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ABSTRACT
Observations of massive galaxies at low redshift have revealed approximately linear scaling relations between the mass of a
supermassive black hole (SMBH) and properties of its host galaxy. How these scaling relations evolve with redshift and whether
they extend to lower-mass galaxies however remain open questions. Recent galaxy formation simulations predict a delayed, or
“two-phase,” growth of SMBHs: slow, highly intermittent BH growth due to repeated gas ejection by stellar feedback in low-mass
galaxies, followed by more sustained gas accretion that eventually brings BHs onto the local scaling relations. The predicted
two-phase growth implies a steep increase, or “kink,” in BH-galaxy scaling relations at a stellar mass M∗ ∼ 5 × 1010 M�.
We develop a parametric, semi-analytic model to compare different SMBH growth models against observations of the quasar
luminosity function (QLF) at 𝑧 ∼ 0.5 − 4. We compare models in which the relation between SMBH mass and galaxy mass is
purely linear versus two-phase models. The models are anchored to the observed galaxy stellar mass function, and the BH mass
functions at different redshifts are consistently connected by the accretion rates contributing to the QLF. The best fits suggest
that two-phase evolution is significantly preferred by the QLF data over a purely linear scaling relation. Moreover, when the
model parameters are left free, the two-phase model fits imply a transition mass consistent with that predicted by simulations.
Our analysis motivates further observational tests, including measurements of BH masses and AGN activity at the low-mass
end, which could more directly test two-phase SMBH growth.

Key words: cosmology: theory – galaxies: evolution – galaxies: active – galaxies: luminosity function – quasars: supermassive
black holes

1 INTRODUCTION

The co-evolution of supermassive black holes (SMBHs) and their
host galaxies has been an active area of research for over two decades,
driven in large part by observations (for a comprehensive review, see
Kormendy & Ho 2013). Indeed, studies made possible by the Hubble
Space Telescope revealed that all (or nearly all) low-redshift, massive
galaxies host a nuclear SMBH. Moreover, detailed observations have
shown that masses of SMBHs, MBH, correlate surprisingly tightly
with properties of their host galaxies, such as the stellar bulge mass
M∗bulge (e.g., Magorrian et al. 1998; Häring & Rix 2004; Marconi
& Hunt 2003), or the velocity dispersion 𝜎 of the stellar bulge (e.g.,
Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al.
2002).

The local MBH-M∗bulge scaling relation has generally been found
to be nearly linear. However, this relation is largely constrained by
measurements of relatively high mass galaxies in the local universe.

★ E-mail: mtt74@physics.rutgers.edu

The empirical constraints on the MBH-M∗bulge relation remain com-
paratively poor at lower masses and high redshift, despite a number
of important observational efforts. High-redshift measurements rely
on indirect methods to estimate BH masses, such as emission line
widths in active galactic nuclei (AGN; e.g., Treu et al. 2007; Merloni
et al. 2010; Shen et al. 2015), while more direct measurements in
low-redshift dwarf galaxies are limited by sample sizes (e.g., Läsker
et al. 2016; Nguyen et al. 2019; Schutte et al. 2019). Recent stud-
ies have also noted that the scaling relation appears to depend on
the sample selection, for example early- vs. late-type or blue vs. red
galaxies (Graham & Scott 2013; Savorgnan 2016; Sahu et al. 2019).
These observational results imply that extrapolating the usual, linear
scaling relation down to lower-mass galaxies may not be correct in
general.

Constraining the form of BH-galaxy scaling relations across the
entire spectrum of galaxy masses and types, including in the early
universe, is important not only for its own sake but also because
it would allow a better understanding of how SMBHs grow with
and affect their host galaxies via AGN feedback. AGN feedback is a
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key ingredient in modern galaxy formation theories, but how exactly
SMBHs couple to their host galaxies and halos remains a major
unknown (e.g., Somerville & Davé 2015; Naab & Ostriker 2017).
In current models, AGN feedback is usually assumed to be critical
for quenching star formation in massive galaxies, which is needed
to explain the observed sequence of “red and dead” galaxies (e.g.,
Faber et al. 2007; Hopkins et al. 2008; Chen et al. 2020). However,
there is increasing observational evidence of AGN-driven outflows
in dwarf galaxies (e.g., Manzano-King et al. 2019; Liu et al. 2020).
This suggests that AGN feedback could be important for lower-mass
galaxies as well. AGN feedback can in principle affect BH-galaxy
scaling relations either through its effect on star formation in the host
galaxy or by regulating the growth of the nuclear BH.

This paper focuses on testing a prediction from a number of recent
galaxy formation simulations concerning the growth of SMBHs. In
the last several years, cosmological simulations of galaxy formation
have advanced greatly both in resolution (especially in “zoom-in”
simulations) as well as in how small-scale processes such as star
formation, stellar feedback, and black hole physics are modeled (for
reviews of recent progress, see Faucher-Giguère 2018; Vogelsberger
et al. 2020). Although simulations using different codes differ in
many important details, some predictions appear generic to relatively
wide variations in simulation methodologies. A well-known example
of this is the role of stellar feedback in shaping the low-mass end of the
galaxy stellar mass function (e.g., Somerville & Davé 2015). Here,
we are motivated by another prediction which appears generic to
many different simulations, namely the delayed growth of SMBHs,
with respect to stellar mass growth, due to gas ejection by stellar
feedback.

It has been found in multiple simulations by different groups that
SMBHs tend to grow in two different phases (e.g., Dubois et al.
2015; Bonoli et al. 2016; Bower et al. 2017; Habouzit et al. 2017;
Prieto et al. 2017; Anglés-Alcázar et al. 2017b; McAlpine et al.
2018; Çatmabacak et al. 2020). In the early universe or in low-mass
galaxies, feedback by stars (in particular supernovae) regularly ejects
gas from galaxy centers. This results in extended periods of time
during which there is little to no nearby gas for nuclear BHs to accrete.
In this early phase, the BH mass lags behind while the host galaxy
grows its stellar mass.1 It is noteworthy that this result is robust to
details of the BH accretion prescription used in the simulation, which
are highly uncertain (see e.g., Hopkins et al. 2016; Anglés-Alcázar
et al. 2021), as long as the accretion is tied to the gas reservoir in the
immediate vicinity of the BH and the effects of stellar feedback are
resolved (Anglés-Alcázar et al. 2017b). The simulations find that,
eventually, the gas reservoir stabilizes in galactic nuclei. From that
point on, nuclear BHs in star forming galaxies accrete at a much
higher time-averaged rate and grow to masses comparable to those
expected from local scaling relations.

