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Abstract
The nanohertz frequency band explored by pulsar timing arrays provides a
unique discovery space for gravitational wave (GW) signals. In addition to
signals from anticipated sources, such as those from supermassive black hole
binaries, some previously unimagined sources may emit transient GWs (a.k.a.
bursts) with unknown morphology. Unmodeled transients are not currently
searched for in this frequency band, and they require different techniques from
those currently employed. Possible sources of such GW bursts in the nanohertz
regime are parabolic encounters of supermassive black holes, cosmic string
cusps and kinks, or other, as-yet-unknown phenomena. In this paper we present
BayesHopperBurst, a Bayesian search algorithm capable of identifying
generic GW bursts by modeling both coherent and incoherent transients as a
sum of Morlet–Gabor wavelets. A trans-dimensional reversible jump Markov
chain Monte Carlo sampler is used to select the number of wavelets best describ-
ing the data. We test BayesHopperBurst on various simulated datasets
including different combinations of signals and noise transients. Its capability
to run on real data is demonstrated by analyzing data of the pulsar B1855 + 09
from the NANOGrav 9 year dataset. Based on a simulated dataset resembling
the NANOGrav 12.5 year data release, we predict that at our most sensitive
time–frequency location we will be able to probe GW bursts with a root-
sum-squared amplitude higher than ∼5 × 10−11 Hz−1/2, which corresponds to
∼40M�c2 emitted in GWs at a fiducial distance of 100 Mpc.
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1. Introduction

The detection of nanohertz gravitational waves (GWs) is the main objective of pulsar timing
arrays (PTAs). These large scale experiments regularly monitor a collection of millisecond
pulsars to achieve this goal (see e.g. [1]). The three major PTAs currently operating are the
North American Nanohertz Observatory for Gravitational Waves (NANOGrav, [2]), the Euro-
pean Pulsar Timing Array (EPTA, [3]), and the Parkes Pulsar Timing Array (PPTA, [4]). In
addition, there are emerging PTA efforts in India (InPTA, [5]), China (CPTA, [6]), and South
Africa (SAPTA, [7]). These project are collaborating under the International Pulsar Timing
Array (IPTA, [8–10]) consortium.

The most promising GW sources in the nHz regime are supermassive black hole binaries
(SMBHBs). These can be detected through observing their collective effect as a red noise
process with quadrupolar correlations between pulsars (see e.g. [11]). The most massive and
nearby of these SMBHBs might also be detectable individually (see e.g. [12]). It has also
been proposed that these two searches can be carried out simultaneously, thus accounting for
any interaction between the two types of signatures [13]. Searches have also been carried
out for bursts with memory [14], i.e. a permanent deformation of spacetime after a violent
astrophysical event, like the merger of two black holes.

In this paper, we focus on searching for generic GW transients (a.k.a. GW bursts) in PTA
data. The subject has been studied extensively in the context of ground-based interferometric
GW detectors, where many different algorithms are in use [15–20] and several searches have
been carried out throughout different observing runs of the LIGO [21] and Virgo [22] detec-
tors [23, 24]. The detection problem of GW bursts has also been considered for space-based
detectors [25].

In the PTA context, no analysis of real data has been carried out so far. However, sev-
eral methods have been suggested, including an analytical Bayesian framework [26], a
Bayesian nonparametric approach [27], and a frequentist search working in the time–frequency
domain [28]. Reference [29] suggests a possible improvement by considering the coher-
ence between the pulsar terms, which appears in some cases. In this paper we present
BayesHopperBurst1, a Bayesian search for GW bursts in PTA data, which is based on
a trans-dimensional reversible jump Markov chain Monte Carlo (RJMCMC) sampler [30, 31]
akin to that used in the BayesWave algorithm [15] to search for and reconstruct GW bursts in
the data of ground-based GW detectors. The work described in this paper is the continuation of
that presented in [32], where the authors used similar methods to model noise transients in PTA
data. One promising source of nHz GW bursts are parabolic (or highly eccentric) encounters
of two SMBHs, which can occur in a hierarchical triple system of SMBHs [33]. Cosmic string
kinks and cusps can also produce GW busts in this frequency range [34].

The paper is organized as follows. In section 2 we describe the methods employed by
BayesHopperBurst including the model used to describe transient signals and the sam-
pling techniques that enables it to effectively explore the parameter space. In section 3 we
perform various injection tests, demonstrating that BayesHopperBurst recovers a wide
variety of signals and noise transients. In section 4 we analyze a simulated dataset similar to
the latest NANOGrav data release [2] to make a prediction of what we can expect from analyz-
ing the real dataset. In section 5 we analyze B1855 + 09 from the NANOGrav 9 year dataset
[35] to demonstrate our algorithm’s noise transient modeling capabilities on real data. Finally,
we offer concluding remarks in section 6.

