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Abstract

We have used X-ray data from the Neutron Star Interior Composition Explorer (NICER) to search for long-
timescale temporal correlations (“red noise”) in the pulse times of arrival (TOAs) from the millisecond pulsars
PSR J1824—2452A and PSR B1937+21. These data more closely track intrinsic noise because X-rays are
unaffected by the radio-frequency-dependent propagation effects of the interstellar medium. Our search yields
strong evidence (natural log Bayes factor of 9.634 £ 0.016) for red noise in PSR J1824—2452A, but the search is
inconclusive for PSR B1937+4-21. In the interest of future X-ray missions, we devise and implement a method to
simulate longer and higher-precision X-ray data sets to determine the timing baseline necessary to detect red noise.
We find that the red noise in PSR B1937+21 can be reliably detected in a 5 yr mission with a TOA error of 2 us
and an observing cadence of 20 observations per month compared to the 5 s TOA error and 11 observations per
month that NICER currently achieves in PSR B19374-21. We investigate detecting red noise in PSR B1937+21
with other combinations of observing cadences and TOA errors. We also find that time-correlated red noise
commensurate with an injected stochastic gravitational-wave background having an amplitude of
Agwg =2 x 107" and spectral index of timing residuals of ygwg = 13/3 can be detected in a pulsar with
similar TOA precision to PSR B1937+21. This is with no additional red noise in a 10 yr mission that observes the
pulsar 15 times per month and has an average TOA error of 1 us.

Unified Astronomy Thesaurus concepts: Pulsars (1306); Millisecond pulsars (1062); Red noise (1956); X-ray

astronomy (1810); Pulsar timing method (1305)

1. Introduction

Rotation-powered pulsars, particularly millisecond pulsars
(MSPs), are extraordinarily stable rotators, but there is noise in
the arrival time of the pulses. Pulsar timing noise is the subject
of much research, both to understand the pulsar emission
mechanism and for the sake of using pulsars as clocks, e.g., to
make a gravitational-wave detector using a pulsar timing
array (PTA; Hobbs et al. 2010; Cordes & Shannon 2012;
Arzoumanian et al. 2016; Lentati et al. 2016; Perera et al.
2019). The noise we observe likely comes from both intrinsic
and extrinsic effects, but what fraction of the noise is intrinsic
to the pulsar is difficult to disentangle from the other noise
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sources (Lam et al. 2016; Lentati et al. 2016; Lam et al. 2017,
Hazboun et al. 2020; Goncharov et al. 2021b). Intrinsic noise
could come from jitter in the location of the emission mechanism,
i.e., the beam could be nonstationary on the pulsar (Lam et al.
2016), or it could come from various changes in the interior of
the neutron star, effectively changing the moment of inertia in a
stochastic manner (Cordes & Shannon 2010; Melatos &
Link 2014). Extrinsic noise could come from the intervening
medium, i.e., the interstellar medium (ISM), from measurement
noise, or from gravitational waves. In the case of X-ray
observations, the ISM noise is essentially nonexistent, since its
effects decrease significantly with increases in the observation
frequency (Stinebring 2013). The Neutron Star Interior Composi-
tion Explorer (NICER) gives us a unique chance to perform high-
precision, long-term timing of pulsars in the X-ray band, free
from ISM noise. The detection of red noise that we document in
this paper is significant because it is a detection of red noise
where we know that none of the red noise is due to the ISM.
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Figure 1. NICER TOA residuals for PSR J1824—2452A using the f fit discussed in Section 4.

In this paper, we have applied existing techniques to X-ray
data that have traditionally been used in radio data (see
Arzoumanian et al. 2018a; Alam et al. 2020a; Hazboun et al.
2020, and references therein). We use existing software,
including the Enhanced Numerical Toolbox Enabling a Robust
PulsaR Inference SuitE (ENTERPRISE; Ellis et al. 2017) and a
Python timing package, Pint Is Not TEMPO3 (PINT; Luo et al.
2021), to search for red noise in X-ray times of arrival (TOAs).

In Section 2, we discuss how we process NICER data, briefly
reviewing the various filters we use to select events more likely
to come from the pulsar. In Section 3, we introduce the various
types of noise to illustrate why X-ray data are important, how
they are accounted for or measured in our model, and how we
construct our model. In Section 4, we describe the Bayesian
analysis of our data sets, leading to our measurement of red
noise using X-ray timing. In Section 5, we also discuss the
analysis of an extension of the NICER mission, as well as the
prospects of future high-sensitivity X-ray missions, using our
newly developed data simulation tools. In Section 6, we discuss
our results and summarize our investigation.

2. Observations and Data Processing

The primary instrument on NICER is the X-ray Timing
Instrument with 52 coaligned X-ray concentrators, each paired
with an active detector that records event time and pulse height
information for each detected photon (Gendreau et al. 2017).

In addition to the photons of interest, the detectors on
NICER are sensitive to cosmic rays, trapped particles, optical
light, and other radiation that can produce photon-like events.
We filter out spurious events and periods of high background
using a variety of criteria, as explained in Deneva et al. (2019).
The photons filtered out would increase the uncertainty of
TOAs but would not add any type of time-correlated signal.

The measured event times have a precision of about 40 ns
and are referenced to UTC with an accuracy better than 100 ns
after the fine timing bias calibrations are applied in the standard
level 1 processing.

