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Cellular Heterogeneity–Adjusted cLonal
Methylation (CHALM) improves prediction
of gene expression
Jianfeng Xu1,2,6, Jiejun Shi1,6, Xiaodong Cui2, Ya Cui 1, Jingyi Jessica Li 3, Ajay Goel 4, Xi Chen 2,

Jean-Pierre Issa 5✉, Jianzhong Su2✉ & Wei Li 1✉

Promoter DNA methylation is a well-established mechanism of transcription repression,

though its global correlation with gene expression is weak. This weak correlation can be

attributed to the failure of current methylation quantification methods to consider the het-

erogeneity among sequenced bulk cells. Here, we introduce Cell Heterogeneity–Adjusted

cLonal Methylation (CHALM) as a methylation quantification method. CHALM improves

understanding of the functional consequences of DNA methylation, including its correlations

with gene expression and H3K4me3. When applied to different methylation datasets, the

CHALM method enables detection of differentially methylated genes that exhibit distinct

biological functions supporting underlying mechanisms.
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DNA methylation is an essential epigenetic modification,
and its role in transcription repression has been widely
studied for decades. Jones et al1. demonstrated that

methylated CpGs (mCpGs) in the promoter region are recognized
by methyl-CpG-binding domain (MBD) proteins, which subse-
quently recruit histone deacetylase complexes to repress down-
stream gene expression1. Paradoxically, almost all studies
conducted using genome-wide methylation profiling technologies
such as whole-genome bisulfite sequencing (WGBS) have
demonstrated a poor global correlation between promoter
methylation and gene expression2–5. For example, Booth et al2.
found only slightly negative correlations between transcription
and both 5mC and 5hmC levels in promoter CpG islands (CGIs),
whose role in transcription regulation has been well-established6.
Efforts to address this paradox have shown that complex
methylation patterns of regions much longer than promoters7,8

(e.g., a 10-kb window surrounding the transcription start site)
better explain gene expression. However, why promoter methy-
lation alone is only weakly correlated with gene expression has
not been directly addressed.

Here, we show that the poor correlation between promoter
methylation and gene expression is due in part to the overly
simplistic nature of the traditional DNA methylation quantifi-
cation method (i.e., it determines just the mean methylation level
of every CpG within a promoter)9. A key disadvantage of this
traditional method is that it fails to account for heterogeneity
among sequenced bulk cells but treats CpGs within or across cells
as if they are identical (Supplementary Fig. 1a). For example, 20%
of the cells in population A (Fig. 1a) are fully methylated in a
promoter region, whereas the rest of the cells are fully unme-
thylated. In cell population B (Fig. 1b), there is one mCpG site per
promoter in every cell. The traditional quantification method
would indicate that the methylation level of this promoter is the
same in both populations. Nevertheless, as previous studies
demonstrated that a single mCpG is sufficient for recruiting MBD
proteins10,11 for gene repression, we hypothesized that this pro-
moter would be repressed in 20% and 100% of cells in these two
populations, respectively. Apparently, the traditional method fails
to capture the potential expression difference. To avoid this pit-
fall, we developed a methylation quantification method: Cell
Heterogeneity–Adjusted cLonal Methylation (CHALM), which
leverages the fact that each bisulfite sequencing read likely
represents a single cell within the sequenced bulk cells. Clonal
methylation here refers to the binary methylation status
(methylated or unmethylated) of a genomic locus in a single cell
(represented by a read in bisulfite sequencing data).

Instead of calculating the mean methylation level of all CpG
sites, CHALM quantifies the promoter methylation as the ratio of
methylated reads (with ≥1 mCpG) to total reads mapped to a
given promoter region. According to CHALM, the promoter
methylation levels of these two cell populations would be 0.2 and
1, which might better explain the transcription activity. As
expected, on promoter CGIs, CHALM-determined methylation
levels fit a bimodal distribution (Supplementary Fig. 1b) and are
usually higher than traditionally determined methylation
levels (Fig. 1c). We show that the CHALM method improves the
prediction of transcription activities by examining its
correlation with gene expression and H3K4me3 level. Further
comparisons between CHALM and the traditional method indi-
cate that our method is capable of identifying more accurate
differentially methylated genes that exhibit distinct biological
functions supporting underlying mechanisms.