1 https://github.com/bencebecsy/BayesHopperBurst.
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2. Methods

In this section, we introduce the model used to describe signals and noise transients with
arbitrary morphology, and we provide some details of the sampling techniques employed to
efficiently explore the resulting high-dimensional parameter space. We use the enterprise2

[36] software package for handling PTA data and calculating the likelihood used in our
Bayesian analysis. Timing models were produced bylibstempo3, which is a pythonwrap-
per for the tempo24 timing package. We also make use of the la_forge5 [37] package for
some of our figures.

2.1. Model

The model we use to describe our dataset has many similarities with the one used in the
BayesHopper algorithm. The only fundamental difference is that the collection of sinu-
soids are replaced by a set of ‘signal’ wavelets coherent across detectors and a set of ‘noise
transient’ wavelets which only appear in a given pulsar and describe transient noise fea-
tures in the data. In this section we give a brief description of the model and focus on dif-
ferences between BayesHopper and BayesHopperBurst. More details can be found
in [13].

Consider a PTA consisting of N pulsars. The ith residual in the kth pulsar of the array is
modeled as:

δtki =
∑

l

Mkilδξkl + nki + gki + wki (θs) + vki (θn) , (1)

where δξkl is the offset from the best fit value of the lth timing model parameter, and Mkil is
the design matrix, which represents a timing model linearized around the best fit parameter
values. nki represents all noise processes unique to each pulsar, while gki is the contribution of
an isotropic stochastic GW Background (GWB) which is correlated between different pulsars.
The contribution of the transient GW signal is represented by wki(θs), while that of incoher-
ent transient noise features is described by vki(θn), where θs and θn represent the parameters
describing the GW signal and the transient noise respectively.

2.1.1. Transient noise model. The contribution of noise transients to the timing residual
(vki(θn)) is modeled as a sum of sine-Gaussian (Morlet–Gabor) wavelets:

vki(θn) =
Mk∑
j=1

Ψ(tki;λk j), (2)

where Mk is the number of wavelets used in the kth pulsar, tki is the ith observing time of the
kth pulsar, and λk j is the parameter vector describing the jth wavelet in the kth pulsar, which is
related to the full parameter vector as θn = (M1,λ11, . . . ,λ1M1 ; . . . ; MN ,λN1, . . . ,λNMN ), and
the wavelets are defined as:

Ψ(ti;λk j) = A e(t−t0)2/τ2
cos(2π f0(t − t0) + φ0), (3)

2 https://github.com/nanograv/enterprise.
3 https://github.com/vallis/libstempo.
4 https://bitbucket.org/psrsoft/tempo2/.
5 https://github.com/Hazboun6/la_forge.

3

https://github.com/nanograv/enterprise
https://github.com/vallis/libstempo
https://bitbucket.org/psrsoft/tempo2/
https://github.com/Hazboun6/la_forge


Class. Quantum Grav. 38 (2021) 095012 B Bécsy and N J Cornish

where A is the amplitude, t0 is the central time, τ is the characteristic duration, f0 is the central
time, and φ0 is the initial phase. We can see that a single wavelet can be described by five
parameters, i.e. λk j = (A, t0, τ , f0,φ0). We use Morlet–Gabor wavelets as they have the com-
pelling property of having the smallest time–frequency area allowed by the Heisenberg–Gabor
limit [38]. Other functions, such as shapelets [39], might be better suited to certain types of
signals, so we plan to investigate using them in the future.

2.1.2. Signal model. In order to impose the proper coherence between pulsars, in the signal
model we model the GW waveform itself as a sum of wavelets, and then project that onto the
pulsar lines of sight taking into account the corresponding antenna factors. Since PTAs are
sensitive to the time integral of the metric perturbation, we introduce:

H+,×(t) =
∫

h+,×(t)dt, (4)

where h+,× are the usual components of the metric perturbation corresponding to plus and
cross polarized GWs. We model H+,×(t) as:

H+(t) =
N∑

j=1

Ψ(t; t0, j, f0, j, τ j, A+, j,φ0,+, j), (5)

H×(t) =
N∑

j=1

Ψ(t; t0, j, f0, j, τ j, A×, j,φ0,×, j), (6)

so that the two polarizations have independent amplitude and initial phase, but t0, f0, and τ are
common parameters. This simplification will not affect the generality of our model, but helps
in efficiency by reducing the number of parameters. Then a rotation around the propagation
direction is allowed, which introduces the transformation:

H̄+(t) = H+(t) cos(2ψ) − H×(t) sin(2ψ), (7)

H̄×(t) = H+(t) sin(2ψ) + H×(t) cos(2ψ), (8)

where ψ is the polarization angle. Then the timing residuals are formed with the use of the
antenna pattern functions:

wki(θs) = −F+(Ωk,ΩGW)H̄+(tki;λ
′) − F×(Ωk,ΩGW)H̄×(tki;λ

′), (9)

where Ωk = (θk,φk) and ΩGW = (θGW,φGW) are the sky location of the kth pulsar and the
GW source, respectively. F+,×(Ωk,ΩGW) are the antenna pattern functions, and λ′ contains the
internal parameters of the GW signal.

