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Abstract

Pulsar timing is a process of iteratively fitting pulse arrival times to constrain the spindown, astrometric, and
possibly binary parameters of a pulsar, by enforcing integer numbers of pulsar rotations between the arrival times.
Phase connection is the process of unambiguously determining those rotation numbers between the times of arrival
while determining a pulsar timing solution. Pulsar timing currently requires a manual process of step-by-step phase
connection performed by individuals. In an effort to quantify and streamline this process, we created the
Algorithmic Pulsar Timer (APT), an algorithm that can accurately phase connect and time isolate pulsars. Using
the statistical F-test and knowledge of parameter uncertainties and covariances, the algorithm decides what new
data to include in a fit, when to add additional timing parameters, and which model to attempt in subsequent
iterations. Using these tools, the algorithm can phase-connect timing data that previously required substantial
manual effort. We tested the algorithm on 100 simulated systems, with a 99% success rate. APT combines
statistical tests and techniques with a logical decision-making process, very similar to the manual one used by
pulsar astronomers for decades, and some computational brute force, to automate the often tricky process of
isolated pulsar phase connection, setting the foundation for automated fitting of binary pulsar systems.

Unified Astronomy Thesaurus concepts: Millisecond pulsars (1062); Pulsars (1306); Radio pulsars (1353); Pulsar

CrossMark

timing method (1305); Algorithms (1883)

1. Introduction

Pulsars are neutron stars that spin rapidly and emit beams of
electromagnetic radiation from their magnetic poles. The
magnetic poles’ misalignment with the rotation axis of the
neutron star causes the beams to sweep across the sky (Condon
& Ransom 2016). When a pulsars beam sweeps across the
Earth, we observe a regular series of flashes, much like a
lighthouse. Pulsar timing is the process of unambiguously
accounting for every rotation of a pulsar over an extended
period of time. Because pulsars are internally stable, they spin
at extremely regular rates that afford pulsar timing a high level
of precision. Many millisecond pulsar spin periods can be
measured to twelve or more significant figures. At this
precision, effects that are negligible for other astronomical
observations, such as orbiting planets or relativistic effects
within the Solar System, become highly relevant (Backer &
Hellings 1986). Pulsar timing measures these effects through
the precision counting of pulses via a series of iterative fits until
all known physical effects have been accounted.”

Figure 1 shows two timing residual (i.e., observation minus
model) plots of isolated pulsar PSR J1748—2021E, before and
after being timed. The y-axes of these plots are in pulse phase
and time, where pulse phase is defined from —0.5 to +0.5 of a
rotation. In a residual plot, the best-fit model is subtracted from
the measured arrival times (TOAs). If the model perfectly
accounts for all effects present, this produces flat residuals, as
seen on the right. Unmodeled effects will produce systematics
in the residuals, such as a sinusoid for a position error. Most

3 APT is available at https: //github.com/clp3ef/APT.
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physical effects observed in pulsar timing produce unique
residuals; the four most important are spin frequency f (or FO as
denoted by pulsar timing software) with a linear signal, R.A.
and decl. with sinusoids of period one year, but different
amplitudes and phase, and spin frequency derivative f (or F1)
with a quadratic (see Condon & Ransom 2016, Figure 6.7). A
timing model consisting of only a roughly known spin
frequency and nothing else (which may be better described
as a lack of a timing model) produces a plot like the one on the
left of Figure 1: pulse arrival times are consistent within small
groups, but lack any clear connection between observations.
Normality of TOA errors is given by the work of Arzoumanian
et al. (2015), who show in their Appendix B that TOA errors
are very close to Gaussian so long as the signal to noise ratio is
greater than or about equal to 10, a reasonable assumption for
most pulsars.

Because of the overlapping complexity of multiple fit
parameters with unique signals, pulse number ambiguities
between TOAs, and inconsistently and/or inadequately
sampled data, often with large gaps where hundreds of
thousands or even many millions of rotations of the pulsar
were unobserved, a computer cannot perform a simple curve fit
to the data using brute force; the algorithmic complexity scales
exponentially with the number of TOAs. Statistical methods
have been used on a few specific pulsars to determine phase
connection between TOAs (e.g., van Kerkwijk & Kaplan 2008;
Kaplan & van Kerkwijk 2009), but never as a fully automated
pulsar timing pipeline, though DRACULA and COBRA,
described below, have both begun the process of automating
the pulsar timing pipeline.

The recent package DRACULA" by Freire & Ridolfi (2018) is
a brute-force phase connector, which uses the fact that the
reduced y? for a fit diverges quadratically when incorrect

4 https://github.com/pfreire163 /Dracula
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Figure 1. Timing residuals (i.e., data minus model) plots for PSR J1748—2021E, before (left) and after (right) determination of a timing solution. Pulsar timing is the
process of turning the left plot into the right by doing a series of iterative fits with increasing spans of data and progressively more complete model parameters. The left
plot is the system state after initial discovery plus monitoring observations. This allows for a rough position estimate based on survey data and the low accuracy spin
found from the search-mode data. We simulate this initial discovery state for large scale testing as described in Section 5. The errors on the pulse times of arrival

(TOAs) are similar to the size of the points at this scale.

numbers of phase wraps occur between TOAs. While DRA-
CULA currently requires TOAS to be specifically formatted with
JUMPs for the program, it is a very useful method. We
implement a rudimentary version of Freire & Ridolfi (2018)’s
algorithm, described in Section 4.

The COBRA’ code described in Lentati et al. (2018) is a
Bayesian framework that builds an effective timing model
consisting of spin, dispersion measure, and binary parameters
via coherently combining pulsed signals from multiple search-
mode data sets. COBRA does not fit for sky position, assumes
only Gaussian pulse profiles, and is very computationally
expensive, making it a prime candidate for use in conjunction
with APT. It might be possible for future versions of COBRA
to determine what are effectively arrival times of averaged
pulse shapes that could be used by APT to phase-connect over
much larger amounts of data, or perhaps portions of data with
large gaps in time. In addition, binary parameter fits found from
COBRA can be frozen into input models to allow for the fit of
binary systems by APT, as described in Section 7. COBRA is
currently unmaintained but still serves as a proof of concept of
the automation of pulsar timing.