Results
CHALM better predicts the gene expression and H3K4me3
level in promoter CGIs. For methods comparison, we mainly
focus on promoter CGIs (Supplementary Data 1), which have
been extensively studied for the relationship between DNA
methylation and gene expression. We first assessed the power of
the CHALM method in terms of predicting gene expression on a
genome-wide scale using a CD3 primary cell dataset. Although
the methylation levels calculated by both CHALM and traditional
methods were anti-correlated with gene expression (Fig. 2a and
Supplementary Figs. 2a, 3a, 3c, and 4), the CHALM-determined
methylation levels exhibited a more linear and monotonic rela-
tionship with gene expression. As expected, lowly methylated
promoter CGIs exhibited a very weak correlation between tradi-
tional methylation and gene expression12–14 (Fig. 2b and Sup-
plementary Figs. 2b and 4). Surprisingly, we observed a much
stronger correlation between gene expression and CHALM-
determined methylation (Fig. 2b and Supplementary Figs. 2c and
4). In addition, although we primarily focused on promoter CGIs
(Methods), CHALM also outperformed the traditional methods
in several other widely studied genomic regions (Supplementary
Figs. 5–7).

DNA methylation is also known to be mutually exclusive with
H3K4me3, which is strongly associated with gene expression.
Unmethylated H3K4 is capable of releasing the auto-inhibition of
DNMT3A by disrupting the interaction between the ATRX-
DNMT3-DNMT3L and catalytic domains, thereby inducing de
novo methylation15,16. We therefore examined the relationship
between DNA methylation and H3K4me3 level in promoter
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Fig. 1 CHALM quantifies cell heterogeneity–adjusted DNA methylation level. a, b show two different methylation patterns of a promoter region that
cannot be distinguished by the traditional method. c Scatter plot shows a comparison of the methylation level calculated by the traditional and CHALM
methods for the promoter CGIs of CD3 primary cells.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20492-7

2 NATURE COMMUNICATIONS | (2021)12:400 | https://doi.org/10.1038/s41467-020-20492-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


CGIs. With both the traditional and CHALM methods, we
consistently observed a negative Spearman correlation between
methylation level and H3K4me3 (Fig. 2c and Supplementary
Figs. 3b, d and 8). However, when we focused on genes with low
methylation levels, only CHALM-determined methylation was
significantly anti-correlated with H3K4me3 level (Fig. 2d and
Supplementary Fig. 8), suggesting that the CHALM method
provides a better representation of the mutually exclusive
relationship between DNA methylation and H3K4me3.

To further illustrate that CHALM better explains transcription
activity, we next examined in detail two genes with similar
methylation levels as determined by the traditional method but
with different transcription activities. We found that most reads
mapped to the promoter CGI of HIST2H2BF were fully
unmethylated (low CHALM-determined methylation level),
which explained the high transcription activity (Fig. 2e). A large
fraction of reads of the repressed gene SSTR5 had at least one
mCpG, which indicated that the high methylation level as
determined by the CHALM method was responsible for

transcription repression (Fig. 2f). Collectively, these results
demonstrate that the CHALM method provides better prediction
of gene expression.

