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ABSTRACT

Using Bayesian analyses we study the solar electron density with the NANOGrav 11-
year pulsar timing array (PTA) dataset. Our model of the solar wind is incorporated
into a global fit starting from pulse times-of-arrival. We introduce new tools developed
for this global fit, including analytic expressions for solar electron column densities
and open source models for the solar wind that port into existing PTA software.
We perform an ab initio recovery of various solar wind model parameters. We then
demonstrate the richness of information about the solar electron density, ng, that
can be gleaned from PTA data, including higher order corrections to the simple 1/r?
model associated with a free-streaming wind (which are informative probes of coronal
acceleration physics), quarterly binned measurements of ng and a continuous time-
varying model for ng spanning approximately one solar cycle period. Finally, we
discuss the importance of our model for chromatic noise mitigation in gravitational-
wave analyses of pulsar timing data and the potential of developing synergies between
sophisticated PTA solar electron density models and those developed by the solar
physics community.

Keywords: solar wind, pulsar timing, pulsar timing arrays, dispersion, solar electron
density

1. INTRODUCTION

Radio observations of distant astrophysical sources have long been used to study
the content and characteristics of the solar wind. For example, Hewish & Dennison
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(1967) used observations of scintillation from quasars as a way to probe the structure
of the solar wind. The dispersion of pulsed radio emission from pulsars, due to the
diffuse ionized medium along the observational line of sight (LOS), has been known
from their first radio observations (Hewish et al. 1968). The utility of these radio
pulses for investigations of electron density was used in Counselman et al. (1970),
only two years after the discovery of pulsars, to measure the solar electron density
(10 cm ™2 at lau) based on a spherically symmetric model for the solar wind.

Since these early investigations, pulsar astronomers have often included a model
for the solar electron density as a part of pulsar ephemerides—see, for example, the
three main pulsar timing software packages TEMPO, TEMPO2, and PINT (Nice et al.
2015; Hobbs & Edwards 2012; Luo et al. 2021). In Lommen et al. (2006) and Splaver
et al. (2005), the solar wind signal was shown to be highly covariant with astrometric
components of the timing models for individual pulsars, in particular the parallax and
sky position, because these parameters contain strong Fourier components at 1/yr and
higher harmonics. Beyond the importance of a solar wind model for accuracy in pulsar
astronomy, You et al. (2007) and You et al. (2012) showed the sensitivity of pulsar
data sets to more complex (than the spherically symmetric 1/r? wind) features in the
solar electron density’. More recent work (Madison et al. 2019; Tiburzi et al. 2019,
2021) has shown the potential of pulsar timing arrays (PTAs) as independent probes
of the solar wind and its behavior as a function of time.

In this paper we introduce new methods, expanding upon those used in Madison
et al. (2019) and Tiburzi et al. (2021), to obtain information about the solar electron
density from PTA data. Using a fully Bayesian framework, we show that much more
information about the solar wind can be obtained from the same set of pulsar data
used in Madison et al. (2019), the NANOGrav 11-year Data Set Arzoumanian et al.
(2018a, henceforth referred to as NG11). As in these recent studies, it is important
that we are using an array of pulsars. This allows us to separate the variations
in electron density of the ionized interstellar medium (ISM) along the kiloparsec
distances to pulsars from the local fluctuations in electron density due to variations
in the solar wind.

The NANOGrav 11-year Data Set consists of high-precision time-of-arrival (TOA)
measurements 45 millisecond pulsars spanning up to 11.4 years. Each pulsar was
observed at approximately a monthly cadence, over widely separated radio frequencies
in order to measure both TOAs and dispersion of the pulsar signal at each observing
epoch. Observations were made using the Arecibo Observatory and the Green Bank
Observatory. Typical TOA measurement precision was in the range 0.1 to 1 us.
Further details of the data set are in NG11.

1.1. Monitoring of Solar Electron Density

1 'We present more detail on these models in §2
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Since the initial use of astrophysical radio sources to measure solar wind density
via scintillation (Hewish & Dennison 1967), a program for monitoring solar wind
densities, especially at higher solar latitudes, has continued (Coles 1978; Manoharan
2010; Tokumaru 2013). In addition to ground-based monitoring, a considerable num-
ber of resources have been used to study the solar wind from space. Many of these
spacecraft have included instruments for electron density measurements, including
Ulysses’s Solar Wind Observations Over the Poles of the Sun (SWOOPS; Bame et al.
1992), the Orbiter Retarding Potential Analyzer (ORPA) instrument mounted on the
NASA Pioneer Venus Orbiter spacecraft (Knudsen et al. 1980) and the Advanced
Composition Explorer (ACE) with its Solar Wind Electron Proton Alpha Monitor
(McComas et al. 1998). Similar to pulsar timing measurements, the Viking mission
used dual frequency delays to make early measurements of the latitudinal dependence
of the solar electron density (Muhleman & Anderson 1981). The Parker Solar Probe
(Bale et al. 2016) with its Solar Wind Electrons Alphas and Protons (SWEAP) in-
strument (Kasper et al. 2016) is revolutionizing our understanding of the solar wind
in the inner solar system (Bale et al. 2019).

