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ABSTRACT: We explicitly compute the component action of certain recently discovered
new N = 1 supergravity actions which enlarge the space of scalar potentials allowed by
supersymmetry and also contain fermionic interaction terms that become singular when
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proposed by Antoniadis, Chatrabhuti, Isono, and Knoops. This paper is complementary to
our previous papers [Phys. Rev. D 103 (2021) 025008 and 105006], in which new constraints
on the coupling constants of those new theories were found. In this paper we spell out many
details that were left out of our previous papers.

KEYWORDS: Supergravity Models, Superspaces

ARX1v EPRINT: 2108.04469

OPEN AccESS, © The Authors.

Article funded by SCOAP? https://doi.org/10.1007/JHEP11(2021)075


mailto:hun.jang@nyu.edu
mailto:massimo.porrati@nyu.edu
https://arxiv.org/abs/2108.04469
https://doi.org/10.1007/JHEP11(2021)075

Contents

1 Introduction

2 Component action of liberated N/ = 1 supergravity in superconformal

tensor calculus

2.1 Embedding super-Weyl-Kéhler transformations as an abelian gauge symme-

2.2

2.3
2.4

2.5 Additional gauge fixing for physical theory in the liberated supergravity

3 Component action of new FI term in superconformal tensor calculus

try into the superconformal formalism

List of superconformal multiplets
2.2.1 Kéhler potential multiplet
2.2.2 Compensator multiplet

2.2.3 W3(K) = Wa(K)W?*(K) composite chiral multiplet: (Weyl/Chiral)

weights = (3, 3)

2.2.4  w?, w? composite complex multiplets: (Weyl/Chiral) weights = (—1, £3)
2.2.5 T(w?),T(w?) chiral projection multiplets: (Weyl/Chiral) weights = (0, 0)
2.2.6 Final form of the composite multiplet of liberated N' = 1 supergravity

Bosonic Lagrangians

Fermionic Lagrangians

2.4.1 Structure of the fermionic components

3.1 Component action of the new FI term

4 Consistency check of supergravity as effective field theory through su-

3.1.1 w? w? composite complex multiplets: (Weyl/Chiral) weights = (—1,3)

and (—1,-3)

3.1.2  T(w"?),T(w'?) chiral projection multiplets: (Weyl/Chiral) weights = (0,0)
3.1.3 Composite real multiplet R: (Weyl/Chiral) weights = (0, 0)
3.1.4 Bosonic term of the new FI term

perconformal tensor calculus

4.1 Constraining liberated N/ = 1 supergravity
4.2 Constraining new Fayet-Iliopoulos terms

5 Summary

Al
A2

Some details

Derivatives of N

Some detailed calculations in liberated supergravity

~N Ot Ot &~

27
27
28

29

30
30
30




1 Introduction

The results of LHC run 2 show no significant deviations from Standard Model predictions
thereby pushing the energy scale of new physics — and in particular low-scale supersymme-
try [1, 2]- to higher and higher values. This empirical observation combines with theoretical
difficulties such as the eta problem that seems to plagues many supergravity models of in-
flation (see e.g. [3] for a review) to make alternative scenarios worth considering. One
easy way out of all problems posed by supersymmetry is to assume that the world is not
supersymmetric at all. On the other hand the high-energy completion of any field theory
containing gravity provided by perturbative superstring theory implies that at some very
high energy scale the world is supersymmetric (and 10-dimensional). In superstring theory
the largest and best understood set of models of low-energy physics — such as Calabi-Yau
or flux compactifications — are such that extra dimensions are compactified at energy
scales which are much above the supersymmetry breaking scale. It is therefore reasonable
to study four-dimensional models in which supersymmetry is broken at a high scale, e.g. at
a scale Mg > 1TeV. While a large Mg means that supersymmetry does not help solving
the Standard Model naturalness problem it does open up many new possibilities for writing
consistent actions.

Among these possibilities, some recent proposals use explicitly supersymmetric terms
that look at first sight singular, because when written in superspace they contain inverse
powers of superfields. What makes possible to write such terms is that they in fact they
depend at most on inverse powers of the auxiliary fields. So they are well defined when
supersymmetry is broken. We will study in particular the theory called “liberated N' = 1
supergravity”, proposed in ref. [10] and the new Fayet-Iliopoulos (FI) term introduced in [4—
9]. These modifications of the standard supergravity action relax the highly constrained
form of scalar potentials in supergravity. (recall that the scalar potential has the universal
form V =Vp+Vp, Vi = eG(GAGABGB — 3) and Vp, for some function G of the chiral
multipet scalars.). The cosmological applications to inflation of such models have been
recently investigated in [5, 12].

Supergravity actions contain many nonrenormalizable operators that depend on the
fermionic fields. Their existence defines an ultraviolet (UV) cutoff scale of the theory. While
this property is generic in locally supersymmetic theories, it is not dangerous when the UV
cutoff is the Planck scale My, which is in any case the ultimate cutoff for supergravity,
and of course also for Einstein gravity. In the models studied in refs. [11, 12] instead, the
UV cutoff is connected to the supersymmetry breaking scale, so it becomes an important
parameter that constraints the domain of validity of those models.

The main purpose of this work is to show a systematic analysis of how a cutoff scale of
an effective supergravity theory is determined by its fermionic nonrenormalizable terms and
what constraints on the cutoff arise from the nonrenormalizable terms. These fermionic

nonrenormalizable Lagrangians are conventionally represented by Lp ~ C (4_5)(91@ where

6 > 4 is the mass dimension of the fermionic nonrenormalizable operators (’)g). Then,

(4-9)

we find constraints on the expansion coefficients C because these coefficients must be

suppressed by a cutoff scale A¢yt of a theory for this to be valid as an effective field theory



in range of some energies of interest below the cutoff; that is,

1
4—6
c-9 < NEd (1.1)

cut

By taking this inequality into account, we are able to determine in what range of energies
a low energy supergravity theory can be considered as an effective field theory. To do
S0, it is essential to explore all of the fermionic nonrenormalizable terms as we have just
seen above. Checking these terms may be difficult if we use the superspace formulation
as we have to fully calculate them and the superspace fields contain many more auxiliary
components than needed for the off-shell closure of the supersymmetry algebra. However,
we point out that using the superconformal tensor calculus enables us to compute both
bosonic and fermionic terms in a systematical and economical way. Hence, in this work we
take advantage of the superconformal formalism.

Since this paper is rather technical, the reader chiefly interested in finding the con-
straints on new supergravity terms can skip ahead to section 4. The paper is organized as
follows. In section 2, we review how to embed liberated N' = 1 supergravity in the super-
conformal tensor calculus, which was firstly introduced in ref. [11], and explicitly compute
the component action of the liberated supergravity using the tensor calculus in detail.! In
section 3, we review the component action of a new FI term, which is Ké&hler-invariant, pro-
posed by Antoniadis, Chatrabhuti, Isono, and Knoops (ACIK).? In section 4, we recall the
constraints on the liberated supergravity terms derived in [11] and derive the constraints
on the new FI terms used in [12]. Both sets of constraints are based on an analysis of
fermionic nonrenormalizable interactions. In section 5, we briefly summarize our findings.

2 Component action of liberated N/ = 1 supergravity in superconformal
tensor calculus

In this section, we compute the component action of liberated AN/ = 1 supergravity in
superconformal tensor calculus [13-15]. We find that the superconformal Lagrangian of
liberated N = 1 supergravity [10] can be written by a D-term

2,2
[y wiw -
LNew = |Y 7T(1D2)T(w2)u(z’ Z) D, (2.1)

in which we define ) = SySpe£/3 where Sy is a conformal compensator with Weyl/chiral
weights (1,1) and K is a Kéahler potential with the weights (2,0). The notation for the
other fields is as follows: w? = %, w? = %, W2(K) = Wa(K)W*(K) where
Wa(K) is a field strength multiplet with respect to the Kihler potential; U(Z, Z) is a
general function of matter multiplets Z, and T'(w?), T(w?) are chiral projection of w? and
its conjugate respectively.

!Section 2 provides the detail calculations of the liberated supergravity, which was omitted in ref. [11].

2We shall call the new FI term proposed by the authors as “ACIK-FI term” to distinguish it from other
types FI terms. Section 3 also provides the detailed calculations of the ACIK-FI term, which were omitted
in ref. [12].



2.1 Embedding super-Weyl-Kihler transformations as an abelian gauge sym-
metry into the superconformal formalism

In liberated N' = 1 supergravity [10], a key idea is that the Super-Weyl-Kéhler trans-
formation can be promoted to an Abelian gauge symmetry. Liberated supergravity was
constructed in [10] using the superspace formalism, where a Kéhler transformation is in-
troduced to compensate the variation of the action under a super-Weyl rescaling. In this
work instead, we want to construct the equivalent liberated supergravity using the su-
perconformal tensor calculus to analyze the fermionic interactions in a systematical and
economical way. To do so, we introduce a conformal compensator multiplet, called Sy,
removing the variation while maintaining the Kéhler potential invariant under supercon-
formal symmetry. Therefore, unlike the superspace formalism, it is essential to define such
a gauge transformation independently of superconformal symmetry.

To find the Super-Weyl-Kéhler transformations that are compatible with the supercon-
formal formalism, we recall first the Super-Weyl-Kéhler transformations that are used in
the superspace formalism. A Kéhler function K (z, z), whose arguments have the vanishing
Weyl/chiral weights, is defined up to a chiral gauge parameter ¥. The redefinition by ¥
acts on the components of the Kdhler multiplet as

K — K + 6% + 6%, (2.2)

W — We 6%, W — We 6= (2.3)

T — e 454257, T — 25457 (2.4)
Do K — &~ 2D, K, Wa = e 35W,, W2 = e W2, (2.5)
TONV?) — T(W?)e 4243, (2.6)
DW, — e 25-28poyy, (2.7)
E— Ee22+22, E — e, (2.8)

where E and £ are the D- and F-term densities, respectively.