Figure 1 shows results from galaxy formation simulations from
the FIRE (“Feedback In Realistic Environments”) project (Hopkins
et al. 2014, 2018)2 illustrating the “two-phase" SMBH growth. At the
high-mass end, corresponding to later times for the galaxies tracked,
the BHs end with masses roughly consistent with locally observed
scaling relations (shown here in terms of MBH vs. total galaxy stellar
mass M∗). However, in low-mass galaxies BHs can be under-massive

1 It is not guaranteed that early BHs will be located at galaxy centers, e.g.
if the timescale for “sinking” to the center is too long (e.g., Ma et al. 2021).
The delayed BH growth included in our models could also, at least in part, be
caused by dynamic effects such as this.
2 See the FIRE project web site: http://fire.northwestern.edu.

relative to their host galaxies by more than an order of magnitude.
As Figure 1 shows, in FIRE this produces a relation between BH and
galaxy masses which has a prominent “kink” at a galaxy stellar mass
M∗ ∼ 5× 1010 M� . There is not yet agreement on the primary cause
of the change in SMBH fueling regimes, but different possibilities
have been discussed including an increase in the escape velocity
in the galactic nucleus (Dubois et al. 2015; Anglés-Alcázar et al.
2017b; Lapiner et al. 2021), a change in the buoyancy of galactic
winds due to formation of a hot gaseous halo (Bower et al. 2017),
and a change in the stability of the gaseous galactic disk, possibly
owing to confinement by a hot inner circumgalactic medium (CGM;
Stern et al. 2021; Gurvich et al., in prep.; Byrne et al., in prep.). In
other simulations, the transition between BH fueling regimes also
does not necessarily occur at a fixed stellar mass. For example, in
EAGLE the transition is better approximated by a threshold in virial
temperature of the halo (McAlpine et al. 2018).

Since the relations between BH and galaxy masses are not well
constrained at low masses and at high redshifts, it is not immedi-
ately clear whether a kink at M∗ ∼ 5 × 1010 M� is consistent with
BH mass measurements. In this paper, our goal is to test two-phase
growth by focusing on another set of observations: the AGN luminos-
ity function. Since AGN are powered by accretion onto SMBHs, the
AGN luminosity function is sensitive to the growth history of BHs
(e.g., Soltan 1982; Small & Blandford 1992; Yu & Tremaine 2002),
including the form of scaling relations as a function of redshift. In
practice, this is complicated by the fact that individual observations
(e.g., in the optical or X-ray) typically probe only a fraction of the
accretion power and by the fact that a large fraction of this accretion
power can be missed entirely due to obscuration (e.g., Hickox &
Alexander 2018). To circumvent these difficulties, we employ previ-
ous studies which have modeled these effects to infer the bolometric
luminosity function. We use the results from Shen et al. (2020) which
updates the classic analysis of Hopkins et al. (2007) that combined a
large set of AGN luminosity function measurements over the redshift
interval 𝑧 = 0 − 6. These authors then obtained a bolometric lumi-
nosity function which self-consistently reproduced the observations
in different bands, taking into account the luminosity dependence of
intrinsic AGN spectra as well as the luminosity dependence of their
obscuring columns.

We want to account for the fact that the details of the BH growth
histories can differ from simulation to simulation, depending on the
specific physics prescriptions used. Thus, instead of comparing exact
predictions from a specific set of simulations, we construct a general,
parameterized semi-analytic model intended to capture a range of
possible variations around the type of kinked scaling relation shown
in Figure 1. Although our model includes AGN of a wide range of lu-
minosities, i.e. not only the more luminous AGN commonly known as
quasars, we will follow the common practice of referring to the AGN
luminosity function also as the quasar luminosity function, or QLF
for short. The model scaling relation is convolved with the redshift-
dependent galaxy stellar mass function, as well as a distribution of
accretion rates, to derive AGN luminosity function predictions. By
comparing model AGN luminosity functions produced in this way
with the observations, we can test whether a kinked scaling relation
consistent with what is predicted by simulations is allowed or even
preferred by the luminosity function data. Overall, we find that a
two-phase BH growth model can successfully reproduce the QLF in
the redshift range 𝑧 ∼ 0.5− 4, where it is best constrained. Although
this should not be interpreted as proof due to the modeling assump-
tions and the limited data compared to, we furthermore find evidence
that a two-phase growth model is significantly favored over a simpler
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model in which the relationship between BH mass and galaxy mass
is linear at all masses.

The plan of this paper will be as follows. §2 describes our modeling
approach in more detail. Model luminosity functions are fit and
compared to observations in §3. We discuss the results in §4, and
summarize the main take-aways in §5.

2 QLF MODELING METHODOLOGY

When describing the two-phase (2P) model, we will refer to the
early/low-mass and late/high-mass growth phases as the “low-mass”
and “high-mass” regimes. In addition to parameter variations of the
2P model, we explore a simpler model which assumes a purely linear
relation between BH mass and galaxy stellar mass (the L model). By
comparing best-fit 2P and L models, we can assess whether the QLF
data prefer one over the other.

2.1 Galaxy Stellar Masses and Star Formation Rates

All of our models are anchored to observations of the galaxy stellar
mass function and designed such that the implied growth of the BH
population is consistent with the observed growth of the host galaxy
population. We utilize Universe Machine (UM, Behroozi et al. 2019)
to model galaxy properties as a function of redshift. In particular,
we use UM to model the redshift-dependent galaxy stellar mass
function (SMF) and the mean specific star formation rates (sSFRs)
of galaxies. In UM, these properties are self-consistently constrained
based on a wide range of observations, including different luminosity
and correlation functions. UM provides the SMF and sSFR data for a
large number of stellar mass and redshift bins. In our modeling code,
we interpolate smoothly between the values provided.

2.2 The Two-Phase and Linear Models

In this section, we describe in more detail how we implement the
two-phase model. The linear model is simply a special case of the 2P
model in which there is no transition between distinct regimes.

