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We study the dynamical Chern-Simons gravity as an effective quantum field theory, and discuss a broad
range of its parameter space where the theory is valid. Within that validity range, we show that slowly
rotating black holes acquire novel geometric structures due to the gravitational dynamical Chern-Simons
term. In particular, the rotating black-hole solutions get endowed with two caplike domains, emanating
from the north and south poles in the standard Boyer-Lindquist coordinates. The domains extend out to a
distance that is approximately a few percent of the black hole’s size. The caplike domains have an unusual
equation of state, pointing to nonstandard dynamics within the caps. In particular, the focusing condition
for geodesics is violated in those domains. This in turn implies that the Hawking-Penrose singularity
theorem cannot be straightforwardly applied to hypothetical probe matter placed within the Chern-Simons
caps.
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I. INTRODUCTION AND OUTLINE

Dynamical Chern-Simons (dCS) gravity [1,2] modifies
the Einstein-Hilbert action with the addition of a parity-
violating Chern-Simons form coupled to a derivative of a
pseudoscalar field. dCS gravity is not an arbitrary extension
of general relativity (GR), but rather has physical roots in
particle physics [3] and string theory [4–6]. dCS gravity
naturally emerges as an anomaly-canceling term through
the Green-Schwarz mechanism [7]. It is often the case that
the scale at which the dCS term becomes significant is
inseparable from the scale where other higher-dimensional
terms become significant, too.
In this work we regard the stand-alone dCS action as a

low-energy effective field theory. In order for us to be able
to keep the dCS term in the action while neglecting an
infinite number of the Planck mass suppressed terms, we
require that the scale where the CS term becomes relevant is
much smaller than the Planck mass. We specify a field
theory mechanism that can lead to such a hierarchy of
scales without unnatural fine tunings, and discuss a broad

range of the parameter space where our approach is
justified. The above discussions are presented in Sec. II.
Within the range of validity of the effective field

theory we then look for certain novel characteristics of
rotating black-hole solutions in Sec. III. Previous work has
shown that dCS gravity admits some solutions of GR
without any obstruction, while predicting modifications to
GR solutions that lack a sufficiently high degree of
symmetry [8–11]. In particular, the dCS theory supplies
an additional term in the Einstein equation, which can be
thought of as a new “stress-energy tensor” on the right-
hand side of the equation. Since this new term descends
from a quantum anomaly, it does not have to obey the
classical positivity conditions. The latter feature manifests
itself in the properties of the solutions of the theory that
have a nonzero new stress-energy tensor. Such are the
rotating black-hole solutions carrying dCS pseudoscalar
hair [12–14].
We show, in Sec. III, that the rotating black holes possess

a novel geometric structure due to the dCS term. In
particular, the solutions get endowed with two caplike
domains, emanating from the north and south poles of the
black holes expressed in the standard Boyer-Lindquist
coordinates. These new domains, referred to here as “CS
caps,” extend out to a distance that is approximately a few
percent of the black hole’s size. The CS caps have an
unusual equation of state, which leads to the violation of the
focusing condition for geodesics.
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While the CS caps of the rotating black holes may have
some interesting observational consequences (to be inves-
tigated in subsequent works), the fact that they violate the
focusing condition calls for rethinking of the Hawking-
Penrose (HP) theorem [15,16], as we discuss in Sec. IV.
According to our findings, the HP theorem cannot be
applied to geodesics of external probe matter placed within
the CS caps, where the focusing condition is violated.
While this fact itself says nothing about the singularity
(non)formation for external matter in those domains, it
nevertheless represents an existence proof of a stable spatial
domain where the main condition of the HP theorem is not
fulfilled.
We use the following conventions in this paper: we

work exclusively in four spacetime dimensions with
signature ð−;þ;þ;þÞ, with Latin letters ða; b;…; hÞ
ranging over all spacetime coordinates; round and square
brackets around indices denote symmetrization and anti-
symmetrization, respectively, namely TðabÞ ≔ 1

2
ðTab þ

TbaÞ and T ½ab� ≔ 1
2
ðTab − TbaÞ; partial derivatives are

sometimes denoted by commas, e.g., :∂θ=∂r¼ ∂rθ¼ θ;r.
The Einstein summation convention is employed unless
otherwise specified.