Next, it may be useful to recall the relation between the superspace and superconformal
formalisms. The invariant actions from the superconformal formalism are identified with
those from the superspace calculus as follows [16]:

V]p =2 / d*0EV, (2.9)
mpszws+/f%& (2.10)

where V is a superconformal real multiplet with the Weyl/chirial weights (2,0) and S is a
superconformal chiral multiplet with Weyl/chiral weights (3, 3). To make the action invari-
ant under the super-Weyl-Kéhler transformations we should impose that the corresponding
superconformal multiplets transform as

Vo Ve 2 S Se 6 (2.11)



Instead of considering the Kéhler transformation of the Kéhler potential a superconfor-
mal compensator is introduced in the superconformal formalism to eliminate the variation
of the action transformed by a super-Weyl rescaling (also called Howe-Tucker transforma-
tion [17]). Thus, the compensator must transform as

So — 506_22, g() — 5’06_22, (2.12)

resulting in
S()S'()@*K/3 — SogoefK/S'e*ZEfQE, (2.13)

where K is invariant under the superconformal symmetry (i.e. super-Weyl rescaling), so
that the action can be invariant as desired.

At this point, differently from the usual story of the superconformal symmetry, we
require a “Kaéhler transformation” of the Kéhler potential in order to construct a “liber-
ated” supergravity that is invariant under the same Super-Weyl-Kéhler transformations as
an abelian gauge symmetry used in [10]. Therefore, we assume that the superconformal
compensators are inert under the super-Weyl-Kéahler transformations

S() — So, g() — 5’0, (2.14)

while the Kéhler potential does transform under the same transformations as above, namely
as K — K + 6% + 6%, so that

Y o Ye 25D, (2.15)

W2(K) B _

2 _ 2 —954+4%
w” = (K355 — w’e , (2.16)
T <w2) - T (w26_22+42) 24 (wQ) . (2.17)

2.2 List of superconformal multiplets
In this section, we present all the superconformal multiplets of the liberated N’ = 1 super-

gravity following the notations and multiplication laws used in [3, 15].

2.2.1 Kaihler potential multiplet

Let us consider n physical chiral multiplets of matter zI_ E_{ZI ,Prx!, F'} where I =
1,2,3,---,n and their anti-chiral multiplets z/ = {z!, Pgrx', F'}.? Then, according to the
superconformal tensor calculus, the Kéhler potential multiplet can be written as follows:

K(Z,Z) = {CK,ZK,HK,ICK,Bf,AK,DK} (2.18)

3The complex conjugates are z = A Y = (xHe, Y = (x")°, and Fl = (FT)* (The barred index
is the complex conjugate index, so that the handedness of fermion becomes opposite, i.e. (P, Rx)c =
(Pr/r)°(X)€ = Pr/r(x)¢.). The chiralities of fermion are specified as x’ = Prx’ and x’ = Prx’. The

Majorana conjugates are (Pr/rX) = XPr/r- (The handedness is preserved.)



where

Cx = K(z,2), ( )
Zx = iV2-Kpd + K, (2.20)
Hi = —2KF' + K¢/, (2.21)
K = —2K;FT + K¢\ = M, (2.22)
(2.23)
(2.24)
(2.25)

B = iKD" — iKD" +iK 3 v 2.23

A = PLAg + PrAk 2.24

PrA = —V2iK;,[(P27)x" — FIx'] - ﬁK[—jKXKXIXJ, 2.95
) 7 7 ] i

PrAk = V2iK, ;[P )x' — F'x7] + EKIJRXKXIXJ, (2.26)

;o1 1 5 _-
Dy = QKU( —~ DDz §XIPL2’XJ — §XJPRJ1XI +F1FJ>

+KIJK( _ )ZIXJFK + XI(/B/ZJ)XK) + KIJK( _ XIXJFK + XI(/B/ZJ)XK)

1 _ 5 —

+5 K g (X Pox) (X Prx®). (2:27)

Here the covariant derivatives* of chiral multiplets of matter with the weights (0,0) are
given by

DI — oh g 2] Lo
w2 = el |0ur — ﬁwﬂx , (2.28)
DoPrx! = e'Pp |0, + }wab%b - 1b - §iA _— L(,@/z[ + Fhy,| .
a 12 4 M 2 12 2 (24 \/i o
(2.29)
Note that the only bosonic contribution to Dy is given by
Diclooson = 2K 5 (~0uz' 012" + FIFT) = F (2.30)

“From eq. (16.34) in ref. [3] we find that for a general superconformal chiral multiplet (2, Prx’, FT) with
Weyl/chiral weights (w, c = w) and gauge symmetries with Killing vector fields k%, the full superconformal
covariant derivatives D, are given by

1 -
Dozt = e | (8, — why — wid,)z' — — I A4%! ,
l:( (7 w ) \/E'LWX uhA

D
2
3
XN
!

1 1
Py [(au e — (0 41/ + (0 =3/ ) X' = (P P

- \/iwzlqﬁu - Aﬁx‘faka‘ .



and we especially denote this by F. We also note that the F is positive definite up to
terms containing spatial gradients; so, for small spatial gradients,

Diclooson = F ~ 2K, (127 + FIFT) > 0. (2.31)

2.2.2 Compensator multiplet

Chiral compensators Sg, So with the Weyl/chiral weights (1,1) are defined as follows. The
chiral supermultiplets Sy = {so, Prx", Fo} and Sy = {s§, PrX", F{} can be embedded into
the superconformal formalism as

Sy = {so, —iv2P,x°, —2F,0,iD,s0, 0, 0} , (2.32)
So = {s;;,z'\@PRXO, 0, —2F], —iD,st,0, 0} . (2.33)

Then, the composite real compensator SySy is

S0So = {Co, Z0, Ho, Ko, By, Ao, Do}, (2.34)

where®
Co = so0sgloss (2.35)
2y = iV2(=sgPrx" + 50 Prx°)|1 1, (2.36)
Ho = —255F|oy, (2.37)
Ko = —250F¢|of, (2.38)
B, = isyDyso — isoDysg +iXovuPrx® = is40.s0 —iso0uslos ++ -, (2.39)
PrAg = —V2i[(Ps5) Prx” — F5 PrX"] = —V2i[(#s5) Prx" = Fg Pox’llis +--- (2.40)
PrAo = V2i[(Pso) PLx’ — FoPrx°] = V2i[(#50) PLX’ — FoPrxX’l1f +-- -, (2.41)

Dy

« 1 _ 1 _ * * *
2 (—DMSOD”SO - §X0PL2/XO - §X0PRﬂXO +F0Fo> = 2(—0,500" 55+ FoFg)log +- -,

(2.42)

where the covariant derivatives of the conformal compensator (sg, Prx", F°) with Weyl/
chiral weights (1, 1) are given by

1 -
Dysg = el <(")Mso - \/ii/)uxo) ; (2.43)
DuPix’ = ePy | (8, + Su® S~ Lia 01}5 FO V2
al X = €L u+1wy7ab—§u—§lu X_ﬁ( S0 + )1%_ 50¢u-
(2.44)
The composite real compensator Y = SpSpe™ /3
Y = {Cr, Zv, Hr,Kx, B}, Av, Dy} (2.45)

5
PL,R’Yodd indices = Yodd indiccsPR,L~



has components

Cr = T = sgspe K/, (2.46)
/3 )
Zy = e KBz, 4 %T(K,XI — K
. 1 o 1 o 1 ;1 7
= iV2Y [ ——Px°+ —Prx’ + s Krx! — Kpx' ) iy, (2.47)
50 EX 3 3
o K/3 I 1 1 I J L >
Hy = Ho+ 7T K]F §KIKJ—§K[J X X —§[ZOPLZT+ZTPLZO}
Fo 1 7
— o7 7,,KIF N (2.48)
So of
_K/3 * I 1 1 —f j 1 — —
Ky = Ho+ 7T 3K1F + QKIKJ 3Kfj X X _i[ZOPRZT‘FZTPRZO]a
Fo 1 -
— 27 — _K;F +o, (2.49)
84 3 o

1 1 7 1 1 7
BY = e KBS i (3KIDMZI - gKﬂ)MiI - (QKIKJ— 3KU) X%;ﬁ)

1. - _
+ZZ[ZO’V*’Y;LZY + ZT7*7uZO]v

1 1 1 1 7
=T (sauS() - 7(9,“98 - ngauZI‘F 3K13MZI) +-e- (250)
0 S0 of
1 -
Ay = e KB3Ng—ivV2T ((91{,1{, KU> (P27 )x! — F'x’]
1 1 KoT,J
+§ 27K KKk + 9<KIJKK+KIKK + KK ) — gKij X XX
1 I.J
- §KIK] KIJ (/ﬁz —F'x7]
1/ 1 1 1 For 7
5 | T KB Kk + 5 (KryKg + Kig Ky + KiK ) = g K | XPX X

+= ([(786 + ReHo — i ImHo — P(sos5)] Zv

N =

+[i7.B5 + ReMy — iy ImHy — D(T)] 20) ,

= —V2ie K3 [(Fs5) Prx’ — FE PrX°) + V2ie 5/3((#s0) P x° — FoPrx°)
—iV2T (< KiKj— KU) [(P=) )" — FTx7] - (éKIKJ— ;KU> [(azJ)xI—FIxJD

