloads. HyGCN [15], Caf-
feine [16], Chain-NN [17], Tensaurus [18], Eyeriss [19], Tangram [20],
SNNAP [21], AccPar [22], Wei et al. [23], and Kung et al. [24] all
adopt a systolic-array-based design, just as TPUs do.

DianNao [25, 26], MAERI [27], Cambricon [28], FlexFlow [29],
ScaleDeep [30], MnnFast [31], TIE [32], UCNN [33], CirCNN [34],
HyPar [35], Park et al. [36], Sharma et al. [37], Alwani et al. [38],
Song et al. [39], Shortcut Mining [40], VIP [41], and Simba [42]
focus on memory bandwidth optimizations, chip layout, data reuses,
workload balancing, and reducing inter-chiplet communications in
their NN-accelerator architectures.

Recent advances in near-data/in-memory processing now allow
data-intensive NN computation to occur without explicitly mov-
ing data through bandwidth-limited system interconnects. Neural
Cache [43], TensorDIMM [44], Manna [45], DRISA [46], TETRIS [47],
NAND-Net [48], SCOPE [49], Wang et al. [50], Liu et al. [51], and
Imani et al. [52] place logic in memory controllers for volatile
SRAM/DRAM memory modules. FPSA [53], and LerGAN [54],
Sparse ReRAM engine [55], PRIME [56], PipeLayer [57], PUMA [58],
Bojnordi et al. [59], Zhang et al. [60], and FloatPIM [61] use the phys-
ical characteristics of resistive random-access memory (ReRAM)
technologies to create NN accelerators.

Regrettably, the aforementioned academic NN accelerators are
not currently in production. And commercially available ML accel-
erators such as Khadas VIM3 [62], Rockchip RK1808 [63], Sophon
BM1880 [64], HiKey970 [65], and Jetson Nano [66] lack the perfor-
mance and energy-efficiency of Edge TPUs.

Though NN accelerators have different microarchitectures, they
all use the tensor/matrix as the basic unit of processing, and they
all have limited precision, just like Edge TPUs. The architecture,
programming interface, methods, and policies embodied in GPTPU
can easily be adapted to different NN accelerators as long as the
accelerators expose their instructions appropriately.

3 CHARACTERIZING EDGE TPUS

To directly measure the characteristics of Edge TPUs and determine
their performance numbers, we built a customized machine with
Edge TPUs attached. This section describes the architecture of our
GPTPU testbed and reports the key performance characteristics
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of Edge TPUs that serve as the basis for our GPTPU system and
application designs.

3.1 The prototype Edge TPU accelerated
machine

The TPU architecture relies heavily on the CPU to distribute in-
structions, so our custom-built GPTPU hardware prototype aims
at minimizing communication latency while efficiently using the
limited system-interconnect bandwidth. To achieve this goal, the
GPTPU prototype machine uses Edge TPUs in PCIe M.2 form fac-
tors; the Edge TPUs are attached directly to the PCle system inter-
connect to allow lower latency and better bandwidth compared to
other Edge TPU interconnect options, such as USB 3.0.

Each M.2 Edge TPU is designed to occupy only a single PCle
2.0 lane, whereas most expansion slots that physically connect to
the processor use multiple lanes. To efficiently use the precious
PCle lanes from the processor and the limited expansion slots,
Figure 1 shows our custom-built quad-EdgeTPU PCle expansion
cards using QNAP QM2-4P-384A [67]. Each quad-EdgeTPU PCle
card contains 4X M.2 Edge TPUs with M.2 slots connected to a PCle
switch. The PCle switch evenly divides the PCle lanes (attached to
each expansion slot) to four Edge TPUs and makes all Edge TPUs
available to the host processor.

The current GPTPU hardware prototype contains an AMD Ryzen
3700X CPU with a Matisse microarchitecture that can reach a max-
boost clock speed of 4.4 GHz with 32 MB LLC and 24x PCle lanes
available to all peripherals. Excluding the expansion slots used for
essential peripheral devices, our hardware prototype can host 8x
M.2 Edge TPUs, and each Edge TPU connects to the processor with
just one hop (i.e., the PCIe switch) in the middle. The machine also
contains 64 GB DDR4 main memory and an NVMe SSD. In addition
to the hardware specifications, the prototype machine runs Ubuntu
Linux 16.04 with kernel version 4.15.

3.2 Characterizing Edge TPU instructions

Due to the long interconnect latency and the absence of instruction
caches on Edge TPUs, coped with the variable number of cycles
and different types of input/output data resulting from the avail-
able CISC instructions, the GPTPU library, runtime system, and
applications must use Edge TPU instructions wisely to achieve the
best performance. The released Edge TPU performance numbers
are available only in TOPS (tera operations per second) and IPS
(inferences per second). However, neither TOPS nor IPS provides
sufficient insight for general-purpose software design because (1)
TOPS or IPS is highly task specific, and (2) IPS is only representative
for inferencing but not for other workloads [68].

We therefore use the RPS (results per second) as an additional
metric to assess the benefits of each available Edge TPU opera-
tor/instruction. We define RPS as the amount of final result values
an Edge TPU can generate within a second. We measure the OPS,
RPS, and data-exchange rate of each tensor arithmetic instruction
as follows: First, we begin timing the program and send the input
datasets with size s to the target Edge TPU. Second, we issue and
execute the same operator 10,000 times and measure the end-to-
end latency (t1) as well as the total number of result values (r;)
generated since the timer started. Third, we repeat the first and



SC ’21, November 14-19, 2021, St. Louis, MO, USA

Kuan-Chieh Hsu and Hung-Wei Tseng

OPS RPS
Operator (ops per second) | (results per second) | Description
conv2D 10268.80 168240326.89 | 2D Convolution on a matrix
FullyConnected 51924.96 6646394.57 | Input vector multiplies a weight matrix
sub 6273.28 82871343.60 | Pair-wise subtraction on two matrices
add 6203.52 98293633.48 | Pair-wise addition on two matrices
mul 14515.84 216469999.54 | Pair-wise multiplication on two matrices
crop 4867.96 1562904391.76 | Remove all unwanted elements outside of a sub-matrix from a given 2D matrix and return the sub-matrix
ext 1604.78 3637240203.38 | Pad a matrix to the target dimensionality and return the padded matrix
mean 408.54 408.54 | Count the average value of all elements in the matrix
max 477.08 477.08 | Find the maximum value within a matrix
tanh 323231 2148232470.28 | Perform tanh function on a matrix pair-wisely
RelLu 11194.26 4043196115.38 | Leave only non-zero values on a matrix pair-wisely

Table 1: The maximum OPS and RPS for each Edge TPU operator/instruction

second step, but this time we execute the operator 20,000 times
with the same input to get the end-to-end latency (¢2) and the total
number of generated result values (r2). Finally, we calculate the
OPS of instructions/operators using Equation 1, their RPSs using
Equation 2, and the data-exchange rate using Equation 5.