II. dCS AS AN EFFECTIVE FIELD THEORY

Let us begin by defining the action of dCS gravity [8]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κRþ σ

4μ
�RR −

1

2
ð∇aσÞð∇aσÞ

�
; ð1Þ

where κ ¼ ð16πGNÞ−1, g is the determinant of the metric,
the integral extends over all spacetime, R is the Ricci scalar,
and the pseudoscalar field σ couples to the Pontryagin
invariant �RR, defined as follows:

�RR ≔ �Ra
b
cdRb

acd; ð2Þ

where the dual Riemann tensor is given by

�Ra
b
cd ≔

1

2
ϵcdefRa

bef; ð3Þ

with ϵcdef the four-dimensional Levi-Civita tensor.1

The Pontryagin term [Eq. (2)] can be expressed as the
divergence

∇aKa ¼ 1

4
�RR ð4Þ

of the Chern-Simons topological current (Γ is the
Christoffel connection),

Ka ≔ ϵabcd
�
Γn

bm∂cΓm
dn þ

2

3
Γn

bmΓm
clΓl

dn

�
: ð5Þ

Hence, the interaction term of σ can be rewritten, up to a
total derivative, as follows:

−
1

μ

Z
d4x

ffiffiffiffiffiffi
−g

p
gab∂aσKb: ð6Þ

We will use interchangeably the term in Eq. (6) with its
counterpart in Eq. (1), keeping in mind that there is a total
derivative distinguishing the two. Note that the action in
Eq. (6) makes the shift symmetry of the pseudoscalar field
manifest, σ → σ þ const. In this formulation, the shift
symmetry current on a noninteracting theory, ∂bσ, couples
to the Chern-Simons current, Kb, thus the name “Chern-
Simons modified gravity.”2

General relativity is not a renormalizable theory, and
hence, the action in Eq. (1) could only be part of an
effective field theory that contains an infinite number of
higher curvature terms, proportional to R2, R3, and so on,
and their derivatives, suppressed by the respective powers
of the Planck mass,MP ¼ 1=

ffiffiffiffiffiffiffi
GN

p
. In order for the higher-

dimensional terms to be negligible as compared to the term
σ�RR=ð4μÞ kept in Eq. (1), we should require

μ ≪ MP: ð7Þ

Since the term σ�RR=ð4μÞ is not renormalizable either, its
presence would then imply some new physics at the scale
μ ≪ MP. The new physics would generate the term
σ�RR=ð4μÞ at low energies, E ≪ μ, while above the energy
scale μ, the term σ�RR=ð4μÞ would ascend to certain
renormalizable terms.
In particular, the term σ�RR=ð4μÞ can be generated by

the gravitational axial anomaly [17]. At energies above μ,
one starts with a gravitational theory of a massless fermion
Ψ, coupled to a complex scalar field Σwith strength set by a
Yukawa coupling λ,

λðΨ̄LΣΨR þ Ψ̄RΣþΨLÞ: ð8Þ

Furthermore, the complex scalar has its own conventional
kinetic term and a quartic potential. All these terms are
symmetric with respect to the global Uð1Þ axial Peccei-
Quinn (PQ) transformations

Σ → eiβΣ; ΨR → e−iβ=2ΨR; ΨL → eiβ=2ΨL: ð9Þ

The PQ symmetry is spontaneously broken by a nonzero
vacuum expectation value of the scalar hΣi ¼ μ, due to the
symmetry breaking scalar potential. Both the fermion and

1We prefer to work with tensors rather than with tensor
densities in this paper, so some expressions might appear to
differ by factors of

ffiffiffiffiffiffi−gp
from [1].