Despite these advancements, the vast majority of pulsar timing
has been done by hand, using a series of rules and recipes passed
down from mentors to students. We attempted to encode those
rules into an algorithm that could emulate the decision-making
process of a human timing a pulsar. Two main tools aid this
decision-making process: predictive models based on the full
covariance matrix of the previous fit, and the F-test to judge
whether adding a fit parameter significantly improves the fit or
not. Both are implemented through PINT, a modular, Python-
based, pulsar timing software package (Luo et al. 2020).° While
the methodology we present is generalizable, APT requires and
relies heavily upon PINT scripts, methods, and classes.

2. Predictive Models with Gaussian Error Estimates

The first step for an automated timing algorithm is deciding,
given a current best-fit model to a subset of the data, which
more-complex model to attempt next, or alternatively, should

> hups: //github.com/LindleyLentati/Cobra
6 https: //github.com/nanograv/PINT

we use the same model with more data? This decision can be
simplified further: given a subset of fitted data and a new
(unfitted) data point, can the residual of the new datum be
accounted for by varying the current fit parameters, or is a new
model parameter needed? One way to decide is to slightly
perturb the current model based on the correlated errors and
parameter values from the current fit and observe whether the
perturbations account for the residuals of the new data points.
Such a perturbation can be produced as follows.

Given a single parameter and its associated error, one can
produce a Gaussian distribution around the best-fit value with
the error determining the width of the distribution. The single-
variable normal distribution of a timing parameter and its
associated error can be generalized to a multivariable normal
distribution if we use the full covariance matrix of the fitted
parameters. The 1 by d mean vector g and the d by d
covariance matrix X, where d is the number of fit parameters,
take the places of the mean and variance in a single-variable
normal distribution,
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Equation (1) is the probability distribution function of the d-
dimension multivariate normal distribution, where x is a 1 by d
vector representing the independent variables and y is a 1 by d
vector representing the resulting probabilities for each possible
value of x. The mean vector contains the best-fit values of all the
parameters, while the diagonal elements of the full covariance
matrix are the square of the errors of each fit parameter and the
off-diagonal elements are the covariances between fit parameters.
We use both the diagonal and off-diagonal elements to construct
the Gaussian distributions. The postfit covariance matrix is
provided by a class within PINT, and the multivariate Gaussian
distribution is implemented using the NumPy . random module.
See Section Al for further details.

By randomly selecting parameter values from the multi-
variate Gaussians created by Equation (1), a perturbed model is
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Figure 2. An overlay of two residual plots during phase connection. The yellow points have been fit with parameters FO (i.e., spin frequency, f) and R.A., while the
blue point is next to be fit. The red predictive models show that the blue points are not within the span of the current model parameters and cannot safely be included
using only the current fit parameters. This tells the user that an additional parameter is needed, most likely decl. The cyan predictive models show the result of adding
decl. The blue point is now within the span of the models, telling the user that adding decl. can account for the residuals of the new point, so decl. should be included

in the next model.

produced with parameter values that, while not optimal, are still
consistent with the data. If many such perturbed models are
plotted, each with parameters randomly chosen from their
respective Gaussian distributions and including covariances,
they agree strongly at the points included in the current fit but
vary widely over the extrapolated times beyond the fit points.
Figure 2 shows an example of such predictive models.

The lines answer the question of that model to try next. If
new data are within the spread of the predictive models then it
is possible to account for the residuals of those points by
varying the existing parameters. If the points are significantly
outside the spread, a new parameter is likely needed. Also
importantly, whichever line passes closest to the next data point
is a better model including those data than the current model,
and therefore is used as the starting model for a subsequent fit.

3. F-test

The F-test is a simple statistical measurement that is widely
used in data modeling to compare two nested models with
different numbers of degrees of freedom. Models with more
degrees of freedom inherently fit data better, but it may be that
the improvement due to an additional degree of freedom is due
to chance rather than actually needing additional fit parameters.
The F-test assesses this by comparing x> values and numbers
of degrees of freedom for both models to calculate the
probability that the fit improvement might be due to random
chance. By comparing the current best-ffit model to a copy of
itself with an additional fit parameter, the F-test tells us whether
a new parameter is needed, or whether the current parameters
can account for the current residuals.

4. Algorithm

Using predictive models and the F-test, we created an
algorithm called APT to determine a phase-connected timing

solution for isolated pulsars. We omit binary pulsars systems
because they require a separate algorithm and are a minority in
the pulsar population, only constituting around one in ten
known pulsars.” The manual process of fitting an isolated
pulsar is relatively simple: starting with at least two TOAs, the
most prominent parameter (typically the spin frequency, FO) is
fit to those TOAs, a decision of the goodness-of-fit is made, and
either additional data or new model parameters are added. The
process repeats until all TOAs have been included and a timing
solution with FO, the spin frequency derivative F1, and sky
position (typically R.A. and decl.) have been fit. APT replicates
this process using statistical tests in place of human judgment,
and Figure 5 in the Appendix shows the structure of the
algorithm’s logic as a flowchart.

The program begins by evaluating the local number density
of TOAs, n,, at the position of every TOA, as shown in
Equation (2), where ¢, is the arrival time in MJD of theith TOA
and ¢, is the arrival time in MJD of the TOA being scored,
where i evaluates over every TOA other than x. This creates a
ranked list where TOAs with many nearby observations are
ranked highest, because in those regions, the number of
unknown rotations between TOAs can be better constrained.
APT iterates through the highest scoring starting points until
either a valid solution for the pulsar is found, it runs out of
possible starting points, or it reaches the optional cap on
iterations, which defaults to five to prevent run time being
wasted on badly scoring TOAs.