Note that equation (9) assumes that only the Earth term (see e.g. [40]) contributes to the
signal. This simplification can be justified as follows: the time difference between the Earth
and pulsar terms is given by

Δt = L(1 − cos β) ≈ 50 yr

(
β

10◦

)2 ( L
1 kpc

)
, (10)

where L is the distance to the pulsar, β is the angle between the pulsar and the GW source sky
location, and for the second equality we made an approximation valid for small β (which is
where we can get the smallest delays). We can see that for typical millisecond pulsar distances
of 1 kpc and observing campaigns not longer than a few decades, we will not see the pulsar

4
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term signals unless the sky location of the GW source is within a few degrees of a pulsar.
Even if that happens, it will only appear in that single pulsar, so it can be modeled as a noise
transient.

Note that pulsar term signals from GW bursts with no Earth term observed will appear as
noise transients in our dataset. For an array with Np pulsars, these correspond to an effective
observation time Np times larger than the actual observation time. However, the signal-to-noise

ratio (SNR) of a pulsar term signal is a factor of N1/2
p lower compared to the Earth term signal,

since it appears in just a single pulsar. This smaller SNR corresponds to a decrease in the
observable volume by a factor of N3/2

p . As a result, we expect that the rate of pulsar term bursts

will be a factor of N1/2
p lower than Earth term bursts, corresponding to a factor of 7 for the 45

pulsars in the NANOGrav 12.5 year dataset. Pulsar term signals can also be coherent between
two (or a few) pulsars, but for an array with a few tens of pulsars, the expected rate of such
events are even lower [29].

2.2. Sampler

As described above, the dimensionality of our model depends on whether the GWB is turned
on or not, and also on how many wavelets are used in the signal and the transient noise
model. A GWB can carry one or two parameters depending on whether the spectral slope
of the power-law model is fixed or varied. Each noise transient wavelet carries six parame-
ters including the five internal parameters plus an ‘external’ parameter indexing which pulsar
the noise transient belongs to. The signal model has three external parameters common to
all wavelets (sky location and polarization angle) plus seven internal parameters for each
wavelet.

To sample this variable-dimension parameter space we use an RJMCMC sampler called
BayesHopperBurst, which not only gives posterior distributions on the model parameters,
but also on the number of different components included in the model. BayesHopperBurst
uses many of the proposals developed forBayesHopper such as Fisher matrix proposals, par-
allel tempering and trans-dimensional proposals. The description of these can be found in [13].
We also need a global proposal to help convergence, however the one used in BayesHopper
is specific to continuous wave sources, so instead we use a global proposal based on the τ -scan,
which we describe below.

The τ -scan is defined as:

T
(
{xi}; t′0, f ′

0, τ ′
)
=

Np∑
i=1

|(xi|Ψc,i)i|2 + |(xi|Ψs,i)i|2, (11)

where xi is the time series in the ith pulsar, Np is the number of pulsars in the array, (.|.)i

is the noise-weighted inner product in the ith pulsar, Ψc,i = Ψ(A = Āi, t0 = t′0, f0 = f ′
0, τ =

τ ′,φ0 = 0) is a ‘cosine wavelet’ and Ψs,i = Ψ(A = Ā′
i, t0 = t′0, f0 = f ′

0, τ = τ ′,φ0 = π/2) is
a ‘sine wavelet’, where Āi and Ā′

i are normalization constants chosen for each pulsar so that
(Ψc,i|Ψc,i) = (Ψs,i|Ψs,i) = 1.

By calculating T for various t′0, f ′0, and τ ′ values on a grid, we can get a 3D map showing
where the data has some excess power. To determine the necessary spacing between grid points
so that they properly cover the parameter space, we calculate the match (M) between two
neighboring wavelets and require that it is above some threshold, e.g. M > 0.9. The match
between two waveforms (h and h′) is defined as:

M =
(h|h′)√

(h|h)(h′|h′)
, (12)

5
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where (.|.) =
∑Np

i=1 (.|.)i is the array-wide noise-weighted inner product. M is normalized so
that −1 � M � 1, where M = 1 indicates that h and h′ are exactly the same, while M = −1
means there is a perfect anticorrelation between them. We can approximate M for two wavelets
close to each other as [15]:

M = 1 − 1
4τ̄ 2

(Δτ )2 − 1
2τ̄ 2

(Δt0)2 − π2τ̄ 2

2
(Δ f0)2, (13)

where Δ indicates the difference in the given parameter between the two wavelets and τ̄ =
(τi + τ j)/2 is the average τ between the two wavelets.