Apart from the Viking data, these space missions take in situ measurements of
the solar electron density. These allow for one variety of long-term monitoring of
the solar wind and Ulysses data have been used to study its structure and behavior
at high to mid latitudes (Issautier et al. 2001). Obviously, this monitoring requires
the use of costly spacecraft, and while the data from pulsar timing does not provide
the same type of fine-grained local spatial information, the many lines of sight to
pulsars allow for omnidirectional integral monitoring of the solar electron density
from ground-based facilities and the scrutinization of various models for its structure
and evolution. PTAs provide a probe of the solar wind that is distinct from and
complementary to space missions.

1.2. Noise Mitigation in PTAs

The main goal of PTA experiments is to use precise long-term measurements of
millisecond pulsars to observe gravitational-waves (GWs) in the nanohertz regime.
Many pulsars are used since the unique noise properties of individual pulsars necessi-
tates the corroboration of common? astrophysical signals across multiple sources and
because lower-amplitude common signals can be drawn out of the noise of more pul-
sars. Additionally, PTAs allow us to search for other common signals, for instance the
motion of the solar system barycenter (Vallisneri et al. 2020) or errors in terrestrial
time standards (Hobbs et al. 2020).

One motivation for this work is to develop a pan-PTA solar wind model as one
component of the next generation of PTA noise models. Dispersion measure (DM)
variations are one of the largest noise sources in PTA data, (Lam et al. 2016; Cordes

2 “Common” is used here in the sense that the signal is present, in whole or in part, in observations
of all pulsars in the timing array.
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et al. 2016; Cordes & Shannon 2010; Jones et al. 2017), and modeling these variations
is an important part of PTA noise mitigation strategies—it is, in fact, a major driver
of PTA observing strategies (Ransom et al. 2019; Lam et al. 2018a). DM values in
NG11 vary from ~ 3 — 300 pc/cm?, while the variations are usually on the order of
1073 pc/cm3. While a piecewise binned model of DM variations (DMX, see Arzou-
manian et al. 2015) has served NANOGrav well, it removes up to a third of the power
through the timing model transmission function (Hazboun et al. 2019; Arzoumanian
et al. 2015; Jones et al. 2017), a problem endemic to any DM variation model that is
part of the timing model fit. Additionally it has been shown that asynchronous multi-
band observations can lead to misestimation of DM variations (Lam et al. 2015) when
binned together, either in DMX or an interpolation basis. Niu et al. (2017) demon-
strated that observations only a day apart can be insufficient to remove sharp solar
wind effects, or “cusps”. In Hazboun et al. (2020) and Lam et al. (2018¢) the effect
of sharp unmodeled cusps in DM variations was demonstrated. Mismodeling of solar
wind cusps could then also present as broadband white noise in pulsar datasets. In
particular, this could adversely affect GW searches for single sources which are es-
pecially dependent on the high frequency noise floor of PTAs (Lam 2018; Lam et al.
2018b; Lam & Hazboun 2021).

Perhaps most importantly for PTAs, in addition to the noise introduced by mis-
modeling DM variations, it was shown in Tiburzi et al. (2016) that the solar wind can
actually manifest spatial correlations amongst the pulsars, a potential source of confu-
sion when searching for GWs, especially a GW background which presents in the data
as a low-frequency spatially-correlated process. In this paper, we demonstrate how a
fully Bayesian framework, built upon the extensive analysis infrastructure developed
by PTA collaborations to search for GWs, can isolate the signal from the solar wind
in PTA data. This allows for precise noise mitigation as well as monitoring of the
overall solar electron density both as a function of time and observational LOS.

The paper is organized as follows. In §2 the DM parameter will be derived along
with various analytical models for a spherically symmetric and static solar electron
density. In §3 we present the full Bayesian model for pulsar timing data and how we
incorporate our solar wind models. In §4 three models for the behavior and structure
of the solar electron density will be presented along with the results of using these
models to analyze NG11. In §5 we discuss the incorporation of these models into
PTA data analyses as well as how these models might be used in the future to bolster
efforts to study solar physics.