Nroas 1
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After determining the starting points for the attempt, the
main loop of the program begins with three objects: a current

7 See ATNF pulsar catalog at hitp://www.atnf.csiro.au/research /pulsar/
psrcat/.
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best-fit model, which might simply be a starting frequency and
astrometric position from a pulsar search observation, the
subset of TOAs that is being fit, and a boolean array that selects
subsets of TOAs from the full set of TOAs to be fit. In this first
iteration, the TOA subset is the highest scoring TOA from the
list described above, plus its closest neighboring TOA.

The starting model is fit to the current TOA subset, providing
a baseline fit. Using this baseline and the initial TOA subset,
twelve® predictive models are produced from the covariance
matrix of the best-fit model (see Equation (1)). Using the
current fit TOAs plus the closest group of TOAs, the x~ of the
residuals is calculated for all twelve predictive models plus the
baseline model. A “group” is a set of TOAs collected in the
same observation. A group is typically phase connected within
the group, where “phase connected” means the exact number of
pulsar rotations between any two TOAs is known. The
algorithm chooses the model with the smallest x> as the new
best-fit model, and the closest group of TOAs is appended to
the current TOA subset. If the optional polynomial extrapola-
tion or bad point checking features, described below, are
invoked, they operate here.

It is valid to ask why the algorithm does not simply fit the
next data points instead of using the twelve predictive models
and choosing the closest. The reason is that the predictive
models help bridge the gap between the current best-fit model
and the model that would be produced by simply fitting. Since
the predictive models, by definition, must be within the bounds
of the parameter errors, using them adds an extra buffer to
prevent the algorithm from performing a fit that would move
the current parameters far from their best-fit values and sharply
increase their errors.

APT performs an F-test for each possible additional
parameter to determine if a new parameter should be added
to the model. The possible parameters are R.A., decl., and
spindown rate (F, or F1), and each has a minimum time span
that the current TOA subset must exceed before that parameter
can be added. This prevents parameters that act on long
timescales from being added to the model before they could
realistically have an effect. The parameter with the smallest
probability of the F-test statistic that is also less than an
adjustable probability limit (default P < 0.0005) is added to the
best-fit model. If none of the F-test results are less than this
limit, or no parameters can be added because the time span is
not long enough yet, the best-fit model retains the same number
of parameters.

At this point in the program, the TOA subset has been
expanded by at least one group of phase-connected TOAs to
create a new TOA subset, and there is a new best-fit model,
possibly with an additional parameter. However, if there was a
large enough gap between the fit TOAs and the nearest group,
or if the fit was particularly poor, as indicated by a relatively
large > value, it is possible that the newly appended group was
phase wrapped, meaning that it was assigned to an incorrect
rotation of the pulsar. The true residual phase of a wrapped
TOA is above 40.5 or below —0.5 phase, but is wrapped back
into the range of —0.5 to 4-0.5 because of the fact that pulsar
timing assumes integer numbers of rotations between TOAs,
and so fits operate modulo those integers on the fractional
phase residuals. Another way to see it is that there is an
ambiguity in the number of pulses that have arrived between

8 This number is adjustable by the user but defaults to twelve, which is the
value that will be used in the text for simplicity.
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one observation and the next. You do not know if a positive
residual means, for instance, that the current pulse arrived a bit
late for the model in question, or if the next pulse in the model
arrived too early. The only way to determine if a phase wrap is
present is to attempt a fit with the phase wrap included.

We implemented a rudimentary form of the phase-wrap-
checking process as described by Freire & Ridolfi (2018). In
order to bridge gaps in TOAs and prevent the assigning of an
incorrect number of rotations between TOAs, the algorithm
performs all the same calculations as above with the closest
group of TOAs, but also assuming n additional rotations
between those TOAs and the earlier TOA subset, for a total of
2n 4+ 1 (4 1 being the n =0 case) fits being performed. Each
trial produces a best-fit model with or without new parameters
according to individual F-tests, and the algorithm compares the
final x> values for each of the 2n+1 trials. Whichever trial
produces the smallest y” is accepted as the true best-fit model,
and the rest are abandoned.

As stated, this is a rudimentary version of the algorithm
proposed by Freire & Ridolfi (2018), since it does not attempt
to find the minimum x? using the quadratic relation between
the reduced x” and the phase wrap (see Freire & Ridolfi 2018,
Figure 5). Our algorithm explores phase-wrapped solutions on
gaps with residual differences greater than a minimum
threshold (default 0.15 in phase), and by default it only
attempts phase wraps »n in the range —1 to +1, although these
default guidelines can be overridden by the user in order to
utilize the algorithm’s computing power to test large numbers
of phase wraps much more quickly and efficiently than a
person could. The simplicity of the defaults is largely due to the
presence of the predictive models that solve TOA gaps via
random model extrapolation rather than brute force. A full
implementation of the phase-wrapping algorithm described by
Freire & Ridolfi (2018) is a possible improvement to APT, but
the current method is a sufficient first-order approximation
given the overwhelming majority of pulsar timing does not
require phase wraps larger than a few rotations.

Once the model with the smallest X2 has been chosen, the
algorithm continues on with the new best-fit model and
extended subset of TOAs, possibly with a correction for a
phase wrap. The best fit is plotted, saved as an image, and the
new TOAs, model, and selection array are saved so a user may
later reload data from any point in the fit. The main loop of the
program begins again with the new best-fit model and extended
TOAs as the starting model and data, and this process continues
until all TOAs have been included. The program ends when the
reduced y” at the end of a run is below the cutoff value
(defaults to 10). The default is set higher than 1 since we are
more concerned with collecting all correct answers than
accidentally including incorrect answers, and poor fits have
reduced X2 on the order of thousands, well above this
threshold. If the reduced X~ at the end of a run is above the
cutoff, the process starts again with the next pair of starting
points. This continues until APT runs out of starting points or
finds a successful fit.