1
b |:{Z’}/* (isgPso — isodsy) + Re[—2s5 F°] — iy, Im[—2s5 F°] — @(s0s5,) }



1 1 7
X {zﬁT (—salpLxO + 55 Prx” + gKIXI 3 ]XI) }

1 1 ; 1
+ {w* (iT (sglﬁso — sy Psh — gKlﬁzI + 3K1621>) +Re [—QT (Fosgl — 3KIF’)]

e,

. _ 1 , *
—is (—2T(F°so h— 3K,Ff) — m} {Z\/i(—soPLxO - sOPRXO)}]
1f

1
9

1

KiKj—

— 1 _
Dy = e KBDy+ 71 {2 ( KU> (—DﬂszMZJ - ifoLﬂXJ

1_; _ 1 1
QJPR}ZX’JrFIFJ) + (WKIKJKI—(Jr9(KIJK,—<+KH—(KJ+K1KH—{)

1

_3KIJK) (‘)ZIXJFK + XI(,@/ZJ)XK>
1 1
+ (— 5 KK 1K + 5 (K Kk + K K+ KK i) =

1
3KIJK)

7 F T T 1 1 1
< (_XIXJFK+XI(/@’ZJ)XK) +§ {_3KIJI—(I:—|—81K[KJKRKE

1
— o (K1 KKy + K KoKy + KiK g Kp + Kip KoK + KK Kg + KKy K]

1
+§[Kuf( + K Kg + KiyKgp+ Kigp Ko+ K g Kjp+ KK+ KIKJKL]}
x (foLxﬂ(xKPRxL)}

1 _ _ _ _
+5 (HoHy +HiHr - 2B0BY. — 2D(sgs5) - De™ /% — 20g 2y — 20y 20 — 2P 2y — ZxPZ,).

1 1 Ly
= |:6K/32(—8H508“53 + FQF;) + 27 <9K[KJ — g IJ) (—(9u218“2’] + FIF'])

1 FO* 1 1 FO 1
+= (=255 F9) [ =27 — —K7FT) ) 4+ = (—250F%) (—QT — — - K;F!
2 ss 3 2 3

1 1 1 1 7
—(is50, 50 — 1500,,5() (iT (8“50 — —0Msy — gKla“zI + 3K18“21)>
So

S0

— (s50s0 + s00s5) (—ée‘K”’(K,azWK,az’))] I (2.51)
of

The conventional superconformal gauge is defined by the choice

Cyr =71 =1, (2.52)
1

Zy =0 = P\’ — geK/GKIPLXI =0, (2.53)

b, = 0. (2.54)



2.2.3 W?*(K) = Wy(K)W?*(K) composite chiral multiplet: (Weyl/Chiral)
weights = (3, 3)

Let us define
(K)
(K)

CW72W7%W7’CW7BZV7AW7DW}7 (255)
Civ, 24, Kiy, Hiy, (B )", Ay, Dy} (2.56)

w? {
W2 {
where

Cw = AxPrAk
= -2 |:Kj/J/>zI ﬁZJ KjJaZJXI — Kj/J/)ZI/aZJ KjJFIXJ

—KI’/J/FI/)ZJ/KI’JaZJXI + KI’/J/FI/)ZJ/KI’JFIXJ} ‘Qf —+ - 5 (257)
1 . 3 L
Zw = —i2Pp, <—27 - Fr + z'DK) Ag = —2V2iF K, PLd2" ' — FIXJ]]U 4
Hw = —2QAx PLPAy + Fr - Fre — DY) = 2F2|op +--- = —2FW, (2.58)
Kw =0, (2.59)
Aw = 0, (2.61)
Dy = 0. (2.62)

Note that Cy = Cwlag + -+, 2w = Zwhys + - Hw = Hwlog + -+ . Kw = 0,B)) =
BZ[/|2f+"' ,Aw =Dy =0, and

Ci = Ciy = A PrAk, (2.63)
c . 1 - .
ZW = ZW = 22PR —5"}/ . FK — ZDK AK, (2.64)
Hy = Kiy =0, (2.65)
Ky = Hiy = —2QAx PrPAg + FF - EF — DY) = —2FW, (2.66)
BY = (BY)* = —iD,(Ax PrAx), (2.67)
Ay = A =0, (2.68)
Dy = Djy = 0. (2.69)
We also defined:

Ely = elteh (201, + YA, (2.70)

X 1 ~ ~ 1 -~ X ~ ~
Fy = —z‘igabchcd, = §(Fab + F), (FE)y* = FF (2.71)
PNk = v-DAk, (2.72)

_ 3 1 ab 3. 1 ab HK 1.

DuAK = 0“ — 51)“ + Zwu Yab — 5'5’7*./4“ AK — Z"}’ Fab + 52’7*@}( 77[1“- (273)

~10 -



Next, we shall consider a gauge fixing that is equivalent to the gauge condition given by
n = 0 in ref. [10]. In fact, this can be obtained by imposing Ax = 0. We will call this gauge
the “Liberated SUGRA gauge”. Then, the only non-vanishing superconformal components
of the multiplets W2?(K), W?(K) in this gauge are given by Hy = —2(Fy - Fre — D%) and
Ky = —2(Ff - FE —D3) = Hiy.

Another representation of the chiral multiplet is
t
V2
= ([_\KPLAK, \@PL(—"}/ . FK + QZDK)AK, QAKPLE/AK =+ F[; . FE — 'D%()

1
WAE) = (Cuw 752w~ 5How )

(XW, Pix", FW) : (2.74)
12 * [PC R

4% (K) = CW7_EZW7_§,HW

(AKPRAKa V2Pr(—v - Fi — 2iDj)AR, 2Ax PRPAk + Fff - Fif — (DR)2)

(XVV, Prx", FW) (2.75)
We will also need the following definitions:

XW = AxPLAx = W = 2Kp,[X) (BT) — FIX | Kpp (827 )X = F'X7]

Kp [ (B21) = FIX K oo XX
_Kij[f( X 92 1K (@lzj’)x‘]’ — FJ/XT']

1 _7 I _ 71
_§KiJK[XJX] ]KI’J’K’ [XK XI XJ ], (2.76)
XW = AKPRAK = W = (AKPLAK)C, (277)

and

- 1 - 1 - -
DxPrAg = [QKI j( ~D,2'Drzl ?ZIPL]ZXJ — §>2JPpVﬁXI + FIFJ>

+Km-(( X'} FR + XIWzJ)xK) + Kij< X'} FR X’(ﬂ?’)xK)
1 N 5 _
"‘QKIJRE(XIPLXJ)(XKPRXL)]
[ V2K (B2 — FIx) - ZKI,J/K/XK&”XJ’]. (2.78)
V2
— 1 — 1 — _ =
D} = {21([]( = Dz D'z) = SXPLPX — X PrPY + FIFJ>
+KIJK( _ )ZIXJFK + XI(/B/ZJ)XK) + KIJK( _ )ZIXJFK + XI(,D/ZJ)XK>

1 ~ 5 _ 12
+5 Ky (X' Prx’ )(XKPRXL)] : (2.79)
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2.2.4 w2, w? composite complex multiplets: (Weyl/Chiral) weights = (—1,+3)

w2:W2( ) = {Cw, 2w, Huw, Kuw, BY, Ay, Du } (2.80)
- w w wH wy p,? w w S .
V_V _
1D2 = T( ) {C ,Z@,H@,K@,BZ},AQ,D@} (281)
where
Cw
1 C
Zy = ﬁzwfzr—vgz% (2.83)
1 Cw 1 1 - _ W~ -
Hew = ﬁyw—QF'H'r—i 4F(ZWPLZT+ZTPLZW)+6WZTPLZT , ( 8 )
1 c 1 1, _ Cw =
Ko = ’I?’CW_ZI“/g’CT_Q[ 4T3(ZWPRZT+ZTPRZW)+6;ZZTPRZT], (2.85)
By — Lpgw_ 2CWBT L 4i(2 Py 2y + 2y Py, 2 )+6C—WZ Py, 2 (2.86)
n = y2Pu s \Ew L e YL Yuew 1 2L e .
C 1 ,
A, = —AW 2 WAT+2[ 5 (0 Bw + PLw + Prw —PCyy) 2y
2 Cw
3 3 (1B + PLRy + PrHy ,@/CT)Zw-FGT (iv By + PLKy + PrHy —PCx) Z’I‘:|
1] 6 3! _ Cw
4{T4212(W2T2T) 24T ZvZy 2y |, (2.87)
Dy = Loy 25 p +1 — —2/(KwHry—Baw - Byy—DCow - DCyy — 2M ( Zvy — Zw P Zr))
w =y Pw =255 Pr+5 | = 32Kty =B - b wDlry =28 Zv) = ZwPZ)

+6TVZ (KyHx =By -By —DCx -DCy —2Axy Zy — ZT/B/ZT)}

116 3' = Cw

1 {,1,4 o Z’Y*/gT + Py +PRHT)ZT) 24— 15 ZT w*ET +PLKy+ PrHy)Zy |,

1 24 4! Cw

8| s 3|Z(WPLZTZTPRZT) +12055 & ZxPLZrZrPp2r|. (2.88)

Note that we have to insert Ky = Ay = Dy = 0 and Hyyr = Ay, = Dy = 0 as given in
egs. (2.62) and (2.69). In addition, the complex conjugate multiplet w? can be obtained
by taking a replacement @ — @ in the above expressions.