2. SOLAR ELECTRON DENSITY MODELS

The simplest and most common model for the solar electron density used in pulsar
timing software packages like TEMPO, TEMPO2 and PINT (Nice et al. 2015; Hobbs
& Edwards 2012; Luo et al. 2021) is the spherically-symmetric, time-independent
expression n.(F) = ng(lau/r)?, where ng is the electron density at 1au, herein
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Figure 1. Solar Wind Geometry: The figure defines the variables used for the solar wind
electron density line integral. Here we have adopted some of the nomenclature of scattering
calculations, as in Aksim et al. (2019), using b as the impact parameter and defining 6; as
the “impact angle”, i.e the solar elongation. The vector p points from the Sun to the pulsar,
while 7y points from the Sun to the observatory on Earth. The distance to the pulsar is
effectively infinite when compared to the distance to the Earth, so z, and p’ are effectively
parallel.

measured using units of 1/cm? to match pulsar timing software. The DM parameter
used in pulsar timing is the column density, i.e. the integral of n.(7) along the line-
of-sight to the radio source

DM@:/T: ne (7) ds (1)
_ / " _) s 2)
=ng(1 au)2% F + tan™? <7>] (3)
i (1an)? (4)

where the first line is the generic expression, and the last equality uses the relationship
=2 = cot(f;) = tan (7—; — 0,-) and b = rq sin ;. See Figure 1 for the definitions of these
variables®. The time delay is then dependent on the radio frequency and the DM by

2
Afo € DM (5)

T 2mmge? 2
DM is usually measured in units of pc/cm?, and the constants of nature in front
combine to 4.15 x 10° MHz? pc~! cm®s.
In You et al. (2007) the authors use a two phase model assuming that the LOS to
the pulsar crosses the fast and slow solar wind. Higher order terms, in addition to

the simple 1/r? model are used to ameliorate the effect of realistic solar wind time
delays. The slow solar wind model?,

3 1au 2 lau 27
neg X cm”=8867 [ — ) +1.186 | —

T T

1 6
11517 x 106 (ﬂ)

r

3 Note that the p used in Edwards et al. (2006); Tiburzi et al. (2019, (and so forth)) and 6; are
supplementary angles, i.e., p =7 — ;.

4 Here we have converted the expressions in You et al. (2007) to units more familiar to pulsar timing
astronomers.
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16
41431 x 1072 (1&) (6)

r

was developed in You et al. (2007) by combining the near and far distance models in
Allen (1947) and Muhleman & Anderson (1981). A separate model was used for the
fast solar wind

3 lau\?
ne X cm”=2.498 | —

r

1 4.39
411.860 x 104 (ﬂ)
.

1ay ) 1625
+4.067 x 107 (T> (7)
developed in Guhathakurta & Fisher (1998, 1995). These models were then combined
with measurements of the portion of the line-of-sight in the fast and slow wind to
better estimate the cusps to the pulsar timing data. In You et al. (2012) the fraction
parameter for the two phases of the model is fit for as part of the analysis. Additionally
a time dependent component is investigated. The model in You et al. (2007, 2012)
has potential as a useful tool for removing the solar wind signal from pulsar timing
data, especially for single pulsars, where disentangling the DM variations from the
ISM is difficult.

Recently, however, Tiburzi et al. (2019, 2021) showed that the simple 1/r* model
for np commonly used in pulsar timing software packages and the You et al. (2012)
model are both insufficient for accurately modeling dispersion delays from the solar
wind. Even with allowances for time variability, these models still fall short of the
mitigation needed for the low frequency radio data taken by the LOw-Frequency
ARray (LOFAR) (Stappers et al. 2011; van Haarlem et al. 2013) used in the analyses.

In Aksim et al. (2019) the authors compare their measurements of DM using Very
Long Baseline Interferometry (VLBI) observations of quasars to both a spherically
symmetric model and a numerical integral of the Alfvén Wave Solar Model (AWSoM)
(van der Holst et al. 2014). As in other studies the AWSoM matches well with the
astrophysical measurements, however this model is currently too cumbersome to be
used effectively by PTAs. Aksim et al. (2019) also fit for a variable power spherically
symmetric model and find reasonable agreement with their time delay measurements.

2.1. General Spherically Symmetric Solar Wind Density

Here we derive generic expressions for the dispersion measure for any spherically
symmetric electron density fall off. While these expressions will assume the source
of the electrons is the sun, they are general enough to be used for any spherically
symmetric source of streaming electrons along the LOS to a pulsar, a stellar wind
from a star orbiting a pulsar, for instance. Relaxing the assumption that the electron
density around the sun drops off as 1/r?, we model the drop off with a more generic
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power law dependence. These calculations are similar to those in Aksim et al. (2019),
where the analytical expression for the time delay was calculated directly.