4.1. Optional Features

The algorithm has two optional features that can be activated
from the command line: polynomial extrapolation and bad
point checking. Both improve specific parts of the algorithm,
but also have weaknesses that lead to their inclusion as being
optional.
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Figure 3. Bad group checking. The algorithm is questioning the red group, and is checking its validity by fitting a polynomial to the three groups after it. The success
of the polyfit strongly implies the red group is bad, and it will be ignored for the remainder of fitting.

In manual pulsar timing, multiple new TOA epochs are often
added at once when their predicted residuals seem to follow a
smooth curve. This was replicated in the algorithm with the
polynomial extrapolation option, which, when invoked, fits a
third-order unweighted polynomial using NUMPY.POLYFIT to
all data within 1.3 times the current fit span. If the square sum
of the residuals of the polynomial fit is less than a set threshold
(default 0.02 phase), the algorithm attempts to fit a polynomial
on a span 1.8 times and then 2.4 times larger than the fit span,’
and appends all TOAs from the largest successful fit to the
current fit TOAs, rather than only appending a single phase-
connected group. This option significantly speeds up the timing
process, often reducing run times by 50%-60%. However, it
also poses a danger since it may incorrectly include bad TOAs
if they appear to be in-line with predictions by chance. If you
know your data may have bad TOAs and APT is consistently
failing, it may be necessary to try a run with polynomial
extrapolation turned off.

If a pulsar is particularly faint, or if there are problems with
interference, instrumentation, or software, it is possible for
TOAs to be in error and have incorrect phases. In manual
fitting, such points are deleted or ignored when identified. For
APT, we hesitated to make this a mandatory feature since, for
especially difficult timing problems, the algorithm could latch
onto a wrong initial “solution,” making later good data appear
bad and causing it to ignore good data. The balance we found is
checking for bad points only when the phase wrap check is
activated and allowing the user to toggle this feature. The phase
wrap check activates when the next TOA has a residual,
compared to the currently fit TOAs, greater than 0.15 phase,
which may suggest that TOA or group of TOAs is bad if it is
not phase wrapped. APT checks the validity of the group by
temporarily ignoring it and fitting a polynomial to the next

° These span multipliers are variable and the values listed are the defaults.

three groups of TOAs. This will fail in most cases, since
residuals greater than 0.15 suggest the next several TOAs are
phase wrapped and unconnected, as one would expect.
However, if the polynomial fit is good, this strongly implies
the to-be-fit group is significantly out of line with the rest of the
data and should be ignored in subsequent fits. Figure 3 shows
an example of this decision being made. This check is designed
to ignore groups only if it is extremely clear they are bad, and
leaves more subtle data vetting to the user.

5. Simulated Data

In order to robustly test the algorithm, we simulated pulsar
systems and then randomly skewed the starting parameter
estimates to prevent our knowledge of the solution influencing
our judgment of the algorithm’s performance. We used the
algorithm to attempt to solve these systems blindly, and in fact
did not know whether the number of TOAs and their separation
would allow an unambiguous solution. We produced 100 of
these systems, 30 with initial frequencies of millisecond or
recycled pulsars (10Hz <f<800Hz) and 70 with initial
frequencies of slow pulsars (3 Hz < f < 10 Hz). Figure 4 shows
the distribution of the simulated pulsars as compared to known
pulsars in P—P space. We drew the parameters from realistic
ranges based on the known relation between spin and spindown
rate, if we assume a constant magnetic field strength. We chose
the simulated pulsar positions randomly over the entire sky.
The simulated data was in the form of TOAs rather than search-
mode data, since APT is not designed to discover or time
pulsars directly in search data, but to create basic timing models
from TOAs from folded observations for known but not yet
phase connected pulsars.

We simulated the TOAs using ZIMA, a simple TOA
simulation code within PINT. Our simulation code, which uses
ZIMA internally, intentionally emulates typical timing



THE ASTRONOMICAL JOURNAL, 163:84 (12pp), 2022 February

Phillips & Ransom

10-10 - 8
10124 100 A
(4]
-3 ‘ A
S 14 . o
g 1a SERY
D: A
c
a
41074 -
@
2
]
@ 1
=
51018
[a]
el
he,
o
o 10—20
Radio PSRs
A fake_data
> g ( A problem_data
1022 & G_ ) -
0.001 0.01 0.1 1 10
Spin Period

Figure 4. The 100 simulated pulsars, marked by blue-edged triangles, displayed over the traditional P—P diagram. The simulated systems sample several pulsar
subclasses, including millisecond pulsars (lower left), “normal” radio pulsars (middle), young and energetic pulsars (upper middle), and magnetars (upper right),
showing the versatility of the algorithm. The pink-centered triangle is the single unsolved system.

campaigns for newly discovered pulsars. The general guideline
is as follows: two observations occur within the first 24 hr, then
observations occur three of the next five days, then two of the
next ten days, then one in the next week, and then monthly
until the end of the data, which is at minimum 200 days and at
maximum 700 days. To ensure substantial variation while still
following this guideline, these were interpreted as number
densities of observations for each time span described. The
exact number of observations and separation between con-
secutive observations were allowed to vary uniformly within
each time span such that, on average, the number of
observations within a time span divided by the sum of the
separations between those observations reproduced the number
densities described by the guideline. The uniform ranges were
chosen so that the standard deviations of the resulting number
densities were ~1, with greater variation allowed in the later
time densities.

Each observation is assigned a random integer number of
TOAs between 1 and 8, with a special exception for the first
two observations, which can have from 3 to 8 TOAs. This
additional sampling at the beginning is to prevent phase wraps
within the first day of observations and to emulate the typically
longer duration observations that occur at the beginning of real
timing campaigns. All TOAs within a simulated pulsar data set
have the same error, randomly chosen from the uniform range
0.0003-0.03 in phase, which is then scaled to the appropriate
time error using the spin rate. Again, these observations are sets
of TOAs, not raw search-mode data.