OPS on = 0 ey
operation — th— 1
rg—r
RPS jion = ———— 2
operation th—t ( )
s
Data-Exchange Rate = ——— 3)
tr— (2 —t1)

Table 1 lists the RPS and the OPS of each Edge TPU instruction.
The results lead to three observations on Edge TPUs. (1) Conv2D
(convolution) achieves a very high RPS given the high amount of
operations required in equivalent CPU/GPU implementations, a
hint that Edge TPU optimizes its microarchitecture for this instruc-
tion, (2) the OPS and RPS vary significantly for different types of
instructions, and (3) the OPS and RPS are not strongly correlated
because output varies; for example, instructions like sub generate
outputs with the same dimensions as their inputs, but instructions
like FullyConnected only produce vectors.

Our measurements also show that data-exchange performance
does not vary among different types of instructions, but simply
correlates with data size; transmitting 1 MB of data to an Edge TPU
takes around 6 ms, while transmitting 8 MB of data that completely
fill the on-chip memory takes 48 ms. The latency of copying data
between the host main memory and Edge TPU’s on-chip memory
is significantly longer than any Edge TPU instruction.

3.3 Characterizing Edge TPU data and model
formats

Edge TPU instructions ordinarily take two types of data inputs: (1)
a tensor used for input datasets to be inferenced and (2) a model
that the TFLite framework must generate and compile. Both types
of inputs must be quantized before the host program sends them
to the Edge TPU for computation. As GPTPU needs to use both
types of inputs to achieve general-purpose computing, the GPTPU
runtime library must translate one of the instruction inputs as a
model for the Edge TPU.

The current Edge TPU toolchain only allows the user to generate
models by invoking the Edge TPU compiler in the Python-based
TFLite. With TFLite, translating a 2K x 2K matrix into a model takes
2.7 seconds on our testbed. This latency does not create issues for
inferencing tasks in ML applications, as inferencing tasks tend to

reuse the same model for continuously changing inputs, and the
overhead of creating models is amortized as input datasets scale.
However, such amortization does not stand for many applications
outside the ML realm. Unfortunately, neither the Edge TPU com-
piler code nor the Edge TPU model encoding has been released,
so we have been unable to optimize the Edge TPU model-creation
overhead.

To compensate for this lack of information, we reverse-engineered
the Edge TPU model formats by creating models with different
inputs, dimensions, and value ranges. We examined the models
generated with the different inputs, and we identified the following
key characteristics that allowed us to optimize the GPTPU runtime-
system Edge TPU model-input instructions: (1) Models embed a
120-byte general header that allows TPUs to recognize the model-
format version. The last 4 bytes of the header contain an unsigned
integer describing the size of the data section. (2) Following the
header, the data section contains binary-encoded 8-bit integers
stored in row-major order. If the raw data values exceed the scope
of 8-bit integers or are non-integers, the values must be scaled to
fit in the 8-bit integer range. (3) A metadata section following the
data section describes the data-section dimensions in terms of rows
and columns. The metadata section also contains the scaling factor
(f), a floating-point number that the compiler uses to rescale raw
data into 8-bit integers; that is, an 8-bit integer value in the data
section is calculated by multiplying its raw value by f. (4) The
model encodes all values using little endian.

In addition to making the above observations, we determined
that data dimensions do not necessarily reflect the dimensions
of raw data inputs. The Edge TPU compiler adds zero padding
to unused elements (depending on the instructions) to reflect the
hardware microarchitecture. Taking the most optimized instruction
in Edge TPU architecture as an example, the Edge TPU compiler
reshapes all input data into 128x128 sub-matrices. This implies
that the Edge TPU’s matrix unit is designed for computing on
128x128%8-bit matrices, in contrast to the Cloud TPU matrix unit,
which is designed for 256x256x8-bit matrices.

4 OVERVIEW OF THE GPTPU SYSTEM

Using insights learned from Section 3, this paper presents the sys-
tem stack of the GPTPU framework that Figure 2 shows. GPTPU
maintains the original heterogeneous-computing system stack and
extends the programming-language front end. GPTPU also pro-
vides a system library that can trigger the runtime system to (1)
transform data, (2) schedule instructions for the underlying TPU
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Figure 2: The GPTPU system overview

hardware, (3) communicate with the TPU hardware, and (4) use the
TPU hardware to accomplish computation tasks.

OpenCtpu serves as the programming-language front end for
GPTPU. A programmer can use OpenCtpu to create a host program
that describes TPU tasks and coordinates the use of heterogeneous
computing resources and data exchanges in the system. A compiler
supporting the OpenCtpu extensions will generate machine binaries
compatible with the host CPU architecture and will generate code
that transfers control to the GPTPU runtime system.

The GPTPU runtime system coordinates available TPU hardware.
The runtime system schedules TPU operations from programmer-
defined TPU tasks and prepares the inputs/outputs for TPU opera-
tions. Task scheduling and data preparation are left to the runtime
system because doing so allows the GPTPU system to (1) adapt to
changes in the underlying hardware without the need for repro-
gramming, (2) flexibly utilize underlying hardware resources, and
(3) unburden the programmer of hardware-limitation details (e.g.,
data precision).

The following sections describe the design of the OpenCtpu
programming-language front end (Section 5), the GPTPU runtime

system (Section 6), and optimized operators/library function/applications

(Section 7).

5 OPENCTPU-THE GPTPU PROGRAMMING
INTERFACE

OpenCtpu is a C/C++ extension for general-purpose program-
ming with GPTPU. OpenCtpu shares similarities with popular GPU
programming models like CUDA [13] and OpenCL [14] in that
OpenCtpu (1) places the control of application flow and device
usage on the CPU-based host, (2) leverages virtual memory abstrac-
tion so that applications can specify data locations, (3) requires the
programmer to explicitly manage data buffers for TPUs, and (4) pro-
vides functions that enable programmers to describe computation
tasks for computation on TPUs.