Assuming that p is the exponent in the power law dependence we go through a
similar calculation as in Equation 4,

Pulsar Tp 1 p
DM%:/ n(r)ds :/ ng) (ﬂ> ds (8)

Earth e r
z p

_ (7w (__lau

- (=) B

lau\” 1 p3 22\
:TL(EZ?) (T) |:Z X 2.;:1 (5, 5, 5,-b—2):| (].0)

-zZ@

where o F7 is a hypergeometric function. This expression can be further simplified by
assuming the pulsar is sufficiently distant that we can take the limit z, — co. This

Lau\” 1 p3 22 byrl (2 —1)
DM% = ng) (T) (Z€9 X oF1 (57 éa 57_[)_629) + 9 FQ(I_;)Q ) (11)
2

where I' (z) is the Gamma function. Compare this expression to the time delay

gives

equation given in Aksim et al. (2019). Equation 11 simplifies to Equation 4 when p =
2. See Appendix A for expressions with higher integer values of p. The relationships
below Equation 4 can be used to write this in terms of #;. One can choose to build
a solar electron density model using multiple summed terms, as in You et al. (2007,
2012); Allen (1947); Muhleman & Anderson (1981); Guhathakurta & Fisher (1998,
1995), or allow the index to vary, as in Aksim et al. (2019).

3. BAYESIAN METHODS

The solar wind modeling presented here relies on the analysis infrastructure devel-
oped by PTAs for GW searches (van Haasteren & Levin 2013; Lentati et al. 2016;
Taylor et al. 2013; van Haasteren & Vallisneri 2014; van Haasteren et al. 2009). While
a gravitational wave background only causes residuals of tens of nanoseconds, the so-
lar wind signal is much stronger (~ 1.7us at 1 GHz with 6; = 10°). This allows us to
undertake an in depth study of the solar wind by modeling the solar electron density
across all of the pulsars simultaneously.

To decouple the variations within the ISM along the LOS to each of the pulsars
from the solar electron density that is varying locally, we use a deterministic solar
wind model based on the expressions in §2.1. The solar wind electron density is fit
as a global parameter across all pulsars, while the geometry of the solar wind model
is dependent on the details of the individual Sun-Earth-Pulsar angles, 6;, shown in
Figure 1. In addition to this model each pulsar is also fit with a quadratic polynomial
in time over the data set for the DM, encoded with the pulsar timing parameters, DM1
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i ACE SWEPAM
b i  — Span of NG11lyr
‘% 0.15
= +8.6

4.347°
d‘-’ 2.5
£0.10 -
=
I
3 0.05 -
[a W)

0.00 T T T
0 20 40
ng [1/cm3]

Figure 2. ACE SWEPAM Prior. We use in situ measurements of the solar electron density
at Earth’s orbit to construct a prior for our analysis. Note that the prior extends all the
way up to ~ 50 cm™3.

and DM2, as well as an additional Gaussian process model that emulates the variations
of the ISM, which will be discussed in §3.2.

The PTA analysis framework includes a timing model marginalization, based on a
linearized timing model (van Haasteren & Levin 2013) and a full noise treatment that
includes a generalized covariance matrix, parametrized by TOA errors, three addi-
tional white noise parameters and a power law red noise model (Lentati et al. 2016;
Taylor et al. 2013). The PTA likelihood model is implemented using the ENTER-
PRISE software suite (Ellis et al. 2019) and the various models and extensions com-
piled in enterprise_extensions (Taylor et al. 2021). We use the Parallel Tempering
Markov-Chain Monte Carlo Sampler, PTMCMCSampler, for numerically integrating our
likelihood (Ellis & van Haasteren 2017).

It should be noted that while this formalism is focused on high precision millisecond
pulsars, the code infrastructure can be used on data from any type of pulsar and its
timing data. Observations of the more numerous canonical pulsars may be useful for
these types of solar investigations in the future.

3.1. ACE SWEPAM Prior

As mentioned in §1, a number of past and ongoing space missions have collected
solar electron density data over the past few decades. In order to take advantage of
this large base of knowledge about the solar electron density we used the solar electron
density data from the ACE Solar Wind Electron Proton Alpha Monitor (McComas
et al. 1998) to build an informative prior for ng, the solar electron density at 1au.
We binned the data from the same time span as NG11, corrected the density from the
L1 Lagrange point using a 1/r? density model® and used an empirical distribution to
build a random variable in SciPy. The distribution and median are shown in Figure 2.
The ACE SWEPAM in situ data are a useful prior for limiting the extent of parameter

5, ACE _ lau )2
niCE = )

ng (m



10 HAZBOUN ET AL.

space at which we expect to be working, roughly 0.01—50 cm 3. However, the electron
flow in the ecliptic plane is known to be different than the fast flow at other solar
latitudes (Muhleman & Anderson 1981; Bame et al. 1992; Guhathakurta & Fisher
1998). We do not expect the ACE measurements to match our results perfectly, but
it is a good comparison in these analyses as a sanity check. In practice the prior
was only informative when compared to the data in some individual pulsar runs —
usually pulsars without strong solar wind signals in their TOAs. In tests, the full
PTA runs retrieved the same posteriors from uninformative uniform priors, but we
use the ACE prior throughout the work presented here to decrease convergence times
in our Markov Chain Monte Carlo runs.

Uniform priors were used for the spectral index in all higher order searches and

)

log-uniform priors were used for ng priors when p # 2.