Black Hole Masses

In the 2P model, BHs are assumed to follow, on average, a relation
between BH mass and total galaxy stellar mass that has two distinct
phases, corresponding to the low-mass and high-mass regimes:

MBH =


MBHlo M∗ < M∗crit

MBHhi M∗ > M∗crit,

(1)

where the two regimes are separated by a critical stellar mass M∗crit
(the ‘transition mass’). The BH mass scalings in the two regimes
are parameterized by three dimensionless parameters: the power-law
slope in the low-mass regime (𝛼), the asymptotic 𝑀BH/𝑀∗ ratio at
high mass (𝛽), and the factor by which the BH is undermassive at
M∗crit relative to the linear relation (𝛾).

In the low-mass regime, when BHs are undermassive, we use the
following parameterization to describe the scaling relation:

MBHlo = MBHcrit

(
M∗

M∗crit

)𝛼
, (2)

where MBHcrit sets the normalization in the low-mass regime. For the

Parameter Description

M∗crit

(transition mass)

The stellar mass at which the low-mass regime
ends and the high-mass regime begins.

𝛼

(low-mass slope)

The power-law slope of the M∗-MBH relation
in the low-mass regime.

𝛽

(high-mass
normalization)

The asymptotic MBH/M∗ ratio in the
high-mass regime.

𝛾

(break factor)

The factor by which the BH is undermassive at
M∗crit relative to the high-mass power law.

𝜎ln Xlo

(low-mass 𝜎ln X)

The log-normal standard deviation of the
normalized BH accretion rate distribution in
the low-mass regime.

𝜎ln Xhi

(high-mass 𝜎ln X)
Same as above but for the high-mass regime.

Table 1. Overview of the two-phase (2P) model parameters.

high-mass regime, we set the requirement that the relation approaches
linearity,

MBHhi (M∗ >> M∗crit) → 𝛽M∗, (3)

but we do not enforce a strictly linear relation between 𝑀BH and 𝑀∗.
The linear slope at high masses approximates the scaling relations
often found in observations (e.g., Marconi & Hunt 2003; Häring
& Rix 2004; Kormendy & Ho 2013). Rather, we use continuity
considerations described in more detail below to connect the low- and
high-mass regimes. We then introduce the dimensionless parameter
𝛾 to set the normalization of the low-mass scaling relation,

𝛾 =
𝛽M∗crit
MBHcrit

. (4)

To obtain a functional form for MBHhi that connects to the low-
mass regime, we make the ansatz that as soon as galaxies enter the
high-mass regime, the BH mass and stellar mass of the galaxy start
growing in proportion to each other:

¤MBH = 𝛽 ¤M∗, (5)

implying that in the high-mass regime,

MBHhi = MBHcrit + 𝛽 (M∗ − M∗crit) . (6)

Figure 1 shows an example of the MBH-M∗ relation from the 2P
model, overplotted on FIRE simulation data.

We note that in observations MBH has often been found to correlate
more tightly with the bulge mass rather than the total stellar mass
of the galaxy. We use total stellar mass in our model because the
simulations predict the 2P growth behavior in the MBH-M∗ relation
(see Fig. 1 and Byrne et al., in prep.) and not only when MBH is
plotted as a function of a proxy for bulge mass (Anglés-Alcázar et al.
2017b). We did however explore model variations in which we use
bulge mass and found that our main conclusions regarding the two-
phase model are not changed. This makes sense because, at least at the
low redshift where detailed bulge/disk decompositions are available,
the bulge mass on average dominates the total stellar mass above
∼ M∗crit (e.g., Benson et al. 2007). Thus, the effects of distinguishing
between bulge mass and total stellar mass are partially degenerate
with the parameters that describe the break in the M∗−MBH relation.

MNRAS 000, 1–12 (2022)
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σln Xlo

σln Xhi

γ

α

β

M*crit

Figure 1. Left: The relation between BH mass and galaxy stellar mass. The gray curves show the trajectories of the nuclear BHs in four different A-series
simulations of massive galaxies from the FIRE project, analyzed in more depth in Anglés-Alcázar et al. (2017b). The black curves show analytic models for
the M∗-MBH relation: a simple linear model (L; dashed) and a two-phase model (2P; solid) in which BH growth is suppressed at low masses. The 2P model
parameters are chosen to approximate the average trajectories of simulated BHs. The red background region corresponds to the “low-mass” regime during which
BH growth is slow, whereas the blue background region corresponds to the “high-mass” regime during which BH growth is more efficient. The transition mass
between these regimes is indicated by the vertical black dotted line. Right: Similar but for the BH accretion rate vs. stellar mass. For clarity, we show the BH
accretion rate for a single example simulation and only the 2P model. On each panel, the red labels indicate how each parameter of the 2P model affects the
relations shown. These parameters are defined in more detail in §2.2 and in Table 1.

Black Hole Accretion Rates

Next we describe how we model the distribution of BH accretion
rates. At any given redshift, the distribution of BH masses is obtained
by convolving the galaxy stellar mass function with the MBH − M∗
model from the previous section. Since the galaxy stellar mass func-
tion evolves with redshift, this implies a specific redshift evolution
for the BH mass function. To constrain the distribution of accretion
rates, we enforce the requirement that the mean BH accretion rate
for any given stellar mass and redshift is consistent with the time
evolution of the BH mass function.

The BH accretion rate can be related to the stellar mass growth
rate via the following identity:

𝑑MBH
𝑑𝑡

=
MBH
M∗

𝑑 ln MBH
𝑑 ln M∗

𝑑M∗
𝑑𝑡

. (7)

Averaging both sides of this equation (treating M∗ as the independent
variable and the slope of the scaling relation as a constant at fixed
M∗) and combining with equation (1) we obtain for the ¤MBH − ¤M∗
relation:

〈 ¤MBH
〉
=


𝛼MBHlo

〈 ¤M∗〉
M∗

M∗ < M∗crit

𝛽
〈 ¤M∗

〉
M∗ > M∗crit

. (8)

This form is convenient because the terms involving the galaxy stellar
mass and its rate of growth can be self-consistently modeled using
results from UM. In doing so, we assume that the factor

〈 ¤M∗
〉
/M∗

above equals the mean sSFR as a function of stellar mass and redshift
which we calculate from UM. 3 We note that, using the relations in

3 This identification neglects a ∼ 20% difference between the SFR and the
net stellar mass growth rate ¤M∗ owing to stellar mass loss (e.g., Leitner &

the previous sections, the other terms can be fully parameterized by
M∗crit and the dimensionless parameters 𝛼, 𝛽, and 𝛾.