Once the pulsar’s timing parameters are chosen and TOAs
are simulated, we estimate the much lower-precision starting
timing parameters for the pulsar, including a rough spin rate,
R.A., and decl. This is consistent with real survey data where

the spin rate and position are only approximations and all other
parameters are completely unknown. Note that dispersion
measure is typically determined with enough precision during
the search observations that it can be fixed at the search value
during phase connection, unless the observing frequencies for
the timing observations are very different than those of the
search observations.'® For the pulsar position, we randomly
shift the “observe” position from the true position by a normal
distribution whose standard deviation is a FWHM chosen from
a uniform range of 2’—40/, based on typical uncertainties from
radio pulsar survey detections.

We “blur” the spin rate by randomly choosing a phase
difference in the range 0.05-0.15 phase and dividing by the
length of the observations, representing a conservative error
how well the spin frequency can be measured during a search
observation. The resulting offset is added to the known spin
rate value, and the parameter uncertainty adjusted accordingly.
Finally, we set the spindown rate to zero, since it cannot be
determined before long-duration timing observations are
complete.

The system parameters now exactly resemble the level of
precision seen in survey data for unsolved pulsars. The new set
of parameters with realistic errors is used as the starting model
for the algorithm, which reconstructs the correct parameters
using pulsar timing as described in the previous section. At the
beginning of the timing process, spin is the only parameter
being fit, consistent with real pulsar data where spin is the first
and most important constraining parameter. Because the
parameter uncertainties are unused in the fitting process, and

1% For a good example of this practice, see the determination of Dispersion
Measure in Bhattacharyya et al. (2013).



THE ASTRONOMICAL JOURNAL, 163:84 (12pp), 2022 February

Table 1
Number of Systems Solved Given Listed Input
Input Number of Systems Solved
No Additional Input 75
Set Starting Points to First Observation 85
Shorten RAJ and DECJ Minimum Fit Spans 89
Adjust F1 Minimum Fit Span 99

will be recomputed during the first fit, they are arbitrarily set to
1072 for the positional parameters, 10~° for spin rate, and zero
for spindown rate. The script that produces these simulated
isolated pulsar systems, called simdata.py, is available as
part of APT.

6. Results

Before we produced simulated data, we tested the algorithm
on and successfully fit two real isolated pulsar systems, J1748
—2021E and J1748—-2446G, with final timing solutions
identical to those produced by a human fit of the same data.
The algorithm was told to start with the first two TOAs, but
was otherwise left to run uninterrupted. These systems are
typical millisecond pulsars and prove APT’s ability to solve
real pulsars using real observations.

We used APT to fit 100 simulated systems, and it
successfully solved 99 of them. Table 1 summarizes the
process of solving the 100 systems, including the options used
for each round of testing. All simulations and testing were
performed on a 2016 ASUS Notebook running Windows 10
with an Intel Core 15-6200U CPU.

APT solved 75 of the 100 systems with no user intervention.
Given the TOA data and rough estimates of the spin rate and
position, the algorithm chose a starting TOA, iterated through
the TOAs, added parameters as necessary, and, within an
average run time of 4 minutes on an Intel Core 15-6200U CPU,
phase connected the pulsar. In addition, phase wraps were
necessary for the solutions of 18 of the 100 systems, displaying
the efficacy and importance of checking for phase wraps. When
using APT to solve a pulsar, there are several indications that a
fit is going well: the median x* values printed in each iteration
stay below 100, phase wraps are rarely if ever checked, and
polynomial extrapolation is activated several times. Large
median x” vales, the constant testing of phase wraps, and a
significantly slower run time as polynomial extrapolation fails,
are all indications that a run is going poorly and is unlikely to
produce a phase-connected solution.

In our testing, 25 of the 100 systems showed these signs of
failure, and were only able to produce a phase connected
solution with user intervention. 10 of these failures were due to
poor choice of starting TOA based on the method described in
Section 4. Equation (2) presents the metric by which starting
points are chosen, and shows its main flaw: because number
density is evaluated on a TOA-by-TOA basis, a single
observation containing many closely spaced TOAs may be
favored over several closely spaced but short observations.
This sometimes causes APT to begin the phase connection
process at a suboptimal location. APT faces this problem in two
ways: by continuing to try to solve the pulsar with different
starting TOAs in every run, and by allowing the user to specify
a starting TOA. It is completely possible there are more
efficient formulas than the one described by Equation (2).
However, so long as the formula used prioritizes density of
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observations over density of TOAs within observations, it is
sufficient for our purposes.

14 of the 15 remaining failures were due to the order in
which parameters were added. For systems with particularly
large positional uncertainties (i.e., greater than 8’), the mini-
mum span before R.A. and decl. could be added may need to
be shortened so that the position can be fit for more quickly
than the defaults allow for. Setting the minimum RAJ span to
1.5 days and the minimum DECJ span to 2.0 days allowed for
an additional five systems to be solved. It is possible, especially
for young pulsars (including magnetar-like systems), that the
spindown rate becomes significant sooner than the R.A., and
needs to be added before either positional parameter. APT
accounts for this by adjusting the minimum time span for F1 to
be added according to the estimated spin rate, so that pulsars
with FO < 10 Hz can start fitting for F1 after 9.7 days, while
pulsars with 10 < FO < 100 Hz can start fitting for F1 after
30.6 days, and for FO > 100Hz, APT must wait 97 days.
However, it is still possible that F'1 needs to be added sooner or
later than this estimated span. In three of the remaining 10
failing cases, adjusting the minimum time span for F1 to four
days allowed APT to solve the system successfully. It is also
possible that, for systems with particularly stable spindown
rates, that the default minimum span is too short, allowing F1
to be fit for before R.A. or decl. For six of the ten systems,
adjusting F1’s minimum span to 150 days allowed for the
positional arguments to be determined first and the systems to
be solved.