In the Liberated SUGRA gauge (Ax = 0), the non-vanishing components are given by

Hw Ky
7'[w|AK:0 = ?7 ]Cw‘AK:O = Tvg (2.89)
Aw|ag=0 = T3 PRHWZT> Ag|pg=0 = T3 PLIC Zy (2.90)
3 = 3 _
Dw|AK=0 = _Tg KxHw — 271 v 2PrHw 2y, Du’;‘AK:O = _FICVV/HT — WZPL/CWzy.

(2.91)
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Furthermore, with the superconformal gauge choice Zy = 0, the non-vanishing com-
ponents are

Ky

Huw|Ag=0,2r=0 = ETR Ka|Ag=0,2r=0 = ¥z (2.92)
1 1
DW|AK=O,ZT=0 = 7WKT%W5 Dﬂ)‘AK:O,Zrzo = *W’CWHT (293)
2.2.5 T(w?),T(w?) chiral projection multiplets: (Weyl/Chiral) weights =
(0,0)
—2 1 1 . 1 C . a
T(@%) = (—5Ke, =5 V2PL(PZs + Aa), 5 (Ds + 0Ca +iDaBy) |, (2.94)

1 1 1
T(w?) = (~ 5K 5 VEPRUPES + AS), 5(Df + 0°C; — D (B3))) . (295)
The superconformal setting for this and its complex conjugate are then given by

T =T(w”) = {Cr, Zr,Hr,Kr, BL, Ar, Dr},
w

T =T(w?) = {Cs. 27, Hy K7, BT, A7, D7}, (2.96)
where
1 1 Cur 1 1, - - Cyir -

Cr = _51% — —ﬁ’CW + T—VZKT +7 —4F(ZWPRZT + ZyPrZy) +6T—VZZTPRZT ,
Zr = 7PL(/@/Z@+A@), (297)
Hr = —(Dg+0%Cq +iDaBY), (2.98)
Kr =0, (2.99)
BT = —%muicw, (2.100)
Ar =0, (2.101)
Dy =0 (2.102)

and
1 *
Cq = —51%7 (2.103)
Z7 = —Pr(PZ{ + AD), (2.104)
Hy =0, (2.105)
Ky = —(Dy +0°C; — iDa(B3)"), (2.106)
S|
T . *

B, = imﬂlcw, (2.107)
Ay =0, (2.108)
Dy = 0. (2.109)
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In the Liberated SUGRA gauge, the non-vanishing components are given by

1
Crlpa=0 = —EIC@, (2.110)
Zr|ag=0 = —PrAy, (2.111)
Hr|ag=0 = —Dau, (2.112)
1.
Bl py=0 = —51DuK. (2.113)
With the superconformal gauge choice Zv = 0, we have
1 1 1. .,
Crl|Ak=0,2r=0 = —5Ka, Crlak=0,2r=0 = —yHw = 5K (2.114)
Hr|Ag=02v=0 = —Da, K#lAx=0,2r=0 = —Dw = =D} (2.115)
1. 7 1. 1. X
BE|AK:072’I‘:0 = —§Z'DMKU7, BE|AK:072T:0 = ilpli/Hw = §ZDMK@- (2.116)

2.2.6 Final form of the composite multiplet of liberated A/ = 1 supergravity

To construct the final composite multiplet which will give the new term in the action of
liberated supergravity, we first collect the following chiral multiplets:

(X7 = {0, 2/, (@), WAHK)}, X' = (X0 AT MY B = (F P ET PV,

(2.117)
where
So = (s0, Prx", F°), So = (s, PrX", F**), (2.118)
o= (Pt FY), A= (zf,PRxf,Ff), (2.119)
W2(K) = ( xPLAk, V2P (—v- Fyx +2iDg)Ax, 2/_\KPL)D’AK+FI}~FI}7D§(>
= (xV, PV, F"), (2.120)
WA(K) = (AxPrAx, V2Pr(—y- Fic — 20Dj) A%, 2Ak PePAi + P - i — (D )?)
= (’W,PRX' FW) (2.121)
T(w?) = (—;IC@,—;\/Z’PLWZU—,+AU—J),;(Dw—i—DCCw—i—z‘DGBg)) = (X", X", F7),
T(w?) = (;nz,éﬁwgwgmgu 5 +09Cs — iDL (BY)" >> = (X7, Prx", FT).
(2.122)
Then, the lowest component of the final composite real multiplet is
N2 W WHEOWAK)
T(02)T(w?) T(w?)T'(w?)
= (XOX0eKGEEN/B =2 x W W (xTY=1(XT)~1g4(o 1 5T), (2.123)
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Then, since N is now expressed as a function of superconformal chiral multiplets, we can
represent the full off-shell expression of the superconformal Lagrangian of the liberated
N =1 supergravity via eq. (17.19) of Freedman and Van Proeyen [3] as follows:

LNEW = [N]Defl

1 1- . 1 1 e s o
= 5Dn = g% YAy — (CNR() + 35 (Cn BT = iZn1"7 ) By Q)

6
L abed 7 N 1~
5" Wante | By — 5va2n ) (2.124)

. —_ 1_ b 1__. . i
= Njj (_DquDMX] -3 oY — ixj,ﬁxz =+ F’FJ>

1 e - 1 o
+§ [Nl-j,; <—XZX]Fk + XZ(,@/X])Xk) + h.c.} + ZNij]_gl_XZX]Xle

]_ —_ . - p— . 1 I;‘— .
+ [mw Y (NUFZXJ — NPX7 ' — 5 NijiX x’xj>

1 . Voo 7. 4 ]. —q K ]_ - i
+§z€# P %%% (NiDaX + §N13X ’YUXJ + ﬁNiwax > + h'C-:|
+oN (—R(w> + SR (Q)) — (N4 Vi) R Q)
6 ) H vp Gﬂ 7 i uv s
(2.125)
where i, =0,I,W,T and j,k,l =0,I, W, T and
R/,U/ab(w) = Mwljab - ayWuab + wMachCb - wyacwucb, (2126)
1 3 1,
R, (Q) =2 (a[u + b = A+ 1w[p{’(e, b,w)fyab> U, (2.127)
1 1-
wii'(e:b,) = wit(e,b) + Suy " + Syt (2.128)

2.3 Bosonic Lagrangians

The bosonic contribution to the scalar potential can be found from the term Dpy. Using
the above results and eq. (2.125), we find the equivalent bosonic contribution to the scalar
potential as follows:

L= _ - 1 -
Lp D NjF'F ~ Ny FVFY = T—2C—UFWFW. (2.129)
TV
Since Cr = —%IC@ ~ —%’C—‘é’ = —%(_QTF;W) = E}—V; and Cp = P}—V;, we have
1272 .
-2 W W _ ~2
LpDT FWFWUF FY =7T7U. (2.130)

In the superconformal gauge Y = 1, we get

VNEw =U. (2.131)
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2.4 Fermionic Lagrangians

In this section, we investigate fermionic terms in the liberated N/ = 1 supergravity La-
grangian. We focus in particular on the matter-coupling and on the most divergent
fermionic terms, in order to explore interesting interactions and check the limits of va-
lidity of the liberated N' = 1 supergravity as an effective theory.

First of all, let us recall that the final composite multiplet NV in terms of the supercon-
formal chiral multiplets {So, 2/, W = W?(K),T = T(w?)} are:

—U(z",z2"). (2.132)

’,zf)/:a) 2WW, ;g
T

N = (sosae_K(z

We we also denote their lowest components as W = AxPrAx, W = AxPrAg, T = Cr,
and T = Cp. Note that the final composite multiplet consists of the four superconformal

chiral multiplets only. Remember that Cp ~ % and FW « D 2 |boson = F2,
Generically, the matter couplings are found from the following contributions:

. — = ]_ —i = ]. _ i i = N
E%‘latterwzo _ Nl;( _ D“XZDMXJ _ §X2/XJ — ixjﬂ/x + F F]) — ER(W)"lZJ:O

N]klxxxx

)

=0
= Lp1+ Lro+ Lpo+ L+ (Lpa+ Lps+h.c)+ Lpg+ Lry (2.133)

1 - ) .-
+5 [Nijk( — XN FR 4 xl(ﬂxﬂ)x’“) - h.c.] -

4

where
DX ymo = (O — wibu —w; A, XY,

DuPrLX | p=0 = (au + —wiyap — (w; + 1/2)b, + (w; — 3/2)1'/1“) Prx' — V2w X' Prg,.

4

Note that the matter couplings of fermions can be classified into seven types:

L1 = —N;D,X'D'X ]wzo, (2.134)
Lpy = —;Nﬁxiﬂxﬂwzo, (2.135)
Lps = —NZ;FZ'Fj‘w:O, (2.136)
Ly = —%Niﬂ;;ixjﬁﬂ . (2.137)
Lps = In Nyx' (PX7)x ]wzo (2.138)
Lre = inklx X ‘ (2.139)
Lt = =2 R(w)|yms. (2.140)

6
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The derivatives of the N are given in general by

r= m-+k m
N{=atp R — (kO OFN)

= [(335§k_n)T_2)(N)(Tg)(cT)(Tz)(cT)

% (T2m1 )(6;"1CT) (T2m2)(8$2(2f) (W)l—m <W>1—p2u(n)}

/ [(ﬂ)(cT)(ﬂ)(cT)(ﬂml)(a;ucﬂ(ﬂm)(a;_:@cTJ'

U

1-p1yg/1—p2
j—2+2+2m1 +2mo w

_ (8ga§k*n)r—2)r4+2m1+2m2

um
j—4+2m

= (9ga\F My -2yyatem Wl-piyyiope, (2.141)
where F = 2K1; (—3#216“27+F1F7); um (0 < n < 4) is the n-th derivative of the
function U (zl ,Z') with respect to 2!,z which are the lowest component of the matter
chiral multiplets; ¢ = q1 + g2 where q; (g2) is the order of the derivative with respect to
the compensator scalar so (s§); p = p1 + p2 where p; (p2) is the order of the derivative
with respect to the field strength multiplet scalar W (W); m = my + msy where m; (ms)
is the order of the derivative with respect to the chiral projection multiplet scalar T'(w?)
(T(w?)); k is the order of the derivative with respect to the matter multiplet scalar z'; n is
the order of the derivative acting on the new term U with respect to the matter multiplet;
q is the total order of derivative with respect to the compensator scalars sy and sj. An
explicit form of the derivatives of N is given in appendix A.