We can then require that the mismatch (1 − M) when moving only one of the parameters
be less than 0.1. This implies:

Δ ln τ �
√

2
5

, (14)

Δt0 � τ√
5

, (15)

Δ f0 � 1√
5πτ

. (16)

We see that the τ layers should be logarithmically spaced with each layer having a τ value
maximum exp(

√
2/5) ≈ 1.9 times larger than the previous one. Time and frequency should

be linearly spaced, with the spacing depending on the τ of the given layer. One can always
choose to make the spacing finer, but that results in increasing computational costs.

Figure 1 shows the τ -scan calculated for a white noise burst (WNB) signal (see section 3.1)
with central time and frequency marked with the white crosses. Here we use five layers with
different τ values. We can see that as a result of the τ -dependent time and frequency spacing,
pixels at higher τ values are more elongated in time but narrower in frequency (resulting in the
same time–frequency area). We can see that the τ -scan clearly lights up around the injected
signal indicating that, after proper normalization, this provides an excellent proposal. Indeed,
we find that including this proposal speeds up convergence by multiple orders of magnitude,
even though the remaining parameters of the wavelet are drawn from their priors. This proposal
is also used when proposing to add a new signal wavelet, which makes it possible to have a
reasonable acceptance rate for these complicated jumps.

A variant of the τ -scan proposal is used for noise transient wavelets. For these we create a
τ -scan for each pulsar only using the data for the pulsar in question. These are not only used
to draw f0, t0 and τ values for the wavelet, but also to draw which pulsar to put in the wavelet
based on how much excess power is in each pulsar.

3. Tests on simulated data

To test BayesHopperBurstwe analyze a few different simulated datasets. All the datasets
in this section correspond to a simulated PTA with 20 pulsars at random sky locations. Each has
been observed for 10 years every 30 days, has the same constant white noise level of 0.5 μs and
no red noise. We add different kinds of GW signals and noise transients to this base dataset. In
section 3.1 we show results for datasets only containing GW signals and not noise transients;
in section 3.2 we look at a scenario with no GW signals but noise transient in many pulsars of
the array; while in section 3.3 we look at a few examples of how BayesHopperBurst can
deal with datasets containing both GW signals and noise transients.

6
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Figure 1. Tau-scan map for a simulated WNB signal with central time and frequency
marked by the white crosses. Note how the map peaks around the true time–frequency
location of the signal, suggesting that such a proposal will help finding the signal quickly.

3.1. Signal without noise transients

First we look at a dataset with a GW signal that consists of two sine-Gaussian wavelets that
are close to each other in the time–frequency plane. This can be considered as one of the eas-
iest signals to reconstruct, since it matches our model, i.e. we can perfectly reconstruct such a
signal with two signal wavelets. Figure 2 shows the reconstruction of this signal in one of the
pulsars in the array. We can see that BayesHopperBurst uses no noise transient wavelets
and two signal wavelets most of the time, as expected. We can also see that the reconstructed
signal matches well the injected GW signal. Note that while figure 2 only shows the recon-
struction in a particular pulsar, the projection of the signal in the datastream of other pulsars
can be significantly different. The reconstructions for all 20 pulsars in the array are shown in
figure A1, indicating similarly accurate waveforms in all pulsars. To quantitatively character-
ize the goodness of fit throughout the whole array, we calculate the match between the median
reconstructed signal and the injected signal, which we find to be 0.96. The SNR of the simu-
lated signal is 17.9, which we define as SNR =

√
(hinj|hinj), where hinj is the waveform of the

simulated (or injected) signal.

7
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Figure 2. Reconstruction of a signal consisting of two sine-Gaussian wavelets
(SNR = 17.9) in one of the pulsars in the array. The reconstruction is more precise
than one would expect by looking at the spread of data points because the reconstruc-
tion is based on data from all 20 pulsars in the array. The match between the median
reconstructed waveform and the injected waveform is 0.96. The inlet plot shows the his-
togram of the number of wavelets used both in the signal and the noise transient model.
We can see that BayesHopperBurst uses two signal wavelets and no noise transients
as expected.

The next dataset contains a WNB, which is produced from a white noise time series by
applying a Gaussian window both in time and frequency. The variance of the white noise sets
the amplitude of our WNB, while the windowing determines its time–frequency location and
spread. While a WNB is similar to a sine-Gaussian wavelet in that it is also well localized on
the time–frequency plane, it has a more complicated time dependence. This also means that
a WNB cannot be perfectly reproduced by a finite number of sine-Gaussian wavelets, so the
number of wavelets used will be determined by the trade-off between getting an increasingly
better fit and paying an Occam penalty for each additional wavelet included.

Figure 3 shows the reconstruction of a WNB signal. We can see thatBayesHopperBurst
uses a single wavelet to fit the majority of the signal, while low-amplitude parts of the signal
are missed. This also leads to a lower match between the median reconstructed signal and the
injected signal (0.812) compared to the previous example, even though it has a slightly higher
SNR of 18.3. This suggests that BayesHopperBurst performs slightly worse for a WNB
signal compared to sine-Gaussians. Note however that if we take into account the uncertainty
in the linearized timing model (orange band on figure 3), the reconstruction is consistent with
the injected GW signal at the 90% confidence level.