To account for the strong variability in BH accretion rates, we
define a distribution of accretion rates around the mean. We use a
log-normal distribution for simplicity and to capture a wide range
of accretion rates. To minimize the number of free parameters, we
make the ansatz that the distribution of BH accretion rates can be
parameterized by the distribution of dimensionless fluctuations

X ≡
¤MBH〈 ¤MBH

〉 . (9)

The X distribution is assumed to be independent of redshift and to
depend only on whether the galaxy is in the low-mass regime or the
high-mass regime. The log-normal distribution is then defined as:

𝑝 [ln X] = 1
√

2𝜋𝜎ln X
exp

(
− (ln X − 𝜇ln X)2

2𝜎2
ln X

)
. (10)

Using the requirement that by definition 〈X〉 ≡ 1, implying 𝜇ln X =

−0.5𝜎2
ln X, the distribution is fully characterized by the single param-

eter 𝜎ln X.
The low-mass and high-mass distributions parameters are labeled

𝜎ln Xlo and 𝜎ln Xhi, respectively. Since accretion is more sporadic in
the low-mass regime, we expect that 𝜎ln Xlo ≥ 𝜎ln Xhi and impose
this requirement when fitting the model to observational data (see

Kravtsov 2011). We neglect this difference because it is degenerate with the
normalization of the scaling relation, which is a free parameter. We also
neglect the fact that the stellar mass of a galaxy can grow via mergers. This is
a fair approximation for our purposes because this primarily affects the most
massive galaxies (e.g., Anglés-Alcázar et al. 2017a) and we do not expect this
to significantly change the possible signatures of a change in BH accretion
properties at intermediate stellar masses.

MNRAS 000, 1–12 (2022)



Delayed SMBH Growth vs. the QLF 5

1042 1043 1044 1045 1046 1047 1048

Lbol(erg s 1)

8

6

4

2

lo
g 1

0
 (M

pc
3 d

ex
1 )

z = 1.0

Predicted QLF
Low-mass contribution
High-mass contribution

B-Band
Hard-X
Mid-IR
Soft-X
UV-1450A

107 109 1011

M * (M )

10 11

10 9

sS
FR

 (y
r

1 )

107 109 1011

M * (M )

5.0

2.5

0.0

lo
g 1

0
SM

 (M
pc

3 d
ex

1 )

107 109 1011

M * (M )

104

107

1010

M
BH

(M
)

104 106 108 1010

MBH(M )

10 12

10 9

10 6

sB
HA

R 
(y

r
1 )

1042 1043 1044 1045 1046 1047 1048

Lbol(erg s 1)

8

6

4

2

lo
g 1

0
 (M

pc
3 d

ex
1 )

z = 1.0

Predicted QLF

B-Band
Hard-X
Mid-IR
Soft-X
UV-1450A

107 109 1011

M * (M )

104

107

1010

M
BH

(M
)

104 106 108 1010

MBH(M )

10 12

10 9

10 6

sB
HA

R 
(y

r
1 )

2P Model

L Model

Figure 2. Illustration of different ingredients used in producing model QLFs, at 𝑧 = 1. Left column: The models are anchored to the observed galaxy stellar
mass function and the self-consistently derived mean specific star formation rates of galaxies, which we model using Universe Machine. The top panel shows the
SMF (units of Mpc−3 log10 [M∗ ]−1) and the bottom panel shows the mean sSFR vs. stellar mass. Middle column: The top branch shows the MBH −M∗ relation
for a two-phase model with a break at M∗crit and the corresponding mean specific BH accretion rate vs. BH mass. The bottom branch shows the same quantities
but for a purely linear model (no break in MBH − M∗). Right column: The resulting bolometric QLFs (in units of Mpc−3 log10 [Lbol ]−1) for the two-phase and
linear models. The solid black curves show the best-fit model QLFs at 𝑧 = 1 when the model parameters are assumed to be independent of redshift (fixed) and
the models are simultaneously fit to observations at 𝑧 = 0.5, 1, 2, 3, and 4 (see §3.2). The solid red and blue curves in the top panel correspond to the low-mass
and high-mass contributions to the two-phase QLF, respectively. The orange shaded regions correspond to different stellar mass bins which can be seen in the
left column of this figure. The data points are from the Shen et al. (2020) bolometric QLF and correspond to inferences for observations in different bands.

§3.1). Furthermore, to avoid a discontinuity in𝜎ln X at M∗crit, the log-
normal dispersion is implemented such that it changes continuously
from 𝜎ln Xlo at M∗ ≤ M∗crit to 𝜎ln Xhi at a stellar mass 0.5 dex higher
than M∗crit. The interpolation is done linearly in 𝜎ln X vs. log M∗
space.

To further characterize BH growth in the models, we define the
mean specific BH accretion rate sBHAR ≡

〈 ¤MBH
〉
/MBH, which is a

function of redshift and BH mass. Note that this quantity is related to
the Eddington ratio, but it is expressed in different units and averaged
over the BH population, for a given MBH.

The Linear Limit

To assess whether two-phase SMBH growth is preferred by the QLF
data, we also explore a model in which the relation between BH
mass and stellar mass is purely linear and with no transition in the
normalized accretion rate distribution, i.e. with constant 𝜎ln X. This
linear model is fully specified by the 𝛽 = 𝑀BH/M∗ ratio and a
single log-normal accretion rate dispersion 𝜎ln X. We note that, as
for the 2P model, our L model is self-consistently anchored to the
redshift-dependent SMF and sSFR data from UM. This is significant
because some previous QLF models also assumed a log-normal ac-
cretion rate distribution at any given mass and redshift, but did not

include the requirement that the distribution of accretion rates must
self-consistently connect the implied BH mass functions at different
redshifts (e.g., Conroy & White 2013; though see Veale et al. 2014).

2.3 Producing the QLF

The steps described so far yield a distribution of BH accretion rates
for any given stellar mass and redshift. We convert this straightfor-
wardly to a bolometric luminosity distribution by assuming a constant
radiative efficiency:

Lbol = 𝜖 ¤MBHc2. (11)

For simplicity we set 𝜖 = 0.1 to represent radiatively efficient accre-
tion disks (e.g., Abramowicz & Fragile 2013).