The mass dimension® of the derivatives of the N is [N ;;:gﬁp +m+k)] = —3p—4m — 2.
This implies that the mass dimension of the operator coupled to N é;:r?ﬁp 1R ust be

equal to 3p + 4m + 2.

Now, let us focus on the case such that ¢ = 0 and k£ = n which gives the most singular
fermionic terms in the limit that the D-term vanishes. The most singular terms are those
that contain the highest power of the auxiliary field D in the denominator and therefore
are the nonrenormalizable operators associated with the smallest UV cutoff mass scale.
That is, we consider that the matter scalar derivatives act only on the new term U and
there are no the derivatives with respect to the compensator scalar. Then, we have

N(r:p+m+n) — Y2+2m u(n)

fima Firm Wi-pyyi=rz, (2.142)

In particular, since r = p+m +n (0 < r < 4), it reduces to

um)

(r) _ ar(r)  _ ~y2(14+r—n—p) 1—p1yy/1—p2
Ni...l - Np,m,n =T f2(2+r—n—p) w w . (2.143)
®The mass dimensions of the multiplets’ lowest components are [so] = 1,[2] = 0,[W] = 3,[T] = 0,

which gives [F] = 2.

17 -



Remember that we called r the total order of the derivatives acting on the N. Here n is the
number of derivatives acting on the matter scalars in the new term ; they produce Y.
Finally, p = p1 + po is the sum of the number of derivatives w.r.t. the multiplets (W, W)
acting on U.

2.4.1 Structure of the fermionic components

Next, let us explore the detailed structure of the chiral fermions of the superconformal
multiplets. First of all, the compensator and matter fermions are given by

X' =rx’, x'=rxl (2.144)

Note that x° and y! are fundamental fermions, and later in the S-gauge, the compensator
chiral fermions will be replaced by the matter ones according to: Pry¥ = %SoK 1Prx! and
PRXO = %SEKI*PRXI.

On the contrary, the other fermions X" and x” are composite. Hence, we need to find
their specific structure.

First, the W(K)2-multiplet fermion, say x", is found to be

XV = PV = V2P (—vy - Fx + 2iDg)Ax
= —2V2P " 0Bl A — V2P Ak Ak + 2v2iP D Ak
= —2\/§PL’7‘WI6[H(Z'K[’DV} 2 — inDV]Zi + Z'KIjXI’}/V}Xj)AK + QﬂiPLDKAK

= 2iv" 9|, (Kﬂ[)y}xl — K", — \@KIJXI%]XJ) PrAg
-1 -1 - .
+2v/2i [QKI j( ~ D, Drzl — 521 P\ — 5;@’ PrPX! + F! FJ>
+K1Jf<< _ PR 4 XIWZJ)XK> I Kij( — K 4+ X](/@/ZJ)XK)
1 B N> —

4B rp (P R P | Pus
= Qﬂiﬁ(PLAK)lf + --- + 7 fermions
= 2V2F (—\/iinJ[(,ﬁz‘])gfxl_ - FI_XJD + -+ 4 7 fermions
= 4.7:'Kfj[(ﬂzj)xl_ — F_’I_XJ] + .-+ 4 7 fermions, (2.145)

where PLAg = —\/ﬁiK[-J[(ﬂzJ)Xj — FIy/] - %K[-jKXK)ZjXJ. Note that the composite

fermion x"' contains powers of the matter fermions ranging from one to seven, and it is
nonvanishing on-shell.
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Second, the chiral projection multiplet T'(w?) fermions are found to be as follows:

T = PLXT =~ PL(PZy+ M) = ——= [WZW) - PDEw _yCp g, - Brw

V2 V2 T2 T3 T3 T3 Zr=0
L Zy=0

_ % wa)lf B (D)o —’;z(,g*r)of] (XW)lf ] + -+ 9 fermions, (2.146)

1 r - _ -
=y | ABPE L@ =PIy

- (jﬁsé - gKgﬁzk —29(b,, +iAu)) AF K [(#27 ) = F'x) } ++-+9 fermions,

0 1

4 N -7 .

= @K@= = FIx)+ (aglps + -+ +9 fermions, (2.147)

where F = 2K,z (—auzlf)“ij + FIFJ); “| 717 denotes the terms proportional to F', and

AF = 20K ;) (~0,2" 0"z + FIF7)
+2K 7 (— (0,212 — 0,21 @027y + (FFNFT + P1@FT)) . (2.148)

Note that y! is also nonvanishing on-shell.

In the above calculation we have used the formula:

1, 7.3 1
D, PV = (au + Zwub’)/ab —gbut 21AM> PV — ﬁPL(ﬂW + FVYip,
—3V2W P, (2.149)
(2.150)
to find
By = (BPrx )i
" 1 ab 7 3 w 1 w "
=" 0.+ & Yab — §b“ + 5214# (Pox™ )iy + EPL(F oy by
= (P oL Tt 2ia,) (Pox" L p F2
=(PLx" )if + 7% Yab = 5 ;Hriz w ) (Prx )lf'f‘ﬁ L A by
= 4(FF) K, (@27 W — FIxT) + AF @K )02 )xT - FIx7)
HAF G (O + 820 T — @FT)x? — FL ()]
1 7 3. ~ FoaT 1 -
+" (4“’21)%5’ - §bu + QZAH> AF K [(@27)x" = FIX7]) + \ﬁPLFQ’Yuwu
= 4(aﬁ)KiJ[(azJ)Xj - FjXJ] + (,B/XW)1f|]:—1 + (,@/XW)lfbi-z. (2.151)
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where FW = 2A PLPAy + Fip - Fre — D%, (F)oy = 0, and (FV)o; = —(D%)oy =
—F2, and
XV )ip = @Px" )i = 4@F) K (027 )x" = FIXT] + AF @K )[(@27)x" = FIX]
HAF K [(8027)x" + 82" 0" — @F)x’ — P (@)
= 4@V K782 = FIx) + AF @K )[82)x" — FIX)
HFK (02 + 827y — @F)x” — Fl(gx))]
~ AGF)K (0273 = FIx) + aF @K ) @2y = FIX)
—AFK;,(JF)x’. (2.152)
Here ~ means equality up to terms proportional to the equations of motion of free massless
matter fields. Such terms produce only terms that contain additional factors of the matter
field masses in the numerator and therefore give rise to either renormalizable operators
or nonrenormalizable operators weighted by a mass scale higher than that associated to
those terms that do not vanish on shell. The details of the above calculation is given in
appendix A.1.

Finally, we present here the chiral fermions of the superconformal multiplets up to
multiple fermion terms.

X’
X",
i XW = 4ﬁK]_J[(ﬁZJ)XI — FIXJ] + - .- 7 fermions,
X' = i T )
XT = 3 | A@F)Kp[(27)xT = FIxT) = (2405 — 3K gz — 294 (b, +i4,))
XAF K7 [(#27)xT — FTy’) } + .-+ 49 fermions,
1f

where

F = 2K1j (—8uzlaﬂzj + FIFJ)
9 = 20515) (0,107 + 1)
12K, (~(#0,210"% — 9,21 (90°57) + P F7 + PI(FFT)).

Notice that none of the chiral fermions x* vanish on-shell, and that only x? dependens on
F and includes the factor of Y~2. All of these properties affect the mass dimension of the
expansion coeflicients of the nonrenormalizable Lagrangians.

We finally expand W and W as follows:

W = —2KEJ[)_<J@) . F?XJ]KWJ/[(/E/E{’)XJ’ o FJ’X{/

1t

— K[! (B2) — 'Y ) Koy X XX

— Kor [ X B Ko [(P27)x7 — F7'XT]

]

1 B 1=t A
— 5 K XX Ko [ XX, (2.153)
W (W (2.154)

—90 —



Notice that W and W can be represented by products of two, four, and six fundamental
fermions.
2.5 Additional gauge fixing for physical theory in the liberated supergravity

First of all, we consider the conventional superconformal gauge which is chosen by
Cr =T =1« sp50e K/% =1, (2.155)

1 1 7
Z’r =0 = PLXO — gSOKIPLXI =0 & PRXO — gSSKfPRXI = 0, (2.156)

Sgp = Sg = 89 = 80 = BK/G, (2.157)

b, = 0. (2.158)

Note that the first condition is the D-gauge fixing which gets us to the Einstein frame; the
second one is the improved S-gauge fixing; the third one is the A-gauge fixing; the last one
is the K-gauge fixing.
To compare our results with the formulation of liberated supergravity in [10], we choose
a gauge given by
A =0= YV =T =0. (2.159)

In both the conventional superconformal gauge (2.156), (2.157), (2.158) and in (2.159),
the relevant multiplets are

Sy = (eK/G, éeK/ESK[PLXI,FO) , Sy = <€K/6, éeK/GKjPRXj, FO*> . (2.160)
o= (zI,PLXI,FI>, = (*I_, P, Ff), (2.161)
W2(K) = (W, Px, FY) = (0,0, Fig - Fg = D% ), (2.162)
W2(K) = (W, Py, V) = (0,0, B¢ - B = (D)?) (2.163)
(%) = (T, Px", FT) = (;;cw,o, ;Dw) , (2.164)
T(w?) = (X7, Py, FT) = (—;/c;;,o, ;D;;) . (2.165)

Let us further observe that all the terms coupled to N and its derivatives with respect to
0,1, T vanish because N contains the product of WW, which is zero in the liberated gauge,
ie. W =W =0. We see that all the fermionic terms coupled to the derivatives of N with
respect to W or T vanish as well, because these terms always couple to the fermions "V
and x” which vanish in the gauge. The only non-vanishing contribution is given by only
the bosonic term, NWV-VFWF W which gives us the new term U to the scalar potential.
Therefore, in both gauges, the liberated supergravity Lagrangian is specified by

L1y = Lsugra + LNEW, (2.166)

where Lsygra is the standard supergravity Lagrangian which contains the auxiliary fields
FO FI and Lngw = U(2', 27). Then, with this Lagrangian, after solving the equations of
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motion for the auxiliary fields, we can obtain the usual supergravity action in addition to
the new term.