In our processing, we construct one pulse TOA per NICER
ObsID, which means one TOA per UTC day, typically with
hundreds to thousands of seconds of exposure. Our data for
PSR J1824—2452A include 337 TOAs taken between 2017
June 25 and 2020 November 12 with a mean TOA error of
11.4 us and a mean observing cadence of 8.2 observations per
month.

Our data for PSRB1937421 include 466 TOAs taken
between 2017 June 28 and 2020 November 18 with a mean
TOA error of 5.1 us and a mean observing cadence of 11.3
observations per month.

Figures 1 and 2 show the residuals (TOA minus the deter-
ministic timing model used to model the TOAs) and errors for
PSR J1824—2452A and PSR B1937+21, respectively. Timing
models based on radio data were refit using NICER data to obtain
pulsar ephemerides based solely on the X-ray data. In observa-
tions of PSR J1824—2452A, we filtered out photons outside of the
1-5.5keV range, while in observations of PSR B19374-21, we
filtered out photons outside of the 1.15-5.55keV range. The
TOAs for each of these pulsars are calculated using maximum-
likelihood fits to an analytic pulse template. More complete details
of the NICER timing accuracy and TOA generation procedure can
be found in Section 2 of Deneva et al. (2019).

3. Methods

Understanding the different noise sources is crucial to our
understanding of pulsars themselves and also the key to our
ability to use them to detect gravitational waves (Arzoumanian
et al. 2018a).

We divide noise in pulsar timing residuals into two
categories, white and red, which is a reference to the spectrum
of the fluctuations. The spectral density of white noise is
independent of frequency, while red noise has a larger
amplitude at lower frequency. To the eye, red noise in a time
series appears as if the data wander over long timescales.

We adopt our model for this work from PTAs, which use the
data from many pulsars to observe the stochastic background of
gravitational waves from supermassive binary black holes (Lentati
et al. 2016; Perera et al. 2019). This signal manifests in the timing
data as red noise that is additionally spatially correlated, i.e.,
dependent upon the observation angle between pulsar lines of
sight from Earth (Hellings & Downs 1983). The standard
likelihood for gravitational-wave analysis with PTAs is well
documented in the literature (Demorest et al. 2013; Lentati et al.
2013; van Haasteren & Levin 2013; Lentati et al. 2014; van
Haasteren & Vallisneri 2015; Arzoumanian et al. 2016). Here we
forgo the spatially correlated part of the signal model and search
only for generic red noise within a single pulsar data set. The
covariance matrix is built from the various white-noise compo-
nents discussed in Section 3.1, and the red noise is modeled using
a Gaussian process with a Fourier basis separately parameterized
for each pulsar, as discussed in Section 3.2. The model includes a
linearized timing model where the timing model parameters are
marginalized over during the analysis. The linearization uses a
design matrix built from the first derivatives of the best-fit timing
model (Blandford et al. 1984; Hazboun et al. 2019b). The design
matrix used here is the same used for radio-based pulsar timing,
except that it does not include any of the chromatic (radio-
frequency-dependent) components of the timing model.
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Figure 2. NICER TOA residuals for PSR B19374-21 using the f fit discussed in Section 4.

3.1. White Noise

Additional noise parameters are often used to augment pulsar
timing data errors. Here we discuss EFAC and EQUAD,]6 which
were used in our analysis (see Lam et al. 2016, and references
therein for further details.) In EQUAD, Q is an error added in
quadrature to TOA errors that models short-timescale errors
from diffractive scintillation, similar propagation effects, and
pulse jitter. EFAC augments the TOA errors as a multiplicative
factor, F, and models underestimates in TOA errors from low
signal-to-noise ratio (S/N) TOAs, as well as allowing timing
model fits to achieve reduced  fits of one. Therefore, the most
generic model for the white noise in NICER data is

O = F205 5 + 0%, )
where o is the total white-noise value used to construct the
covariance matrix. We will see in Section 4.1 that the
additional parameters Q and F were in fact not favored in a
Bayesian model selection with NICER data for PSR J1824
—2452A.

3.2. Red Noise

Red noise can be categorized into chromatic and achromatic
processes, where “chromatic” here refers to a dependence on
the frequency of the pulsed light from the neutron star.

In radio observations of pulsars, the largest chromatic red
noise comes from the bulk movement of the ISM across the
line of sight to a pulsar, which causes changes in the integrated
electron column density, known as the dispersion measure
(DM), and hence the dispersion of the pulses (Shannon &
Cordes 2017; Arzoumanian et al. 2018b). The DM effects scale
as 1/ 17, where v is the electromagnetic frequency. Higher-
order effects (e.g., 1/ *) can also stem from scattering of the
radio pulses through the ISM and secondary frequency-
dependent dispersion (Hemberger & Stinebring 2008).

Achromatic red noise can be the result of many different
processes. For example, magnetospheric state switching can
affect the neutron star rotation itself (Lyne et al. 2010). Some
MSPs can have asteroid belts, which can cause perturbations in
their orbits that appear as achromatic red noise in the residuals
(Shannon et al. 2013).

Understanding the nature of red noise is crucial to building
accurate pulsar timing models (Coles et al. 2011; Stinebring 2013).

16 ECORR refers to noise that is correlated between TOAs within a particular
observing epoch across radio frequencies but not correlated between epochs
(Arzoumanian et al. 2014; Lam et al. 2016). Because ECORR is correlated
across frequencies and necessitates multiple TOAs from a single observing
epoch, it is not required in our analysis.