A programmer can use OpenCtpu API functions and the C/C++
standard library to compose a TPU-accelerated program (see Table 2
for a list of representative OpenCtpu API functions). To create tasks
for TPUs with the OpenCtpu API functions, a program needs to
have the following: (1) kernel functions that describe the desired
computation for TPUs, (2) input/output data buffers/structures
for TPU kernels, and (3) enqueuing kernel functions and their
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#include <stdio.h>
#include <stdlib.h>
#include <gptpu.h>

// The TPU kernel

void xkernel(openctpu_buffer *xmatrix_a,
openctpu_buffer xmatrix_b,
openctpu_buffer *matrix_c)

{
// invoke the TPU operator
openctpu_invoke_operator(conv2D, SCALE, matrix_a, \

matrix_b, matrix_c);

return 0;

¥

int main(int argc, char xkargv)

{
float *a, *xb, *c; // pointers for raw data
openctpu_dimension xmatrix_a_d, *matrix_b_d, *matrix_c_d;
openctpu_buffer * tensor_a, * tensor_a, *x tensor_a;
int size; // size of each dimension
// skip: data I/0 and memory allocation/initialization
// describe a 2-D tensor (matrix) object for a
matrix_a_d = openctpu_alloc_dimension(2, size, size);
// describe a 2-D tensor (matrix) object for b
matrix_b_d = openctpu_alloc_dimension(2, size, size);
// describe a 2-D tensor (matrix) object for c
matrix_c_d = openctpu_alloc_dimension(2, size, size);
// create/fill the tensor a from the raw data
tensor_a = openctpu_create_buffer(matrix_a_d, a);
// create/fill the tensor b from the raw data
tensor_b = openctpu_create_buffer(matrix_b_d, b);
// create/fill the tensor c from the raw data
tensor_c = openctpu_create_buffer(matrix_c_d, c);
// enqueue the matrix_mul TPU kernel
openctpu_enqueue(kernel, tensor_a, tensor_b, tensor_c);
// synchronize/wait for all TPU kernels to complete
openctpu_sync();
// skip: the rest of the program
return 0;

}

Figure 3: An OpenCtpu code sample

inputs/outputs as tasks (OpenCtpu is similar to OpenCL in this
respect). In the OpenCtpu programming model, all TPU operations
within a task (i.e., an instance of a TPU kernel function) will perform
in serial, but tasks can perform out of order in parallel. Therefore,
the programmer may need to invoke synchronized primitives to
ensure execution order and task completion.

To use Edge TPU operators in the kernel function, OpenCtpu
provides an API function
openctpu_invoke_operator. As the runtime system handles the
precision, the programmer simply needs to specify the desired quan-
tization method. In addition to openctpu_invoke_operator that
directly invoke Edge TPU instructions, OpenCtpu also implemented
optimized overloaded operators on tensor data (e.g., matrix-add
[+], matrix-sub [-], matrix-multiply [*]) to perform pair-wise ma-
trix addition, subtraction and multiplication to further simplify
programming.

The current OpenCtpu design brings several benefits to the
GPTPU system. First, OpenCtpu gives the runtime system the flexi-
bility to schedule and execute parallel tasks and to control the data
movements associated with each task. Second, OpenCtpu avoids
hardware complexity related to managing data consistency/coherency;
OpenCtpu does this by leaving data management to software, as
with GPGPU programming models. Third, OpenCtpu is designed to
be complementary to existing heterogeneous computing platforms
(we have verified that CUDA/OpenCL are compatible with our
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Synopsis

Description

openctpu_dimension
*openctpu_alloc_dimension(int dimensions,

This function allocates an openctpu_dimension data structure that describes the dimensionality of data in an in-
put/output buffer. Depending on the input value of dimensions, the function can accept additional parameters that
describe the dimensions.

openctpu_buffer_t
*openctpu_create_buffer(
openctpu_dimension *dimension,
*data, unsigned flags)

void

This function creates an input data buffer for TPU kernels. The pointer dimension provides a data structure with
information about the number of data elements, the data type, and the dimensionality of the data. The pointer data
provides the address for the raw data. The openctpu_buffer_t function returns a pointer to the created buffer.

int *openctpu_enqueue(void *(*func)(void

*)y oo.)

This function enqueues a TPU task described in func. In addition to func, this function can accept an arbitrary number
of arguments as func parameters. The function returns a task ID for the enqueued task.

int *openctpu_invoke_operator(enum
tpu_ops op, unsigned flags, ...)

This function invokes a supported TPU operator (with operator arguments) and returns the operator output. The
flags consist of parameters like the quantization method.

int *openctpu_sync()

This synchronization function requires all TPU tasks to complete before it returns.

int *openctpu_wait(int task_id)

This function blocks the calling thread until the specified task returns.

Table 2: Sample functions from the OpenCtpu API
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Figure 4: An overview of GPTPU’s runtime system.

OpenCtpu extensions when run in the same program). We expect
that CUDA/OpenCL can easily integrate our proposed extensions
into their programming interface. The purpose of OpenCtpu simply
serves as a transition for developers to easily exploit Edge TPU
features and rethink/rewrite algorithms for applications, rather
than replacing any existing heterogeneous programming standard.

Figure 3 shows an OpenCtpu code sample. The code contains
a kernel function that uses the conv2D operator. Before creating
a task instance from the kernel, the code must prepare two ten-
sors, a and b, as inputs and another tensor, c, as the output. To
describe the dimensionalities of these tensors, the program must
call openctpu_alloc_dimension to create openctpu_dimension
data structures for each tensor. The program can then make calls to
openctpu_create_buffer, which contains the openctpu_dimensi
values created for a and b, the pointers to the raw data for a and
b, and the reserved data buffer for the product, c. To perform the

ons

conv2D operation, the program calls the openctpu_invoke_operator
function, specifying SCALE as the quantization method for input/output

data, a and b as the inputs, and c as the output for the Edge TPU
operator (currently a one-to-one mapping to a fixed set of Edge
TPU/CPU instructions). The kernel function returns when the op-
erator is complete.

6 THE GPTPU LIBRARY AND RUNTIME
SYSTEM

The GPTPU runtime system receives tasks from the OpenCtpu front

end, dynamically schedules tasks, and transforms input/output

datasets for tasks. This section describes the design of the GPTPU
runtime system.

6.1 Task scheduling

The GPTPU runtime task-scheduling policy is a dataflow-based
algorithm on a front-end task operation queue (OPQ) and a back-
end instruction queue (IQ) as Figure 4 highlights. An OPQ entry
contains a task ID, the requested TPU operation, the input and
output locations, and parameters like the quantization method.

GPTPU gradually fills the OPQ during the execution of the user
application. When the program calls the openctpu_enqueue func-
tion, the GPTPU runtime system initiates a new task ID for the
invoked kernel function. The runtime system then executes the
code designated by the function pointer using the set of parameters
from the openctpu_enqueue call. The above process ends when
openctpu_invoke_operator is called to request the involvement
of a TPU operator/instruction.

