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Abstract

Over the past few decades, the measurement precision of some pulsar timing experiments has advanced from
~10 us to ~10 ns, revealing many subtle phenomena. Such high precision demands both careful data handling and
sophisticated timing models to avoid systematic error. To achieve these goals, we present PINT (PINT Is Not
TEMPO3), a high-precision Python pulsar timing data analysis package, which is hosted on GitHub and available
on the Python Package Index (PyPI) as pint-pulsar. PINT is well tested, validated, object oriented, and
modular, enabling interactive data analysis and providing an extensible and flexible development platform for
timing applications. It utilizes well-debugged public Python packages (e.g., the NUMPY and ASTROPY libraries)
and modern software development schemes (e.g., version control and efficient development with git and GitHub)
and a continually expanding test suite for improved reliability, accuracy, and reproducibility. PINT is developed
and implemented without referring to, copying, or transcribing the code from other traditional pulsar timing
software packages (e.g., TEMPO/TEMPO2) and therefore provides a robust tool for cross-checking timing analyses
and simulating pulse arrival times. In this paper, we describe the design, use, and validation of PINT, and we
compare timing results between it and TEMPO and TEMPO?2.

Unified Astronomy Thesaurus concepts: Millisecond pulsars (1062); Radio pulsars (1353); Pulsar timing method

(1305); Pulsars (1306); Astronomy software (1855)

1. Introduction

Since their discovery in 1967 (Hewish et al. 1968), the study
of pulsars has yielded major advances in a wide range of
physics and astrophysical problems. Pulsars are natural
laboratories for studying extreme magnetic fields (Gavriil
et al. 2008; Makishima 2016), equations-of-state of dense
matter (Demorest et al. 2010; Antoniadis et al. 2013; Cromartie
et al. 2020), and theories of gravity (Damour & Taylor 1991;
Kramer et al. 2006; Archibald et al. 2018). The most powerful
aspect of pulsars is the regularity of their pulses, enabling their
use as clocks spread throughout our galaxy. Pulsar timing is the
technique by which observed pulse arrival times are compared
to predicted arrival times based on a physical model of the
pulsar signal and its propagation to the observatory. This
technique can be used to study both the pulsar itself as well as
the effects of binary companions (where applicable), the

8 Currently employed at Microsoft Corporation.
 NREIP Intern at U.S. Naval Research Laboratory.

interstellar medium (Jones et al. 2017; Donner et al. 2019), and
Galactic dynamics (Kiel & Hurley 2009; Verbunt et al. 2017).

Millisecond pulsars (MSPs; Backer et al. 1982) have under-
gone a period of accretion from a companion star, the end result
of which is often a very stable, fast-spinning pulsar (spin period
<10ms). Via the long-term observations of high-quality MSPs,
whose pulse arrival times can be measured to better than 1 us,
the pulsar timing technique can achieve the precision required
for detecting ultra-low-frequency (~10"° Hz) gravitational
waves (Foster & Backer 1990; Taylor et al. 2016), whose
realistic astrophysical amplitudes in pulsar timing residuals
will be of the order of 10ns. The North American Nanohertz
Observatory for Gravitational Waves (NANOGrav; McLaugh-
lin 2013; Ransom et al. 2019) is an ongoing effort to detect
nanohertz frequency gravitational waves by monitoring a
set of well-timed MSPs using the 305 m erham E. Gordon
Telescope (Arecibo) of Arecibo Observatory and the 100 m
Robert C. Byrd Green Bank Telescope (GBT) of the Green

20 hittp:/ /outreach.naic.edu /ao/scientist-user-portal /
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Bank Observatory.?' The international effort of pulsar timing
for gravitational waves is under the International Pulsar Timing
Array (IPTA; Manchester & IPTA 2013) consortium, compris-
ing NANOGrav, the European Pulsar Timing Array (EPTA;
Kramer & Champion 2013), the Parkes Pulsar Timing
Array (PPTA; Manchester et al. 2013), and recent efforts
started in South Africa (MeerTime; Bailes et al. 2020), India
(InPTA; Joshi et al. 2018), and China (CPTA; Lee 2016).