One of the potential sources of GW bursts in the PTA band are SMBHBs on parabolic or
highly eccentric orbits. Here we analyze the simulated signal from a parabolic encounter of
two SMBHs. We calculate the waveform from equations (3) and (4) of [26]. Beyond being
a potential astrophysical source, parabolic SMBHBs are also a good test of the algorithm,

8
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Figure 3. Reconstruction of a WNB signal (SNR = 18.3) in one of the pulsars of the
array. The match between the median reconstructed waveform and the injected waveform
is 0.812. We can see that parts of the signal are modeled by the linearized timing model.
The inlet plot shows the histogram of the number of wavelets used both in the signal and
the noise transient model. We can see that BayesHopperBurst uses a single signal
wavelet to model the WNB.

because they are not elliptically polarized, so BayesHopperBurst must use its flexibility
to fit two very different waveforms for the plus and cross polarizations.

Figure 4 shows the waveform reconstructed by BayesHopperBurst for an equal mass
SMBHB on a parabolic orbit with a total mass of M = 2 × 109M�, an impact parameter of
b = 60M, at a distance of 15 Mpc, with an SNR of 16.8. Unlike wavelets or WNBs, these
parabolic encounter waveforms have a significant low-frequency component. We can see that
the linearized timing model can fit this component with a quadratic function by changing the
period and period derivative parameters of the timing model. The high-frequency (and high-
amplitude) part of the signal is reconstructed by a single wavelet. The match between the
median reconstructed signal and the injected signal is 0.956.

3.2. Multiple noise transients

We have seen that BayesHopperBurst is able to reconstruct GW bursts in the presence of
Gaussian noise. In this section, we test if it can correctly identify incoherent noise transients.
We consider four different datasets: (i) with a single pulsar containing a sine-Gaussian noise
transient; (ii) with three pulsars containing the same noise transient; (iii) with ten pulsars (half
the array) containing the same noise transient; and (iv) all 20 pulsars containing the same
noise transient. Having the same noise transient in many pulsars can be considered a worst
case scenario for discriminating signals and noise transients. It is virtually impossible to have
such a situation by chance alignment of incoherent noise transients, but it provides a good test
case. Note that even if all the pulsars have the exact same noise transient, in principle, that can

9
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Figure 4. Reconstruction of a parabolic BBH signal (SNR = 16.8) in one of the pul-
sars of the array. The BHs have equal masses of 109M�, and are on an orbit with an
impact parameter of 180M� at a distance of 15 Mpc. The match between the median
reconstructed waveform and the injected waveform is 0.956. We can see that the low-
frequency part of the signal is modeled by the linearized timing model, while the high-
frequency part is reconstructed using a single signal model wavelet, as can be seen on
the inlet plot showing the histogram of the number of wavelets used.

be distinguished from a coherent GW burst, because there is no sky location and polarization
that would result in the exact same waveform (with the same amplitude) in each pulsar.

Figure 5 shows the histogram of the number of wavelets used in the signal model and the
noise transient model for each of these datasets. We can see that for the first three datasets
we are recovering the correct model of having 1/3/10 noise transient wavelets and no signal
wavelets. For the dataset with all the pulsars containing the same noise transient we instead
see that BayesHopperBurst is using a single signal wavelet and 12 to 15 noise transient
wavelets. This can be understood as a result of the inbuilt parsimony of Bayesian statistical
analysis. As noted above, there are no such external parameters that could result in the exact
same amplitude in the datastream of all the pulsars. However, one can use the signal model to
account for noise transients in a few pulsars, and use noise transient wavelets to model the rest.
A single-wavelet signal model has ten parameters, while each noise transient wavelet has five
parameters. Thus such a solution could be statistically favored if the signal model can account
for noise transients in more than two pulsars. Looking at the number of noise transient wavelets
used, we can see that in this example the signal model is able to mimic the residuals from up
to eight noise transients.

3.3. Signal and noise transients

We have seen how BayesHopperBurst can reconstruct signals or noise transients. In this
section we test it on datasets containing both signals and noise transients to see how it is able to
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Figure 5. ‘Discrete violin plot’ of number of wavelets used in signal and noise transient
model for datasets with the exact same noise transient present in a different number of
pulsars. We can see that when the noise transient is present in not more than half of the
pulsars, the model is correctly identified. However, when the noise transient is present
in all the pulsars, the sampler instead turns on a signal model and finds a sky location
which takes care of most of the signal and fits the rest with noise transient wavelets.

distinguish between the two. First we analyze a dataset containing a signal and a noise transient
in one of the pulsars, both of which have sine-Gaussian waveforms but with significantly differ-
ent t0, f0 and τ parameters. We produce two versions of this dataset with different amplitudes:
(i) with signal SNR of 26.8, and noise transient SNR of 10; (ii) with signal SNR of 8.9, and
noise transient SNR of 5. The reconstructions for these datasets are shown in figure 6. We can
see that both the signal and the noise transients are correctly identified and reconstructed for the
higher amplitude case, and we find M = 0.994 between the injected and recovered waveforms.
For the lower amplitude case only the signal has been found with a moderate match of 0.87.
Note however that both the relatively lower match value and the fact that no noise transient has
been found are consistent with the significantly lower SNRs of both signal and noise transient
in this dataset.