2If ∇aKa is converted into 1=
ffiffiffi
g

p ∂að ffiffiffi
g

p
KaÞ the results (2.4)

and (2.5) of [1] are recovered.
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modulus of the scalar, ρ ¼
ffiffiffiffiffiffiffiffiffi
ΣþΣ

p
, acquire their masses due

to the vacuum expectation value hΣi ¼ μ. These masses are
proportional to the respective coupling constants and the
energy scale μ. Furthermore, these massive field can be
integrated out below their mass scales. However, the phase
of the scalar field, σ, remains massless as it is a Nambu-
Goldstone (NG) mode of the spontaneously broken PQ
symmetry. At low energies only this massless state is kept,
and its low-energy action can be deduced by substituting
Σ ¼ μ exp ðσ=μÞ and calculating the anomalous diagrams,
giving rise to the term proportional to σ�RR=4μ.
We have already specified that μ is considered to be

much smaller than the Planck mass. The question though is
how small can μ be. The fermion Ψ and the scalar ρ have
masses proportional to μ and would have been accessible to
accelerator experiments for μ≲ TeV; however, the fermion
and scalar do not couple to any other fields besides gravity,
and can only be produced in the accelerators via gravity
mediated processes, which are very much suppressed at
energies below ∼TeV.
For low values of μ one may worry about nonlinear

interactions of gravitons becoming strong at energies
much lower that the Planck mass due to the new vertices
introduced in Eq. (6). For instance, the four graviton
scattering amplitude of GR will be amended by a set of
new diagrams using the exchange of σ due to the cubic
vertex given in Eq. (6). To get a sense of the magnitude
of these corrections, we expand over a flat spacetime
metric, gab ¼ ηab þ hab, and rescale h → h=MP, to nor-
malize canonically h’s kinetic term. As a result, we get from
Eq. (6) the scaling of the new cubic vertex

∂σð∂hÞð∂∂hÞ
μM2

P
: ð10Þ

Thus, the strong scale is given by

Λs ¼ ðμM2
PÞ1=3: ð11Þ

Furthermore, the dCS term in Eq. (6) will generate higher-
order vertices, such as the one containing ∂σ and three
powers of ∂h, but those terms will be suppressed by the
scale, ðμM3

PÞ1=4, which is higher than Λs. All other higher
vertices obtained from Eq. (6) will give even higher scales,
and hence, Λs is the lowest one to worry about.3

For the value of μ as astonishingly small as the present-
day Hubble constant, μ ∼H0 ∼ 10−33 eV, the correspond-
ing value of the strong scale is Λs ∼ 5 × 107 eV. The latter
is much higher than the scale of 10−2 eV, up to which
precision gravity measurements have so far probed devia-
tions from conventional gravity.

What is the range of μ in dCS that is allowed by
nonperturbative physics? The most stringent constraint
on dCS gravity to date was established in Ref. [19], which
used the gravitational wave data obtained by the LIGO/
Virgo Collaboration for the merger of two neutron stars
[20], as well as the x-ray data obtained by the NICER
Collaboration for the pulse profile emitted by a rotating
neutron star [21,22]. This constraint requires that μ ≳ 4 ×
10−50 eV (or α1=2 ≲ 8.5 km, in the notation of the next
section) to 90% confidence. Note in passing that binary
pulsar observations cannot yet be used to place stringent
constraints on dCS gravity, because such binaries are
widely separated, and thus, the Pontryagin source to the
pseudoscalar field is too small [23].
Before moving on, let us make a final comment about the

mass of the pseudoscalar field σ. There are no mass or
potential terms associated with the pseudoscalar field σ in
Eq. (1), since σ is a NG boson of spontaneously broken PQ
symmetry. In the perturbative approximation, quantum
corrections will not generate a nonzero mass and poten-
tial for σ because of the shift symmetry, σ → σ þ const.
However, this symmetry is expected to be broken by
nonperturbative quantum gravity effects and the pseudo-
scalar field would then acquire a mass [24]. The induced
mass can be estimated; when the saddle-point approxima-
tion for the quantum gravity path integral is justified, the
induced mass ends up being small by an exponential factor,
e−x with x ≫ 100 and μ ≪ MP [24]. In what follows we
will consider distance scales much shorter than the inverse
of the induced pseudoscalar mass, and hence we will ignore
the small induced mass term in the action.