Furthermore, gravitational-wave detection using pulsars, i.e.,
pulling a very weak signal out of noisy data, requires an accurate
description of the noise (Lam et al. 2016, 2017; Alam et al.
2020a).

Various scaling laws using optimal statistics to build S/Ns,
p, have been developed extensively in the literature for
understanding when/if a pulsar data set is sufficient for the
detection of red noise. In Section 5, we will use a single pulsar
version of the p expression in Chamberlin et al. (2015),

2,2
pz(zr s @)

1/2
1, (bf7+202At)2) ’

for detecting power-law red noise. Here ~ is the power-law
spectral index, Ar is the time between observations (1/
cadence), the length of the data set is given by 7, the white
noise is given by o, and b is defined using both the amplitude
and spectral index of the red noise as the following:

3—y
= Ar 1 3)
1272\ f, '

yr

where f,, is the reference frequency, here chosen to be 1 yr.

The X-ray observations can play a key role in the under-
standing of these types of noise for the following reason: there is
no chromatic noise in X-ray observations. Radio waves are
coherently scattered in the ISM with a strength depending on the
inverse square of the frequency, strongly affecting the observed
light through dispersive delays, scintillation, multipath propaga-
tion, etc. The X-rays are (photoelectrically) absorbed or
incoherently (Compton) scattered, resulting only in simple, static
attenuation of the light (Longair 2011). Therefore, observing in
X-ray data eliminates a significant category of noise. Further, in
many pulsars, the chromatic red noise measured is orders of
magnitude larger than the various achromatic red-noise types
(Perera et al. 2019). Finally, mismodeled chromatic red noise can
appear as achromatic noise (Cordes et al. 2016), so eliminating
chromatic noise from the data set will allow for a proper
characterization of achromatic noise.

Since the achromatic red noise searched for in pulsar data is
a stochastic signal, Gaussian process regression (Rasmussen &
Williams 2006) is often used as the main tool for modeling.
Here a normal kernel process was used in the Fourier domain
with a power-law model

AI%N | 3
yr
1272 fyr

“

Prn =
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for the power spectral density (PSD), a technique used often by
PTAs (van Haasteren & Levin 2013; Lentati et al. 2016). There
are n frequencies considered ranging from (1/7, n/T), where T
is the time span of the data set. In longer data sets, n is usually
30, but with these much shorter data sets, we used n = 10, since
the red noise will only manifest in the lowest few frequencies.
The PSD is given in units of TOA residual power, yr°. The
amplitude, Ary;, is unitless and referenced to a frequency of 1
yr!. The prior used in our search is log-uniform (10~%°,
107”). The spectral index, ~, prior was uniform (0, 7), where
v =0 is equivalent to white noise. Both are standard for pulsar
noise searches (Alam et al. 2020a, 2020b).

In addition, we undertook a search for excess noise power
more generically using a free spectral model. Such a search is
unrestricted by any PSD model and creates a posterior for the
amplitudes for all frequencies searched (Arzoumanian et al.

2018Db). The priors for these parameters were log-uniform in the
range (107'%, 1074 s.

3.3. Software

The models were built using the ENTERPRISE Python
package developed for full PTA analyses (Ellis et al. 2017).
Two different techniques were used for sampling the like-
lihood. We used a standard Markov Chain Monte Carlo
sampler, PTMCMCSAMPLER, for doing parameter estimation
and model selection, while a nested sampler, Dynesty, was
used in order to calculate the evidence for the red-noise
likelihoods (Ellis & van Haasteren 2017; Speagle 2020). This
evidence calculation allowed us to calculate the Bayes factor
with respect to the base noise model, in this case, a model that
only includes the TOA errors. The purely Python-based timing
package, PINT, was used to fit pulsar timing models to our
TOAs, as well as for adding noise to our data simulations (Luo
et al. 2021).

The noise was simulated using a set of routines built
explicitly for adding noise into these X-ray data sets with PINT
and is available on GitHub.'” The routines are based on a set of
publicly available routines in a Python wrapper package for the
pulsar timing software TEMPO2 (Hobbs et al. 2006), called
LIBSTEMPO (Vallisneri 2015). The TOAs were zeroed out to
match the deterministic timing model before adding noise.
EFAC was added by inflating TOA errors before adding
Gaussian-distributed noise, while EQUAD was added as a
separate set of Gaussian-distributed perturbations. Red noise
was added by pulling Fourier coefficients across 30 frequencies
that were Gaussian-distributed around the chosen power-law
values.

Using this software, we injected various known values of
power-law red noise and checked that our recovery with
ENTERPRISE was within the expected ranges, given the
sensitivity of the data set.