CHALM performs best in paired-end and high-depth sequen-
cing dataset. Since the CHALM method quantifies the ratio of
methylated reads, its performance depends on the definition of
methylated reads, i.e. reads with at least N mCpG sites. We
evaluated CHALM based on varying definitions of methylated
reads and found that CHALM performed the best when N equals
to 1 (Supplementary Fig. 9). In addition, we noticed that CHALM
requires an average CpG depth of more than 7× in order to
achieve the optimal performance (Supplementary Fig. 10). Fur-
thermore, we found that read length would also influence the
CHALM performance. For WGBS datasets, the read length is
typically ~100 bp, which is too short to cover the promoter CGI
region, thus potentially adversely impacting the CHALM per-
formance (Supplementary Fig. 11). We therefore employed an
SVD-based imputation method17–19 to extend the reads. After
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Fig. 2 The CHALM method better predicts gene expression. a Scatter plots show the correlation between gene expression and methylation level
calculated using both methods. Balanced promoter CGIs (Methods section) of CD3 primary cells are used. Each data point represents the average value of
10 promoter CGIs, and the Spearman correlation is calculated based on original data for each promoter CGI. Comparison of correlation (between the
traditional method and CHALM) P values calculated by permutation (Methods section): <1 × 10−4. b Similar to a but focusing on low-methylation genes.
Comparison of correlation permutation P values: <1 × 10−4. c Scatter plots show the correlation between H3K4me3 ChIP-seq intensity and methylation
level calculated by the traditional and CHALM methods. Balanced promoter CGIs are used. Comparison of correlation permutation P values: <1 × 10−4.
d Similar to c but focusing on low-methylation genes. Comparison of correlation permutation P values: <1 × 10−4. e, f Methylation status of reads mapped
to the promoter CGI of HIST2H2BF or SSTR5, respectively. Black circles: mCpG; white circles: CpG.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20492-7 ARTICLE

NATURE COMMUNICATIONS | (2021)12:400 | https://doi.org/10.1038/s41467-020-20492-7 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


method validation, we extended the reads to different lengths and
observed that the CHALM performance improved, approaching a
plateau at a read length of 300 bp (Supplementary Figs. 12–14).
Given these results, CHALM prefers paired-end sequencing data,
as the effective read length is twice that of single-end sequencing
data (Supplementary Figs. 15 and 16).

DNA methylation clonal information is crucial for gene
expression prediction. Next, we demonstrate the importance of
clonal information for gene expression prediction by DNA
methylation with a sophisticated but intuitive deep learning
model. In order to maximize the amount of useful information
extracted from high-throughput sequencing data, we processed
the raw sequencing data into an image-like data structure in
which one channel contained methylation information and the
other contained read location information (Supplementary
Fig. 17). With this data structure, we can leverage more infor-
mation for gene expression prediction, such as the distance
between the read and the transcription start site and the weight of
reads with more than one mCpG. These data are then further
processed using a convolutional deep neural network for gene
expression prediction. As expected, this deep-learning model
outperformed a linear model trained using either traditionally
determined or CHALM-determined methylation levels (Fig. 3a
and Supplementary Fig. 18a). Notably, the deep-learning model
(Fig. 3b, c and Supplementary Figs. 18–20) and CHALM (Sup-
plementary Fig. 21) was markedly compromised after we shuffled
the mCpG position (assigning mCpG to random reads) while
keeping the total number of mCpGs unchanged but entirely
disrupting the clonal information. This result demonstrates the
crucial role of clonal information in predicting gene expression.
We also demonstrated that this deep-learning prediction model
outperforms a previously published method8 in terms of pre-
dicting gene expression based on promoter CGI methylation
levels (Supplementary Fig. 22). Finally, it is worth noting that the
predicted values output by the deep-learning model should not be
used as methylation levels, despite that they have a higher

correlation with gene expression than the CHALM-determined
methylation levels do. The reason is that the deep-learning model
is trained to predict gene expression, and thus its output pre-
dicted values rely on not only methylation data but also gene
expression data; also, the predicted values are derived only for the
prediction purpose but ignore other important biological aspects
of DNA methylation.

CHALM identifies more accurate hypermethylated genes dur-
ing oncogenesis. To demonstrate the utility of the CHALM
method, we compared it to the traditional method for identifying
differentially methylated genes with promoter CGIs in paired
cancerous and normal lung tissue samples20 (Supplementary
Data 2). The correlation between differential methylation and
differential gene expression was significantly greater when the
methylation level was calculated using the CHALM method
(Fig. 4a). In addition, the CHALM method not only recovered
most of the traditional method-identified hypermethylated genes
but also identified a subset of genes that are overlooked by the
traditional method. Consistent with studies showing that
Polycomb-mediated H3K27me3 pre-marks gene promoters for de
novo methylation during tumorigenesis21–23, the hypermethy-
lated genes identified by both methods were highly enriched with
H3K27me3 in normal lung tissue. Interestingly, the CHALM-
unique hypermethylated genes were more enriched in H3K27me3
than hypermethylated genes uniquely determined by the tradi-
tional method, suggesting that CHALM provides more accurate
identification of hypermethylated promoter CGIs (Fig. 4b and
Supplementary Figs. 23 and 24). Furthermore, with reads exten-
ded by imputation, the CHALM method identifies more hyper-
methylated promoter CGIs that are also enriched with
H3K27me3 (Supplementary Fig. 25).

