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We show that perturbations of massless fields in a black hole background enjoy a hidden SLð2;RÞ ×
Uð1Þ (“Love”) symmetry in the properly defined near zone approximation. Love symmetry mixes low- and
high-frequency modes. Still, this approximate symmetry allows us to derive exact results about static tidal
responses. Generators of the Love symmetry are globally well defined for any value of black hole spin.
Generic regular solutions of the near zone equation for linearized perturbations form infinite-dimensional
SLð2;RÞ representations. In some special cases, these are highest weight representations. This situation
corresponds to vanishing Love numbers. Other known facts about static Love numbers also acquire an
elegant explanation in terms of the SLð2;RÞ representation theory.

DOI: 10.1103/PhysRevLett.127.101101

Introduction.—The LIGO detection of gravitational
waves [1] from inspiraling black hole binaries opened an
era of precision black hole physics. The worldline effective
theory [2–4] is an efficient modern toolbox for analytical
calculations of the waveforms from binary inspirals and for
interpreting observational data. In this framework, each of
the individual black holes in the binary is approximated as a
pointlike object. Finite size effects, such as departures from
spherical symmetry due to tides, are captured by higher-
dimensional operators on the worldline. This approach is
analogous to the multipole expansion in electrodynamics.
Coefficients in front of finite-size operators with a

quadratic dependence on external fields are called Love
numbers. They characterize tidal responses of a compact
body [5]. Remarkably, both for spherical and spinning
black holes, the static Love numbers, which capture
deformations by time-independent tidal fields, are found
to vanish in four-dimensional Einstein theory [5–11]. In
this regard, black holes are called the most rigid objects in
the Universe. In the worldline effective field theory context,
this implies that all quadratic finite-size operators without
time derivatives vanish for black holes, which represents an
outstanding fine-tuning (“naturalness”) problem [12].
Indeed, in the absence of an extra symmetry of the high
energy theory, all dimensionless coupling constants of the
low energy theory are expected to be Oð1Þ numbers [13].

In four dimensions, static Love numbers vanish for
perturbing fields of all spins and for an arbitrary multipolar
index l. To add to the puzzle, the situation is far more
complicated for higher-dimensional Schwarzschild black
holes [8,9]. Static Love numbers are nonzero in higher
dimensions for generic multipole indices l. However, they
do vanish for some special values of l, and for some other
special values, they exhibit classical renormalization group
running.
This intricate pattern calls for a novel (“Love”) sym-

metry of black holes which would account for the peculiar
behavior of static Love numbers. In this Letter, we identify
such a symmetry.
Near zone expansion.—We start with the simplest case

of a massless scalar field φ in the background Kerr black
hole metric. The resulting Klein-Gordon equation is known
to be separable in the Boyer-Lindquist coordinates (Our
conventions for the Kerr metric are the same as in [11].).
After writing

φ ¼ Φðt; r;ϕÞSðθÞ ¼ RðrÞSðθÞe−iωtþimϕ; ð1Þ

one arrives at the spin weight s ¼ 0 Teukolsky equation
[14] for the radial function,

∂rðΔ∂rRÞ þ ðV0 þ ϵV1ÞR ¼ lðlþ 1ÞR; ð2Þ

where Δ ¼ r2 − 2Mrþ a2 (its two roots correspond to the
outer rþ and the inner r− horizons),

V0 ¼
ð2MrþÞ2

Δ

�
ðω − ΩmÞ2 − 4ωΩm

r − rþ
rþ − r−

�
; ð3Þ
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V1 ¼
2Mðωamβ þ 4M2ω2rþÞ

rþðr − r−Þ
þ ω2ðr2 þ 2Mrþ 4M2Þ;

ð4Þ
and we have introduced β−1 ¼ ðrþ − r−Þ=ð4MrþÞ. Ω ¼
a=ð2MrþÞ is the horizon angular velocity, and lðlþ 1Þ is
the eigenvalue of the angular operator [15],

�
−

1

sinθ
∂θ sinθ∂θ þ

m2

sin2 θ
þ ϵa2ω2 sin2 θ

�
S¼ lðlþ 1ÞS;