3.2. Dispersion Measure Variation Model

Gaussian processes (GPs) have been used extensively to model time-correlated noise
in pulsar datasets (Arzoumanian et al. 2020, 2018b; Goncharov et al. 2021). Com-
monly, they are used to model the GW background, achromatic red noise, such as
that caused by intrinsic spin noise, and chromatic noise due to the bulk movement of
the ISM (Goncharov et al. 2021; Lentati et al. 2016).

The standard prior function of GPs in these datasets is a red (negative spectral-
indexed) power law model with a Fourier-basis. The solar wind has strong spectral
characteristics at Fourier frequencies of 1/yr and higher modes (Madison et al. 2019).
In early testing these modes showed themselves to be highly covariant with some
frequencies in a Fourier-basis GP, so we have instead adopted for our DM variations
model another common ansatz for GPs: a square exponential kernel,

)2 o \2
ksg(t1,t2) =0%exp (‘%) + (%) (12)

where o is an overall variance, £ is a time scale of variation, and a constant variance is
also added as a regularizing term for stable inversions and to ensure a minimal value
of the variance. This kernel represents the realization average of covariance matrices
described by this type of variation. They are similar to the structure functions used in
the pulsar timing literature for characterizing noise due to variations in the ISM—for
instance, see Equation (7.1) in Foster & Cordes (1990) or Section 5 of Lam et al.
(2016). Such structure functions were also used as a check in Tiburzi et al. (2019)
to ensure the iterative process used therein full disentangled the solar wind signal
form the DM variations in the ISM. Our Bayesian framework allows for simultaneous
fitting across multiple pulsars and frees us from the iterative process used in this
latter publication. Tiburzi et al. (2021) also uses a Bayesian analysis to separate
these signals, but only within single pulsar datasets in order to keep track of solar
wind dependencies on ecliptic latitude. The GP model above (along with our solar
wind model) replaces the use of a short-time-span DMX model normally used in



BAYESIAN SOLAR WIND 11

NANOGrav datasets (Arzoumanian et al. 2018a; Alam et al. 2020a,b), since DMX
cannot distinguish between the ISM and solar wind contributions to the measured
DM value at each epoch. Here a standard 15 day linear interpolation basis in the
time domain is used for constructing realizations of the DM variations.

3.3. Noise Analyses

Since we are implementing entirely new DM variation models from the original
NGI11 analysis, we redid single pulsar noise analyses using our solar wind and DM
GP models. This allowed us to recover new values for the standard white noise
parameters, EFAC, EQUAD and ECORR, (see e.g., Arzoumanian et al. 2015; Lam
et al. 2017) and power law achromatic red noise parameters for each pulsar. These
single pulsar noise runs then consist of a set of three white noise parameters for each
backend /receiver combination used for observations, two DM GP parameters, o and
¢, a solar electron density, ng, and two power law red noise parameters, Agy and 7.

Using only one pulsar’s dataset it is impossible to fully disentangle the solar wind
electron density from the ionized ISM. Any given observation’s DM variation can be
attributed to either changes in the interplanetary or interstellar media. The key to
these analyses is a global fit where the DM GP and red noise parameters are allowed
to vary individually for each pulsar, while the solar electron density is set as a global
parameter across all of the pulsars. Since pulsars have upwards of 204 white noise
parameters it is cumbersome to vary all of these parameters across the entire PTA,
so we adopt the usual practice in PTA analyses (Arzoumanian et al. 2020) of setting
their values constant in the full PTA analysis following single-pulsar noise modeling.

4. BAYESIAN MODEL IMPLEMENTATION AND ANALYSIS

We use the expressions in §2.1 to build models for a spherically symmetric solar
electron density and analyze NG11. We explore three different models for the behavior
and structure of the solar electron density: higher order spherically symmetric solar
wind models, time-binned solar wind density models, and continuous time-dependent
solar wind perturbations. Each model demonstrates how our full Bayesian framework
provides access to the unique probes of the solar wind available in PTA datasets.

4.1. Higher Order Models

Any number of higher order spherically symmetric models can be constructed using
the tools developed here. We present only a few to demonstrate the feasibility of
detecting these higher order signals using PTA datasets. In general we follow the
methods of Aksim et al. (2019) and fit for a varying power dependence, ~ 1/rP, of
the solar electron density, though we still investigate models of the type in You et al.
(2007, 2012) with multiple summed fixed-power terms. The fit for the proportion of
the two-phases (slow and fast solar wind) in You et al. (2012) is dependent on the
individual lines-of-sight for the individual pulsars which is out of the scope of the
current tests for these modeling tools.
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Table 1. Table of higher order spherically symmetric solar wind density terms. Pa-
rameters without sub(super)scripts are set constant. The median of free parameters
is reported along with the 68% credible interval. Parameters with a superscript 2%
represent 95% upper limits of the parameter.