4. Red-noise Search

We undertook a series of analyses on the NICER X-ray TOAs
from PSRB1937+21 and PSR J1824—2452A using ENTER-
PRISE. Prior to these analyses, the X-ray TOAs from each of
these pulsars were fit in PINT using an ephemeris initially based on
radio TOAs but refit with only NICER data. This is an important

17 https://github.com/Hazboun6 /pta_sim/blob/master/pta_sim/pint_sim.py
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Figure 3. Transmission function for PSR J1824—2452A calculated for NICER
data using hasasia (Hazboun et al. 2019a) with and without a fit for 7. Here
T; shows the proportion of power transmitted through the timing model fit as a
function of frequency. The two vertical dotted lines show 1/7 and 2/7, where
T is the time span of the data set. The f fit removes a substantial amount of
additional power at a frequency of the inverse time span of the data.

milestone, as both the PSR B1937+421 and PSR J1824—2452A
NICER data sets are now mature enough to be independently fit.
Following the analysis in Deneva et al. (2019), the TOAs were fit
with the second derivative of the spin frequency, f, which
effectively subtracts a cubic-order polynomial fit from the data. A
number of different physical processes can result in a significant
detection of this parameter, including acceleration of the pulsar
system, braking of the pulsar’s spin from electromagnetic
interaction with its surroundings, or the presence of a long-period
binary companion (Liu et al. 2018, and references therein).

A fit for f removes power from the data at frequencies
proportional to the inverse time span of the data (see Figure 3) and
hence can absorb significant power from any red-noise process
(Blandford et al. 1984; Hazboun et al. 2019b). Just as in Deneva
et al. (2019), f was removed from the pulsar ephemeris model in
the search for the red noise, i.c., f was removed from the timing
model design matrix used in the linearized timing model
marginalization of the analysis. This would leave power in the
residuals that was initially removed by the f fit. This fitting and
then removing process ensures that any parameters covariant to f
(such as f, the quadratic spin-down term) are within the linear
regime for the red-noise analysis, since a linearized timing model
is used to marginalize over the timing model in our search. The
parameters for both pulsars from this type of fit are presented in
Table 1.

As a check, the search for red noise was also carried out
using pulsar models with no initial fit for f, i.e., the fit initially
included only fand f. This leads to a slightly different set of
parameters, but using this fit led to equivalent results, showing
that the linear timing model marginalization was effective at
bridging the gap for the purposes of these red-noise analyses.
Lastly, a third set of analyses were carried out where f was
included in the red-noise search. In the case of PSR J1824
—2452A, these showed much less support for red noise, as
expected. See Figure 3 as an illustration of how much power
this parameter pulls from low frequencies.

Equation (2) in Johnston & Galloway (1999) allows us to
calculate our expected braking index given a fit for f, f, and f
for PSR J1824—2452A. If we assume that PSR J1824—2452A
has f, then calculation yields a breaking index of ~2400,
which is not physically likely.
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Table 1

Timing Model for PSR J1824—2452A and PSR B1937+21
Parameter” PSR J1824—2452A PSR B1937+21
Solar system ephemeris DE438 DE438
TT realization TT(BIPM2019) TT(BIPM2019)
Barycentric timescale TDB TDB
Start (MJD) 57,929.8 57,932.5
Finish (MJID) 59,165.3 59,171.5
DILATEFREQ N N
Number of TOAs 337 466

Right ascension
(J2000) (hh:mm:ss.s)
decl.

(J2000) (dd:mm:ss)

18:24:32.0077(2)

—24:52:10.99(6)

19:39:38.56133(6)

21:34:59.126(2)

Proper motion in —0.7(6) —0.10(11)
R.A. (mas yr’l)
Proper motion in 20(13) —0.51(17)
decl. (mas yr 1)
Annual parallax (mas) —0.6(14) 1.909)
Epoch of position (MJD) 56,999.9998000000000000 55,321.0000000000000000
FO (s ) 27.405534870665(6) 641.928221244395(4)
F1 (s —1.735216(3) x 10~ ** —4.33071(2) x 10~
Epoch (MID) 58,547.5718813381904546 58,552.0580235874009410
TZRMID 56,974.6086015081282523 55,800.9121432622426041
TZRSITE ncyobs gbt
TZRFRQ 1302.344971 812.187012
Note.
 Parameters in bold are those that were fit.
4.1. White-noise Model Selection Table 2
Sample Fractions for the Noise Model Selection in PSR J1824—2452A and
A hypermodel framework (Hee et al. 2016) was used to PSR B1937+21

investigate whether any additional white-noise parameters, as
discussed in Section 3.1, are needed in order to inflate the TOA
errors of the NICER data. The hypermodel framework allows
on-the-fly Bayesian model selection by using a hyperlikelihood
built of the various models under investigation. These are
combined, along with a parameter that chooses the specific
model for which to evaluate the likelihood. This type of
analysis was carried out recently in Goncharov et al. (2021a)
for in-depth noise model selection on pulsars. An exhaustive
analysis of models was done that included all combinations of
EQUAD, EFAC, and power-law-modeled red noise for both
pulsar data sets. The results for both pulsars are reported in
Table 2. The table gives the proportion of samples in a given
model, normalized to the number of samples spent in the most
favored model. The odds ratios can be read off by comparing
two numbers in the same column, e.g., the odds ratio of
model C to model D in PSR J1824—2452A is 1:0.77. Entries of
zero mean that a model was never visited. In the case of
PSR J1824—2452A, the preferred model was model C, without
any additional white-noise parameters but with a power-law
red-noise model. For PSR B1937421, the most preferred
model was model B, which included only EQUAD and not
EFAC or red noise. In both pulsars, models containing EFAC
were highly disfavored, evidence that this parameter is not
necessary for these X-ray data sets. Models containing
EQUAD were only moderately favored or disfavored compared
to models with red noise only or red noise plus EQUAD. As the
red noise becomes more distinguishable in these data sets, the
preference for EQUAD might become clearer.