ð5Þ

Note that, in general, l is not an integer. Here, ϵ is a formal
parameter of the near zone expansion. For the physical Kerr
background ϵ ¼ 1, while throughout this Letter, we are
working in the leading near zone approximation, ϵ ¼ 0. As
follows from (4), the leading near zone approximation is
accurate provided

ωr ≪ 1; Mω ≪ 1: ð6Þ
The range of validity of the near zone approximation covers
the near horizon region r≳ rþ and overlaps with the
asymptotically flat region r ≫ rþ.
It is important to note that the near zone expansion is

different from the low frequency expansion because one
keeps some frequency dependent terms in the Teukolsky
equation even at the leading order in the near zone
expansion. Nevertheless, it provides an accurate approxi-
mation at low frequencies. In particular, the leading near
zone approximation produces exact answers for ω ¼ 0
quantities, such as static tidal responses.
Related to this, there is an ambiguity in howone defines the

near zone expansion associated with a freedom to move ω
dependent terms betweenV0 andV1 as soon asV1 stays finite
at the horizon. Useful choices of the near zone split have the
property that the ϵ ¼ 0 equations are exactly solvable.
Examples of such splits can be found in, e.g., [16–18].
Love symmetry.—The reason for our choice is related to

the following crucial observation. Let us consider three
vector fields of the form

L0 ¼ −β∂t;

L�1 ¼ e�β−1t

�
∓ Δ1=2∂r þ β∂rðΔ1=2Þ∂t þ

a

Δ1=2 ∂ϕ

�
: ð7Þ

It is straightforward to check that these fields satisfy the
SLð2;RÞ algebra,

½Ln; Lm� ¼ ðn −mÞLnþm; n;m ¼ −1; 0; 1: ð8Þ
Using the quadratic Casimir of this algebra

C2 ≡ L2
0 −

1

2
ðL−1L1 þ L1L−1Þ; ð9Þ

one finds that the ϵ ¼ 0 Teukolsky equation can be
written as

C2Φ ¼ lðlþ 1ÞΦ: ð10Þ
Eigenvalues of the operator L0 are given by

L0Φ ¼ iβωΦ≡ hΦ: ð11Þ
By transforming into advanced or retarded coordinates,
it is straightforward to check that all three SLð2;RÞ
generators are regular at the black hole horizon. As a
result, regular solutions of the near zone Teukolsky
equation form SLð2;RÞ representations even though the
symmetry is “hidden”—it does not correspond to an
isometry of the background. We will refer to this hidden
symmetry as the Love symmetry.
The above properties of the Love symmetry can be

contrasted with the noncritical Kerr/CFT proposal [18].
It was observed there that, for a different choice of the
near zone split, the leading order Teukolsky equation
enjoys a local hidden SLð2;RÞL × SLð2;RÞR conformal
symmetry. However, the corresponding vector fields are
not well defined globally, because they do not respect the
ϕ → ϕþ 2π periodicity. As a result, regular solutions of
the Teukolsky equation do not form SLð2;RÞL×SLð2;RÞR
representations.
Furthermore, the Love symmetry generators (7) have a

smooth Schwarzschild limit, which is not the case for
the Kerr/CFT SLð2;RÞL × SLð2;RÞR. At a ¼ 0 vector
fields (7) reduce to the ones derived previously in [19].
These considerations suggest that the Love symmetry (7)

may be a better starting point for a holographic description
of Kerr black holes. This expectation is further supported
by the observation that the SLð2;RÞ × Uð1Þ symmetry,
which we found [where the Uð1Þ factor corresponds to
axial rotations], matches the near horizon isometry of the
extreme Kerr solution [20,21]. A nonextreme Kerr black
hole may be considered as an excitation above the leading
Regge trajectory populated by extreme Kerr states
(Recently, an analogous approach proved to be very useful
for understanding the spectrum of Yang-Mills glueballs
[22].). From this viewpoint, it is natural to identify the
hidden Love symmetry (7) with the SLð2;RÞ isometry of
the extreme near horizon region. In an excited nonextreme
state, this symmetry gets spontaneously broken and, thus,
ceases to be an isometry.
Vanishing Love numbers from highest weight property.—