3 Component action of new FI term in superconformal tensor calculus

In this section, we review the component action of a new, Kahler invariant Fayet-Iliopoulos
term proposed by Antoniadis, Chatrabhuti, Isono, and Knoops [4], using again the super-
conformal tensor calculus. The full Lagrangian with the new FI terms is given by

£ = —8(50S0e-KEINp + ([ng(z)]F - i[XPL)\]F + h.c.)

B [(SOS“K(Z’”)?’WLA)W’RA)(V) ] ,
D

T(w’2)T(w’2)
where the last term coupled to the parameter £ corresponds to the new FI terms.

3.1 Component action of the new FI term

We consider matter chiral multiplets Z?, the chiral compensator Sy, a real multiplet V,
and another real multiplet (V)p, whose lowest component is the auxiliary D term of the
real multiplet V. Their superconformal multiplets are given as follows:

={0,0,0,0,A,, A, D} in the Wess-Zumino gauge, i.e. v=(=H =0, (3.2)

Zi ( , —iV2PL X', —2F".0, +mﬂzi,0,0) = {2%, P, F'}, (3.3)

7 = ( ,+iV2PrY', 0, —2F", —7;7)#55,0,0) = {#, Pp\', F'}, (3.4)

So = (So,—iﬁPon, —2F0,0,+iDMSO,O,O) = {So,PLXO,Fo}, (35)

Sy = (§o,+szRx 0, —2F, —iD,, 50,0,0) = {50, PrX°, [}, (3.6)

APL) = ( Pp), —iV/2PLA,2D? 0, +iD,(APL)), 0 o) = {AP\, P A, —D?}, (3.7)

APR) = (APR)\ +ivV2PgA,0,2D2 | —iD,(APg\),0, 0) — {APg\, PRA, —D?}, (3.8)

(V)p = (D, PX,0,0,D°E,y,, —BPN, —° D), (3.9)

where
1 . 1 .
PLA=V2P; (—27 F+ iD) A, PrA = V2PR (—27 F— iD> A, (3.10)
D? =D?—F~ - F~ —2AP. P, D2 = D%~ [ FY — 2APrD), (3.11)
B 1 3. 1 g 1

DNA = a b + 4wu Yab — 51/}/*/4,11 A — Z")/ Fab + il’y*D 'l/}l/b (312)

Fab = Fab + ea“eb"@/_}[ufy,,]/\, Fab = ea”eb”(QamA,,}), (3.13)
1 -~ X X ~

P = 5 B £ F), Fy = = Sieuupo I (3.14)
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3.1.1 w'?,%w'? composite complex multiplets: (Weyl/Chiral) weights = (—1, 3)
and (—1,-—3)

We show here the components of the first superconformal composite complex multiplets
w'? and w2 with Weyl/chiral weights (—1,3) and (—1, —3) respectively. These composite
multiplets are defined to be

o APp

= ——=—75 = 1Cuw Zw, Huw, Ku, B, Aw, Dy 3.15
w (SOSO€_K/3)2 { o } ( )
APRA ,
— /9 — R — _ _ _ _ w _ _
w — (SogoefK/3)2 {C’UJ7ZIU7H7.U7ICIU78M7A7.U7D’UJ}' (316)
where
APp A
Co =h= = , 3.17
(Sogoe—K(z,z)/S)Q ( )
Zy = iV2(=hoQ% + hgQ?), (3.18)
Hey = —2ha F* + hgp Q000 (3.19)
Ko = —2haF® + h_;Q°Q, (3.20)
BY = ihgDuX® — ihgDu X + ih 50,00, (3.21)
Prhy = —V2iha[(BX1)Q° — FiQb) — %haECQCQaQE, (3.22)
PrAy = V2ihg[(PXP)Q" — FoQP] + %habaaés‘zmb, (3.23)
o 1 : l-p 7
Dy = 2h,; <—DMX“D“X’) - §Q“PLJZQ" — ingR,@/Qa + F“F”)
Fhape(—Q9QPFE 4 QU(PX)QF) + by (—QPOPFC 4+ QO (PXY)Q0)
1 _ o -
+§habég(QaPLQb)(QCPRQd). (3.24)

Notice that when finding the multiplet w2, we can just replace h by its complex conju-
gate h*.

3.1.2 T (w'?),T(w'?) chiral projection multiplets: (Weyl/Chiral) weights= (0, 0)

The second superconformal multiplets that we need are the composite chiral projection
multiplets T'(w'?) and T(w'?) with Weyl/chiral weights (0,0). From their component su-
permultiplets defined by

T(w"?) = (—;/cw, —%\/ZPLQD’Z@ + Ag), %(Du—, + 0% + mazsgu)) . (3.25)
_ 1,1 1
T(w?) = (~ 5K 5 VEPRIDES + AS), (D) + 0°C, — iDu(BL)))  (3:20)
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we find the corresponding superconformal multiplets and their complex conjugates as
follows:

T =T(0") = {Cr, Zr, Hr,Kr, B}, Ar, Dr}
T =T(w?) = {Cs, 27, H7, K7, BT, A7, D7}, (3.27)
whose superconformal components are given by

Cr = _%/cﬂ, = hEFO — %h;EQaQE =Cr (3.28)

_ _ _ 1 _ -
Zr = —V2iPp [ﬂ(—h;m +hEQY) — b5 [(PXY)QT — FAQb] — 3P Q°Q*Qb

abc
_ = — 1 _
g (PX)Q = FUQ) + Shep Q00 | = —V2iPLOr, (3.29)
Hr = —2 {h:b (—D#X“D“)_(b - %QGPL}JQB - %QEPRB@“ + F“Fb>

1 _ - _ 1 - o .
+5 Hhe(—QIQPFC 4 QM (DX + 5h;EC(—QGQbFC +Q%(PX"0°)

1 _ _ - 1 1 o _ _
+-h*, QP O (Q°PROY) + imch* + 5D (ihgDu X" — ihg Dy X" + ih 0,00

4 abed
= —2F, (3.30)
Kr =0, (3.31)
BT = —iD,Cr, (3.32)
Ar =0, (3.33)
Dr = 0, (3.34)

where we used a,b, c,d = 0,i(= 2%), W(= S\PL)\). This gives the superfield components of
the chiral projection multiplet T

T(w"?) = (Cr, PLQr, Fr) (3.35)
where

1 -
— —hEQQP, (3.36)

Cr = hiF" = Shi

_ _ _ 1 __
Py = D(—h 00+ h0%) — iy [(PX)QT — FQ0] — Jh; 0008

- -1 __
R [(PXD)QT — FeQY) + §h;bEQCQaQb, (3.37)
Fr = I (—DHX“D“X” - %Q“PLﬂQB - %QEPRﬁQ“ + Fan)

1 * NHa c Na c 1 * ~a b e Oa by
+5 hape(—02 QP FC + QUPX*)0 )+ 5his (-2 QP FC + QY (PX1)0°)

1 * Na by/Oc¢ d 1 C' 7% 1 (1% a * v a * Oa b
W@ PLOY) QPO + SOONT — SDH (WD, X — hiD, X + 0, 20).