In the next example, we create a dataset with a sine-Gaussian signal (SNR = 16.1) and a
noise transient (SNR = 10.8) in one of the pulsars with the exact same waveform as the signal.
This can be considered a worst case scenario, since BayesHopperBurst can only rely on
the coherence of the signal when trying to distinguish GW signal and noise transient. We make
two versions of this dataset with the noise transient being in two different pulsars. Figure 7(a)
shows the reconstruction for the case where the noise transient is in a pulsar far away from
the GW source on the sky as shown by the sky location posterior map (see figure 7(b)). We
can see that both the waveforms and the sky location is accurately reconstructed in this case
(M = 0.98). However, having a noise transient in a pulsar that lies close to the true GW source
sky location results in no significant noise transient reconstructed (see figure 7(c)). Instead,
BayesHopperBurst fits the data by changing the sky location slightly to account for the
effect of the noise transient (see corresponding skymap in figure 7(d)). Since the noise transient
is in one of the pulsars closest to the GW source on the sky, the location of the GW source can
be changed slightly in a way that it can account for the noise transient in that pulsar but not
change significantly the projection of the signal in other pulsars. This reconstruction results in
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Figure 6. Reconstruction of signal and noise transient well separated in time. In the case
of high amplitudes (a), both signal (SNR = 26.8) and noise transient (SNR = 10) are
accurately reconstructed resulting in a match of 0.994 between the median reconstructed
and injected waveforms. In case of low amplitudes (b), only the signal (SNR = 8.9)
is reconstructed by BayesHopperBurst with M = 0.87, while the noise transient
(SNR = 5) is found to be insignificant. This is not surprising given the low SNR of the
noise transient.
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Figure 7. Reconstruction of a dataset with a sine-Gaussian GW signal (SNR = 16.1)
and a noise transient (SNR = 10.8) with the exact same waveform. Both noise transient
and signal are correctly reconstructed when the noise transient is in a pulsar far away
from the GW source on the sky (a) and (b). However, when the noise transient is in a
pulsar close to the GW signal location, the effect of the noise transient can be accounted
for by slightly changing the sky location of the GW without affecting the signal in other
pulsars (c) and (d).

a match of 0.96, which is only slightly lower than the previous example, even though it is not
using the true model.

4. Upper limit predictions for the NANOGrav 12.5 year dataset

In a follow-up study, we plan to use BayesHopperBurst to search for nHz GW bursts in the
NANOGrav 12.5 year dataset [2]. To assess the sensitivity we might expect from such an anal-
ysis we run BayesHopperBurst on a simulated dataset made to resemble the NANOGrav
12.5 year dataset and used in [41]. The dataset has been made using the properties (timing
parameters, white and red noise parameters) of pulsars and observational time stamps from the
NANOGrav 12.5 year dataset. Note that the red noise parameters are derived by filtering out a
common red noise process, so that they truly characterize pulsar intrinsic red noise. To reduce
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Figure 8. Upper limit on the root-sum-squared strain amplitude (hrss) as a function of
central time (t0) and central frequency ( f0) based on a simulated dataset made to resem-
ble the NANOGrav 12.5 year dataset [41]. The most sensitive time–frequency location
is at around 10 years—8 nHz where we get an upper limit of hrss 	 5 × 10−11 Hz−1/2,
which corresponds to ∼40M�c2 emitted in GWs at a fiducial distance of 100 Mpc.

computational costs the residuals are epoch averaged. More details on this simulated dataset
can be found in [41].

This dataset does not contain any GW bursts, so by running BayesHopperBurst on it
we can set upper limits on the amplitude of generic GW transients. We consider these upper
limits to be indicative of the upper limits we might expect to get from running on the real
NANOGrav 12.5 year dataset assuming we do not find any significant GW candidates. Figure 8
shows the upper limits we get from this simulated dataset as a function of central time (t0) and
central frequency ( f0) defined e.g. by equations (8a) and (8b) in [42], which coincide with the
parameters used to describe the wavelets if only one wavelet is used. We quote these upper
limits in terms of the root-sum-squared strain amplitude defined as:

hrss =

√∫ ∞

−∞

[
h2
+ + h2

×
]

dt =

√√√√∫ ∞

−∞

[(
dH+

dt

)2

+

(
dH×

dt

)2
]

dt. (17)

To produce this plot we calculate t0, f0 and hrss for each sample from our MCMC. Then we bin
the samples based on a grid on the t0– f0 plane, and in each bin we calculate the 95th percentile
of the hrss samples from that bin, which we quote as the 95% upper limit.