CHALM identifies de novo DMRs that are more relevant to the
studied underlying mechanisms. We also demonstrated the
utility of the CHALM method for calling de novo differentially
methylated regions (DMRs)24. Lung adenocarcinoma (LUAD) is
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a slow-growing non-small cell lung cancer that accounts for ~40%
of lung cancers25. Upon treatment with tyrosine kinase inhibitors,
a subset of resistant LUADs transform into small cell lung cancer
(SCLC), a more-aggressive neuroendocrine tumor26–28. To
delineate the epigenetic ‘rewiring’ that underlies this transfor-
mation, we called de novo DMRs between LUAD and SCLC
using both the traditional and CHALM methods (Supplementary
Data 3). We found that a larger fraction of the CHALM unique
DMRs were annotated to gene promoter regions (Supplementary
Fig. 26). In addition, CHALM-determined hypomethylated
DMRs in SCLC were more highly enriched in genes of the neu-
roactive ligand-receptor interaction pathway, which is reportedly
activated in SCLC29 (Fig. 5a). Expression of genes from this
pathway with hypomethylated DMRs was consistently up-
regulated in SCLC (Fig. 5b). In addition, a drug repositioning
study reported that potential drugs for treating SCLC are enri-
ched in targeting genes associated with the neuroactive ligand-
receptor interaction pathway, indicating that this pathway plays a
crucial role in SCLC30. Collectively, CHALM data suggest that
DNA hypomethylation is involved in activating the neuroactive
ligand-receptor interaction pathway during the development of
SCLC.

Somatostatin receptors (SSTRs) are G-protein-coupled recep-
tors in the neuroactive ligand-receptor interaction pathway that
mediate somatostatin’s inhibition of cell proliferation, endocrine
signaling, and neurotransmission31. Given their high expression
in neuroendocrine tumors, SSTRs (along with other marker
genes) have been used for the detection of neuroendocrine
tumors32,33. Several somatostatin analogs, including octreotide
(SMS 201-995) and vapreotide (RC-160), have been proposed for

use in treating neuroendocrine tumors, including SCLC34.
Consistent with the up-regulation of SSTR expression in SCLC
(Fig. 5c and Supplementary Fig. 27), we also observed significant
hypomethylation of the promoter regions of SSTR1, SSTR2, and
SSTR5 in SCLC, but only when using the CHALM method
(Fig. 5d and Supplementary Fig. 28).

To demonstrate the robustness of the CHALM method, we also
used it to identify de novo DMRs during the aging process (mice)
and during the development of Alzheimer’s disease (humans). In
both scenarios, CHALM identified more DMRs closely related to
the underlying biological mechanisms (Supplementary Figs. 29
and 30).

Discussion
We would like to reiterate that CHALM is a method for quan-
tifying cell heterogeneity–adjusted mean methylation, but it is not
a method for quantifying methylation heterogeneity per se.
Therefore, CHALM is fundamentally different from all of the
epigenetic heterogeneity and entropy methods reported before,
such as PDR35, epipolymorphism36 and Shannon entropy37. We
compare CHALM and these three heterogeneity methods to the
traditional methylation method and note that CHALM exhibited
the best correlation with the traditional methylation method. In
contrast, the three above-mentioned heterogeneity metrics fit a
bell-shaped curve with traditional methylation and thus are not
appropriate for direct quantification of methylation, as they
cannot distinguish CGIs with low methylation levels (i.e., 0.0–0.2)
from those with high methylation levels (i.e., 0.8–1.0; Supple-
mentary Figs. 31–34).
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In conclusion, our data indicate that the CHALM method,
which incorporates cell heterogeneity information into DNA
methylation quantification, provides a better explanation for the
functional consequences of DNA methylation, as evidenced by the
demonstrated correlation with gene expression and H3K4me3.
We realize that DNA methylation in the promoter region and
gene body exhibit different relationships with transcription
activity. However, as a causal relationship between gene body
methylation and gene expression has not been clearly established6,
we primarily focus on the promoter regions. We further illustrate
the importance of clonal information in quantifying DNA
methylation using a deep learning model and demonstrate the
advantages of the CHALM method for more accurate identifica-
tion of functionally related DMRs. Finally, although the definition
of CHALM involves the ratio of methylated reads, CHALM is
actually intended for quantification of the adjusted methylation
level for each CpG site, which makes our method compatible with
most existing downstream analysis tools, such as differentially
methylated cytosine or DMR calling tools (Supplementary
Fig. 35). It is anticipated that the CHALM method will be of great
value for research that aims to fully delineate the role of DNA
methylation in transcription regulation. The CHALM method is
available at https://github.com/JianfengXu93/CHALM.