III. CS CAPS FOR ROTATING BLACK HOLES

Let us rescale the σ field in Eq. (1) as σ ¼ MPϑ, and pull
out the overall factor of M2

P in front of the action; having
done that, let us set MP ¼ 1=

ffiffiffiffiffiffiffi
GN

p ¼ 1. In these geometric
units the dCS gravity action reads [8]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κRþ α

4
ϑ�RR −

1

2
ð∇aϑÞð∇aϑÞ

�
; ð12Þ

where κ ¼ ð16πÞ−1, and α≡ 1=ðμMPÞ. Therefore,
although μ has units of energy in natural units, α has units
of km2 in geometric units.
The modified field equations can be obtained by varying

the action in Eq. (12) with respect to the metric:

Gab þ
α

κ
Cab ¼

1

2κ
Tab; ð13Þ

where Gab is the Einstein tensor, and the traceless
“C-tensor” is defined as

Cab ¼ ð∇cϑÞϵcdeða∇eRbÞ
d þ ð∇c∇dϑÞ�RdðabÞc: ð14Þ

3One can also realize the Chern-Simons term from a BF theory
perspective, see e.g., [18].

CHERN-SIMONS CAPS FOR ROTATING BLACK HOLES PHYS. REV. D 104, 064033 (2021)

064033-3



The stress-energy tensor for the scalar is

Tab ≔ ð∇aϑÞð∇bϑÞ −
1

2
gabð∇cϑÞð∇cϑÞ; ð15Þ

and we will assume that apart from this scalar field the
spacetime is empty. Variation of the action with respect to
the scalar field yields its evolution equation

□ϑ ¼ −
α

4κ
�RR; ð16Þ

where □ stands for the d’Alembertian operator.
The field equations are given by Eqs. (13) and (16), but

they simplify somewhat in trace-reversed form:

Rab ¼ 8πT̄ab − 16παCab; ð17Þ

because the C-tensor is traceless, Ca
a ¼ 0, where

T̄ab ≔ ð∇aϑÞð∇bϑÞ ð18Þ

is the trace-reversed stress-energy tensor of the scalar field.
From this formulation, it is clear that in the pure vacuum
case, i.e., when T̄ab ¼ 0, then the pseudoscalar field must
be a constant and dCS gravity reduces continuously to GR.
When the so-called Pontryagin constraint holds on a

subspace of solutions, i.e., when �RR ¼ 0 on shell, then
dCS gravity simplifies significantly. One can show that
�RR ¼ 0 for any spherically symmetric spacetime, regard-
less of whether it is static or not [11,25]. If so, the
pseudoscalar field then satisfies an unsourced wave equa-
tion, □ϑ ¼ 0. If one imposes a “no-cosmological scalar-
field” boundary condition, i.e., ∇aϑ ¼ 0 at spatial infinity,
then Tab ¼ 0 ¼ Cab for stationary solutions. In this case,
all spherically symmetric, stationary spacetimes must be
Ricci flat, and one concludes that all spherically symmetric
vacuum solutions in dCS gravity must be identical to
those in GR [11]. In particular, this implies that the
Schwarzschild metric continues to be a solution of dCS
gravity.
When we consider spacetimes that break spherical

symmetry, however, the Pontryagin density does not vanish
and GR solutions will not be solutions of dCS gravity.
For example, when considering spacetimes that are sta-
tionary but axisymmetric, the Pontryagin density sources a
nontrivial scalar field, which then backreacts on the metric
to induce non-GR modifications. Such an analysis can be
carried out to find slowly rotating black-hole solutions in
dCS gravity, as done first in [12], and then extended
to second order and fifth order in rotation in [13,14],
respectively.
Let us consider the dCS gravity solution that represents a

stationary and axisymmetric spacetime [12–14] valid to fifth
order in a slow-rotation expansion in Boyer-Lindquist-like
coordinates, with Arnowitt-Deser-Misner (ADM) angular

momentum JADM ¼ Ma and ADM mass MADM ¼ M. To
leading order in a=M ≪ 1, the modified rotating black-hole
solution in dCS gravity using Boyer-Lindquist-like coordi-
nates ðt; r; θ;ϕÞ is

ds2 ¼ ds2K þ 5

4
ζMχ

M4

r4

�
1þ 12

7

M
r
þ 27

10

M2

r2

�
sin2 θdtdϕ;

ð19Þ

where ds2K is the Kerr solution of general relativity, χ ¼ a=M
is the dimensionless spin parameter, and