First Term Second Term Third Term
Model D n%’) [em™3] P logyg ng) D logyg n%)
1 2 6.97013 — —
2| 229000, 475 - -
3 2 25%08s | 24%00; 0387507 -
4 2.307002  4.570:28 437058 _4.19%% —
5 2 6.81015 4.39 —2.87T003 | 16.25  —24.8%%

In Table 1 we summarize results from a number of similar analyses. The aim here
was not to exhaustively test the various powers from Equation 6 and Equation 7, as
the real model is expected to be a mixture of the two (You et al. 2007), but rather

to test the sensitivity of NG11 to some of these higher order terms. Table 1 shows a

progression from the overly simplistic 1/7? model, where we find ng) =6.97015-15, to

models with more terms, and more free parameters. Model 2, where the exponent in

the density relation is allowed to vary, shows that there is support for a higher order

model for the solar electron density, p = 2.2915:05. This power is in agreement with the

best fit power from Aksim et al. (2019) of p = 2.3. Their value of n%® = 2.5940.13 -

cm?
is smaller than our recovered value, but the Aksim et al. (2019) value is from only

one observation, while our value is an 11.4 year average. We will see in §4.2 that time
varying values can differ by up to a factor of 4 or more.

Models 3 and 4 show that there is broad support for a second term in the density
model when the power of the first term is kept constant, but the analysis only retrieves
upper limits for a third term when the first two are kept constant. These analyses
broadly support what has been previously shown in You et al. (2012, 2007) that
pulsar timing data, especially for an array as we are treating here, is sensitive to a
much more complicated model of the solar electron density than is routinely assumed.
Model 5 shows the limits of the data set’s sensitivity, as we do not seem to detect a
third term with the large index predicted in You et al. (2007).

4.2. Time-Binned Solar Wind Density

As in Madison et al. (2019) and Tiburzi et al. (2021), we search for separate values
of ng with p = 2 during different periods of time by fitting values of ng for discrete
time bins of the dataset. In the Madison et al. (2019) analysis the bins are set to
be a year long and a fit is done to the DMX times series of the pulsars. DMX is a
piece-wise time-binned analysis of the DM variations, (see, e.g. Arzoumanian et al.
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Figure 3. Year binned solar electron density. The blue plusses show the values of our
binned solar electron density search. The horizontal error bars show the width of the bins
used, mostly one year here, except the last bin which is 1.4 years long. The orange lines
with vertical error bars show the results from Madison et al. (2019) that used this same
dataset, (NG11). The green shaded blocks show median and 68% confidence intervals from
the in situ measurements of the ACE satellite’s SWEPAM instrument. The pink and purple
shaded vertical regions show the minimum and maximum, respectively, months of solar cycle
24.

2015). We present our results and those of Madison et al. (2019) in Figure 3, along
with binned ACE SWEPAM data for the same time period. The ACE data are in situ
measurements of the local electron density, and so can be considerably noisier than
the large effective average taken by the column density measurements to which the
pulsar timing data are sensitive. In addition, since ACE orbits in the ecliptic plane,
the SWEPAM instrument is really only sampling the slow solar wind, and would
not track changes in the higher altitude fast wind. This is supported by scintillation
studies that track high altitude solar wind density, see for instance Porowski et al.
(2021) for a model based on scintillation data. Their model for solar electron density
shows strong positive correlations on the high latitude wind density with the solar
cycle. Lastly, the ACE data are taken by the same instrument across the 11+ year
time span shown here, while the NANOGrav PTA continually increased the number of
pulsar in the array (hence LOSs) and sensitivity, including a “high cadence” observing
campaign in the latter portion of the dataset (Arzoumanian et al. 2018a).

The largest differences between our values and those of Madison et al. (2019) occur
in the first part of the dataset where the observation cadence was significantly less.
The fit in Madison et al. (2019) was done using a x*-minimization, and did not include
any priors for the solar electron density. Hence the unphysical negative value of the
second bin is a result of the y?-minimization. The large value in the fifth bin occurs
during a time when there is a gap in the PTA data. This will be explored more in the
finer binning used next. The Madison et al. (2019) analysis is not as robust as the
analysis here, since rather than fitting a secondary data product (DMX) we are fitting
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the solar wind as part of a full PTA-wide analysis, which includes a noise model fit
and timing model marginalization.

In Figure 4 we show Bayesian binned results for bin sizes of three months again with
p = 2, showing that NG11 has enough information to fit ng with finer resolution than
is done in Madison et al. (2019). The 68% credible intervals for the binned values
are small compared to the same intervals in the ACE data. In addition to the binned

(4'39), in the solar wind

fit for ng, we also run an analysis with a second density, n
density profile model with p = 4.39. We chose this index from the fast solar wind
model of Equation 7 in order to investigate how a higher order term might effect the
binned values of ng specifically from the few pulsars with very small §;. We use a

39)

time-constant value of n%’ in this application for ease of analysis.