(3.38)
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Morever,

T(w”) = {C}, PrQr, Fi} (3.39)
where
Cr = hoF® — %habQ“Qb, (3.40)
PrO7 = P(—haQ® + haQ?) — hap[(PX")Q — FQP] — %haBCQCQaQE
(PP~ FO) 4 Shae 00, (3.41)

o 1 5 1-; B
Fp = hy (—DMX“D“Xb — §Q“PLJ5‘Q" - 59*’133}59“ + F“Fb>
1 _ - | . R
+§habg(—QaQbFC + QYPX")0°) + 5ht_ﬁc(—mﬂbzﬂf + QYPX")Q°)
1 O a b\/OC d 1 C 1 " a v a b a
- haea (2 PLO)(QPRQY) + S0 — DD (ha DX — haDuX® + hpQ'7,0%).
(3.42)

3.1.3 Composite real multiplet R: (Weyl/Chiral) weights = (0, 0)

We present here a superconformal composite real multiplet R with Weyl/chiral weights
(0,0). Defining some chiral multiplets X4 ={X4, P,QA FA} where A={Sy, Z%, \PL\, T(w'?)}
and their conjugates, we represent the composite one R as

_s(APLA)(APR))

R = (SpS0e K/3) @) (3.43)

whose lowest component is

APLA) (AP _
Cr = (sogoe_K/3)_3—(/\ LNOFR)) FXA X4 (3.44)
CrCs
where Cp = —DiA‘Q; Cz=—D2A"2 and A = sgSpe 5/3. Then, the superconformal

multiplet of the new Fayet-Iliopoulos term can be written by using
R - (V)D = {67 277:[71673;“[&7@}7 (345)

whose superconformal multiplet components are as follows:

C = Df, (3.46)
Z = fPA+ Div2(—f4Q% + 707, (3.47)
H = D(=2faF* + fapQAQP) —iv2(~ f2Q" + £201) PP, (3.48)
K = D(=2f3F* + f5007) —iv2(— f4Q* + [207) PpoiN, (3.49)
B = (D' Fuu)f + D(ifaDuX* —if DX +if 45 0"7,07), (3.50)
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A = —fPPX + D(PLA + PrAf) + %(m(—waA + FAPXA — £50M0P)
+PL(=2f 1P + f159008) + Pr(=2faF" + fapQ0"QP) — Bf )P
% (179D By = DD )iv/2(— fa Q4 + f107), (3.51)
D =—f0°D + D{Q fapb (—D#XAD“XB - %QAPL/B/QB - %,QBPR,@/QA + FAFB>

FFapa(—OAQPFC 4 QAPXP)NC) + fi50(—Q20PFC + QABXP)Q0)
1 _ - _
4T asep (@ PLOP) (@ PR0P) |

—(DPM)(ifaDu X — ifsDu X 4 if 4 019, 0)

+<\/§z’fABWXB)QA — FAQP] + \;ifABCQCQAQB)ﬂ)\
- (ﬁz FAsl(PXB)QA — FAQB) 4 \Zﬁ fABCQCQAQB) P2
~(Duf)(D'D) — SB[V~ + F200)] (BN) + SivA(- 4 + 1200 (DY),

(3.52)

where the indices A, B, C, D run over 0,4, W, T. The component action of the new FI term
is then given by the D-term density formula

Lnew = —[ER-(V)plp = —i/d%e {ﬁ — %1/3 yi A — %(fR(w)
1/~- =
5 (GO —i29777.) Ry (Q)
1 - ~ 1- -~
+Zsab6d¢aryb¢c (Bd — 2¢dZ)i| + h.c.. (353)

3.1.4 Bosonic term of the new FI term

The new FI term is obtained from the term DQowFWFW inside the D-term D. Thus,
we get

- z 7K/3)73 - (s 3 efK/S)f?, -
Lxgw > —ED fupy PV FW = —ep 800 pw pw ooy _(s0%0 __FW W
NEW §D fyyw 3 CrCr 3 (o FW) (e F)
_ (soS0eX/3)73 WW _ _ —K/3
= —¢D (sOEOe*K/3)*4FWFWF FY = —¢D(s080€ ). (3.54)
Hence, in the superconformal gauge (sgSpe /3 = Mgl = 1), we obtain
Lyew F1/€ = —ED, (3.55)
or
Lyew v1/€ = —MHED. (3.56)
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4 Consistency check of supergravity as effective field theory through
superconformal tensor calculus

This section studies the fermionic nonrenormalizable terms in the Lagrangians containing
either liberated N' = 1 terms or new FI terms. We will make full use of the superconformal
tensor calculus to find the limits of validity of those effective field theories.

4.1 Constraining liberated N/ = 1 supergravity

We investigate first the nonrenormalizable fermionic terms in “liberated” supergravity, to
find possible constraints on the liberated term U. To begin with, we rewrite the coeflicients

um
f‘4+2m

r= m-+k k—n)an— m
Né,p,%;ﬁ +k) _ (8613} )y 2yy4+2

1—p111/1—p2
W P 1% P ,
as

NI o) — (1) m4e (g + 1)) (g + 1)ty @70 (55) ) (9 T2

(n) _
><T4+2m]:ZWnW1_p1W1_p2 (4.1)

where we used T = sgsfe™ /3.

The most powerful constraints on U come from the most singular fermionic terms in
the Lagrangian. Such singular terms are those containing the highest power of F in the
denominator. These powers are linearly proportional to m because they are due to taking
derivatives of N with respect to the lowest component of the multiplet T'(w?). Therefore,
we must investigate the fermionic interactions containing only derivatives with respect to
the chiral projection and matter scalar indices, i.e. T" and I, to obtain the terms that are
coupled to U™ and contain the maximal inverse powers of F. Such terms are those with
g=p=0and k =n.

In particular, we find by direct inspection of the fermionic interactions that the most
singular terms are given by the couplings to the derivatives proportional to Nps, Ny rp,
Ny if our theory has a single chiral matter multiplet, while they are given by Ny s
for two or more chiral matter multiplets. The latter terms vanish identically for a single
multiplet because of Fermi statistics. This has been investigated in detail in ref. [11]. Here
we merely recall the results from ref. [11]:

e For the single chiral matter multiplet case,

on—a) UM 2(6—n
£F2|q=p:0,k:n D) Mpl( )mog ( )) (42)

e For two or more chiral matter multiplets,

o(n—6) U™ 2(8—n
ﬁFG‘q:p:O,k:n D) C/Mpl( )mog ( )) (43)

where O(1072) < ¢ < O(1).
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From this, by calling A¢y the cutoff UV scale of liberated supergravity and using the
inequality (=9 < A“1*4 (0 =2(6 —n) for Nypay = 1 and § = 2(8 — n) for Npat > 2) we

cut

obtain

2(4—n
F24-n) (1]\\/["1) (= where 0<n <2 for Nyat =1,
U™ < out (4.4)

2(6—
F2(6-n) (ﬁ) (6= where 0<n <4 for Nyt > 2.

cut

A conventional definition of the supersymmetry breaking scale Mg is given in terms
of F-term expectation value; therefore, we can define Mg = M;)Ll]: and the constraints on
U™ then become

8(4—n 2(4—n
~ 8(6—n 2(6—n .
(%) o (Kﬁlt) o where 0<n <4 for Npap > 2.

The consequences of these constraints were studied in ref. [11].

4.2 Constraining new Fayet-Iliopoulos terms

In this section,” we explore the possible constraints on the new FI parameter ¢. First of
all, let us find the fermionic terms coming from the new FI terms. From its Lagrangian, we
observe that the most singular terms come from the derivatives of the function f, defined
in eq. (3.44) and below, with respect to the multiplet 7" since they produce the inverse
powers of the D-term ‘D’. The function f was defined by

~K/3)-3 (APLA)(APRA)

= (503 4.6
f = (s050¢€ CrCr (4.6)
where Cp = —D%_A_Q; Ci=—D2A"2 and A = sg59e K/3.
Then, the most singular terms in the Lagrangians has the generic form
Lp D —c(€DP - Onamz oY, (4.7)

where ¢ is a dimensionless constant of order O(1); £ is the dimensionless new FI constant,
Og) is an effective field operator of dimension § independent of D, my, ms are the order of
derivative with respect to the T, T, and p is a power of D where p =0, 1.

The most singular terms appear in the Lagrangian as follows:

Lr D —(milmale)e M 2D~ 2m= 4P (XPLA) (APRA) O
= —(malmale)e M2 D=2t oY), (4.8)
where (’)ESHG) = (XPL)\)(E\PR)\)(’)?) and 6 =4 — 2p so that [Lf] = 4. Therefore, we have
Lr O 5M3¢+2D72m74+p0g0*2p)’ (4.9)

where we omitted —(m!male) since this is O(1).

"This subsection also complements the detailed derivation of the constraint on the new FI parameter &
omitted in ref. [12].
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Next, we explore the constraints coming from the new FI term. First of all, we recall
that the new FI term proposed by Antoniadis et al. can be added to the standard FI
term, when the theory contains also a gauged U(1) R-symmetry U(1)g. Then, we have the
following auxiliary D-term Lagrangian

1 . = 1
Lo p = 5 D* —i(Gik' = Gik')D — €D = S D* = (£ +€)D, (4.10)

where ¢ is the new FI constant, & = i(G;k* — ng;) Here k = k0 is the Killing vector of
a standard R-symmetry Ur(1) and G is the supergravity G-function. If we restore explicit
powers of the gauge coupling g, then we get

1 2 ! 1 2 !
After solving the equation of motion for D, we have
D= g MA(E+¢). (1.12)
Plugging this result into the Lagrangian again, we obtain

Lr D fM;,lf”H(g?Mgl(f i g/))—2m—4+p(,)£§10—2p)

_ 5(92(6- + éf/))—2m—4+pMI;6+2pO;§‘1072p). (413)
This implies &(g2(¢ + f’))_2m_4+pMp_16+2p < Aﬁlgp so we arrive at
o M. 6—2p
e () (1.14)

This is a constraint on the new FI term constant &, written in terms of the UV cutoff Acyt.