The single remaining unsolved system was a millisecond
pulsar with particularly skewed initial positions and large error
bars. APT was successfully able to fit for spin and R.A. in the
first week of observations. However, at 15 days there is an
observation consisting of a single data point, and the next
observation is not for another 14 days. This scarcity of data
implies possible phase wraps in the gaps between observations,
but phase wraps from —12 to 12 were tested and did not solve
the system at this decision point. The minimum parameter
spans for decl. and spindown were adjusted to force spindown
to fit before decl.; both parameter addition orders produced
identical failure-bound fits within a few iterations. Increasing
the F-test cutoff to allow for more flexibility in adding
parameters similarly had small effects on parameter addition
timings but did not produce successful results.

In order to identify the source of difficulty, each parameter
value was individually adjusted toward the solution value until,
with all other parameters unchanged, APT could solve the
system. Adjustment of spindown led to the fastest results, with
only small adjustments toward the solution needed to allow
APT to connect across the larger gaps in data. Adjustments of
R.A. and decl. had minimal effect, requiring the values be set to
nearly their solution values before a solution was found.
Additionally, the adjustment of spin had little effect at any
level, as the fit conducted by APT within the first few days
accurately approximate the true value closely enough that
setting spin to the solution value had no significant effect.
These tests show that poor position estimates amplify the
effects of poor spindown estimates, such that a poor spindown
fit can turn a difficult system into an unsolvable system if the
system is already highly skewed in position (greater than 10").
Additionally, the failing system was particularly data sparse,
with several observations containing a single TOA and many
large gaps between consecutive observations. The addition of
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Figure 5. Flowchart of APT’s logic, showing the iterative process of fitting, adding TOAs and/or fit parameters, and checking for phase wraps.
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two observations between 15 and 29 days provided a
connection across the largest gap and allowed spindown to
be fit with a very reasonable F-test much sooner than without
those points. This system provides an excellent example of the
issues that may face scientist and algorithm alike—poor data
sampling, inaccurate estimates, and large error bars.

While APT is able to successfully fit 99 of the 100 simulated
systems and two real isolated pulsars, J1748—2021E and J1748
—2446G, there are other possible sources of error that a user
may encounter. We outline here some known issues that may
arise and how to address them. If data has several large gaps
that APT is struggling to fit across, try setting the maximum
number of wraps it can test to a larger number. If APT is
choosing a bad starting point, which is especially likely if there
is one day with many observations at multiple frequencies, a
user provided starting point will likely work better than the
algorithm’s first choice. If APT appears to be adding
parameters out of the expected order (the title of each saved
plot shows which parameters are being fit), try adjusting the
minimum parameter spans to control the order or time at which
parameters are added. If the user knows there may be data with
incorrect phases, such as from a faint or new pulsar, turn off
polynomial extrapolation so it does not accidentally include
bad data points. Conversely, if user data is known to have no
poorly calculated TOAs, but APT is removing data points, turn
bad point checking off. APT also does not fit for dispersion
measure, so TOAs fed to APT should either be at the same
frequency or DM should have been externally fit and frozen
into the parfile in order to keep errors in pulse phase much less
than one. Nearly every internal parameter and limit of APT can
be set by the user on the command line and are described in
detail in the code appendix Section Al, and we encourage users
to explore the code and adjust their input parameters as needed
for their particular data.

7. Future Improvements

Although the algorithm is functional, it has significant room
for improvement. Currently, the algorithm does not work with
JUMPs, fitted “floating” phase offsets between groups of TOAs
that are locally phase connected. Handling systems with
preexisting JUMPs by removing or ignoring the JUMPs would
be a simple first step, since the algorithm is designed to work
without them. Restructuring the code to not just tolerate, but
actively use, JUMPs would make the algorithm more flexible
and effective, but would significantly increase the complexity
and likely, the run time of the code.

Implementing JUMPs properly is the first step in allowing
APT to solve binary pulsars, as well. Binary pulsars require a
completely different approach involving JUMPs around every
group of TOAs and allowing for the fitting of orbital
parameters. The main loop of a binary fitting algorithm would
work to globally improve timing and orbital parameters while
iteratively combining JUMP-ed groups of TOAs. Allowing for
the identification and resolution of phase wraps within JUMPs
would also be a necessary tool for a binary algorithm. As a
caveat, APT is able to work with binaries in its current form so
long as the binary parameters are pre-fit such that their effects
are negligible as compared to the four main parameters, spin,
R.A., decl., and spindown. JUMPs would also need to be
turned off or removed for APT to run properly.

Several improvements could be made to the APT script, in
general, rather than the algorithm specifically. Currently, the
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algorithm takes ~2 s per iteration, with several hundred
iterations per fit. APT’s run time is directly proportional to the
number of observations. This makes the program time-
consuming, as much of the extra time comes from the
predictive models that require the calculation of absolute phase
for all TOAs. This calculation is necessary for correct
predictive models, but could possibly be optimized to shorten
the run time. The program could also be polished in several
ways: allowing for other niche parameters, such as proper
motion and higher derivatives of spin rate, to be included in the
fit once all four main parameters have been solved, and adding
more command-line functionality.

8. Conclusions

We have created a new algorithm, APT, which can phase
connect realistic isolated pulsar timing data sets. APT successfully
solved two real isolated pulsar systems, J1748—2021E and J1748
—2446G, and 99 of 100 simulated systems. It performs these fits
with an average run time of ~4 minutes, and contains several
features, including the testing of phase wraps, the removal of bad
data, and extrapolating intermediate solutions forward in time.
APT is most notable as a proof of concept, similar to DRACULA
(Freire & Ridolfi 2018) and COBRA (Lentati et al. 2018), since
pulsar timing is almost universally a manual process. It is possible
that this algorithm could be a starting point for further research
into algorithmic pulsar timing, especially in solving binary pulsar
systems. APT shows that the decisions made by a human in the
pulsar timing process can be encoded into a relatively simple
algorithm. In the future, such automatic pulsar timing software
could save astronomers many hours of work in solving pulsars.