Pulsar timing for gravitational waves requires a good
understanding of many astrophysical processes that impact
the pulse times of arrival (TOAs), including the pulsar system
dynamics (e.g., pulsar spin, pulsar system motion, and proper
motion, etc.), solar system dynamics (e.g., motions of Earth and
planets), and the effects of the interstellar medium (e.g.,
dispersion and scintillation). Timing is done for each pulsar
by creating a mathematical model for these effects, and then
refining this model via fitting to the observed TOAs. For
decades, the vast majority of radio pulsar timing has been
accomplished using one of two major software packages:
TEMPO>> and TEMP0O2>* (Hobbs et al. 2006).

A robust future detection of gravitational waves using pulsar
timing will require results to be verified with independent
software packages. However, the underlying TEMPO2 code
largely consists of TEMPO Fortran-based algorithms, updated to
use C. Due to the similarities in these two codes, it is necessary
to develop an independent pulsar timing package for cross-
checking. The growth of computational power has allowed for
high-level scripting languages, such as Python, to become
more popular in astronomical applications. Python has many
advantages including brevity, modularity, excellent documen-
tation, robust testing, ease of code reuse, and a large
community developing powerful open-source libraries for a
wide range of applications. These features considerably
improve the speed of development and the code’s extensibility,
allowing us to fix many of the limitations of traditional timing
software. For instance, in order to add an external high-
precision orbit integrator for the pulsar triple system (Ransom
et al. 2014) or use a spline-based model to handle timing noise
(Dib et al. 2009), it was necessary to circumvent large parts of
TEMPO/TEMPO2 or abandon them entirely, while PINT is
designed to permit the use of only the relevant parts or easy
addition of user-written components. In addition, modern
version control and distributed development environments like
git and GitHub** have facilitated community contributions
that have greatly increased the pace of development and sped
the adoption of these packages by the astronomical community.
Motivated by the reasons mentioned above, a new pulsar
timing software project, PINT, was launched in 2013 by the
NANOGrav collaboration.

The PINT project”” has developed a TEMPO/TEMPO2-
independent Python toolkit—the PINT software package—
for high-precision pulsar timing analysis to precisions of
~1ns,”® and including known physical effects with timing

21 https://greenbankobservatory.org /telescopes/gbt/
http: / /tempo.sourceforge.net
2 hitps: //bitbucket.org /psrsoft/tempo2
24 https: / /git-scm.com/, https://github.com/
25 Available at https: //github.com/nanograv/PINT and https://pypi.org/
project/pint-pulsar/.
For most machines on which PINT will be run, that ~1 ns level of precision

is set by the hardware-supported 80 bit floating-point numbers used for many
of the time-based calculations.
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amplitudes of ~1ns or greater. The PINT software package
follows modern software development schemes and practices:
object-oriented design, modularized classes and components, a
documented programming interface, and an automated test
suite that is run after every change. A major feature of the PINT
package is the use of well-debugged libraries such as NUMPY>’
(Harris et al. 2020), SCIPY? (Virtanen et al. 2020), and
ASTROPY? (Astropy Collaboration et al. 2013; The Astropy
Collaboration et al. 2018). Because of their large active user
and developer communities, such packages are improved
frequently and tested thoroughly. Using such packages
improves development and maintenance efficiency. Conver-
sely, a key goal of PINT is that it be usable as a library itself, so
key functions from PINT can be used in other pulsar-timing-
related applications (for example, correcting light travel time
delays in high-energy photon arrival times).

In this paper, we present an overview of the PINT pulsar
timing analysis package—the full software documentation is
available online.”® In Section 2, we give a brief background of
pulsar timing methodology. We then describe the PINT
software package, including its setup, code architecture, and
key modules, in Section 3. In Section 4, we present one
example of a PINT analysis and compare it with TEMPO/
TEMPO?2. The tests and maintenance procedures are discussed
in Section 5. We also introduce common use cases and their
command-line scripts in Section 6.

2. Overview of Pulsar Timing

Pulsar timing refers to the process of unambiguously, and to
high precision, accounting for pulse TOAs at a telescope using
arelatively simple timing model. Here we give a brief overview
of pulsar timing including (i) obtaining TOAs, (ii) modeling the
pulse emission and propagation time, (iii) comparing the model
to observed data, and (iv) improving the model.