ζ ¼ 16πα2

ðGNMÞ4 ð20Þ

is a dimensionless coupling parameter. The higher order in
spin terms introducemodifications to all other components of
the metric that can be found in [14], but their expressions to
Oða5=M5Þ are longandunilluminating, sowewill not present
them here.
Let us consider the behavior of both null and timelike

geodesics in this spacetime. First, consider a static timelike
observer in this spacetime. The tangent to such an observ-
er’s geodesic is kast ¼ γst½1; 0; 0; 0� and γst is a normalization
constant to ensure kstakast ¼ −1. With that in hand, employ-
ing the MAPLE and GRTensorIII software [26], we calculate
the quantity whose sign defines whether the geodesic
congruences are converging or diverging:

Rabkastk
b
st ¼

45

4
ζχ2f

γ8

M2

�
1þ 2c2θ þ

40γ

15

�
1þ 3

4
c2θ

�

þ 6γ2
�
1þ 1

3
c2θ

�
−
312

5
γ3c2θ

�
þOðζχ4Þ;

ð21Þ

where f ≔ 1 − 2γ, γ ≔ M=r, and cθ ≔ cos θ. Similarly,
consider a null observer with tangent vector la ¼
½l; gðr; θÞ; 0; 0�, where gðr; θÞ is a function such that the
null condition lala ¼ 0 is satisfied. In this case we have

Rablalb ¼
25

32
ζχ2f

γ6

M2

�
c2θ þ 4γc2θ þ

72

5
γ2
�
1þ 43

24
c2θ

�

þ 192

5
γ3
�
1þ 13

32
c2θ

�
þ 432

5
γ4
�
1 −

1

15
c2θ

�

−
19872

25
γ5c2θ

�
þOðζχ4Þ: ð22Þ

One can check by direct evaluation that both of these
quantities are positive definite almost everywhere. In those
regions the geodesics will be focusing. However, there are
regions where the quantities in Eqs. (21) and (22) are
negative. In particular, when one looks at spacetime regions
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near the polar axis (i.e., near θ ¼ 0) and close to the
horizon, one finds that the above contractions change their
signs. Note that, as we will show below, the location of the
ergosphere coincides with the location of the event horizon
along the polar axis in this solution, just like it does for the
Kerr metric, so static observers do exist right outside the
horizon along the polar axis.
Let us discuss these unusual regions further. The

considered solution is known to have an event horizon
located at

rEH ¼ rEH;K − ζM

�
915

28672
χ2 þ 351479

13762560
χ4 þOðζχ6Þ

�
;

ð23Þ

and an ergosphere whose outer edge is located at

rergo ¼ rergo;K − ζM

��
915

28672
þ 709

7168
s2θ

�
χ2

þ
�

351479

13762560
−

336421

2408448
s2θ þ

151229

1605632
s4θ

�
χ4

þOðζχ6Þ
�
; ð24Þ

where sθ ≔ sin θ, while rEH;K ¼ M þMð1 − χ2Þ1=2 and
rergo;K ¼ M þMð1 − χ2c2θÞ1=2 are the locations of the event
horizon and the outer edge of the ergosphere for the Kerr
metric, respectively [12–14]; notice that the outer edges of
the ergosphere coincide on the polar axis θ ¼ 0.
The top left panel of Fig. 1 shows the contraction

Rabkakb (timelike geodesics) to third and to fifth order
in the slow-rotation approximation on the polar axis close

FIG. 1. Dimensionless contraction of the Ricci tensor with the tangent vector of timelike (top panels) and null (bottom panels)
congruencesM2E½k� ¼ M2Rabkakb andM2E½k� ¼ M2Rablalb computed along the (θ ¼ 0) polar axis (left panels) and in the r − θ plane
(right panels). In the left panels, the red and blue curves denote M2E½k� calculated with a BH solution in dCS gravity to third and fifth
order in rotation, respectively, both for a black hole with dimensionless spin χ ¼ 0.1 and dimensionless dCS coupling ζ ¼ 0.1. In the
right panels, we present M2E½k� computed with a fifth order in rotation dCS BH metric (blue shaded region) assuming χ ¼ 0.1 and
ζ ¼ 0.1, and for comparison, we also present the outer edge of the ergosphere in dCS gravity. Observe that the contractions Rabkakb and
Rablalb switch sign close to the horizon, in a cup-shaped region around the polar axis. Note that the x axis on the right panels is given in
θ, not in r=M.
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to but outside of the event horizon. Observe that this
contraction flips sign, regardless of the order of the slow-
rotation approximation used for the metric. Extending this
analysis to all θ, we see that indeed there is a cone-shaped
region near the horizon extending from the pole up to ∼20°
on either side where the sign of the contraction Rabkakb

flips and becomes negative. This is shown in the top right
panel of Fig. 1 (blue region) with a metric valid to Oðχ5Þ,
where we also include the location of the outer edge of the
ergosphere (black curve) for comparison.
The bottom left and right panels show the contraction