5 Summary

In section 2 of this work we computed the component action of the liberated N' = 1 super-
gravity using the superconformal tensor calculus. In section 3, we revisited the component
action of a Kéhler-invariant new FI term (called “ACIK-FI term”) in the superconformal
formalism. In section 4, we used the superconformal tensor calculus to constrain the size of
new supergravity terms that are present in liberated supergravity and in the ACIK-FI term,
but absent in standard supergravity. The computations performed in sections 2, 3, and 4
spell out the results of [11, 12]. Specifically, we relate the “liberated” scalar potential U to
the UV cutoff and we derive the constraints on the ACIK-FI term used in [12]. What makes
our constraints powerful is that differently from standard supergravity, both liberated su-
pergravity and the ACIK-FI terms introduce nonrenormalizable interactions proportional
to inverse powers of the supersymmetry breaking scale Mg. This makes it impossible to
send Mg to zero while keeping the UV cutoff of the theory finite. The most singular non-
renormalizable interactions in the limit Mg — 0 are cumbersome, multi-fermion operators,
but they can be found and studies using the superconformal tensor calculus in a systematic
and economical way. Superconformal calculus techniques are general so can be applied to
any supergravity theory. Our analysis is based on standard Effective Field Theory methods
and it is thus complementary to swampland [18-20] constraints.
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A Some detailed calculations in liberated supergravity

A.1 Some details

D, = 9,20 — %J)ﬂxa (A1)

Cyy = W = Ag PrA g = 2 fermions + 4 fermions + 6 fermions, (A.2)

PrAg = V2K, (D) - FIx7] - %KijxKifx", (A.3)

DXV )1y = 2V2(BF)op(PLAK) 1 + 2V 2 F (PLPAK )15, (A.4)

DAk = 7-DAx, (A.5)
DAk = (au - gbu + i%bvab - gi’Y*AH> Ak — (i’Y K ;i'Y*DK> Yy,

(A.6)

(PLPAK) 1y = V' Dylyp=0(PrAK) 15 + %ﬁV#wm (A7)

(v-EF¥)op =0, Diloy=F

>

( lﬁ)of = (28[M85)0f = Qia[u(Kla,,]ZI - K;@V]éi) = 2@'(8[MK18,,]21 — 8[MKI‘8,/}2f)
= 2i(K1J5[MZ(J5V]ZI) - Kfja[uz(ja,,] Zj)) = 0, (A8)
(PY)os = (#—29"b, — 20" A,)T
; . . 1
= (ﬁso)sgefK/‘3 + so(ﬁs(ﬁ)(fK/3 + 5056671(/3 <35K) —29#(b, +iA,)Y

1

1 1 1 F
=7 (ﬁso + —Psf — 2 KPz" — S Kidz" —29"(b, +iA#)> , (A.9)
50 EX 3 3

, 1 1., 1 1 s
iBr)of = T (-50@804- %380 + gKIaZI - 3K152]> )

T ) 2 2 i
@ )Of?%)of = %653—§Kj62[—27”(bu+i14u). (A.10)

A.2 Derivatives of N

In this appendix we give explicit formulas for the derivatives of N with respect to the
multiplets ¢ = 0, I, W, T. The first derivative of NV is

N; = 6200 + 6107 + 6 ow + 0T op,  N; = 8995 + 6707 + 67 Oy, + 67 07, (A.11)

the second derivative of N is
N;z = 67800507 + 61 6200w + 60600005 + 51500105 + 6767007 + 6167000
+0007 0005 + 61870105 + 6] 67 0 0r + 6]V 67 00w + 6761 80Oz + 8187 910z
+6] 87 O, 0r + 81 67 O 0w + 676 dodyy + 6187 D1y, (A.12)
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the third derivative of N is
Nyji = 676762050507 +61¥ 5762000 50w + 625762000505 + 6167 6°0,950.5

+280" 67600500 0w +20.°6] 82000507 + 67 6T 628502 + 6167 620,850
+281°8"")6980050w + 6161V 690,850 + 6269890395 + 6169820, 8005
+07 676K 020,07 + 61V 576K 00,00 + 0067 6K 00005 + 6167 6K 8,070,
128" 6T 6K 0 0wy +20°67 6K 0005 0 + 6T 6T 6K 0202 + 6167 6K 00707
+28°8Y) 65K 00 0w + 618) 5K 8,050y + 62606 K 920 + 61696K 8,800
+07 8767 070,07 + 61V 86T 070 10w + 6267 6T 000705 + 6157 6T 9,070,
+280" 67 6T 07070 +26°67 6T 0,077 + 6T 6T 6T 0703 + 6167 619,070
+280°8") 6T 0070w + 618V 6T 8,070 + 89696T 9207 + 616957 9,8007
+0T 876 85,0,07 + 01V 870 85,0,10w + 8057 61 800y, + 616751 90y, 0,5

7 7

+28" 6T 6W gy, 070w +26°67 6V 000y, 0 + 6T 676V 033,02 + 616761 0;043,0r

+28°8Y) 61 9905, 0n + 618V 8V 9,8y Oy + 800061 920y, + 61895V 9,000y, (A.13)
and the fourth derivative of IV is
Nyjiz = 0:0;0,0iN =D+ @+ @+ @D+ B +(©) (A.14)
(1) = 69698960022 + 895967 6T 9202 + 69895 6995003 + 6069606T 8507 2
+00605K 6200702 + 250595 °51) 050708 + 60696 K 5T 00703 + 69505 T 579,073
+260696°51") 050,08 + 508955 61 00408 + 606951 5L 01 017,07 + 2696960 51 003,03

+61695950028,8 + 618967 5T 92970y + 61696 6285000y + 67 69626L 85078,

+616965 520070100 + 261695067 05070100 + 616955 67 007019 + 616957 5L9; 07010

)

LV ‘I

+251696°51") 050,010 + 616955 5 00330100 + 61695 570, 05,0100

1267696 51 0:0y3,0100 + 6057 6050020,00 + 6057 5T 6T 02,0,
+6987 65 60950,20,80 + 6967895 0307 0,0 + 6957 65 61997958,

(@) = 260676051 0507050 + 8057 5K 6T 0070700 + 6057 5T 670070500
+26067 606! 05043,0,00 + 6957 55 5 0.043,0,10 + 6957 5 6L 0. 033,0500
+250575" 57 02053,0,0 + 2667506002000 + 2057 6T 5T 9200
+28.°6 16 608507070 + 20°61 ) 695E 950 0y + 20106 65 6L 0207078,

+45°67505 D 5070700 + 26051 5K 5T 0070000 + 26067 5T 5F 0, 070700
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+48°67505) 950550700 + 26106765 5 00y, 07.00 + 261067 6Y 5L0; Dy, Do

i

J Tkl

(
+401°61) 60" 51D 020,078 + 25,6, 6080920y 0o + 26,6, 6T 5T 92,000
(

428,61 6 608507 0w 9y + 20°6.") 695F 050 O Ay + 26,6 6 6L 957 8w Dy

2

(A.16)

(3) = 460515061 507000 + 26.°6) V5K 5T 0 070w 0 + 2616, 5T 5L 070w Do

J k

+45°51) 505" 350550 9 + 26051 5K 5 0040 D + 2606, 51V 5 0050w Do

+4505W) 60 610200500, + 6T 5T 50500208 + 6T 5T 5T 6T 23

+07 6T 65 60050702 + 6T 676050507 0% + 6T 676K 6L 90 0%

+267 676057 9507:0% + 67 6T 5K 67 00703 + 67 67 6T 5F 0 07.0%
+267 676051 050y3,0% + 6767 5K 51 00 0% + 6T 5T 5V 5F0; 0y 0%
+2576760 51 0z 003 + 6167 6060020,0, + 5167 5T 6T 92,0,
+0167 6K 820507010, + 615760618507 0,05 + 6167 6K 5L 007010,

(@) = 251675057 8507010 + 515755 6T 007010, + 51675767 0;07010,

+251575051) 050y.010; + 615765 61 00,010 + 615761 6F 003,010,
w T 00 A
+2018760 51 070,010 + 6167 6960020,07 + 6167 6T 6T 020701

+016T 65608500107 + 6167 895 05070,07 + 6167 65 61800107

7 %

+251676067) 9507:0;07 + 5167 5K 6T 070,07 + 5157 5T 6L 0 070,07

+251676061) 050y, 0107 + 6167 5K W 00430107 + 61675V 5E0; 00107

+2516760 5D op0,0,07 + 67 5)506°028 107 + 675761 5T 02.0,07
+0767 5K 890500,0r + 0167606 0507.0,07 + 6167 6K 5L0z070,07

(5) = 26766067 05070,10r + 676 6K 6T 0 070,07 + 67 56T 5L 0; 070,07

+26767 6061 05017007 + 07615561 000,07 + 07675V 5F 00,0501

+26767 60" 5D 0700507 + 6161 500002010 + 5161 6T 5T 0200

+016W 6K 60050 010w + 6161 606 0507 010w + 6161 6K 5L D 07010w
+25161 605D ag07010w + 616 5K 6T 0010w + 6161 5T 5F0; 0010w

+26161 6051 00y 010w + 6161 5K W 005, 010w + 515V 5V 5E 0 0y3,010w

+25161 60 5D o0y 010w + 61V 576050020 0w + 61V 57 5T 6T 020,10

+01V 6765 800500,0w + 0V 5 606L 85078 ,0w + 61V 876K 619070 10w
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(©) = 251 575057 85070,10w + o1V 575K 5T 07070 10w + 61 75T 570,070 70w

+201V675\ 5@5W 0501 050w + 01V 575K 5W 0 037,0,10w + 61V 67 6% 5L, 017,0,10w

+25W5J5( 5% Oy 050w + 20" 61069600200 oy + 201" 6167 5T 92070

+20" 6168 89050 0rdw + 26" 61 60sF o drow + 20" 616K sEog o drow

+45" 576067 sz drow + 200" 676K 6T o oporow + 26" 57 5T sE o drdrow

+45 516051 5015 00w + 260" 575561 00w + 250" 5161 6F 0 0y 0w

+45" 5160 5100 drow (A.20)
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