APT has particular relevance given the completion of the
CHIME telescope in 2017. APT’s design goal is to produce an
initial pulsar timing model for isolated pulsars consisting of the
four major parameters, R.A., decl., spin, and spindown, for a
system that is regularly observed for at least a year and has a
predefined dispersion measure. Dispersion measure is found
from frequency-domain rather than time-domain observations,
so it can either be ignored in single-frequency data or fit from
an initial mutli-frequency observation. While further para-
meters such as parallax and higher order derivatives of spin
could be included, the goal is to create a broadly accurate and
reasonable model, not to fully determine every detail of the
system. We are safe to make this simplification, since the
excluded parameters are only significant on long timescales
(~10 yr), and would be near impossible to parameterize
without first solving for position, spin, and spindown (Backer
& Hellings 1986). CHIME observes all pulsars in the Northern
hemisphere with a minimum cadence of 10 days (Ng 2018).
This creates an uncommonly large surplus of pulsar data and
requires new tools to efficiently process and analyze said data.
APT can act as one of these tools by finding basic models for
isolated pulsars, freeing up investigators’ time to focus on
binaries and exotic pulsar systems. Additionally, APT excels at
updating existing models with new data, which complements
CHIME’s frequent and regimented pulsar observation sche-
dule. While APT was not designed specifically for CHIME, the
trend of pulsar astronomy toward large data and automation
(see Section 1) inspired this prototype. It is our hope that the
algorithm described above acts not only as a tool for those
using data from telescopes like CHIME, but also as a proof
of concept and a stepping stone for further inroads into
automation of pulsar timing.
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2020), AstroPy (Astropy Collaboration et al. 2018).

Appendix
Al. Code References

.tim file - Time data files, contain all TOA data of the
pulsar, constant throughout algorithm.

.par file - Parameter file, contains all information about
the current model of the system, always changed and updated
by the algorithm.

.csv file - Comma separated value file, used to store a
filter of the TOAs currently being fit so that a user may reload
from any point in the process.

fitter.py -Cclass within PINT, contains all information
and functions used for fitting the model to the data. Used to fit
the timing model to the current TOA subset and to output the
covariance matrix to compute the random models.

multivariate_normal () - Function in NumPy.ran-
dom module that produces multivariate Gaussian distributions.
These are used for each parameter to randomize the predictive
models while still keeping the predictions statistically consistent
with the known parameter values and errors.

NumPy.polyfit - Module to fit a n-degree polynomial to
data by minimizing the squared error. Used by the algorithm to
(A) test for extreme outliers and (B) speed up the process by
including larger subsets of data when a third-order polynomial can
clearly model the folded data, implying the data is already very
close to the expected model. All instances of NumPy . polyfit in
APT use a third-order polynomial in order to allow for greater
flexibility than a linear or quadratic fit, but not so much flexibility
that sparse or unrelated data would be overfit.

zima - Tool in PINT that allows for the creation of regularly
spaced TOAs with specified residuals.

RAJ - R.A. at J2000, measured in units of hours, minutes,
seconds.

DECJ - Decl. at J2000, measured in units of degrees,
arcminutes, arcseconds.

FO - Spin rate in seconds per second.

F1 - Rate of change of FO in seconds per second squared.

APT - Algorithmic Pulsar Timer, code developed to allow
for the automatic phase connection of isolated pulsars given ~1
year of unconnected TOA data.

APT . py - Main program of APT, contains the algorithm and
is called from command line Inputs:

parfile- Mandatory input. Parameter file to read model
from, contains the initial guesses for the four main parameters
plus any additional parameters. See also par file.

timfile - Mandatory input. Input time data file, contains a
list of all the TOAs and their frequency of observation,
observation error, and any labels. See also tim file.

starting_points - Optional input. Defaults to TOAs
chosen by algorithm using Equation (1). Which TOAs the user
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wants the algorithm to begin the fitting process with. The
starting points may be provided by the user as a comma
separated pair of numbers, where two floats indicate the start
and end of a MJD range and two integers indicate the TOA
groups that should be used. Groups are indexed chronologi-
cally, so the first observation is always group 0, the second
observation group 1, et cetera. Providing the same integer twice
indicates that only one group should be used (i.e., 1,1 indicates
group 1, the second observation, should be used as the starting
subset of TOAS).

maskfile - Optional input, defaults to None. A. csv file
containing a one-dimensional array of true/false values with a
length equal to the number of TOAs in the system. Can be read
in to notate that TOAs are included in a fit and which are not.
The algorithm saves a maskfile, timfile, and parfile at the end of
every iteration to allow for reloading from any point in the
fitting process. See also. csv file.

n_pred - Optional input, defaults to 10. The number of
predictive models to be calculated for APT to choose from on
each iteration.

ledge_multiplier/redge_multiplier - Optional
inputs, default to 1.0/3.0, respectively. Scale factor for how far
to plot predictive models to the left/right of fit points.

RAJ_lim - Optional input, defaults to 1.5 (days). Minimum
time span before APT is allowed to fit for R.A. (RAJ).

DECJ_lim - Optional input, defaults to 2.0 (days).
Minimum time span before APT is allowed to fit for
decl. (DEC)).

F1_lim - Optional input. Minimum time span before APT
is allowed to fit for Spindown (F1). Defaults to the time for F1
to change residuals by 0.35 phase, which is calculated based on
the input prediction for FO based on the general ranges of
pulsar spindown rates as compared to spin rates, see Figure 2.

Setting any of the above limits to a different time span can
control the order in which APT adds parameters to the model.