Sample Fraction
J1824—-2452A B1937+21

Model RN EFAC EQUAD

A v 0 0.01
B v 9x107° 1

c v 1 0.54
D v v 0.77 0.73
E v v 0 0.02
F v v 0.06 0.01
G v v v 0.05 0.02

Note. A check mark designates that a given element was included in the model.
The fractions are normalized by the most favored model, bolded for the two
pulsars. The odds ratio can be read off by comparing two numbers from the
same column, i.e., the odds ratio of model B to model C for PSR B1937+21
is 1:0.54.

4.2. Red-noise Analysis and Evidence Calculation

We proceeded to run the analyses in PSR B1937+21 and
PSR J1824—-2452A with the most preferred model for each
pulsar found in Section 4.1. In addition to the power-law model
for the PSD of the red noise used above, we also used a free
spectral model where the amplitudes of the PSD at each of 10
frequencies are free parameters and are not restricted to a
power-law model. The parameters for the power-law search are
shown in Figures 4 and 5 and are compared to red-noise values
from longer time span radio timing data. In the case of
PSR B1937+21, the posteriors are not very informative, except
to set an upper limit on the noise in the X-ray data. Note that
the radio data parameters are close to the sensitivity threshold
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Figure 4. Bayesian two-dimensional posterior for the power-law red-noise
model in the PSR B1937+21 data set. The X-ray data are currently fairly
uninformative; however, the upper extent of the posteriors is nearing the
measured values in Perera et al. (2019), Alam et al. (2020a), and Goncharov
et al. (2021a).
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Figure 5. Bayesian two-dimensional posterior for the power-law red-noise
model in the PSR J1824—2452A data set. While the amplitude posterior from
the X-ray data shows a significant detection, the spectral index is fairly
unconstrained. Values from other PTA data sets (Perera et al. 2019; Alam
et al. 2020a; Goncharov et al. 2021a) are also shown, along with errors when
available. Note that the spectral index /amplitudes for the PPTA chromatic and
achromatic process are both in fair agreement with the NICER posterior.

of the NICER data set. The power-law red-noise posterior for
PSR J1824—2452A shows a significant detection of red noise
that is in broad agreement with various radio data results. The
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Figure 6. Free spectral analysis posteriors from PSR B1937+21 NICER data.
Each of the violin plots shows the posterior probability that parameterizes the
amplitude of noise in the respective frequency bin. The dashed orange line
shows the best-fit power-law noise from Alam et al. (2020a).
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Figure 7. Free spectral analysis posteriors from PSR J1824—2452A NICER
data. Each of the violin plots shows the posterior probability that parameterizes
the amplitude of noise in the respective frequency bin. The thin tails extending
to the minimum rms values in the two lowest-frequency bins represent
significant detections of power in those bins. The solid orange lines show the
two-dimensional maximum a posteriori value (bold) and a number of other
realizations of the power law from the X-ray data analysis.

parameter posteriors for the free spectral model are shown in
Figures 6 and 7, along with a fiducial power law for
comparison. We see strong detections in the lowest two
frequencies for PSR J1824-2452A.

In order to quantify the significance of both of these models,
Bayesian evidence calculations were carried out using the nested
sampling Python package Dynesty. This was done for models
that included power-law red-noise models and were compared
against the models without red noise. The most favored models
from the model selection analysis (see Table 2) were used as the
base models. In the case of PSR J1824—2452A, since red noise
was the only preferred additional noise element, the noise-only
model included TOA errors plus a linear timing model
perturbation. In the case of PSR B19374-21, the base model had
TOA errors, a linear timing model perturbation, and EQUAD. The
Bayes factors calculated are given in Table 3.

We find a Bayes factor very close to 1 for the red-noise
search in PSR B1937+421; therefore, we cannot claim or
refute the presence of red noise in the NICER data. We find
strong evidence for a power-law red-noise model in
PSR J1824—2452A with a natural log Bayes factor of
9.634 £ 0.016.
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Figure 8. Comparison of pulsar sensitivity curves with power-law red noise.
The solid curves show the PSD of the white noise in the residuals for the two
NICER data sets. The curves were constructed analytically with hasasia
using the preferred white-noise model from Section 4.1 and the X-ray timing
models for these pulsars. The dashed lines show the best-fit power-law models
for red noise from our analysis for PSR J1824—2452A and from Alam et al.
(2020a) for PSR B19374-21. The red-noise power is larger than the white-
noise-only Sk for the lowest two frequencies in PSR J1824—2452A but does
not rise above the curve, even in the lowest frequency of PSR B1937+21. The
two vertical dotted lines show 1/7 and 2/7T, where T is the time span of the
data set.

Table 3
Bayes Factors for the Presence of Red Noise in NICER Data
PSR In(BF)
B1937+421 —0.31 £0.01

J1824—-2452A 9.634 £ 0.016

Note. The data for PSR J1824—2452A show a clear detection of achromatic
red noise, while the data for PSR B1937+4-21 show no strong evidence for the
presence or absence of red noise.