This second analysis, with an ng-i’@)

parameter highlights the importance of these
higher order terms in the density model when there are observations with lines of
sight close to the Sun. The geometric factor for the DM, delay, (7 — 6;)/sin6;, of
all TOAs is shown in the bottom panel of Figure 4. There are two occasions in the
11-year dataset where 6; is very small for PSR J00304-0451 and PSR J1614—2230.
These can be seen as the points where the geometric factor is larger than ~ 100.
The two bins, marked by vertical dots, where these occur correspond to the two bins
where the recovered values for ng differ by many standard deviations from the usual
1/7? model for the density, over estimating ng. While the p = 4.39 model seems to
ameliorate the effect of these small 6; observations, the direct cause of the anomalously
high measurements of ng could also be due to the highly inhomogeneous streaming
of the solar wind at these small distances or from individual events, i.e. coronal mass
ejections. See Appendix B for more discussion.

Two other bins warrant attention. The first bin has only a few TOAs with narrow
frequency coverage, and hence parameters recovered have large error bars. The bin
near MJD 54250 has no TOAs due to concurrent down time at both the Arecibo
Observatory and the Green Bank Observatory. In this bin, the ACE prior is returned
in the posterior. Hence no information beyond the prior is gained.

4.3. Continuous Time-Dependent Solar-Wind Perturbations

In addition to the piecewise constant models for ng discussed above, we also im-
plemented a continuous Fourier-basis model for ng(t) as a perturbation to a mean
ng. The model is reminiscent of the free spectral models used by PTAs to describe
achromatic red noise (Arzoumanian et al. 2020). It is constructed using the TOAs
for each pulsar, parametrized with a separate value for each component of the basis,

Ny
nr(t) = Z a;sin(2m f;t) + bj cos(2m f;t) . (13)

J=0

Rather than trying to reproduce the fine structure recoverable by the You et al. (2012)
model, here we are concerned with long to mid scale variations of ng, therefore
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Figure 4. Three month binned solar electron density. The horizontal error bars show the
width of the bins used, while the vertical error bars show the inner 68% credible region of
the binned ng posteriors. The pink and purple shaded vertical regions show the minimum
and maximum, respectively, months of solar cycle 24. The vertical dotted lines show the
boundaries of a few important bins. The first shows the end of the first bin which contains
the fewest number of TOAs. The bin near MJD 54250 has no TOAs due to down time at
both the Arecibo Observatory and the Green Bank Observatory. The dotted vertical lines
near MJD 55800 and MJD 56400 show bins where the values for ng in the two models
differ by a substantial amount. The bottom panel shows the geometric part of the solar
DM obtained from a 1/7? model for the solar wind density calculated for all TOAs in the
dataset. Note the log scale on the y-axis. Only two pulsars, J00304-0451 and J1614—2230,
have geometric factors larger than 100 and the factors for these have been highlighted with
colored x’s and +’s, respectively.

we use a set of frequencies based on the time span, 7' = 11.4 yr, of NG11 and
include 30 linearly spaced frequencies ranging from [1/7,30/T, using 2 parameters
per frequency, a; and b;.

In various test analyses we recorded the same type of behavior for these continuous
models as was seen in Figure 4, i.e., the fit returned large values of ng during periods
of time when J0030+0451 and J1614—2230 observations had small values of ;. Here
we only report on the continuous model for ng where we also fitted for the same static,
higher order n(;"”)

np(t) = P + nk(t) from an analysis that uses the model in Equation 13. The use

term discussed in §4.2. Figure 5 shows the resulting recovery of

of the Fourier basis gives us immediate access to an analogue of the power spectral
density for the perturbations to the solar electron density. Figure 6 shows violin plots
for the power in the various frequencies calculated using the posteriors of the Fourier
decomposition coefficients, P = a? + b?. Notice that a majority of the frequencies
show small amounts of power, while the lowest frequency, 1/(11.4yr), recovers the
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Figure 5. Continuous solar wind density model. The black dots show the same binned
values for ng shown in orange in the top panel of Figure 4. The blue trace and shading
show the median and inner 68% credible interval of 1000 realizations of the continuous solar
electron density perturbation model.
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Figure 6. Power in the continuous solar wind density model. The violin plots show a simple
representation of a power posterior calculated as a? + b? for each set of Fourier coefficients.
The horizontal bars show the median values. The orange dotted line shows a frequency of
1/yr while the blue dashed vertical line shows 1/(11.75yr), an inverse average solar cycle.

most power — very close to an inverse average solar cycle length of 11.75yr. It will
be interesting to see which frequencies have the most power in longer datasets.

A continuous signal like this would be a good candidate for a Gaussian process,
however current code bases for PTAs construct different realizations of a process for
each pulsar in an array. Since this work reveals a great deal of potential for gleaning
information about the solar wind from PTAs we plan on developing per LOS solar
wind perturbations for these pulsars in future work by using a simple deterministic

inhomogeneous model.