A clear trend from figure 8 is that the upper limit decreases as we move to later times.
This is because the array contains more and more pulsars as time goes on, which greatly
improves the array’s sensitivity. In addition, we see drastic improvements in the second half
of the dataset, which can be explained by the improved backends used after ∼7.5 year and
a high-cadence observing campaign, which started at ∼8.5 year (see e.g. [2]). We can also
see that the sensitivity decreases at the temporal edges of the dataset, which is due to the
fact that waveforms with a central time near the edges will have a significant portion that
lies outside of the observational time span of the dataset. The worst sensitivity in the ana-
lyzed time–frequency region is achieved at very high frequencies and very early times. This
is due to the fact that there are less than ten pulsars observed at those times. There is also a
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slight increase in the upper limit around the frequency corresponding to a period of one year
(log10 f0 	 −7.5), where PTAs are known to be less sensitive due to the sky location fitting in
the timing model.

The best sensitivity is achieved around t0 	 10 years and f0 	 8 nHz at an amplitude of
hrss 	 5 × 10−11 Hz−1/2. This can be converted into the minimum GW energy that can be
detected at a fiducial distance using e.g. equation (4.2) of [43]. We get that at a fiducial dis-
tance of 100 Mpc we are sensitive to sources emitting an energy of more than ∼40M�c2

in GWs.
Note that we use a uniform prior on the wavelet amplitude which pushes up the amplitude

values resulting in a conservative upper limit. However, as we also allow the sky location to
change, and the distribution of the pulsars is highly anisotropic, this also pushes the sampler to
the least sensitive sky locations where the highest amplitude signals can remain hidden. This
means that the sensitivity at the best sky location could be significantly better than the value
quoted above. On the other hand, in this run we fix the red noise parameters in each pulsar to
the true values due to computational constraints. This in principle could make our upper limit
estimates overly optimistic as it does not take into account any covariances between the red
noise and GW burst signal models. However, since the red noise only dominates at the lowest
frequencies, we do not expect this to have a drastic effect at the most sensitive time–frequency
location reported above. In addition, even while fixing the red noise parameters to their true
values, we still allow the realization of the red noise to vary, which can accommodate some
covariance between the signal and red noise models.

5. Single-pulsar test on real data

Real data can bring complications compared to simulated data like uneven sampling, temporal
gaps in the datastream, chromatic effects, etc. To test how BayesHopperBurst can handle
these complications we run it on a single pulsar (B1855 + 09) from the NANOGrav 9 year
dataset [35]. We show the epoch-averaged residuals from B1855+ 09 in figure 9(a) along with
the reconstruction of the linearized timing model and the red noise model. Figure 9(b) shows the
epoch averaged residuals corrected with the median timing and red noise model. These indicate
a transient feature around 55 000 Modified Julian Date (MJD), which is reconstructed by the
noise transient model also shown on this figure. Note that although we show the epoch-averaged
residuals for plot clarity, our analysis used all individual residuals.

We can see in figure 9 that BayesHopperBurst adjusts the timing parameters such that
some features of the data were smoothed out while others were amplified. Then it used a few
wavelets to correct those amplified features. In particular, we can see that the observations
made at different frequencies at the same epoch are sometimes inconsistent in the original
dataset. One can correct that by changing the value of the dispersion measure parameter (DMX,
see e.g. [35]) for that epoch, but that will result in a net residual in both observations. The
legacy analysis thus cannot do that, since it cannot account for transient noise features. On the
other hand, BayesHopperBurst can change the dispersion measure values and model the
resulting noise transient with a collection of wavelets. Thus, our analysis suggests that there is a
noise transient in this dataset. Such a noise transient was not found before, since the canonical
analysis does not model noise transients and their presence can be masked by inflating the
white noise parameters. In fact, BayesHopperBurst only finds the noise transient when
we allow the white noise parameters to vary, so that it can lower their values compared to the
canonical analysis.

Based on figure 9, it might look like that the feature around 55 000 MJD fitted by
the noise transient model was introduced by the similar feature with opposite sign in the
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Figure 9. Waveform reconstruction for B1855 + 09 from the NANOGrav 9 year dataset.
(a) Shows the original epoch-averaged residuals along with the reconstructed timing
model and red noise model realizations. (b) Shows the epoch-averaged residuals cor-
rected by the median red noise and timing model realizations, along with the noise
transient reconstruction from BayesHopperBurst. The latter suggests that there is a
noise transient in this dataset around MJD 55 000. Note that there is a strong covariance
between the presence of the noise transients and DMX parameters.

timing and red noise model. Note however that the linearized timing model introduces per-
turbations around timing model parameters previously determined by an analysis which does
not allow for unmodeled noise transients. Such an analysis will try to adjust its free param-
eters to model out any noise transients present in the dataset. Our results indicate that if
we introduce a model for noise transients, the Bayesian analysis prefers to undo that tim-
ing model adjustment, and instead model the feature with the dedicated noise transient
model.
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6. Conclusion

We have presented BayesHopperBurst, a Bayesian algorithm to search for nHz GW burst
using PTA data, by modeling them as a collection of sine-Gaussian wavelets, where the number
of wavelets is found by a trans-dimensional RJMCMC sampler. We demonstrated how it can
reconstruct signals with a wide range of morphologies, and also how it can distinguish between
coherent GW burst and incoherent noise transients that may occur in the datastream of some
pulsars.