Rablalb (null geodesics) on the polar axis to third and fifth
order in rotation, and extended to all θ, respectively. We see
that there is a similar, much smaller region close to the
horizon where the null contraction flips sign. Note that in
order to obtain the negative region, one must go to Oðζχ5Þ
in perturbation. We expect that going to higher orders in the
perturbative expansion will yield small corrections and will
not change the negative result.
The size of the regions of interest do not depend on the

value of ζ, which is proportional to the coupling α2, see
Eq. (20). In order to remain in the regime of validity of the
slow-rotation approximation, we must have ζ ≪ 1, so we
have taken ζ ¼ 0.1 as a representative example in Fig. 1.
Varying this value changes the magnitude of negativity for
the contractions Rabkakb and Rablalb in the CS caps, but it
does not change the boundaries of the caps. That is, we
have explored versions of Fig. 1 evaluated with various
values of ζ [e.g., ζ ¼ ð10−3; 10−2; 10−1Þ] and in all cases
the change in sign occurs roughly along the boundary of the
same caps shown in the right panel of that figure (although
how negative the contraction is does scale with ζ).
This technical point—that we are necessarily constrained

to consider small values of ζ because of the lack of an exact
solution—also forces us to consider black holes that are not
too small. To see this, let us use the definition in Eq. (20),
and require that ζ ≤ 0.1 to find

M ≥ 3M⊙

�
α

1 km

�
1=2

; ð25Þ

or restoring the powers of the Planck mass

M ≥ 2M⊙

�
10−47 eV

μ

�
1=2

: ð26Þ

If nature is described by dCS gravity as an effective theory,
then depending on nature’s value of μ (or α), our calcu-
lations would be valid for black holes of a different mass.
More specifically, for our calculations to be valid, the
smaller nature’s μ is (or the larger nature’s α is), the heavier
the black holes we can consider would have to be.
The above limitation on the black-hole (BH) mass is a

result of our small coupling approximation (i.e., ζ ≪ 1)
when finding slowly rotating BH solutions. However, it

might well be that the CS caps are universal for all rotating
black holes in the dCS theory. Such an outcome is not ruled
out by general arguments of continuity in the value of the
parameter ζ, or by the considerations of the focusing
theorem in the next section showing that the dCS can in
general permit negative values for the contraction in
Eq. (21), irrespective of the approximation used.
One may be worried that the curvatures close to the

horizon are so large that we are exploring these slowly
rotating solutions outside of the regime of validity of the
effective field theory, where these solutions are calculated
in the first place. The cutoff scale of the theory, i.e., the
scale inside which the small-GR-deformation approxima-
tion of effective field theory breaks down, can be approxi-
mated by computing the Pontryagin density with the
approximate black-hole solutions. Figure 2 presents the
Pontryagin density computed with the Kerr metric and with
the dCS metric for a slowly rotating black hole. Observe
that the dCS correction to the Pontryagin density, i.e., the
term proportional to α2 in the calculation of R�R with
the dCS metric, exceeds the GR value only deep inside the
event horizon for r=M < 0.75, and nowhere near the
regime where the contraction, Rabkakb, flips sign (which
from Fig. 1 we recall occurs for 2.06≲ r=M ≳ 2 for
timelike geodesics).4

An agreement emerges between our result and both
analytic [12–14] and numerical [27,28] studies that have

FIG. 2. Dimensionless Pontryagin density of a slowly rotating
black-hole solution computed to fifth order in slow rotation in GR
(blue), in dCS gravity (black) and using only the α2 correction to
the GR solution in dCS gravity (red) for a black hole with spin
χ ¼ 0.1 and dCS coupling ζ ¼ 0.1. Observe that the α2 correction
to the Pontryagin density is much smaller than the GR contri-
bution outside the horizon (r=M ≳ 2), which is precisely where
Rabkakb becomes negative.