The theoretical noise PSD, Sy, often referred to as the
sensitivity curve or just the sensitivity, of individual pulsars is
well understood in the context of pulsar timing model fits and
various sources of white noise (Hazboun et al. 2019b). These
data sets are strongly affected by the short time span, especially
when looking for steep red noise. The fit for the spin-down
parameters pulls power out at the lowest frequencies important
for the detection of red noise, while the astrometric fit leaves a
broad peak at 1 yr ' (Blandford et al. 1984). Figure 8 shows the
sensitivities of both of these pulsar data sets made using
hasasia (Hazboun et al. 2019a), along with red-noise PSDs
drawn with the parameters retrieved in this analysis (in the case
of PSR J1824—-2452A) or from longer radio data sets (in the
case of PSRB1937+421.) It is obvious from the comparisons
that we would expect to detect the much larger amplitude
process in PSR J1824—-2452A but not the red noise in
PSR B1937+21, since the radio timing parameters put the
red noise below the sensitivity of this pulsar.

5. Future Prospects: Simulated X-Ray Data

Future X-ray data sets may well be able to detect red noise in
PSR B1937+21 and other pulsars, as we did in PSR J1824
—2452A. We ran simulations to determine what specifications
(cadence and TOA error) would allow a mission to make such a
detection. These simulations allow us to assess when a future
X-ray mission, like the proposed Spectroscopic Time-
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Resolving Observatory for Broadband Energy X-rays
(STROBE-X), will detect red noise in PSR B1937+-21 using
X-ray data alone.

5.1. Simulations

To simulate residuals, we extended the NICER 3.5 yr data
set that was integrated by ObsID (data that were collected on
the same UTC day) forward in time and matched the current
observing cadence as closely as possible using the following
algorithm. First, we took the difference between the Modified
Julian Dates (MJDs) of two adjacent TOAs chosen at random
within the NICER data set. We added this difference to the
MIJD of the most recent TOA in the growing data set to create
the MID for the next TOA. We repeated this process until the
data set created after the end of the NICER data reaches our
desired length (e.g., 5 yr). The result was an extended data set
with a similar observing cadence but nonidentical spacing in
time. We also scaled the observing cadence to create data with
varying cadences. This allowed us to create data sets with
different observing cadences from the NICER data but with
realistic variation. We simulated errors on these new points by
taking the error of a randomly chosen point in the actual
NICER data and making that the error of a TOA in the
simulated data set. We also scaled these errors by a
multiplicative factor determined by the ratio between the
desired error and the mean error of the NICER data in order to
test data with smaller or larger error values. Once we have
created the simulated TOAs, we use the PINT scripts mentioned
in Section 3.3 to subtract the calculated residual from each
TOA so that the simulated TOAs fit the timing model.

5.2. Noise Models in PSR B1937+21

The most conservative model for detecting red noise in
PSR B1937+21 is one that has red noise, EQUAD, and EFAC
all injected, as that adds the most noise into the data.
Conversely, the most optimistic model is a model that only
has red noise without EQUAD or EFAC. For the purposes of
determining if red noise will be detected in PSR B1937+4-21 ata
given observing cadence, TOA error, and mission length, any
other noise model would fall between these two models in
terms of our ability to make a detection of red noise. Given the
expensive nature of these simulations, these two cases were
adopted to bracket our understanding of NICER’s ability to
detect red noise in PSR B19374-21 in the near future.

5.3. Detectability of Red Noise in Future X-Ray Data

We injected red noise into the simulated data sets at the level
currently observed in the NANOGrav 12.5 yr data set
(y=3.387 and log,Arny = —13.46; Alam et al. 2020a). We
conducted the analysis in the same manner as for the existing
NICER data, described in Section 3.3, this time searching for a
signal that we had injected. Figure 9 shows the posterior
probabilities for the red-noise amplitude recovered in our
analysis of simulated NICER data for two different mission
lengths (5 yr as the solid blue line and 15 yr as the dashed
orange line). The dotted gray line shows the prior, while the
solid black line shows the injected value.

In Figure 9, we see the difference in the character of the
posteriors for an upper limit (solid) and a detection (dashed), as
well as the difference that a data set three times as long makes
in our ability to detect red noise. The 15 yr data set has a
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Figure 9. Posterior of recovered log;, Arn values for 5 yr of simulated NICER
data on PSR B1937+21 with a cadence of 10 observations per month and an
error value of 5 us (solid blue). This is close to the real NICER data cadence
and error value. Also shown is the posterior of recovered amplitude values for
15 yr of simulated NICER data on PSR B1937+21 (dashed orange). The
dotted gray line represents the priors, and the solid black line represents the
injected log of the red-noise amplitude of log;,Arny = —13.46. At 5 yr, there is
no detection of red noise, though we can see an upper limit beginning to be set
on the posterior. At 15 yr, there is a clear detection of the injected red noise.

narrow posterior, tightly localized around the injected red-noise
value of log,Arny = —13.46. Hence, we were able to
successfully recover the injected value. By contrast, the 5 yr
posterior resembles the prior, except in the high-amplitude
region that is ruled out by the data. While we are able to set an
upper limit, this particular analysis is not a detection.

Figure 10 shows the posterior probabilities for the power-law
spectral index recovered in our analysis of simulated NICER
data of two different lengths (5 yr as the solid blue line and 15
yr as the dashed orange line). The dotted gray line shows the
prior, while the solid black line shows the injected value.

Again, we see that the longer data set in Figure 10 has a clear
high probability density region in the posterior, with the most
likely value settling in a range near y=3. This is near the
injected spectral index of y=3.387. By contrast, in the
analysis of the shorter data set, the posterior still closely
resembles the priors.