The observed QLF includes accretion in galaxies of all stellar
masses, so to obtain the luminosity function at any redshift, we
integrate over the galaxy SMF:

𝑑N
𝑑 ln Lbol

=

∫
𝑝 [ln Lbol | ln M∗]

𝑑N
𝑑 ln M∗

𝑑 ln M∗, (12)

where

𝑝 [ln Lbol | ln M∗] = 1√︃
2𝜋𝜎2

ln ¤MBH

exp ©«
−
(
ln ¤MBH−𝜇ln ¤MBH

)2

2𝜎2
ln ¤MBH

ª®¬, (13)
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±𝜎ln X range that characterizes the log-normal distribution of accretion rates. Bottom row: Effects on the resulting QLF. The black curves correspond to the
total QLF, while the red and blue curves show contributions from the low-mass and high-mass regimes, respectively. The values of the free parameters that
are varied are, from left to right: M∗crit = (109.67, 1010.67, 1011.67) M� , 𝛼 = (0.5, 1.0, 1.5) , 𝛽 = (10−2.53, 10−2.33, 10−2.13) , 𝛾 = (101.34, 101.84, 102.34) ,
𝜎ln Xlo = (1.85, 2.35, 2.85) , and 𝜎ln Xhi = (0.83, 1.33, 1.83) . The results for the different parameter values are denoted by different line styles respectively as
(dotted, dashed, solid).

𝜇ln ¤MBH
= 𝜇ln X + ln

〈 ¤MBH
〉
,

and

𝜎ln ¤MBH
= 𝜎ln X.

We do not explicitly model radiatively inefficient accretion, based
on the assumption that doing so would only significantly affect the
predicted QLF at luminosities too low to affect our conclusions re-
garding the effects of a change in BH fueling at ∼ M∗crit. We also do
not explicitly model scatter in the MBH − M∗ relation. Instead, we
assume that the net effect of such scatter can be modeled implicitly
as a contribution to the scatter in the accretion rate distribution.

Figure 2 illustrates our process to produce model QLFs, using
𝑧 = 1 data. The leftmost column displays the SMF and sSFR data.
The middle column shows example M∗-MBH and sBHAR relations
for the 2P model (top) and the linear model (bottom). The rightmost
column shows the implied QLF for each model. The panel for the 2P
model additionally shows the QLF contributions from the low-mass
and high-mass regimes. For this figure, the model parameters are
best fits to the Shen et al. (2020) QLF data when parameters are
assumed to be independent of redshift (fixed) and the models are
simultaneously fit to observations at 𝑧 = 0.5, 1, 2, 3, and 4 (we
describe the different fits we explore in the next section).

Figure 3 shows the effects the different free parameters have on
the predicted QLF, as well as the M∗-MBH relation and the M∗- ¤MBH
relations. The effects on the predicted QLF are mostly as may be
expected. For example, increasing 𝛽 increases BH masses and BH
accretion rates linearly in the high-mass regime, so this increases
the QLF at the high end. Increasing the break factor 𝛾 decreases the
same quantities in the low-mass regime, so this tends to decrease
the QLF at the low end, and can help with imprinting a knee shape
(in phenomenological QLF fits, the “knee” is where there is a break
in power-law slope between the low-luminosity and high-luminosity
regimes). Interestingly, we see that the scatter in the accretion rate
distribution (via the 𝜎ln X parameters) is important in determining
the number of high-luminosity quasars (as has also been found in
previous studies, e.g. Veale et al. 2014). We note that varying the𝜎ln X

parameters changes the mean accretion rates because the accretion
rate distribution is normal in the logarithm, so the linear mean shifts
with 𝜎ln X.

3 RESULTS

3.1 Fitting to Observational Data

We conduct fits of both our 2P and L model QLFs to observa-
tional data on the bolometric QLF compiled in Shen et al. (2020).
Their study compiles multi-wavelength observational data, including
updates from the last decade, using a quasar SED model and bolo-
metric/extinction corrections to update constraints on the observed
bolometric QLF from the earlier Hopkins et al. (2007) study. Shen
et al. (2020) provides constraints on the QLF from 𝑧 = 0 to 𝑧 = 7,
but in our study we focus our fits on 𝑧 = 0.5, 1, 2, 3 and 4 since the
observational data is most complete within this range.

To find best-fit parameters, we employ a least-squares method over
a finite parameter space. The goodness-of-fit is evaluated at each
point in parameter space using the reduced 𝜒2 statistic computed in
the standard way, 𝜒2

𝑅
= 𝜒2/(𝑁 − 𝑝), where 𝑁 is the number of data

points in the fit and 𝑝 is the number of free parameters. We evaluate
𝜒2
𝑅

over a multidimensional Cartesian grid and find the best fit by
minimizing 𝜒2

𝑅
.

We carried out several versions of the fit. For each of the 2P
and L models, we tried both fitting the model parameters to each
redshift independently (the “evolving” fits) and requiring a fixed set
of parameter values to simultaneously fit the data at all redshifts (the
“fixed” fits). For the evolving fits, 𝜒2

𝑅
is evaluated for each redshift,

but for the fixed fits, a single 𝜒2
𝑅

is evaluated which includes data at
all redshifts.

For the 2P model, we conducted one fit with all six model pa-
rameters (summarized in Table 1) free, and another with only five
free parameters in which 𝛼 was fixed to a value of 1. The motiva-
tion for the latter fit is that 𝛼 parameterizes the low-mass slope of
the 𝑀BH − 𝑀∗ relation and may not be well constrained because
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Figure 4. Best-fit QLFs for the two-phase (2P) and linear (L) models, in solid black. 1st column: 2P model with parameters allowed to vary with redshift
(evolving). 2nd column: 2P model but with fixed parameters fit simultaneously to all redshifts shown. 3rd column: L model with evolving parameters. 4th
column: L model with fixed parameters. Each row displays results for the redshift indicated in the 1st column. The models are fit to bolometric QLF values
inferred by Shen et al. (2020) based on observations in different bands, plus extrapolated points at the low-luminosity end (in red) to penalize models that predict
a change in slope where observations are not available. The best-fit double power law model from Shen et al. (2020) is shown in gray for reference (their “Global
A” fit). The 𝜒2

𝑅
quantity shown in panels is the reduced 𝜒2 value for the plotted fit. For the fixed fit, there is a single 𝜒2

𝑅
corresponding to the global fit. As

discussed in the text, the 2P fits shown here assume a fixed 𝛼 = 1 value because it is found that freeing this parameter does not significantly improve the quality
of the fits.
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of luminosity limits on the observations. We found that the reduced
𝜒2 values were nearly identical for the fits with 𝛼 free in the range
0 ≤ 𝛼 ≤ 2 (which resulted in a best fit value of 𝛼 = 0.9) versus fixed
at 𝛼 = 1. For this reason, and to minimize degeneracies associated
with multiple parameters, we focus on 2P results for 𝛼 = 1 fixed
for the rest of the paper. Thus, the 2P fits that follow have five free
parameters while our linear fits have two free parameters.