Methods
RNA-seq analysis. Raw sequencing data of CD3 primary cells (GSM1220574),
CD14 primary cells (GSM1220575), cancerous and normal lung tissue (GSE70091),
and small-cell lung cancer (SCLC, GSE60052) were downloaded from Gene
Expression Omnibus (GEO). Raw sequencing data of lung adenocarcinoma
(LUAD) samples were downloaded from GDC legacy archive. We used Trimmo-
matic (0.35)38 to trim low-quality bases and sequencing adapters. TopHat (2.1.0)39

was then used to align sequencing reads to the hg19 human reference genome with
default parameters. The hg19 GTF annotation file for transcriptome alignment was
downloaded from UCSC annotation database. We used Cufflinks (2.2.1)40 to cal-
culate Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for
annotated transcripts. As for differential expression analysis, read counts of tran-
scripts were first calculated by HTSeq (htseq-count, 2.7)41. DEseq2 (1.20)42 was
then used to calculate the expression difference and the statistical importance.

WGBS data pre-processing. Raw bisulfite sequencing data of CD3 primary cells
(GSM1186660), CD4 primary cells (GSM1186661), cancerous and normal lung
tissue (GSE70091), and LUAD and SCLC (GSE52271) were downloaded from
GEO. After trimming low-quality bases and sequencing adapters, we used BSMAP
(2.90)43 to align reads to hg19 human reference genome with default parameters.
The methratio.py (from BSMAP package) script was then used to calculate the
methylation ratios of CpG sites. Only CpG sites covered by at least 4 reads are
retained for the downstream analyses.

Promoter CpG islands. Annotation files for gene position and CpG islands for
hg19 assembly were downloaded from UCSC table browser. Promoter CGIs are
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defined as CGIs exhibiting overlap with 2-kb windows centered on gene tran-
scription start sites.

Quantifying the methylation levels of promoter CGIs. The aforementioned
traditional method for calculating promoter methylation level mainly refers to the
mean methylation level, which is computed as

1=n
Xn

i¼1

Ci=ðCi þ TiÞ ð1Þ

where Ci, Ti are the counts of methylated cytosine and unmethylated cytosine on
the CpG i of the promoter, respectively.

In our work, we also discussed another traditional method, i.e. weighted
methylated level, which is computed as

Xn

i¼1

Ci=
Xn

i¼1

Ci þ Ti ð2Þ

where Ci, Ti are the counts of methylated cytosine and unmethylated cytosine on
the CpG i of the promoter, respectively.

The CHALM methylation level is computed as

nm=ðnm þ nuÞ ð3Þ
where nm, nu are the counts of methylated reads and unmethylated reads mapped
to the promoter regions, respectively. Reads with at least one mCpG site are defined
as methylated reads.

Differentially methylated regions (pre-defined regions). For traditional
method, differential methylation of promoter CGIs were calculated by Metilene
(‘pre-defined regions’ mode, 0.2–7) with default parameters.