4Even though we are working here in Boyer-Lindquist
coordinates, the statement that the curvature becomes large only
deep inside the horizon is also true in horizon-penetrating
coordinate systems.
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found black-hole spacetimes. Those studies found sta-
tionary and axisymmetric solutions in dCS gravity that
differ from the Kerr spacetime everywhere on the manifold,
leading for example to dCS corrections to the location of
the event horizon and the ergosphere. These solutions agree
with the Kerr metric in that they both possess spacetime
regions inside their respective event horizons where
curvature invariants diverge, which is why we say these
solutions represent black holes. The dCS corrections
to the metric, however, become dominant over the GR
terms inside the event horizon, as shown in Fig. 2, and in
particular before reaching the singularity. As usual, the
curvature singularities in these modified solutions are
outside the validity of the effective theory. It is entirely
possible that these singularities could then be cured by
higher-order terms in the action that have been neglected. It
would be interesting to see if higher curvature corrections
related to a stringy excitations in higher dimensions may
become relevant near the singularity to resolve it, in the
spirit of topological stars [29].

IV. GEODESIC (DE)FOCUSING
AND dCS GRAVITY

A. Focusing and the Hawking-Penrose theorem

To review the well-known focusing theorem [30], one
starts from the Ricci identity,

ð∇a∇b −∇b∇aÞka ¼ Ra
cabkc; ð27Þ

and derives the Raychaudhuri equation [30],

_Θ ¼ −σabσab −
1

3
Θ2 − E½k�; ð28Þ

for vorticity-free congruences of nonintersecting world-
lines. The quantity σab is the shear tensor of this con-
gruence, while Θ ¼ ∇ckc is the expansion scalar, and
E½k� ≔ Rcdkckd, where kc is the timelike or null tangent
vector field of the congruence.
The focusing theorem for timelike geodesics states that if

the strong-energy condition T̄abkakb > 0 holds, then vor-
ticity-free geodesics will focus in GR. This result is
established directly from the Raychaudhuri equation pre-
sented above, upon the use of the Einstein equations to
write E½k� ¼ 8πT̄cdkckd, where T̄ab is the trace-reversed
stress-energy tensor. Using the Einstein equations and the
strong-energy condition, it is obvious that the right-hand
side of the Raychaudhuri equation is negative because
E½k� > 0, which then means that the rate of change of the
expansion scalar with respect to the geodesic’s affine
parameter is negative, and the worldlines will focus within
a finite value of the affine parameter, reflecting the
attractive nature of gravity. An analogous argument holds
for null geodesics, provided that the null energy condition
is satisfied.

The focusing theorem leads to the Hawking-Penrose
singularity theorem as follows. Consider two events A and
B in a globally hyperbolic spacetime, which contains a
trapped surface, that are connected via a timelike or null
curve. If this is the case, there must exist a geodesic of
maximal length γ that connects these two points, on which
there are no conjugate points. The focusing theorem,
however, establishes that all geodesics emanating from A
will focus in a finite affine parameter, leading to conjugate
points. Intuitively, a geodesic cannot be extended beyond a
conjugate point, and therefore one cannot reach point B, so
the spacetime must be geodesically incomplete. In sum-
mary [16]:
Theorem 1 (Hawking-Penrose singularity theorem).—If

a globally hyperbolic spacetime contains a noncompact
Cauchy hypersurface Σ and a closed future-trapped surface,
and if the convergence condition, Rabuaub ≥ 0, holds for
null ua, then there are future incomplete null geodesics.
Einstein’s theory of general relativity predicts that

singularities will be unavoidable since the energy-momen-
tum tensor along timelike or null geodesics will be positive
definite according to the Einstein field equations if the
strong-energy condition holds. On the other hand, consis-
tent modifications of general relativity that violate the
strong-energy condition can lead to violations of the
focusing theorem, and therefore the evasion of singular-
ities. Clearly, if the discriminant E½k� < 0, then it could be
that _Θ > 0, which would imply that geodesics defocus,
leading to gravitational repulsion and the possibility of an
evasion of singularities. We have shown in Sec. III that the
slowly rotating dCS solution contains geodesics for which
E½k� < 0 close to the black hole. Note, however, that due to
the smallness of the dCS caps, both the null and strong
average energy conditions [31] remain satisfied. In what
follows, we show that dCS gravity naturally has the
mathematical and physical features needed to violate the
conditions of the focusing theorem.