Our approach is to let the fits explore wide ranges of parameter
values (i.e., to avoid prescribing constraining priors), so that we
can determine the parameter values favored by the QLF data alone.
The range considered for 𝛽 was broadly motivated by BH mass
measurements at the high end, but nevertheless set wide enough to
allow the QLF data to determine a favored value. We confirmed that
the likelihood for each free parameter peaks well within the explored
range. The parameter ranges used for our final fits are (in the notation
for the 2P model): 8 ≤ log10 M∗crit ≤ 12, −3.1 ≤ log10 𝛽 ≤ −1.8,
0 ≤ log10 𝛾 ≤ 4, 0 ≤ 𝜎ln Xlo ≤ 5, and 0 ≤ 𝜎ln Xhi ≤ 5. When fitting
the 2P model, we implement a physical prior requiring 𝜎ln Xhi ≤
𝜎ln Xlo. This is because in hydrodynamical simulations, the accretion
rate variability is predicted to be higher in the low-mass regime.

In addition to fitting the observation data points from Shen et al.
(2020), we include in the fits additional “extrapolated points” at the
low-luminosity end at each redshift. The extrapolated data points are
intended to penalize models that imply a low-luminosity QLF shape
that diverges strongly from the usual power-law form, which is found
where low-luminosity data are available (e.g., down to 𝐿bol < 1042

erg s−1 at 𝑧 = 0.5). The extrapolated points are most important at
high redshift, where the observations do not directly constrain the
low-luminosity end (e.g., only down to 𝐿bol ∼ 1044 erg s−1 at 𝑧 = 4).
For each redshift, the extrapolated points are introduced starting at
the low luminosity limit of the observational data (for the given 𝑧),
and continue every 0.5 dex down to Lbol = 1041 erg s−1. We assume
these points lie on the Shen et al. (2020) “Global A” best fit and the
uncertainty is calculated based on the uncertainty of the Global A
fit’s parameters.

3.2 QLF Fit Results

Figure 4 shows the best-fit QLFs for both the 2P and L models, and for
the evolving vs. fixed fits. The 𝜒2

𝑅
values for the fits are indicated on

the figure panels (for the evolving fit, there is a 𝜒2
𝑅

for each redshift,
but for the fixed fits, there is a single value for the global fit to all
redshifts simultaneously, indicated in the top row).

We must first acknowledge that none of the fits are ideal from a
statistical point of view because the 𝜒2

𝑅
values are all significantly

above unity. There are a couple likely reasons for this. One is that
a close examination of the observational data points suggests that
not all the data points are consistent with each other. For example,
there are mid-IR and soft X-ray data points with small error bars that
appear systematically above other observations and above the Shen
et al. (2020) best fit (e.g., around the knee of the QLF at 𝑧 = 0.5).
This suggests that there are some systematic effects not accounted
for in the error bars, and that even a perfect model would produce
a fit with a 𝜒2

𝑅
exceeding unity. In fact, our evolving 2P fit appears

to describe very well the 𝑧 = 0.5 observed QLF over the entire
luminosity range plotted, even though it has a 𝜒2

𝑅
= 3.038. We also

note that our models are relatively simple and that there is no a priori
guarantee that they can capture all the complexities of the observed
data. In particular, our 2P model includes the minimum number of
parameters necessary to describe a two-phase scenario in which the
parameter values are not fixed. Both the 2P and L models furthermore

assume a simple log-normal distribution of normalized accretion
rates (eq. 10), which may not be a fully accurate characterization of
AGN activity. Nevertheless, the fits are useful to assess the degree to
which a two-phase model is favored over a linear model.

Figure 4 shows that 2P fits are systematically better than the L
fits. This is the case for the fixed fits, as well as for the evolving fits
for each redshift. For the fixed fits, the difference in reduced 𝜒2 is
Δ𝜒2

𝑅
= 6.910−4.048 = 2.862 in favor of the 2P model. As mentioned

above, the 2P evolving fit appears to describe the 𝑧 = 0.5 observations
very well, and this is the redshift for which the observations cover the
largest luminosity range. At higher redshifts 𝑧 ≥ 2, the 2P fits imply
a “bumpy” QLF shape and a low-luminosity end with a steeper slope
than the empirical double power-law fit from Shen et al. (2020). We
note, however, that these effects are seen where low-luminosity data
become sparse or non-existent (other than through the extrapolated
points), so this may be largely due to the poor constraints on the
fits. We therefore do not consider the “bumpy” low-luminosity QLF
shape favored by some 2P fits in higher-redshift bins to be a robust
prediction of two-phase growth. On the other hand, the L fits fail in
a generic way to describe the observed QLF because they are unable
to reproduce a clear knee. This is especially evident at intermediate
redshifts 𝑧 = 2 − 3, where the observations show a distinct knee in
the QLF which the best-fit L models entirely fail to capture.

Figure 5 summarizes the best-fit parameters for the 2P model, and
shows how the evolving parameters compare to the fixed parameters.
This provides a useful check on the 2P model, because physically we
expect that if the model is a good description of the AGN population,
the model parameters should evolve smoothly with redshift. This is
supported by the results in the figure, which show that the best-fit
evolving parameters are either stable or only modestly evolving with
redshift. This result also explains why the fixed fits are only slightly
worse than the evolving fits. Interestingly, the evolving fits suggest
some evolution in 𝛽 (the high-mass MBH-M∗ normalization), such
that MBH/M∗ increases by a factor ∼ 2 from 𝑧 ∼ 3−4 to 𝑧 = 0.5. An
increase in the high-mass MBH/M∗ ratio by a comparable amount
over this redshift interval is also suggested by the recent Trinity
empirical model (Zhang et al. 2021).