5.4. Detecting Red Noise in PSR B1937+21

Figure 11 reveals the strategies that a future 5 yr X-ray
mission (like STROBE-X) could use for detecting red noise in
PSR B1937+21. In particular, it shows the direct exchange that
such a mission could take between TOA error and observing
cadence and still detect red noise. For example, observations
that yield a 2 us TOA error could be made 20 times per month
and detect red noise. Alternatively, a 3 us TOA error would
require observations more frequently: 30 observations per
month.

In order to achieve a smaller uncertainty in TOAs than
NICER, STROBE-X would need to have a larger effective
collecting area than NICER, observe each pulsar for longer, or
both. For example, NICER is achieving roughly 5 us precision
on PSR B1937+21 using ObsID TOAs. In order to achieve 2.5
us precision, STROBE-X would need to have four times the
effective collecting area of NICER, i.e., 7600 cm? instead of
1900 cm?, or observe for four times as long (NICER observes
each TOA for hundreds or even thousands of seconds; Deneva
et al. 2019; Markwardt et al. 2021).

For a longer 10 yr X-ray mission, Figure 11 shows that red
noise in PSR B1937+21 will be widely detectable at a variety
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Figure 10. Posterior of recovered spectral indices for 5 yr of simulated NICER
data on PSR B19374-21 (solid blue) and 15 yr of simulated NICER data on
PSR B1937+4-21 (dashed orange). The dotted gray line represents the priors,
and the solid black line represents the injected spectral index of v = 3.387. At
15 yr, the posterior is localized, indicating a more significant detection, whereas
at 5 yr, the posterior is similar to the priors.

of observing cadences and TOA errors. Specifically, if NICER
continues to observe PSR B1937+21 for a total of 10 yr, it
would be expected to detect red noise in the pulsar. This is
shown in the region of the graph in Figure 11 closest to the
intersection of the blue lines. These represent the current
NICER cadence and TOA error, and the purple color is
indicating a high likelihood of significant detection of red
noise.

While the simulated data set used to create Figure 11 is
injected with both EQUAD and EFAC according to Section 3.1,
the simulated data set used to create Figure 12 only has white
noise commensurate with the TOA errors and no EQUAD or
EFAC. Accordingly, Figure 11 shows a more conservative
analysis, as it contains a larger amount of noise than Figure 12.
Therefore, the likelihood of making a significant detection with
the same cadence and TOA error is higher in Figure 12 than in
Figure 11.

In order to compare our numerical simulations with the
theoretical S/N given in Equation (2), we need to relate p to
the Bayes factors we have been calculating. The Laplace
approximation (MacKay 2002; Romano & Cornish 2017),

2InB ~ p? + 21n<§“2§‘2

spread of the likelihood around the maximum and V), is the
total parameter space volume, serves as a crude relation
between the Bayes factor and the S/N. The second term on
the right-hand side is a negative term that encodes the Occam
penalty for the use of too many parameters. A rough
approximation can be made by assuming the second term is
negligible. Our detection threshold of a Bayes factor of 100
then corresponds to p ~ 3.

The white lines in Figures 11-13 show where p =3 for the
injected red-noise parameters. We would expect that along the
white line, there is a 50% chance of detecting the injected red
noise. Accordingly, the left panel of Figure 11 is more
pessimistic than Equation (2) would indicate, while the right
panel of Figures 11 and 12 are more optimistic.

), where AV), is the characteristic

5.5. Detecting Temporal Correlations Induced by the
Gravitational-wave Background

We used our existing infrastructure to ask a similar question
about the low-amplitude noise that might arise from a stochastic
gravitational-wave background (GWB) rather than about high-
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Figure 11. Number of significant red-noise recoveries as a function of TOA error and cadence for a 5 (left panel) and 10 (right panel) yr mission with injected values
of log,yArn = —13.46 and v = 3.387. The noise model was used on simulated data constructed from NICER data following the procedure in Section 5.1. At least 100
different iterations of simulated data and noise injected following the procedures in Sections 3.1 and 3.2 using a model with red noise, EQUAD, and EFAC were run at
77 points on the graph. The color of the graph, interpolated from the 77 points, indicates how many of those simulations resulted in a Bayes factor larger than 100 and
a recovered log,,Ary within 1 of the injected value. The light blue lines indicate the existing TOA error and cadence for the 3.5 yr NICER data. The white line
indicates where there is an S/N of 3 according to Equation (2). These figures show what the mission requirements for the next X-ray mission (such as STROBE-X)

would need to be in order to detect red noise in PSR B1937+21 (see text).
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Figure 12. Number of significant red-noise recoveries as a function of TOA
error and cadence for a 5 yr mission with injected values of
log,gArn = —13.46 and ~ = 3.387. The noise-fitting model was used on
simulated data constructed from NICER data following the procedure in
Section 5.1. At least 100 different iterations of simulated data and noise
injected following the procedure in Section 3.2 using a model with only red
noise were run at 77 points on the graph. The color of the graph, interpolated
from the 77 points, indicates how many of those simulations resulted in a
Bayes factor larger than 100 and a recovered log;, Arn Wwithin 1 of the injected
value. The light blue lines indicate the existing TOA error and cadence for the
3.5 yr NICER data. The white line indicates where there is an S/N of 3
according to Equation (2).