5. DISCUSSION
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This work demonstrates a new set of Bayesian tools that allow for the use of PTA
datasets, or any collection of pulsar timing data, as probes of the solar wind. The
main innovations include a completely general Bayesian fit that includes timing model
marginalization, generic spherically symmetric models for the solar electron density,
and time dependent models. These models can be assembled in myriad ways in
order to mitigate the solar wind as a noise source in pulsar data, or to use these
sensitive datasets to study the Sun’s coronal behavior across the solar system. The
NANOGrav data set is not aimed at monitoring the solar wind, nonetheless it is
sensitive to interesting solar phenomena. The tools we have developed, if applied to
a PTA data set built for the purposes of solar science, have great potential.

One important aspect of this work not yet discussed is how these models can enable
more in depth generic ISM studies. These solar wind models allow the removal of
the DM variation signal from the local interplanetary medium in a principled way.
This would better enable the use of these pulsar timing datasets for studying the ISM
unencumbered by local variations in electron density.

The solar wind signal has been known to cause issues (Lommen et al. 2006; Splaver
et al. 2005) when trying to measure some timing effects in pulsar data sets—for in-
stance, timing parallax, critical for constraining pulsar distances. The covariances
with measuring parallax imply that improvements in the solar wind model could ulti-
mately improve single source GW searches, as the distance to pulsars is an important
aspect of pulsar term searches for GW from supermassive black binaries (Aggarwal
et al. 2019). The solar wind has also been implicated as one of the systematics in the
“triple system” (Archibald et al. 2018), impeding better limits of Einstein’s equiv-
alence principle. Better modeling of the solar wind might allow for more accurate
measurements of these limits, in addition to allowing for better noise mitigation when
these data are used for GW searches. Improvements to the handling of the solar wind
in pulsar timing investigations stand to improve precision pulsar science in a wide
variety of ways.

PTA studies of the solar wind have the potential to add a completely independent
set of measurements to the myriad space missions studying solar weather. PTA
observations survey a much wider swath of the Sun’s environment than any spacecraft
would be able to, taking column density information in 70+ lines of sight every month,
probing beyond the outermost reaches of the solar environment. The observational
campaigns of lower frequency observatories like the Canadian Hydrogen Intensity
Mapping Experiment (CHIME /Pulsar Collaboration et al. 2021), LOFAR (Stappers
et al. 2011; van Haarlem et al. 2013) and the Long Wavelength Array (LWA, Stovall
et al. 2015) are continually adding data that is extremely useful for DM variability
studies, since these lower frequencies allow for more accurate measurement of the
variations. These data can add important tests to the well developed solar weather
modeling efforts undertaken by the solar physics community (van der Holst et al.
2014). These large scale measurements would allow for long timescale monitoring of
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the fast and slow solar wind, giving access to continuous measurements of the solar
wind at all solar latitudes.
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APPENDIX

A. GENERIC SPHERICALLY SYMMETRIC DM FOR INTEGER POWERS

The expression in Equation 11 simplifies considerably for integer values of p > 1.
Here we show the first few expressions for powers greater than p = 2 for reference.

3 1+ cosb;

DM2 =Y (1au)’ ————*
o=ng (lau) R?Esin2 0;

(A1)



BAYESIAN SOLAR WIND 19
4 2m — 20; + sin 26;

DM =n® (1 A2
o=np (lau) AR, sin® 6, (A2)

9 — cos b,
DM%:ng) (1au)® Bk (A3)

4 34 0;
2Ry sin”™ 3

B. CORONAGRAPH IMAGES

As discussed in §4.2, three observation epochs from NG11 have fairly small solar
impact angles. In Figure 7 we show images from the Large Angle Spectroscopic
Coronagraph (LASCO, Brueckner et al. 1995) on board the Solar and Heliospheric
Observatory (SOHO) from the same time as the pulsar observations, with the ap-
proximate pulsar positions marked. These white light images from the C2 camera
can be related to the solar electron density (Quémerais & Lamy 2002), however such
calculations are out of the scope of the current work. These images are provided

v
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Figure 7. Coronagraph images from the LASCO/C2 instrument onboard the SOHO space-
craft. The inset image is from the Extreme-Ultraviolet Imaging Telescope (EIT, Delabou-
diniere et al. 1995). These coincide with the three pulsar timing observations discussed in
§4.2. The approximate pulsar positions are marked in each image with a white crosshairs.
Images a) and b) are for the PSR J1614—2230 observations and are separated by one day.
Image c) is for the PSR J00304-0451 observation. The dates and time in UT are given in
the images.

to highlight how close to the Sun these observations were taken (< 6R;) and how
inhomogeneous the inner solar system can be. Testing various estimates of 2 and
3-dimensional electron density from these white light images would be an interesting
use of dedicated pulsar observations close to the Sun.
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