For reference, the best-fit values for the fixed 2P model are
log10 M∗crit = 10.7+0.3

−0.5M� , log10 𝛽 = −2.3+0.3
−0.4, log10 𝛾 = 1.8+0.6

−0.8,
𝜎ln Xlo = 2.4+0.4

−0.4, and 𝜎ln Xhi = 1.3+0.9
−1 . The best-fit values for the

fixed L model are log10 𝛽 = −3.00+0.08
−0.08 and 𝜎ln X = 2.6+0.2

−0.2. The
errors are 1𝜎 and determined by where the 1D profile likelihood for
each parameter drops to 𝑒−1/2 of its peak value (see the 1D likelihood
panels in Fig. 6).

4 DISCUSSION

In the previous section, we showed that a 2P model fits the QLF data
better than an L model. In this section, we assess in more detail the
evidence that the QLF data supports two-phase SMBH growth.

One potential concern is that the 2P model might fit the QLF obser-
vations better simply because this model has more free parameters,
i.e. that the better fit does not necessarily imply that SMBHs grow
in two phases. We can assess this by examining the parameter like-
lihoods for the 2P fits. Figure 6 shows a corner plot for the fixed 2P
fit (with 𝛼 = 1). The 2D panels quantify the degeneracies between
pairs of parameters, while the 1D panels show the likelihoods for
each of the five free parameters. The likelihoods shown are profile
likelihoods, which correspond to maximum values of the 5D likeli-
hood function as a function of the one or two parameters considered
in each panel (i.e., the likelihood of the best-fit model with the one
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Figure 5. Comparison of the best-fit parameters for the two-phase model
when the parameter values are allowed to evolve with redshift (black dots) vs.
are fixed (dashed lines). Overall, the best-fit parameter are relatively stable
with redshift even when allowed to vary, though some evolution in 𝛽 (the
high-mass MBH-M∗ normalization) is suggested by the fits. As in Fig. 4, the
fits shown here assume a constant 𝛼 = 1.

or two parameter values fixed and all others free). First, we note that
each of the free parameters is well constrained by the data, in that the
profile likelihood has a well-defined peak within the range explored.

We can then ask whether the parameter values preferred by the
2P fit correspond to a “physical” two-phase model, in that the im-
plied MBH-M∗ relation is consistent with the predictions of galaxy
formation simulations that motivated our investigation (see Fig. 1).
This is a useful question because we constructed our 2P model to be
sufficiently flexible that it can represent a wide range of MBH-M∗ re-
lations, including a purely linear limit with no break, or a break of any
magnitude at any stellar mass. Using the results from the FIRE sim-
ulations shown in Figure 1 as our primary reference point, the main
characteristics of a physical two-phase model are a transition mass
M∗crit ∼ 5×1010 M� and a break factor 𝛾 & 10. The transition mass
is roughly constant in the FIRE simulations (see also Byrne et al., in
prep.). The magnitude of the break factor is not robustly predicted
by existing simulations because it is sensitive to the assumed “seed”
mass for SMBHs, which determines the normalization of the MBH-
M∗ relation at the low-mass end (e.g., Anglés-Alcázar et al. 2017b).
We consider, however, that a two-phase scenario implies a break of at
least one order of magnitude. As Figure 6 shows, it is remarkable that
the 2P fit to the QLF observations favors parameter values consistent
with these simulation results for a two-phase scenario, with a best-fit
transition mass M∗crit ≈ 1010.7M� ≈ 5 × 1010M� and a best-fit
break factor 𝛾 ≈ 101.8 ≈ 60. The best-fit high-mass normalization
𝛽 = 𝑀BH/𝑀∗ ∼ 0.5% is furthermore similar to the value inferred
more directly from BH mass measurements in massive galaxies (e.g.,
McConnell & Ma 2013; Kormendy & Ho 2013), although we do not
compare the exact values in detail because in our QLF analysis the 𝛽

normalization is degenerate with the assumed radiative efficiency.
There is also some direct observational evidence for a break in

the MBH-M∗ relation. In a study that included AGN in dwarf galax-
ies (with BH masses inferred from broad lines), Reines & Volonteri
(2015) found that the low-mass galaxies in their sample had lower
average MBH/M∗ than the high-mass galaxies with dynamical BH
mass measurements (their Fig. 8). Interestingly, the stellar mass and
magnitude of the break in the MBH-M∗ relation from Reines &

Volonteri (2015) appear similar to the values favored by our 2P fits
to the QLF (quoted above), albeit with large scatter. We note, how-
ever, that in a study which measured stellar velocity dispersions 𝜎∗
in eight active dwarf galaxies, Baldassare et al. (2020) found that the
MBH-𝜎∗ relation for dwarfs is consistent with a power-law extrapo-
lation from higher masses. These results suggest that when testing
models for scaling relations, it is important to consistently compare
the models and observations for relations with respect to the same
galaxy property (stellar mass, bulge mass, velocity dispersion, etc.).
As mentioned in the introduction, other observational studies have
also reported evidence for changes in BH-galaxy scaling relations
at low masses, for different cuts of the observational samples and
different measures of host galaxy properties (Graham & Scott 2013;
Savorgnan 2016; Sahu et al. 2019).

We noted in the introduction that multiple different simulations
predict two-phase SMBH growth qualitatively similar to what is
shown for FIRE simulations in Figure 1. However, the different sim-
ulations do not agree in all quantitative details, so it is also interesting
to consider how our best fits derived from the QLF data compare with
the SMBH growth transitions found in other simulations. We focus
here on comparing our results with the EAGLE simulations, for
which there have been detailed studies of the SMBH growth transi-
tion (Bower et al. 2017; McAlpine et al. 2018). Rather than stellar
mass, McAlpine et al. (2018) characterize the transition in terms of
the properties of the dark matter halo, finding that the transition oc-
curs in halos of a roughly constant virial temperature 𝑇vir ≈ 105.6 K,
corresponding to a critical halo mass that decreases with increasing
redshift. To compare with McAlpine et al. (2018), we can infer the
halo masses and virial temperatures corresponding to the transition
stellar masses M∗crit favored by our fits. To do so, we use our “evolv-
ing” 2P fits in which the model parameters are allowed to evolve
freely with redshift, so that we can infer how the preferred transition
halo mass and virial temperature change with redshift. To infer halo
mass from stellar mass, we use the median, redshift-dependent stel-
lar mass-halo mass relation from UniverseMachine (Behroozi et al.
2019). The virial temperature is then evaluated using standard rela-
tions for virialized halos (Bryan & Norman 1998; Barkana & Loeb
2001).