To illustrate the power of the Love symmetry, let us apply
it to explain properties of static Love numbers. To define
them, one looks at the large-r behavior of the static radial
solution RðrÞ with a fixed growing asymptotics, deter-
mined by a source at spatial infinity. Love numbers are
defined as coefficients in front of decaying powers in this
asymptotic expansion. For black holes in four dimensional
general relativity, this radial solution turns out to be a
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polynomial in r (in the appropriate coordinates), hence,
Love numbers vanish identically. Now, we will show that
this polynomial form is dictated by the highest weight
property of the corresponding SLð2;RÞ representation.
Let us start with the Schwarzschild case, a ¼ 0. Generic

regular solutions of the Teukolsky equation form infinite-
dimensional representations of the Love symmetry.
However, SLð2;RÞ algebra also has finite-dimensional
representations for positive integer l and integer L0

eigenvalues jhj ≤ l. These nonunitary representations
can be obtained by a “Wick rotation” of the familiar
unitary SOð3Þ angular momentum representations.
Furthermore, note that, at the leading order in the near

zone expansion, the angular equation (5) turns into the
standard equation for the associated Legendre polynomials,
and hence, l is a positive integer (Of course, in the
Schwarzschild case, this is true without taking the near
zone limit.), satisfying l ≥ jmj. This suggests that the static
Schwarzschild solution, which has h ¼ 0, belongs to a
finite-dimensional representation of the Love symmetry.
(Note that, due to explicit time-dependence of generators
(7), other states of the representation do depend on time.)
To prove this, let us consider the h ¼ −l highest weight
vector v−l;0,

Lþ1v−l;0 ¼ 0; L0v−l;0 ¼ −lv−l;0: ð12Þ
By making use of (7), one finds

v−l;0 ¼ elβ
−1tΔl=2; ð13Þ

where we set m ¼ 0 without loss of generality. As a
consequence of the SLð2;RÞ commutation relations,
v−l;0 solves the Teukolsky equation (10). By transforming
into advanced or retarded coordinates, one finds that this
solution is regular at the black hole horizon.
One may obtain the rest of the representation by acting

on the highest weight vector v−l;0 with the lowering
operator L−1, which increases h by unity. This way, one
arrives at the static solution with h ¼ 0 given by

v−l;l ¼ Ll
−1v−l;0:

Since the highest weight vector v−l;0 and L−1 are both
regular at the horizon, the same is true for v−l;l and all
other states in the multiplet. Now, we can use the SLð2;RÞ
algebra in the opposite direction. We take the static solution
v−l;l and climb up to the highest weight state by applying l
times the raising operator Lþ1, i.e., v−l;0 ¼ Ll

þ1v−l;l. But
the highest weight vector itself is annihilated by Lþ1,

Llþ1
þ1 v−l;l ¼ Lþ1v−l;0 ¼ 0: ð14Þ

Additionally, it follows from (7) that:

Llþ1
þ1 vðrÞ ¼ ð−1Þlþ1eðlþ1Þβ−1tΔlþ1

2 ∂lþ1
r vðrÞ; ð15Þ

for any function vðrÞ independent of t and ϕ. Then,
Eq. (14) dictates that the static solution v−l;l is an lth
degree polynomial in r. Given that the corresponding Love
number is defined as a coefficient in front of r−l−1 in the
r → ∞ expansion of v−l;l, we conclude that scalar static
Love numbers of Schwarzchild black holes all vanish as a
consequence of the SLð2;RÞ algebra. As explained in the
Section on near zone expansion, the result is exact even
though this derivation has been performed at the leading
order in the near zone expansion.
Note that we could also have obtained a static regular

solution with the same value of l by acting with Ll
þ1 on

the lowest weight vector v̄l;0. From the uniqueness of the
regular solution, it follows, then, that v̄l;0 belongs to the
same SLð2;RÞ representation:

v̄l;0 ∝ L2l
−1vl;0 ≡ v−l;2l: ð16Þ

This implies that the dimensionality of the corresponding
representation is finite and is equal to 2lþ 1.
A large part of this argument proceeds unchanged for a

rotating black hole. The first step is to look for the highest
weight vector v−l;0ðmÞ. Using (7), one finds

v−l;0ðmÞ ¼ elβ
−1tþimϕ ðr − rþÞi

mΩβ
2
þl

2

ðr − r−Þi
mΩβ
2
−l
2

; ð17Þ

which is, again, regular at the horizon. Hence, the descend-
ant vector v−l;lðmÞ is, again, a regular static solution
annihilated by Llþ1

þ1 . The complication is that v−l;lðmÞ now
depends on ϕ, so a generalization of (15) is required.
Inspecting the explicit expression for Lþ1 in (7) suggests
the following ansatz for v−l;lðmÞ:

v−l;lðmÞ ¼ eimϕF ðrÞvðrÞ; ð18Þ
where

F ðrÞ ¼ ðr − rþÞi
mΩβ
2

ðr − r−Þi
mΩβ
2

: ð19Þ

Indeed, then, one finds that

Llþ1
1 eimϕF ðrÞvðrÞ ¼ ð−1Þlþ1eðlþ1Þβ−1tF ðrÞΔlþ1

2 ∂lþ1
r vðrÞ;

ð20Þ
again implying that vðrÞ is a degree l polynomial in r. This
result agrees with the brute force solution of the Teukolsky
equation, which results in the explicit expression for vðrÞ in
terms of a hypergeometric function (see, e.g., [11]).
Naively, the expression (18) suggests the presence of a

nontrivial tidal response associated with the nonpolynomial
form factor (19). However, as explained in [10,11], this
response can be attributed to frame dragging. It is purely
dissipative and does not correspond to an effect of local
worldline operators. The static Love numbers are still zero.
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An intuitiveway to see this is to notice that the formfactor (19)
disappears completely if onewere to perform a transform into
the advanced coordinates. If we were to perform the calcu-
lation in the advanced coordinates to start with, as was
advocated in [23], the result would be purely polynomial.
Note, also, that, unlike (13), the highest weight vector

(17) is regular only at the future (black hole) horizon. It is
zero at the past (white hole) horizon and exhibits a branch
point singularity there. This is acceptable physically in the
response calculations [14], because the white hole horizon
of an eternal black hole is never present for physical black
holes formed as a result of a collapse. This also clarifies
a physical meaning of the prefactor (19)—it signals the
presence of a singularity at the white hole horizon. In this
case, static solutions belong to infinite-dimensional highest
weight SLð2;RÞ representations (“Verma modules”)—the
lowest weight vector v̄l;0ðmÞ is singular at the future
horizon at Ωm ≠ 0 (and regular at the white hole horizon)
and, thus, belongs to a different representation.
To summarize, we see that the SLð2;RÞ representation

theory provides an elegant algebraic characterization for
the properties of the static Love numbers. Vanishing Love
numbers correspond to highest weight SLð2;RÞ represen-
tations. In general, these are infinite dimensional, which
corresponds to a singularity at the white hole horizon.
Finite-dimensional representations (which necessarily
exhibit highest and lowest weight properties simultane-
ously) arise when the corresponding solutions are regular at
the horizon both in advanced and retarded coordinates.
Generalizations.—Remarkably, the puzzling properties of

static Love numbers for higher-dimensional Schwarzschild
black holes can also all be nicely phrased in terms of the
representation theory. Spherical higher-dimensional black
holes also exhibit a hidden SLð2;RÞ symmetry (see
Appendix of [19]). The near zone Teukolsky equation
now takes the following form in d spacetime dimensions:

C2Φ ¼ l̂ðl̂þ 1ÞΦ; with l̂ ¼ l
d − 3

: ð21Þ

For integer values of l̂, one again arrives at finite-
dimensional SLð2;RÞ representations. This is exactly the
case when the static Love numbers vanish [8,9].
Generically, l̂ is not an integer, the corresponding

representations do not have the highest weight form,
and Love numbers do not vanish. Still, the SLð2;RÞ
representation theory explains why these Love numbers
do not exhibit logarithmic running. Generically, singular
and regular solutions of the Teukolsky equation correspond
to different SLð2;RÞ representations. This provides a local
criterion for selecting the regular one and excludes the
possibility of renormalization group running.
This argument breaks down at half-integer l̂’s. As l̂

approaches a half-integer value, SLð2;RÞ representations
describing regular and singular solutions become the same
(see Chapter VII of [24]). This makes it impossible to

distinguish them locally and leads to a classical renormal-
ization group running of Love numbers for half-integer l̂’s
[8,9]. It appears that a proper analogy for this phenomenon is
a resonance condition required for the logarithmic running to
appear in conformal perturbation theory, cf. [25,26].
The arguments above can be straightforwardly extended

to other bosonic fields in four dimensions. We provide the
details in [27] and present just a short summary here. The
generalization of the generators (7) for a generic massless
field of spin weight s is given by

LðsÞ
0 ¼ L0 þ s;

LðsÞ
�1 ¼ L�1 − se�β−1tð1� 1Þ∂rðΔ1=2Þ: ð22Þ

The corresponding quadratic Casimir satisfies the spin
weight s Teukolsky equation [14,15] in the near zone
approximation (As in the s ¼ 0 case discussed above, this
near zone split is slightly different from the one used in
Refs. [28,29].),

CðsÞ2 ψ s ¼
�
C2 þ sð∂rΔÞ∂r þ s

2Mrþðrþ − r−Þ
Δ

∂t

þ s
2ðr −MÞ

Δ
a∂ϕ þ s2 þ s

�
ψ s ¼ lðlþ 1Þψ s;

ð23Þ
where ψ0 ¼ Φ is a test scalar field, ψ�1 are the Newman-
Penrose-Maxwell scalars, from which one can extract the
electromagnetic field around the black hole [14], and ψ�2

are the Newman-Penrose-Weyl scalars that can be used to
reconstruct gravitational perturbations [14,30,31]. The
structure of the symmetry algebra for a generic spin
weight s is identical to the scalar field case discussed
above. Again, l is an integer at the leading order in the near
zone expansion, implying the highest weight property and
the vanishing of all static Love numbers.
Infinite extension of Love symmetry.—Very general

arguments [32] suggest that the SLð2;RÞ × Uð1Þ sym-
metry discussed so far is just a small part of a full infinite-
dimensional algebra. Note that the proof of [32] does not
apply here directly, because it relies on unitarity, and the
representations encountered above are all nonunitary.
Nevertheless, there are indications that SLð2;RÞ ×Uð1Þ
discussed here is, indeed, a part of a much larger algebraic
structure. We will explore this structure in a future work
[27] and present just a few preliminary remarks here.
The main observation is that the near zone approxima-

tion considered by Starobinsky [16] also exhibits a hidden
SLð2;RÞ symmetry. The corresponding SLð2;RÞ gener-
ators take the following form:

Ja ¼ La þ Ωβv0;a∂ϕ; ð24Þ
where
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v0;�1 ¼ e�β−1tðr − rþ
r − r−

Þ1=2;

v0;0 ¼ −1:

This near zone expansion is less suited for demonstrating
vanishing of static Love numbers atΩm ≠ 0, but appears to
have other particularly nice properties. For instance, argu-
ments analogous to the ones presented above prove that, in
the Starobinsky near zone approximation, the black hole
response vanishes at the locking frequency ω ¼ mΩ.
Furthermore, explicit calculations demonstrate that, in this
approximation, all nonstatic Love numbers vanish as well,
which can also be proven algebraically [27].
Note that, by acting on v0;a with the SLð2;RÞ generators

(7), one obtains vectors

v0;n ¼ Ln−1
−1 v0;1 ¼ ð−1Þn−1ðn − 1Þ!e−nβ−1t

�
r − rþ
r − r−

�
n=2

v0;−n ¼ Ln−1
1 v0;−1 ¼ ðn − 1Þ!enβ−1t

�
r − rþ
r − r−

�
n=2

;

where n > 0. Vectors v0;k with k ∈ Z are all regular at the
past and future horizons and span an SLð2;RÞ representa-
tion V with zero Casimir,