Ftest_lim - Optional input, defaults to 0.0005. The upper
limit for what is considered a “successful” Ftest value in
determining whether a parameter should be added or not. F-test
ranges from O to 1 with 1 being complete numerical
insignificance and 0 being absolute necessity. Defaults to
0.0005, but can be set higher or lower as needed to give more
or less leeway in adding parameters.

check_bad_points - Optional input, defaults to True. A
true/false value telling APT whether you would like it to check
for outliers and, if they do not match the trends of the
surrounding data, ignore the data for the remainder of the fit.
See also NumPy .polyfit.

plot_bad_points - Optional input, defaults to False.
True/false value telling APT whether it should save plots when
it checks if outlier points do not match the rest of the data.

check_bp_min_diff - Optional input, defaults to 0.15
phase. APT determines outliers based on the phase difference
between the most recently fit TOA and the next TOA to be fit.
This input sets the minimum phase difference these two TOAs
must present for APT to check if it is an outlier.

check_bp_max_resid - Optional input, defaults to
0.001. The bad point check works by ignoring the next group
to be included and fitting a polynomial to a few groups
following the excluded group. If the polynomial fit’s residuals
are below this input value, implying that the questionable group
is an outlier, the group in question is ignored. If the polynomial
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residuals are greater than this input value, APT continues as
normal with the questionable group included.

check_bp_n_groups - Optional input, defaults to 3. The
number of groups past the questionable group to fit the bad
point-check polynomial to. Too far and a phase wrap may be
reached and imply a discontinuity where on does not exists.
Too short and any trends showing a continuity that the group in
question obscures may not be accurately identified.

try_poly_extrap - Optional input, defaults to True.
True/false value telling whether to try to speed up the fitting
process by including groups that follow a clear trend and are
able to be fit by a third degree polynomial. See also NumPy .
polyfit.

plot_poly_extrap - Optional input, defaults to False.
True/false value telling whether to plot the polynomial fits
during the extrapolation attempts. This will interrupt the
program and require manual closing.

pe_min_span - Optional input, defaults to 30 (days).
Minimum span in days before APT is allowed to attempt
polynomial extrapolation. Too soon will lead to meaningless
fits as fitting only one or a few points will always have
extremely small residuals, whether or not they truly show a
trend.

pe_max_resid - Optional input, defaults to 0.02. Max-
imum acceptable goodness-of-fit for NumPy . polyfit to allow
the polynomial extrapolation to succeed and move on to the
next span or to include all the currently tested points.

spanl_c/span2_c/span3_c - Optional input, defaults
are 1.3, 1.8, 2.4, respectively. Coefficient for first/second/third
polynomial extrapolation span (i.e., try NumPy.polyfit on
current span multiplied by spanl/2/3_c.) Each span is larger
than the last, and this continues until the third level is reached
or the extrapolation no longer works, at which point all groups
already included are added to the to-be-fit TOA subset and
included in the current fit.

max_wrap - Optional input, defaults to 1. How many phase
wraps APT will test in each direction, such that a max_wrap of
3 means APT will test all phase wraps from —3 to 3.

plot_final - Optional input, defaults to True. True/false
value telling whether to plot the final residuals at the end of
each attempt. This will show whether APT was successful in
finding a solution or not. Contributes to the run time calculation
at the end of the program.

simdata.py - function in APT that randomizes parameter
and TOA data to create realistic simulated data for isolated
pulsars. Produces three files, a. sol file that is a parameter file
containing the “true” parameter values of the pulsar, a. par
file containing the skewed parameters that simulate the
inaccuracy of parameter estimates when the pulsar is newly
discovered, and a. tim file containing the simulated TOAs to
go with the above models.

Inputs:

iter - Optional input, defaults to 1. The number of
independent pulsar systems the code will produce.

name - Optional input, defaults to fake_{number}, where
{number} is the next largest system number in
the fake_data folder, assuming the folder only contains
files of the above naming convention. If no such folder
exists, simdata.py will create it and the first system will be
named fake_1. If input is given, output files will be of the
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format {name}.par, etcetera. Providing a custom name only
works with iter =1.

FO_value/RAJ value/DECJ value/Fl _value -
Optional inputs, default to None. Sets FO (Hz)/ RAJ (degrees)/
DEC]J(degrees)/F1 (1 /s2) to the given value, respective to each
input parameter. For example, RAJ_value = 3.4 will set the R.A.
of the simulated pulsar to 3°4, and F1_value = 1.2e—16 will set
the spindown of the simulated pulsar to 1.2e—16 1/ s*. This
overwrites the randomization based on realistic ranges and
distributions of each parameter that is defaulted to, and this input
can only be used when iter =1.

FO_error/RAJ _error/DECJ _error/Fl_error -
Optional input, all default to 0.0000000001. Set value for the
parameter error of FO (Hz)/ RAJ (degrees)/ DECJ(degrees)/F1
1/ %), respectively. Default error value does not matter as errors
will be recalculated with the first fit, meaning the input
errors have no effect on APT. This input can only be used
wheniter=1.

fOblur/rblur/dblur/flblur - Optional inputs,
default to values randomly sampled from appropriate distribu-
tions as described in Section 5. The amount by which to skew
the known value of FO (Hz)/ RAJ (degrees)/DECJ(degrees)/
F1 (1/s%), respectively, such that the resulting parfile is
a reasonable simulation of a starting model for a newly
discovered pulsar. These inputs can only be used
when iter =1.

fOblur_range - Optional input, defaults to “0.05, 0.15”
phase, where the comma separated pair is a string that will be
interpreted in the code as a tuple. The range of uniform random
phases to skew FO by (phase), set so that the spin cannot be
skewed so harshly that phase wraps exist within the first group
of TOAs.

PEPOCH - Optional input. Period epoch for pulsar in MJD,
should match TZRMIJD. Defaults to 56,000 so as to be in
recent years for which asterometric data is available.

TZRFRQ - Optional input. Frequency (Hz) at which the
pulsar was observed, defaults to 1400 Hz.

TZRMJD - Optional input. Day the first TOA will be set to
(MJD), defaults to 56,000.

TZRSITE - Optional input. Observation site code, defaults
to GBT (Green Bank Telescope).

density_range - Optional input, defaults to “0.004,
0.02” days/TOA, where the comma separated pair is a string
that will be interpreted in the code as a tuple. The range of TOA
densities for the program to randomly choose from so as to
vary spacing between TOAs between simulated systems.

span - Optional input, defaults to “200, 700” (days). The
range of total time spans to choose from in units of days, where
the comma separated pair is a string that will be interpreted in
the code as a tuple.
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