The results for the implied transition halo mass and virial tempera-
ture vs. redshift are shown in Figure 7. Interestingly, the 2P fits to the
QLF data imply a transition halo virial temperature 𝑇vir ∼ 106.6 K
that is roughly constant over the redshift interval 𝑧 = 0.5 − 4 probed
by our analysis, but a factor ∼ 10× higher than in the EAGLE simu-
lations analyzed by McAlpine et al. (2018). This is a large systematic
offset, corresponding to larger halo masses at the SMBH growth tran-
sition. We note, however, that the stellar mass-halo mass relation is
relatively flat around the best-fit “fixed” M∗crit ≈ 1010.7M� , so that
a small change in stellar mass corresponds to large change in halo
mass, according to the median relation. Moreover, in reality, there is
scatter in the stellar mass-halo mass relation, as well as uncertainties
in empirical determinations of this relation, such as the version in
UniverseMachine that we have used here. To more robustly assess
whether the QLF data may be consistent with a transition at a lower
virial temperature similar to EAGLE, it would be necessary to care-
fully model scatter and uncertainties in the stellar mass-halo mass
relation, which is beyond the scope of the present work.
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Figure 6. Corner plot displaying the bi-variate normalized likelihood contours for the two-phase model. This is for the fit with parameters fixed with redshift,
and with fixed 𝛼 = 1 as in Figs. 4 and 5. The 1D panels show profile likelihoods (which indicate the maximum value of the likelihood function for the parameter,
with all other parameters free) for the five free parameters. The fit to the observational data favors a transition mass M∗crit ≈ 1010.7M� ≈ 5 × 1010M� and a
break factor 𝛾 ≈ 101.8 ≈ 60 broadly consistent with physical expectations for a two-phase model from simulations.

5 CONCLUSIONS

5.1 Summary of Main Results

We use observations of the quasar luminosity function at 𝑧 ∼ 0.5− 4
to test a two-phase scenario for SMBH growth motivated by a num-
ber of recent galaxy formation simulations. In this picture, SMBHs
are undermassive relative to their host galaxies at low masses, or
early times, leading to a MBH-M∗ scaling relation with a break
and/or increased scatter below a certain mass. In the FIRE simu-
lations, the break occurs at stellar mass M∗crit ∼ 5 × 1010M� (e.g.,
Anglés-Alcázar et al. 2017b; Byrne et al., in prep.), though the exact
threshold appears to depend on the simulation (e.g., McAlpine et al.
2018). We developed a flexible semi-analytic framework to predict
the QLF implied for different two-phase model parameters, including
a purely linear limit in which MBH ∝ M∗ at all masses. Our model
incorporates a number of important physical constraints. All models
are anchored to the observed galaxy stellar mass function and star

formation rates, as embodied by UniverseMachine (Behroozi et al.
2019). The models are also self-consistent in that the BH growth rates
are required to consistently connect the implied BH mass functions at
all redshifts. Obscured BH growth is taken into account by compar-
ing to the bolometric quasar luminosity function, which synthesizes
observations from the IR to the X-rays (Shen et al. 2020).

The model fits statistically favor a two-phase scenario over a purely
linear model with a difference in reduced 𝜒2 values of Δ𝜒2

𝑅
= 2.862.

The two-phase model provides an excellent description of the ob-
served QLF over the full luminosity range at 𝑧 = 0.5, where the ob-
servations are most complete and probe the largest luminosity range.
The linear model, on the other hand, fails to reproduce a well-defined
QLF knee, a problem which is especially severe at intermediate red-
shifts 𝑧 = 2 − 3, where a pronounced QLF knee is clearly implied
by the data. There is also some evidence that the data favor a two-
phase scenario for physical reasons, rather than simply because the
two-phase fits have more free parameters. Namely, when the model
parameters are free within wide ranges, the fits favor values for the
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Figure 7. Halo mass and virial temperature corresponding to the redshift-
dependent, best-fit transition stellar mass M∗crit for the “evolving” 2P fits (see
the black dots in Fig. 5). Halo masses are inferred assuming the median stellar
mass-halo mass relation from UniverseMachine (Behroozi et al. 2019).

transition mass and break factor in the MBH-M∗ relation that are very
similar to the values predicted by simulations.

5.2 Directions for Future Work

The main caveat to our conclusions is that, while our results indi-
cate that a two-phase model is consistent with QLF observations,
we cannot definitively rule out other scenarios. For example, the
models explored in this work assume that accretion rates follow a
simple log-normal distribution. It is possible that other forms of the
accretion rate distribution would allow a linear model to better fit the
observed QLF. Other extensions of the model which could modify
the results would be to include scatter in the scaling relations, allow
for variable radiative efficiencies, or explicitly distinguish between
total stellar mass and bulge mass. It would also be interesting to ex-
plicitly include the effects of galaxy mergers. For example, McAlpine
et al. (2018) find that in EAGLE, rapid BH growth is often initiated
by galaxy interactions, especially at low redshift, even though in
their simulations a characteristic halo virial temperature remains a
requirement for rapid growth.

The model predictions should also be compared to other obser-
vations. In §4, we mentioned measurements of BH-galaxy scaling
relations extending into the dwarf regime (see also Reines et al. 2013;
Mezcua 2017). This kind of direct quantification of scaling relations
across a wide range of galaxy masses provides stringent constraints
on the models. It would be valuable to more rigorously compare
with such observations, accounting for selection effects which can
affect scaling relations (e.g., galaxies selected purely based on stellar
mass vs. actively accreting). Focusing on active galaxies, it would
be valuable to compare the models not only against the QLF (which
integrates over the galaxy population at a given redshift) but also
against more detailed measurements of accretion rates as a function
of stellar mass and redshift (including summary statistics, such as
active fractions, as well as full accretion rate distributions). Such
observations are already available (e.g., Aird et al. 2018) and could
help in breaking degeneracies. As emphasized by Hickox et al. (2014)
and Veale et al. (2014), comparing predictions for the distributions of
host galaxy properties as a function of AGN luminosity (as opposed
to AGN luminosity vs. host properties) can also distinguish between
models that otherwise make similar predictions. Finally, if massive
BHs in low-mass galaxies depart substantially from standard scaling
relations, this would have important implications for expected BH
merger rates in dwarf galaxies, and in the early universe in partic-
ular. The effects of this may be detectable by future spaced-based
gravitational wave detectors (Bailes et al. 2021).
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