C2ðVÞ ¼ 0:

These considerations suggest that it is natural to consider an
infinite-dimensional extension of the Love symmetry into a
semidirect product SLð2;RÞ ⋉ Uð1ÞV , where Uð1ÞV are
vector fields of the form v∂ϕ, with v ∈ V. The near zone
considered here and the one by Starobinsky correspond to
different SLð2;RÞ subalgebras of this larger algebra.
Discussion and future directions.—Our results open

numerous new avenues for future research both on a purely
theoretical side and as far as relations to gravitational wave
observations are concerned. On a theory side, it is very
satisfactory that the “Love hierarchy problem” has led us to a
novel symmetry. Static Love numbers vanish as a conse-
quence of this symmetry. At first sight, everything is now
consistent with the ’t Hooft notion of naturalness [13].
Note that the Love symmetry has an unconventional

property in that it mixes UV and IR modes. Indeed, due to
the presence of the e�β−1t factors in L�1 generators,
SLð2;RÞ multiplets contain both the static solution and
high frequency modes. However, only in the near extreme
limit β−1M ≪ 1, is the action of the Love symmetry
compatible with the near zone conditions (6). This does
not invalidate any of our arguments. First, our logic is to
take the near zone limit ϵ ¼ 0, which provides accurate
results for low frequency observables, and then to solve the
resulting theory exactly. This allows us to benefit from the
presence of the Love symmetry in spite of the UV-IR
mixing introduced by L�1 generators. Still, it is somewhat
unclear whether this should be considered as a triumph of
naturalness in the sense of ’t Hooft, or rather an example

of the “UV miracle.” It remains to be seen whether this
unconventional example may provide useful lessons for
other famous hierarchy problems.
A popular slogan is that “black holes are the hydrogen

atom of the 21st century,” see, e.g., [33,34]. We see that this
comparison is actually accurate in a very concrete technical
sense. Low energy dynamics of both systems is governed
by an emergent integrable algebraic structure. It is still
natural to wonder who ordered these structures. What are
the reasons for the SOð4Þ Laplace-Runge-Lentz symmetry
of the hydrogen atom from the viewpoint of the full
quantum electrodynamics and for the Love symmetry of
black holes from the viewpoint of the full general relativity?
We are not aware of a good answer in the hydrogen case,
but it looks plausible that, for black holes, the horizon is the
culprit. We already saw that nonzero static Love numbers
for higher-dimensional black holes do not signal the loss of
symmetry. It will be interesting to study what happens in
other examples, such as in the presence of higher-derivative
corrections to the Einstein action, cf. [35].
Other next natural steps in theoretical studies of the Love

symmetry include a comprehensive analysis of its algebraic
structure, understanding its relation to near horizon iso-
metries in the extreme limit and to the asymptotic Bondi-
Metzner-Sachs symmetries and inclusion of massive fields.
It will also be interesting to see whether unitary SLð2;RÞ
representations play any special role in this story.
At the same time, it is important to remember that the study

of black hole responses is far from being a pure theorist’s
exercise. These effects contribute to gravitational waveforms
of binary inspirals, and the correspondingWilson coefficients
will be probed by the forthcoming gravitational wave
observations [12,36]. An approximate hidden symmetry
provides an extremely valuable addition and a useful organ-
izing principle to the effective field theory toolbox. Chiral
symmetry of pion interactions is one of the most famous and
successful illustrations of this. Similar to the pion case, it is
important to systematically work out all consequences of the
Love symmetry, including the ones beyond the strict static
limit. To achieve this, it should be fruitful to replace low
frequency expansion with the near zone expansion. By
treating the symmetry breaking parameters in (4) as spurions
under the Love symmetry, it should be possible to obtain
analogues of the Gell-Mann-Okubo relations for finite
frequency responses and quasinormal modes.
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