amplitude red noise. The former cannot be detected with a single
pulsar, requiring the detection of spatial correlations across many
lines of sight. Using the latest values from Arzoumanian et al.
(2018a), we injected log;y Agws = —14.699 and ygwg = 4.333
into the simulated data for PSR B1937+21 in place of red noise
without injecting EQUAD or EFAC with a simulated 10 yr
mission length. The results are shown in Figure 13. It is
important to note that the GWB was injected in place of the red
noise, not in addition to it, and that no additional white noise was
injected. Because the red noise in PSR B1937+-21 is strong, and
our best model for PSR B1937+21 shown in Section 4.1 does
include EQUAD, this is not a realistic representation of a
detection of GWB-induced red noise in actual PSR B1937+-21
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Figure 13. Number of times that the injected GWB-induced red noise was
recovered as a function of TOA error and cadence for a 10 yr mission with
injected values of log,,Agws = —14.699 and ygwg = 4.333. The noise-fitting
model was used on simulated data constructed from NICER data following the
procedure in Section 5.1. At least 100 different iterations of simulated data and
noise injected following the procedure in Section 3.2 with a model that only
includes red noise were run at 77 points on the graph. The color of the graph,
interpolated from the 77 points, indicates how many of those simulations
resulted in a Bayes factor larger than 100 and a recovered log;, Agx Within 1 of
the injected value. The light blue lines indicate the existing TOA error and
cadence for the 3.5 yr NICER data. The white line indicates where there is an
S/N of 3 according to Equation (2). For this graph, the GWB was injected
instead of the red noise, and no additional white noise was injected. The red
noise will overpower the GWB in PSR B1937+21 in this time frame, so this is
not a realistic depiction of how long it will take to detect the GWB in
PSR B1937+21.

data. However, this analysis is useful in determining mission
requirements for detecting GWB-induced red noise in a pulsar
like PSR B1937+21 that only has the GWB as noise in addition
to the NICER TOA errors. This would be the most optimistic
scenario for the detection of the GWB-induced red noise in a
pulsar using X-ray data. In such a pulsar, a future X-ray mission
would need to have an observing cadence close to once a day
with a TOA error under 2.5 pus or a TOA error under 1.0 ps and
a more infrequent observing cadence to detect the GWB-induced
red noise with a 10 yr mission.
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6. Discussion and Summary

Using NICER X-ray data alone, we detect red noise in
PSR J1824—2452A with log,yArxy = —12.6013% and a spec-

tral index of v = 4.417]8}, in agreement with radio observa-
tions. The X-ray observations are free from the influence of
ISM that impacts radio data, making this detection significant,
as it is a detection of red noise that is known not to be caused
by the ISM. While the red noise in PSR B1937+21 was below
the threshold of a detection, our analysis of simulated future
data will help design future X-ray missions and inform when
such a detection will take place. The detection of achromatic
red noise in PSR B1937+21 is well known in the pulsar timing
community (Kaspi et al. 1994; Lentati et al. 2016; Alam et al.
2020a, 2020b). As the NICER data set becomes more sensitive
in the next few years, it will be extremely interesting to see how
much red noise is detected and how much of the red noise seen
in radio timing data is achromatic. These studies will be
bolstered by the substantial amount of data from gamma-ray
timing of pulsars (Kerr et al. 2015) by the Fermi Gamma-ray
Telescope and the ongoing effort to search for the GWB in
Fermi data (Kerr et al. 2022, submitted).

As has been the case in the pulsar timing community for the
last decade, an analysis of noise models that yields the PSD of
the noise, such as we have done, here replaces the o, analysis
outlined in Matsakis et al. (1997) and earlier attempts at using
second-order structure functions (Cordes & Downs 1985) that
were previously developed to quantify the stability of a pulsar
using time domain methods. The clock community and the
pulsar timing community are both interested in the stability of
pulsars, and they each have a different language to describe
them, but we believe this analysis will appeal to both. Both
communities speak the language of PSD, and ultimately, that is
what both communities would like to describe their clocks, i.e.,
what is the PSD of the noise?

If one wishes to relate the PSD, e.g., our results, to o,
Matsakis et al. (1997) gave a relationship between the spectral
index of a power-law PSD in the residuals, Spocf~ 7,0 < y< 6
and their statistic, 0? o 773, Our results for PSRJ1824
—2452A of v~ 3 would give a flat dependence on 7, similar
to the Allan deviation. Allan statistics have an exact
correspondence to PSD power-law models for spectral index,
0 <~vy<4;v=3 is formally a flicker-FM noise type. A low-
frequency cutoff filter can be employed, if necessary, for the
case 2 <y<6 (Makdissi et al. 2010). Future analysis will
implement Allan statistical treatments so that standard clock
characterizations of NICER data can be readily used by clock
analysts (Howe 2006; Howe & Schlossberger 2022)

Future projects will improve on the NICER data set in both
sensitivity and quantity of data. We have used our analysis of
the NICER data to make recommendations for future missions.
STROBE-X will observe in the 0.2—-12keV band using the
X-ray Concentrator Array with a planned collecting area of
21,760 cm? at 1.5keV (Ray et al. 2019). This increase in
collecting area alone will provide a marked improvement over
NICER'’s observations. By conducting tests with longer time
spans and smaller uncertainties, we aim to provide thresholds
for these future experiments in X-ray timing.
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