In the near future, we plan to use BayesHoperBurst to carry out the first ever search
for generic GW bursts in the nHz frequency regime using the NANOGrav 12.5 year dataset. In
preparation for that we analyzed a simulated dataset similar to the NANOGrav 12.5 year dataset
and made predictions on the sensitivity we might expect from such a search. To demonstrate
that BayesHopperBurst is capable of dealing with the additional complications arising
when analyzing real data, we analyzed a single pulsar (B1855 + 09) from the NANOGrav
9 year dataset.

In addition to searching for generic GW bursts, an algorithm like BayesHopperBurst
could also be a useful tool for analyzing transient noise features in the datastream of single pul-
sars as illustrated in [32]. We are planning to further explore the potential of such an approach
in a follow-up study. Systematically analyzing a large collection of pulsars will also help us
better understand the covariances we have seen in section 5 between transient noise, DMX,
and red noise models.

Important areas to investigate in future studies are further development and optimization of
BayesHopperBurst. One particularly interesting direction would be experimenting with
different types of functions in our signal and noise transient models (e.g. shapelets [39]), which
might be more suited for certain signals or noise transients.
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Appendix. Waveform reconstruction in all pulsars

In section 3, we only show the waveforms reconstructed in a single pulsar (see figures 2–4,
6, and 7), but it is also interesting to look at how the signal appears in different pulsars.
Figure A1 shows the simulated data and the reconstructed signal in all 20 pulsars of the
array for the injection with two sine-Gaussian wavelets (cf figure 2). While the amplitude
and waveform of the signal appearing in datastreams of different pulsars are significantly dif-
ferent, BayesHopperBurst consistently reconstructs the signal in each pulsar. This is not
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Figure A1. Reconstruction of a signal consisting of two sine-Gaussian wavelets in all
20 pulsars in the array. This result is from the same dataset for which the reconstruction
in pulsar #3 is shown in figure 2. For more details see the caption of figure 2.
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surprising given that we employ a coherent signal model which uses information from all the
pulsars to constrain the waveform of the signal.
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Bence Bécsy https://orcid.org/0000-0003-0909-5563
Neil J Cornish https://orcid.org/0000-0002-7435-0869

References

[1] Burke-Spolaor S et al 2019 The astrophysics of nanohertz gravitational waves Astron. Astrophys.
Rev. 27 5

[2] Alam M F et al 2020 The NANOGrav 12.5-year data set: observations and narrowband timing of
47 millisecond pulsars Astrophys. J 252 4

[3] Desvignes G et al 2016 High-precision timing of 42 millisecond pulsars with the European Pulsar
Timing Array Mon. Not. R. Astron. Soc. 458 3341–80

[4] Manchester R N et al 2013 The Parkes Pulsar Timing Array project Publ. Astron. Soc. Aust. 30 e017
[5] Joshi B C et al 2018 Precision pulsar timing with the ORT and the GMRT and its applications in

pulsar astrophysics J. Astrophys. Astron. 39 51
[6] Lee K J 2016 Prospects of gravitational wave detection using pulsar timing array for Chinese future

telescopes Frontiers in Radio Astronomy and FAST Early Sciences Symp. 2015 (Astronomical
Society of the Pacific Conference Series vol 502) ed L Qain and D Li p 19

[7] Bailes M et al 2016 MeerTime—the MeerKAT key science program on pulsar timing MeerKAT
Science: On the Pathway to the SKA p 11

[8] Hobbs G et al 2010 The International Pulsar Timing Array project: using pulsars as a gravitational
wave detector Class. Quantum Grav. 27 084013

[9] Verbiest J P W et al 2016 The International Pulsar Timing Array: first data release Mon. Not. R.
Astron. Soc. 458 1267–88

[10] Perera B B P et al 2019 The International Pulsar Timing Array: second data release Mon. Not. R.
Astron. Soc. 490 4666–87

[11] Arzoumanian Z et al 2020 The NANOGrav 12.5-year data set: search for an isotropic stochastic
gravitational-wave background Astrophys. 905 L34

[12] Aggarwal K et al 2019 The NANOGrav 11 yr data set: limits on gravitational waves from individual
supermassive black hole binaries Astrophys. J. 880 116
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