The openctpu_invoke_operator function triggers the runtime
system to create an OPQ entry with the task ID created from
the current kernel function. The GPTPU runtime system then
fills the rest of the queue entry with information passed to the
openctpu_invoke_operator function. As the current OpenCtpu
design serializes operators from a single kernel-function instance,
kernel-function execution will be blocked until the operation fin-
ishes and each task has one operator from the openctpu_invoke_o
perator function in the OPQ. Since OpenCtpu allows all tasks to
execute in parallel, the GPTPU runtime system can issue entries in
the OPQ to Tensorizer without considering their original order.

After Tensorizer optimizes, reshapes and transforms data and
operations into instructions, Tensorizer divides a task into instruc-
tions in the IQ. The runtime system then schedules to the same
Edge TPU if they share the same input, quantization flags, and the
same task ID, but have different output locations—a scheduling
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approach that reduces movement overhead and the number of data
transformations required. For other instructions, the GPTPU run-
time system will use a first-come-first-serve policy to assign them
to available Edge TPUs.

6.2 Tensorizer

Tensorizer is responsible for dynamic optimizations at the task
level. Tensorizer transforms and optimizes programmer-requested
operations into instructions, input tensors and models that enable
efficient use of Edge TPUs.

Upon receiving a task from OPQ, Tensorizer first partitions
the programmer-requested operation into Edge TPU instructions
into sub-problems where each instruction works on its optimal
data/model shapes using insights from Section 3.2. Tensorizer trans-
forms the input data to minimize loss of accuracy due to the 8-bit
precision of TPU matrix units for each Edge TPU operator.

6.2.1 Mapping operators into instructions. As OpenCtpu hides the
hardware details from the programmer, programmer’s tasks are
agnostic to the granularity of inputs that optimize Edge TPU in-
structions. Tensorizer tackles this performance issue by dynami-
cally partitioning these tasks into Edge TPU instructions working
on their optimal data sizes/shapes (e.g., 128X128 matrices in most
arithmetic instructions). As Edge TPU supports limited numbers
of instructions/operators, we creates a set of rules that guides Ten-
sorizer in rewriting tasks.

For pair-wise operators that calculate on pairs of values from
both input matrices, including add, sub and mul or element-wise
operators that calculate on each value of an input matrix, including
tanh and relu the rule is straightforward. Tensorizer simply needs
to first divide the input data into tensors and models that contain
sub-matrices with the optimal shape. Then, Tensorizer rewrites the
operator into a set of Edge TPU instructions where each works on
a sub-matrix or a pair of sub-matrices locating at the correspond-
ing positions in the original inputs and collects the results in the
corresponding memory locations.

For matrix-wise operators, including mean and max, Tensorizer
still divides the input into sub-matrices with optimal shapes (i.e.,
both instructions favor 64X64 sub-matrices) and uses instructions
to work on each sub-matrix. However, Tensorizer will additionally
generate CPU code to aggregate the received values from results of
instructions to produce the final outcome. An alternative approach
is to create another sets of Edge TPU instructions and making the
received values an input tensor/model to iteratively use Edge TPU
to produce the result. Tensorizer does not take this approach as (1)
the first round of executing mean or max instruction already shrinks
the values to aggregate by a factor of 4096, and (2) the latency of
moving data in the currently system architecture is significantly
longer than aggregating results with CPU code.

For arithmetic operators, including FullyConnected and conv2D,
Tensorizer applies mechanisms similar to the blocking algorithm
for matrix multiplications [69] in rewriting tasks. If each input ma-
trix is partitioned into P X Q sub-matrices, The resulting code will
contain Edge TPU instructions that perform PxQ FullyConnected
or conv2D instructions and CPU code that aggregates results into
the final outcome. The CPU code only needs to add received values
that requires very short latency to execute on modern processors.
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In addition, as CPU registers are wider than Edge TPU’s data preci-
sion, aggregating results on CPU will allow the platform to reduce
precision loss in results.

After rewriting operations into actual machine/accelerator code,
Tensorizer will obtain the mapping between an input value and its
location in the transformed tensor/model.

6.2.2  Data transformation. To minimize the inaccuracy of compu-
tation, Tensorizer carefully rescales values into fixed-point numbers
and fill numbers into models or inference data arrays that Edge
TPUs can accept. GPTPU determines the scaling factor for input
datasets using (1) the sequence of operators, (2) the number of op-
erators, and (3) the range of input data. As the data size of each
Edge TPU instruction and the sequence of operators are known
at runtime, the GPTPU system can estimate the number of logical
arithmetic operations (num_logical_operations) that the instruc-
tions will generate. By discovering the maximum value (max) and
the minimum (min) value of the dataset, the runtime system can
estimate the range of output values and derive the model/tensor
scaling factor. The general rule of the scaling factor S of an operator

1S
5= ! (@)

max (|outputmax|, loutputmin|)

where outputmqy is the expected maximum output value and outputin

is the expected minimum output value. For most datasets, sam-
pling is efficient enough in large datasets as previous work indi-
cates that small subset of input data is representative for the whole
dataset [70]. As GPTPU calculates S using the maximum absolute
value of outputs, GPTPU prevents the case of overflow.

GPTPU applies different formulas for different types of operators.
If the input data is a pair of N X N matrix, GPTPU estimates the
scaling factor for each conv2D and FullyConnected, as:

1

= 5
|max — min|?2 x N ©)
For pair wise add and sub, GPTPU uses:
1
v T——T (6)
2 X |max — min|
as the scaling factor. For pair wise mul, GPTPU uses:
1
™)

" |max — min|?
as the scaling factor, and for other operators, GPTPU calculates the
scaling factor as:

1

=— ®)

|max — min|

For example, consider a request that performs matrix multipli-
cation and then pairwisely add another matrix on N X N matrices
with data ranging from 0 to n — 1. The maximum output value in
the resulting matrix will be 2 X N x (n — 1)2. The runtime system
can choose m as the scaling factor.
6.2.3 The overhead of Tensorizer. Using the information we gained
from reverse-engineering the Edge TPU model format as described
in Section 3.3, we implemented the proposed Tensorizer to dy-
namically create models from arbitrary input data. The C-based
Tensorizer can bring the latency of generating a model from a
2Kx2K matrix down to 1.8 ms—a 1500X speedup over the original



SC ’21, November 14-19, 2021, St. Louis, MO, USA

Python-based Edge TPU TFLite compiler and shorter than the la-
tency of data transfer. The GPTPU runtime system thus can overlap
Edge TPU matrix-input data movements with Tensorizer to reduce
the total latency of executing Edge TPU instructions from tasks.