For CHALM, differential methylation of promoter CGIs were calculated based
on beta-binomial model. For a promoter CGI i, we denoted the counts of
methylated reads, the counts of unmethylated reads and CHALM methylation ratio
as nmi, nui, pi, respectively. The nmi and nui are observed values while pi is unknown.
Given that sequenced reads are sampled from the sequencing cell population, we
used binomial distribution to model the methylated reads

nmi � Bðnmi þ nui; piÞ ð4Þ
where the pi follows a beta distribution betaðαi; βiÞ, which can be estimated by
empirical Bayes method. Similar method has already been implemented in our
previously published MOABS package44. We then repurposed MOABS to calculate the
differential CHALM methylation. The cutoff for significant differential methylation:
absolute methylation changes are ≥0.1 and FDR adjusted p-value is <0.05.

Differentially methylated regions (de novo). For traditional method, de novo
DMRs are identified by Metilene (‘de novo’ mode, 0.2–7) with default parameters.

For CHALM, we first calculated the CHALM methylation ratio for each CpG
site. After reads alignment, we scaned each read for mCpG. If a read had at least
one mCpG, other CpG sites on the same read would be treated as mCpG as well.
Then, the CHALM methylation ratio would be calculated with the methratio.py
script from BSMAP. CpG sites covered by at least 4 reads were selected for calling
de novo DMRs by Metilene (‘de novo’ mode).

Identified de novo DMRs by both traditional method and CHALM were annotated
to the nearest gene. We then performed pathway enrichment and gene ontology
analysis for the differentially methylated genes by using DAVID (6.8) and Enrichr.

ChIP-seq data analysis. H3K4me3 ChIP-seq datasets for CD3 primary cell, CD14
primary cell were downloaded from Roadmap project [https://www.ncbi.nlm.nih.
gov/geo/roadmap/epigenomics/?view=matrix]. Sequencing reads were aligned to
hg19 human reference by bowtie2 (2.2.7, local mode). We then counted mapped
reads for each promoter CGI by htseq-count with default setting. Finally, the
H3K4me3 ChIP-seq signal intensity of a promoter CGI was defined as read counts
normalized by the length of the promoter CGI.

Balance the promoter CGIs set. Since most promoter CGIs are unmethylated, the
distribution of methylation value of promoter CGIs is severely biased to 0. In order
to balance the distribution, all promoter CGIs (~12,000) were split into 200 bins
based on their traditional methylation value. For each bin, up to 60 promoter CGIs
were randomly selected. The final CGIs set (around 3000 promoter CGIs) is
composed of the selected promoter CGIs from 200 bins.

Permutation test for comparing two correlation coefficients. Two samples,
which have the same size and are used to calculate two Spearman correlation
coefficients, r1 and r2, are first pooled into a single sample. In the b-th permutation
run, we randomly divided this pooled sample into two halves, which would be used

to compute two permutated Spearman correlation coefficients, rðbÞ1 and rðbÞ2 . Then

we calculated the difference rðbÞd ¼ rðbÞ2 � rðbÞ1 . We performed 10,000 independent
permutation runs to obtain 10,000 differences under the null hypothesis that the

two samples are from the same distribution: rð1Þd ; ¼ ; rðBÞd . Finally, we compared the
original difference rd ¼ r2 � r1 to these 10,000 differences to compute a p-value

defined as 1
B

PB
b¼1 Iðr bð Þ

d ≥ rdÞ for a one-sided test.

Missing value imputation. Since the length of most public bisulfite sequencing
datasets is ~100 bp while the length of promoter CGIs ranges from 201 bp to several
kb, a single read can only capture a small proportion of CpG sites of a promoter CGI.
In order to rescue the information from the uncaptured CpG sites, low-rank SVD
approximation (estimated by the EM algorithm) was used to extend the read based on
the information of nearby reads17. Promoter CGIs larger than 500 bp and with more
than 300 mapped reads were selected for imputation. Mapped reads of a promoter
CGI were converted into a matrix with column representing CpG sites of this pro-
moter CGI and row representing different reads. Each row contained the methylation
status (mCpG: 1; CpG: 0) of CpG sites captured by a single read. The methylation
status of the CpG site uncaptured by reads was label as NA and will be imputed by the
‘impute.svd’ function from bcv package17,18 (1.0.1).