B. The focusing and Hawking-Penrose
theorems in dCS gravity

Recall that both the focusing and Hawking-Penrose
theorem rely on satisfying the constraint Rabkakb ≥ 0 with
Rab the Ricci tensor and ka the tangent to a timelike or a
null geodesic congruence. Using the modified field equa-
tions in dCS gravity, this condition becomes

T̄abkakb ≥ 2αCabkakb; ð29Þ

and we see that in general this need not be satisfied,
allowing for the possibility that timelike or null congruen-
ces will defocus, avoiding a singularity.
When precisely do we have a violation of the focusing

theorem? Using the definition of the scalar-field stress-
energy tensor and the C-tensor, this occurs when

CHERN-SIMONS CAPS FOR ROTATING BLACK HOLES PHYS. REV. D 104, 064033 (2021)

064033-7



2αð∇cϑÞϵcdeað∇eRb
dÞkakb

þ 2αð∇c∇dϑÞ�Rdabckakb > ð∇aϑÞð∇bϑÞkakb; ð30Þ

where we have removed the symmetrization parenthesis in
the C-tensor because we are contracting it with the
symmetric tensor kakb. We recognize the right-hand side
as a total square of the directional derivative of the scalar
field in the direction of the tangent to the congruence.
Therefore, a sufficient (but not necessary) conditions for the
Hawking-Penrose theorems to be violated is simply

ð∇c∇dϑÞ�Rdabckakb > ð∇cϑÞϵdceað∇eRb
dÞkakb; ð31Þ

where we have eliminated the minus sign through a
permutation of the indices in the Levi-Civita tensor.
The above inequality is the best one can do without

using additional approximations. Note that the equation of
motion for the scalar field cannot be used to simplify
the left-hand side of the above equation, because the
double covariant derivative acting on the scalar field is
not contracted into a d’Alembertian operator. A simplifi-
cation one can do, however, is to work in an effective field
theory approach. In the latter, one can substitute the
modified field equations into the right-hand side of the
above equations to find

ð∇c∇dϑÞ�Rdabckakb > ð∇cϑÞkakbϵdcea
×∇eð8πT̄b

d − 16παCb
dÞ: ð32Þ

The right-hand side of this equation is quadratic in α
because the equation of motion of the scalar field ϑ is linear
in α. Therefore, to leading order in α, the condition to
ensure the Hawking-Penrose theorem is violated reduces to

ð∇c∇dϑÞ�Rdabckakb > 0: ð33Þ

There is no reason to expect that the left-hand side of the
above equation will have a definite sign. Thus, in general, it
would seem the assumptions required in the Hawking-
Penrose theorem do not hold. Notice, moreover, that in the
above derivation, we never used the fact that ka is the
tangent vector to a timelike geodesic congruence, and so,
this result also applies to null geodesic congruences. We
then conclude that the usual proof of the Hawking-Penrose
theorem does not go through in dCS gravity.
The lesson we have learned from this first study is that

timelike and null geodesics can, and in general will, defocus
in dCS gravity, yielding a violation of the conditions required
by the Hawking-Penrose singularity theorem. By itself, this
does not however mean that dCS gravity resolves the black-
hole singularity. At shorter distances, the dCS term would
transform into the terms that gave rise to it in the low-energy
approximation, as was discussed in Sec. II. To fully under-
stand this, we plan to study Oppenheimer-Snyder-like
collapse of a rotating dust ellipsoid and neutron star collapse
in dCS gravity and its short-distance completion to see if,
when, andhowa singularity forms [32].Moreover, in another
upcoming study we will analyze solutions, including
dynamical black-hole and cosmological solutions, that obey
theRabkakb < 0 condition, and explore the prospect of what
new physical effects this violation is signaling, including a
potential new regime of superradiance outside the rotating
black holes [33].
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