7 OPTIMIZING APPLICATIONS FOR GPTPU

Mapping a problem into a GPTPU application requires inputs/outputs
to be transformed into tensors that Edge TPUs can operate on. Al-
though many applications use data in tensor form, the Edge TPU
instructions are optimized for NN workloads, meaning that naively
applying the default tensor operators may not improve performance.
Tensorizer helps to optimize performance in the task level, but us-
ing the most efficient operator for a task still requires programmer’s
optimization. This section describes GPTPU application design and
optimization using matrix multiplication as an example.

7.1 General Matrix Multiply (GEMM)

To demonstrate the importance of designing algorithms to wisely
use Edge TPU instructions, we explain the design of an efficient
GEMM on Edge TPUs, a fundamental linear-algebra tool for matri-
ces. GEMM takes two 2-dimensional tensors (matrices) as inputs
and produces a single 2-dimensional tensor as output. We can cal-
culate each element in the result matrix, C, obtained from a set of
pairwise multiplications and accumulations from an M X N matrix,
A, and an N X K matrix, B.

7.1.1  GEMM and the FullyConnected operator. The Edge TPU
FullyConnected instruction offers an intuitive way to implement
GPTPU GEMM, as the operator essentially produces a matrix-vector
product. A program can select either matrix A or matrix B and
iterate through a column or row of the other matrix to produce the
result, and matrix multiplication will be performed via the M or K
FullyConnected operators.

7.1.2 Theconv2D operator/instruction. Edge TPU’s conv2D instruc-
tion can also perform multiplications and accumulations but in
different orientations to derive the result. In conventional architec-
tures, programmers implement convolutions by performing scalar-
scalar or vector-vector multiplications and accumulations for higher
efficiency. However, Table 1 shows that the RPS of convolution
(i.e., conv2D) is 25X the RPS of matrix-vector multplications (i.e.
FullyConnected) on Edge TPUs. Inspired by this observation, we
therefore explore the implementation by changing the layout of
input data and using conv2D to perform exactly the same number
of multiplications and accumulations on the set of input numbers
to leverage the high RPS of conv2D for a more efficient GEMM
implementation.

The conv2D instruction takes one of its inputs as the kernel,
multiplies each kernel element with an input element mapping to
the corresponding location, and accumulates the result as an output
element. Each conv2D instruction can produce a result matrix that
has the same size as the non-kernel input.

For an M X N input matrix, A, and an L X L kernel, B’, each
element in the conv2D M X N output matrix, C, is:

L L
Cij= D, > Airpjrg - Bpg(V0O<i<MO<j<N) (9)
q=0 p=0
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Figure 5: The conv2D as implemented with stride
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Figure 6: Speedup of GEMM GPTPU implementations us-
ing FullyConnected and conv2D, relative to the baseline CPU
OpenBLAS implementations.

Targeting AI/ML workloads that are error tolerant (and so per-
mit approximations), the Edge TPU conv2D instruction allows a
programmer to assign a stride value (sx, sy) that treats inputs as
groups of sx X sy sub-matrices and produces a corresponding result
value for them.

Figure 5 illustrates the concept of conv2D with stride. We select
(3, 3) as our stride, restricting conv2D to 9 numbers in a group; the
conv2D operator only produces a value for every 3 row/column
elements in the abstracted outcome, as in Figure 5(c), from the
source matrix, as in Figure 5(a), using the kernel in Figure 5(b). The
final output of conv2D is a condensed matrix, as in Figure 5(d).

GPTPU uses conv2D and its striding feature to implement an
efficient GEMM algorithm. The algorithm starts by reshaping both
inputs that transform each row in the chosen source matrix into a
sub-matrix whose size is determined by the selected stride (s, sy).
Ordinarily, both sy and sy are the round-up of the square root
of the column dimension in the source matrix. The other input
matrix serves as a list of kernels, where each kernel of size s, X sy
contains a column from that matrix. When creating the kernels,
the GPTPU GEMM algorithm fills the kernel elements to match the
desired element-wise multiplications for GEMM. In other words, for
a matrix with N columns and K rows, the resulting kernel matrix
will contain N kernels where each kernel contains [VK] x [VK]
elements. That being said, the resulting kernel matrix still contains
exactly the same or similar amount of elements (i.e., N X ([VK))?
v.s. N X K) as the original input matrix. After transforming both
inputs, conv2D iterates through all sub-matrices over each kernel
with the selected stride and generates output identical to that of
conventional matrix multiplication.
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7.1.3  FullyConnected and conv2D together. Figure 6 shows the
performance of GPTPU GEMM kernel implementations using
FullyConnected and conv2D compared to the CPU baseline using
OpenBLAS [71]. The conv2D implementation reveals a strong per-
formance gain (a 2.06x speedup in the 4Kx4K microbenchmark)
over the CPU baseline. In contrast, the GPTPU GEMM implemen-
tation cannot beat the CPU baseline without conv2D (i.e., when
GEMM only uses FullyConnected).

Though the GPTPU GEMM algorithm incurs additional data-
transformation overhead, GPTPU’s conv2D-based GEMM signifi-
cantly outperforms the conventional vector-product-based algo-
rithm by 43X on our GPTPU platform. This is because the Edge
TPU architecture highly optimizes conv2D and the favorable RPS
of conv2D compensates for the additional overhead.

Since GEMM is a widely used, fundamental linear-algebra tool for
matrices, GPTPU makes the core GEMM algorithm available as an
optimized library function, tpuGemm, that GPTPU applications can
invoke—just as CUDA invokes the cuBLAS GEMM implementation
via the cublasGemm function [72].

7.2 Other applications

As with GEMM, our goal for all GPTPU applications is to utilize
instructions with the highest RPS. We now summarize how we
extended the GPTPU GEMM approach to other applications whose
workloads we evaluate in the latter part of this paper. This section
focuses on the GPTPU instructions that the GPTPU implementa-
tions use.

7.2.1 PageRank. The PageRank algorithm [73] is a representative
graph application. PageRank takes an adjacency matrix represent-
ing a graph as input. Both the baseline and the GPTPU imple-
mentations use the classic power method that iteratively performs
matrix-vector multiplications. In contrast to CPU/GPU PageRank
implementations that perform pairwise or vector-wise multipli-
cations, the GPTPU PageRank implementation simply uses one
FullyConnected instruction for each adjacency-matrix multiplica-
tion with a single vector.