Deep learning prediction. Promoter CGIs with more than 50 mapped reads were
selected for deep learning prediction. The methylation status (mCpG: 1; CpG: 0)
and the distance of mapped reads to the TSS would be stored into a 3D array. The
3D array is similar to the data structure for storing the positions and pixel
information of an image. The first dimension is for storing the mapped reads,
which was sorted by the read’s methylation fraction

fm ¼ Nm=ðNm þ NuÞ
where Nm, Nu refers to the number of methylated CpG and unmethylated CpG on
this read, respectively. The length of this dimension is 200. When there were less than
200 mapped reads (Nr < 200), pseudo-reads were generated by bootstrapping from
actual reads. When there were more than 200 mapped reads (Nr > 200), 200*Fsize (Nr

− 200 < 200 × Fsize <Nr) reads were randomly selected. Selected reads were then
sorted based on methylation fraction and split into 200 bins, with Fsize reads in each
bin. Finally, a pseudo-read was generated based on the mean value of each bin. Nr and
Fsize refer to the number of mapped reads and the size factor, respectively.

The second dimension is to store the methylation status of the CpG sites on the
reads. The dimension length is 10, which stores the methylation status of 10 CpG
sites from a sequencing read. When there were <10 CpG sites, the methylation
status of a read CpG site was expanded to a pseudo-CpG site. When there were
more than 10 CpG sites, the methylation levels of adjacent CpG sites were merged
(Supplementary Fig. 36).

The last dimension contains two channels: one channel storing methylation
information and the other one storing the distance of mapped reads to TSS.

To train this image-like 3D array (200 × 10 × 2) data, we built a CNN model
with PyTorch (version 1.2). Specifically, the input layer is attached to three
sequential Conv2d layers along with RELU activation function. The kernel size of
the three Conv2d layers is (5,1), (4,1), and (3,1) respectively. The stride for all
Con2d layers is (1,1). Since the second dimension of the input data is small, we did
not include pooling layer in our model. The final output layer of this CNN model is
a linear regression layer. And in order to prevent overfitting, a dropout layer (p=
0.2) was added between the convolution layer and the fully connected layer. We
then trained the CNN model using Adam as optimizer and MSELoss as loss
function in batches of 32 promoter CGIs.

In order to disrupt the clonal information in the control group, we randomly
assigned the mCpGs to mapped reads but kept the total number of mCpGs
unchanged. We then sorted the reads based on the methylation fraction to obtain
the input matrix, which was used for prediction.

Since most promoter CGIs are unmethylated, the original dataset was
downsampled to generate a relatively evenly-distributed dataset (balanced promoter
CGI set). Downsampled datasets were then randomly split into training set and test
set in a manner of 50–50%. After converting the raw bisulfite sequencing reads into
the aforementioned 3D matrix, we trained a convolutional neural network (CNN)
model to predict gene expression based on this matrix (Supplementary Fig. 8). The
testing set was then used to evaluate the performance of this model.

As a contribution to the community, we also generated a pretrained CNN
model by using the RNA-seq and WGBS datasets of 23 different normal tissues
from the Roadmap epigenomic project. This pretrained model is ready to use for
studying the relationship between DNA methylation and gene expression in other
datasets that are of researchers’ interest.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Public datasets from GEO, TCGA, and Roadmap project are used in this study
(Supplementary Data 4). For RNA-seq data, we used CD3 primary cells (GSM1220574),
CD14 primary cells (GSM1220575), cancerous and normal lung tissue (GSE70091) and
small cell lung cancer (SCLC, GSE60052). The RNA-seq data of lung adenocarcinoma
(LUAD) samples were downloaded from GDC legacy archive. For WGBS data, we used
CD3 primary cells (GSM1186660), CD4 primary cells (GSM1186661), cancerous and
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normal lung tissue (GSE70091), and LUAD and SCLC (GSE52271). H3K4me3 ChIP-seq
datasets for CD3 primary cell, CD14 primary cell were downloaded from Roadmap
project [https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/?view=matrix].

Code availability
The source code of the CHALM method is available at https://github.com/JianfengXu93/
CHALM. Analysis related to CHALM calculation and gene expression prediction by deep
learning is conducted with custom developed tools, which are deposited to the above github
website as well. All other custom codes related to this work is available upon request.
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