7.2.2  HotSpot3D. HotSpot3D is a thermal-simulation tool for esti-
mating the temperature of a chip made with 3D-stacking. The main
algorithm gradually and iteratively updates each point on the chip,
which is represented as a matrix with a weighted average of the
point’s closest neighbors in 8 different directions. The HotSpot3D
algorithm can naturally map to conv2d with a 3x3 kernel without
striding.

7.2.3 LU Decomposition (LUD). LUD factors a matrix into a lower
triangular matrix (L) and an upper triangular matrix (U) such that
L X U yields the original matrix. Our GPTPU LUD implementation
uses the recursive algorithm [74] via crop, FullyConnected, and
conv2D to partition matrices and perform appropriate operations
on different combinations of the partitioned matrices.

7.2.4  Gaussian elimination (Gaussian). Like LUD, Gaussian is a
method for solving a system of linear equations. Gaussian combines
row swaps, the scalar multiplication of rows, and row additions
until the lower left-hand triangular matrix contains only zeroes.
For Gaussian, GPTPU uses mul to perform each row reduction.
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Input Data Baseline
Benchmark Matrices Size Category Implementation
Backprop 1X8KX8K 512MB | Pattern Recognition [76,77]
BlackScholes | 1x256MX9 9GB Finance [78]
Gaussian 1x4Kx4K 64MB Linear Algebra [76, 77]
GEMM 2X16Kx16K 1GB Linear Algebra [71,72,79]
HotSpot3D 8x8KX8K 2GB Physics Simulation [76,77]
LUD 1X4Kx4K 64MB Linear Algebra [76, 77]
PageRank 1x32Kx32K 4GB Graph [80]

Table 3: The input dataset sizes for the GPTPU benchmark
applications

7.2.5 Backpropagation (Backprop). Backprop is foundational to
NN supervised learning. We implemented a plain-vanilla version
of Backprop to demonstrate the ML/Al-generalizable nature of
GPTPU. For a feedforward NN, the GPTPU Backprop uses (1) mul-
tiple layers of FullyConnected and sigmoid activation functions
in ReLu, (2) add for the actual backpropagation, and (3) tpuGEMM to
derive weights for the delta matrix.

7.2.6  Black-Scholes (BlackScholes). BlackScholes is a financial
model for estimating the market price of stock options. GPTPU uses
a ninth-degree polynomial function [75] with the FullyConnected
instruction to compute the cumulative normal distribution func-
tion.

8 EXPERIMENTAL METHODOLOGY
8.1 The system platform

We use exactly the same prototype machine described in Section 3
for all experiments performed with GPTPU. When performing
experiments for baseline applications, we removed the TPUs from
the machine.

For each application, we measured the end-to-end latency. We
also measure the total system power using a Watts Up meter. When
calculating energy consumption, we aggregate the total system
power throughout the application execution time. On average, each
active Edge TPU adds only 0.9 W to 1.4 W of power consumption,
while aloaded AMD Matisse core in the GPTPU hardware prototype
consumes from 6.5 W to 12.5 W. As GPTPU still relies on the CPU
for the runtime system and data transformation, both CPUs and
Edge TPUs can be active when running applications. The idle power
of the experimental platform is 40 W, including the southbridge
chip on the motherboard, NVMe-based storage devices as well as
other peripherals connected to the system.

8.2 The baseline application implementations

For each application described in Sections 7, we compared our
GPTPU implementations with (1) optimized CPU/GPU implemen-
tations from benchmark suites [76, 78] or (2) widely-used distribu-
tions [71, 72, 80]. Table 3 lists the input datasets and the baseline
implementations for each application we used in our experiments.
We only select a subset of applictions from these benchmark suites
because these are all applications that (a) preserve the form of ma-
trix inputs and (b) can map their core algorithms to reasonable
matrix operations. We do not expect GPTPU and Edge TPUs to be
effective for applications that can only exploit vector arithmetics
since Edge TPU’s architecture is specialized for matrix operations.
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Figure 7: The application (a) speedup, (b) energy consump-
tion, and energy-delay products for a single Edge TPU, rela-
tive to the baseline CPU implementations

We also use Facebook’s GEMM (FBGEMM) [79] for approximate
computing on GEMM.

9 RESULTS

This section describes the speedup, energy consumption, and ac-
curacy observed for GPTPU when running different applications.
Compared to modern CPU-based platforms running optimized code,
GPTPU exhibits improved performance and significantly reduced
energy needs. In addition, the GPTPU GEMM implementation
yields more reliable results in approximation than a low-precision
matrix-multiplication library run on a CPU.

9.1 Single core performance: GPTPU vs. CPU

Figure 7 summarizes the speedup, energy consumption, and energy-
delay of GPTPU-based applications. We used a single Edge TPU
and a single CPU core to compare execution of workloads in our
baseline tests to compare the per-core raw hardware capabilities.

Figure 7(a) compares end-to-end latency. The GPTPU system is,
on average, 2.46X faster than the CPU. For Backprop, the speedup
is 4.08x (not surprising given that the Edge TPU was originally
designed for applications like Backprop). Excluding Backprop, the
average speedup is still 2.19%. HotSpot3D actually experiences the
least speedup with GPTPU. This is because GPTPU’s HotSpot3D
uses very small kernels and large inputs accompany each iteration,
the data-movement overhead dominates end-to-end application
latency. However, even under this scenario, GPTPU can still speed
up the performance of HotSpot3D by 1.14x.

Figure 7(b) shows the relative energy consumption and energy-
delay products for GPTPU applications vs. their CPU baseline im-
plementations. GPTPU consumes only 5% of the active energy and
only 51% of the idle energy that a CPU consumes (an energy savings
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27 < _215 < _231 <
Benchmark default | x <27 | x <2 | x <23
Backprop 0.12% 0.17% 0.10% 0.11%
Blackscholes | 0.18% 0.18% 0.18% 0.18%
Gaussian 0.00% 0.00% 0.00% 0.00%
GEMM 0.89% 0.90% 0.90% 0.90%
HotSpot 0.50% 0.49% 0.46% 0.46%
LUD 0.00% 0.00% 0.00% 0.00%
PageRank 0.61% 0.73% 0.73% 0.73%
Average 0.33% 0.35% 0.34% 0.34%

(@)

2T < [ 2P <[ -2%T<
Benchmark default | x <27 | x <2 | x <23
Backprop 0.14% 0.17% 0.12% 0.12%
Blackscholes | 0.33% 0.33% 0.33% 0.33%
Gaussian 0.00% 0.00% 0.00% 0.00%
GEMM 0.98% 0.91% 0.91% 0.91%
HotSpot 0.64% 0.64% 0.59% 0.59%
LUD 0.00% 0.00% 0.00% 0.00%
PageRank 0.41% 0.91% 0.91% 0.91%
Average 0.41% 0.42% 0.41% 0.41%

(b)
Table 4: The (a) MAPEs and (b) RMSEs for GPTPU applica-

tions

of 45%), and even the worst-performing GPTPU benchmark still
saves 3% overall system energy. For energy-delay products, which
take both latency and energy consumption into consideration, ap-
plications run with GPTPU enjoy a 67% reduction over the baseline
CPU. Excluding the top-performing Backprop, GPTPU still achieves
an 40% energy savings and a 62% energy-delay improvement.

GPTPU sacrifices accuracy—but only to a limited degree. Table 4
measured the mean absolute percentage error (MAPE) and the root
mean square error (RMSE) between the GPTPU and CPU applica-
tion implementations using the default dataset from the benchmark
and our randomly generated datasets with various ranges of values
in their inputs. The MAPE is always less than 1% across all applica-
tions, regardless their ranges of input values. The average MAPE
is 0.26%-0.33%. The largest RMSE we measured was an acceptable
0.98%. In some cases, the GPTPU results in higher error rates in
compute on default datasets than on synthetic inputs with larger
data ranges. This is because the input values of synthetic datasets
are typically normally distributed but the real, default datasets are
not always normally distributed.

9.2 GPTPU-GEMM vs. 8-bit CPU GEMM

GPTPU allows single-Edge TPU performance to surpass single-
CPU-core performance. That being said, the Edge TPU uses low-
precision data types, whereas the baseline CPU implementations do
not. To account for this difference when using approximate comput-
ing with the CPU cores, we compared the GPTPU implementation
running with the state-of-the-art FBGEMM low-precision CPU
matrix-multiplication library that intensively uses the latest AVX
instructions to support 8-bit operations [79]. We did not include
other workloads in this part as other workloads do not have imple-
mentations optimized for 8-bit CPU operations.

Table 5 shows the results for GPTPU’s GEMM vs. FBGEMM us-
ing 1024x1024 matrices with positive integers and maximum input
values ranging from 2 to 128 (we chose this data size only to accom-
modate FBGEMM'’s limitations). As Figure ??(a) shows, GPTPU-
GEMM consistently outperforms FBGEMM on high-performance
CPU cores with 1.22X to 1.28% across all configurations. However,
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Range of Values 0-2 | 0-4 | 0-8 | 0-16 | 0-32 | 0-64 | 0-128
Speedup over FBGEMM | 1.26 | 1.27 | 1.28 | 1.22 1.28 1.27 1.28
RMSE FBGEMM | 0.00 | 0.00 | 0.00 | 0.00 | 0.47 | 087 | 0.97

[ TPUGEMM_| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
Table 5: The speedup and RMSE for GPTPU’s GEMM library

function relative to FBGEMM

when the maximum matrix-entry value exceeds 16, FBGEMM’s
RMSE is poor as Table 5 presents, reaching 47% when the largest
value within the dataset is 32. Furthermore, the FBGEMM RMSE
goes as high as 97%, meaning that most result values are not con-
vincing when the largest value is 128. In contrast, GPTPU-GEMM’s
RMSE is always less than 1% (0.82% when maximum value is 128).
This is because FB’s GEMM targets at error-tolerant ML applications
but does not handle overflow cases. However, the performance eval-
uation indicates that even if the CPU baseline uses 8-bit operations,
GPTPU-GEMM is faster.

9.3 Parallel processing with multiple Edge
TPUs

The GPTPU runtime system uses a task queue that allows multiple
Edge TPUs to process tasks in parallel. Even without programmer’s
explicit partitioning of tasks, Tensorizer also automatically gener-
ates parallel tasks from the user code. Figure 8(a) shows the speedup
of adding more Edge TPUs into our system, without modifying the
user code, compared with the single-core CPU baseline. With 8 Edge
TPUs that consume similar active power as a single RyZen core,
GPTPU achieves an average 13.86X speedup. In constrast, the 8-
core, OpenMP-based CPU implementations can only achieve 2.70X
speedup over the baseline. Figure 8(b) further shows log-scale per-
formance with up to 8 Edge TPUs running GPTPU tasks, compared
with single Edge TPU. The linear plots reveal good performance
scaling for 6 out of 7 applications when the GPTPU runtime system
executes tasks in parallel. The only exception is LUD, which already
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Cost Power Con. | Comment
Single Edge TPU | USD 24.99 2W
RTX 2080 USD 699.66 215W Now USD 1399
Jetson Nano USD 123.99 10 W
8x Edge TPU USD 159.96 16 W Using 4X dual Edge TPU modules

Table 6: The cost and power consumption of hardware accel-
erators that we compared in this work
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Figure 9: The relative (a) performance and (b) energy for
GPTPU with 1x and 8x Edge TPUs vs. the GTX 2080 GPU
and Jetson Nano

partitions matrices into four sub-matrices for computation using
matrix-wise operators, making it difficult for Tensorizer to scale
the performance in only one of the four partitions.

9.4 Comparison with GPUs

Because an increasing number of workloads leverage GPU par-
allelism, we compared the GPTPU to NVIDIA’s high-end Turing-
architecture-based GTX 2080 and NVIDIA’s embedded Jetson Nano
platform. Table 6 lists the cost and power consumption of evalu-
ated GPUs along with Edge TPUs. Due to the limitation of Jetson
Nano’s available memory capacity, we have to scale down the input
datasets of Blackscholes, Gaussian, GEMM, LUD and PageRank
by 25% to 50% to not crash the GPU kernel. Figure 9(a) compares
the performance for the RTX 2080 and Jetson Nano, using a sin-
gle Ryzen 3700X CPU core as the baseline, for Rodinia benchmark
applications and GEMM using cuBLAS. We enabled RTX-2080’s
16-bit ALUs for Gaussian, HotSpot3D, Backprop and Tensor Cores
in 8-bit mode for GEMM. The GTX 2080 GPU is 364X faster than a
CPU core and 69x faster than the Edge TPU. The embedded GPU
on Jetson Nano is still 15% faster than a CPU core and 2.30% faster
than an Edge TPU on average. However, with 8x Edge TPUs, the
GPTPU can outperform the CPU core by 3.65X and Jetson Nano by
2.48X.
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Figure 9(b) compares the energy consumption of evaluated plat-
forms. Including idle energy, the 8x-Edge TPU system is the most
energy-efficient as the platform can save energy by 40% from the
CPU baseline but achieve reasonable speedup. In constrast, the GTX
2080 platform consumes 9% more energy than the CPU baseline.
Even though the idle power of the Jetson nano development kit
is simply 0.5 W, Jetson nano is still more energy-consuming than
GTX 2080 due to the limited speedup.

If we only consider the active power consumption to exclude the
factor of various idle power in different system settings, the GTX
2080 consumes 14X the energy of 1x Edge TPU on average, due to
the GPU’s 195X average active power consumption compared with
the Edge TPU, translating to 4.96X worse energy-delay than the
baseline. Jetson Nano consumes 23.55X more energy than 1x Edge
TPU, making the energy-delay of nano 15.54x worse than 1x Edge
TPU. 8x-Edge TPU system consumes just 75% more active energy
than 1x Edge TPU, even though the active power consumption is
almost 8% of a single Edge TPU. With 8x Edge TPUs, GPTPU offers
even better energy-delay (i.e., 46% lower) than the baseline. This
result shows that GPTPU offers better energy-efficiency than the
current GPU-based solution on embedded/edge platforms.

10 RELATED WORK

Neural processing units (NPUs) [81, 82] work by using pre-trained
models that predicts the outcome of code blocks and map the user
program to these models. The GPTPU-based approach is funda-
mentally different from approaches that rely on the acceleration
of approximate programs via NPU in three important ways: (1)
GPTPU can accelerate any user-defined algorithm by mapping ten-
sor/matrix operations to supported operators, whereas NPUs can
only accelerate a limited set of algorithms that match previously
trained NN models. (2) GPTPU can leverage the Edge TPU microar-
chitecture and NN hardware to implement exact tensor/matrix
operations for applications, whereas NPUs use NNs to produce
approximate results for applications. (3) GPTPU can achieve the
desired level of precision by iteratively computing on different por-
tions of raw input numbers, whereas NPUs are always limited by
the approximate outcomes of NN models.

ASICs can be used like TPUs to accelerate NN applications, as
can existing fine-tuned architecture components. Industry data
centers [83-85] take advantage of heterogeneous hardware compo-
nents by using different processors and reconfigurable hardware
for different ML tasks. EFLOPS [86], Richins et. al. [87], and Flex-
Tensor [88] optimize algorithms and task allocations for network
traffic in data-center-scale edge computing or single-server com-
puting to reduce infrastructure costs. Language frameworks like
ApproxHPVM [89] and ApproxTuner [90] further helps program-
mer to estimate and optimize the loss of accruacy in ML workloads.
The GPTPU framework is orthogonal to the aforementioned re-
search because GPTPU is compatible with existing heterogeneous
computing platforms; Edge TPUs can function as complementary
hardware accelerators within the system. Ultimately, emerging
tensor-processing hardware will inspire the development of related
algorithms and associated software [91-93]. We have seen work
extending the application of TPUs to medical image processing [94].
We expect GPTPU can further facilitate this trend. GPTPU can exist

Kuan-Chieh Hsu and Hung-Wei Tseng

in parallel to such future research and potentially extend newly
developed algorithms to work in additional application domains.
This paper does not focus on sparse matrices, as many NN accel-
erators implicitly optimize for sparse matrices. Examples include
SCNN [95], SparTen [96], Sparch [97], Scalpel [98], SIGMA [99],
Cambricon-X [100], Bit-Tactical [101], Bit-Pragmatic [102], Out-

erSPACE [103], Laconic [104], Bit Fusion [105], Sparse Tensor Core [106],

PermDNN [107], Park et al. [108], Song et al. [109], and Rhu et
al. [110].

11 CONCLUSION

This paper presents GPTPU to bridge the gap between NN acceler-
ators and general-purpose programming. By reverse engineering
the commercially available, low-profile NN accelerator, the Google
Edge TPU, to uncover important architectural characteristics and
the data-exchange protocol, we implement an efficient runtime
system, including Tensorizer that dynamically optimizes data lay-
out and instructions, as the GPTPU platform’s backend. Using
the GPTPU platform and the derived performance numbers, we
re-designed the algorithms for a set of important, non-AI/ML re-
lated applications. The prototype GPTPU system exhibits a 2.46X
speedup over modern high-end CPUs with 40% energy reduction.
Though single Edge TPU performance is not yet competitive with
high-end GPUs, but the strong scalability of multiple Edge TPUs
reveals the potential of future extensions of this line of accelera-
tors. As the demand of ML applications keep growing, we expect
manufacturers to keep advancing the microarchitecture of ML ac-
celerators for higher performance and energy-efficiency. GPTPU
thus represents an important exploration of general-purpose com-
puting on NN accelerators and is complementary to existing work.
The insights presented in this paper will also help extend the range
of NN accelerator applications as well as guiding the algorithm
design and code optimization for future NN accelerators.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran the Rodinia_3.1 on a machine with an AMD 8-core proces-
sor and 8x M.2. Edge TPUs. The machine hosts a Ubuntu Linux
16.04 system with both TensorFlow 1.13.0 and with libedgetpu
frameworks installed. These libraries are essential for driving the
Edge TPU hardware to run compatible models with our desired
instructions. The baseline GPU applications are mainly from Ro-
dinia_3.1 benchmark suite, except GEMM is directly derived from
call NVIDIA’s cuBLAS. The GPU hardware used for baseline are
GeForce RTX 2080 with CUDA 11.0 and driver 450.51.06, and jetson
nano 4G.

Author-Created or Modified Artifacts:

Persistent ID: https://anonymous.4open.science/r/cdo
— 5e700-cd63-43c7-814f-11fbcc459eb9/
Artifact name: GPTPU open-sourced code

Persistent ID: "ssh sc21@escal.escalab.org -p 425"

— and then "ssh gengar" with both pw: 21scea. (make
— all to compile, make run to actual run)

Artifact name: GPTPU open-sourced code on an local

< machine

Persistent ID: 10.5281/zenodo.5156431
Artifact name: The DOI GPETPU code used for the AE

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: AMD Ryzen 7 3700X 8-Core 113,
Google M.2. EdgeTPU

Operating systems and versions: Ubuntu 16.04.6 running Linux
kernel 4.15.0

Compilers and versions: g++ 5.4.0

Applications and versions: rodinia_3.1

Libraries and versions: tensorflow 1.13.0, github-libedgetpu
Key algorithms: General Matrix Multiplication

Input datasets and versions: rodinia_3.1 dataset
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