2.1. Measuring TOAs

The key measurement for pulsar timing, a TOA, notionally
measures the time when a fiducial point of a pulsar pulse profile
reaches an observer. Normally, these measurements are
actually made on the coherent average of many pulses, the
folded pulse profile, both to increase the signal-to-noise ratio
and to mitigate the effects of pulse-to-pulse variations (Lorimer
& Kramer 2004; Cordes & Downs 1985). This coherent
averaging process, also called “folding,” sums the radio power
as a function of the pulse phase (see Section 2.2.1 for the
definition of “pulse phase”); this is computed from the existing
pulsar timing model. In the case of high-energy observations,
such as from X-ray or ~-ray observatories, TOAs are not
necessarily the focus; individual photon arrival times have their
pulse phases computed and can be binned into a pulse profile
(Ray et al. 2011) or treated individually (Pletsch &
Clark 2015).

Given an observation of a pulsar, one generally compares the
folded pulse profile to a known template describing the pulsar’s
(usually stable) pulse profile. A template-matching algorithm
(e.g., Taylor 1992) permits a very accurate computation of a
shift, expressed in units of rotational phase from —0.5 to 0.5, of

2 http://www.numpy.org/

28 https: //www.scipy.org/

2 http: / /www.astropy.org/

30 https: //nanograv-pint.readthedocs.io /en /latest/
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the observed pulse compared to the template. Phase zero
denotes perfect alignment with the template. This computed
phase shift is then used to construct a TOA. This begins with
the phase-zero moment (according to the ephemeris used for
folding) nearest the middle of the observation span and adjusts
that time by the measured phase shift multiplied by the pulse
period. The TOA is thus the idealized arrival time of the phase-
zero part of the template near the middle of the observation
span. The TOA value itself is generally represented as a
Modified Julian Day (MJD) in the Coordinated Universal Time
(UTC) time system,”" as recorded by an observatory clock. The
TOAs require certain additional data, including the observatory
where the TOA was recorded, an estimate for the error in the
determination of the TOA, and the radio frequency at which it
was recorded. Further information can also be recorded, such as
the pulsar name, the signal-to-noise ratio of the measurement,
the instrument with which it was recorded, etc.

PINT does not provide functionality for measuring TOAs;
that is left for codes specific to particular types of data.
Nevertheless, PINT can be used to compute the pulse phases for
data folding or other calculations (e.g., photon phases). For
instance, PINT has a module to generate and interpolate the
coefficients of polynomial approximations of the pulse phase
(i.e., polycos).

2.2. Modeling TOAs

In order to understand the physics behind the TOAs, we
compare them to a timing model, which is a mathematical
description of (i) the rotation of the pulsar and (ii) the propagation
of its pulses to the observer. The pulsar rotation is mathematically
represented using the rotational phase. The propagation process is
modeled in terms of time delays related to the light travel time
from the pulsar to the observer. In the following subsections, we
describe these two parts in more detail.

2.2.1. Rotational Phase

The rotational phase, often referred to as simply phase,
describes a pulsar’s rotational status in a reference frame that is
comoving with the pulsar. One complete rotation is represented
by an increase in phase of 1. As the pulsar rotates, the phase
naturally increases and is often written as N(7), the cumulative
phase number. In cases where the absolute pulse number is not
needed or not available, the integer portion may be ignored,
and a wrapping fractional phase ranging from 0 to 1 (or —0.5 to
0.5) is used. There is some arbitrariness in the definition of
phase zero; it is usually defined as the zero in the phase of an
idealized pulse-profile template; this is frequently chosen to be
either the highest point or center of mass of the profile for
pulsars whose profile consists of only a single component.

Because pulsars do not rotate at constant pulse frequencies, a
Taylor expansion typically describes the rotational phase as

1
N @) = No+ ot = 1o) + 20t = t0)?
1
+ gu'()(t — 1)’ +..., (D)
where N is the phase/pulse number at a reference epoch 7o, 14

is the pulse frequency (i.e., the first time derivative of the
phase) at 7y, and 1/, and v; are the first and second derivatives

31 This has known problems; see Section 3.1.
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of the pulse frequency (e.g., Lorimer & Kramer 2004). More
complicated rotational models are possible, for instance, those
with glitches (a sudden change in pulse frequency; Manchester
& Taylor 1974) and glitch relaxation.

If we choose one pulse’s arrival time as our reference time #,, our
model parameters are known exactly, and without noise, then the
phase at other pulse arrival times N(ttos) Will be an integer value.

Practically, in order to evaluate Equation (1), we must transform
our observed TOAs into the pulsar comoving frame. In the next
Section 2.2.2, these transformations, including timescale conver-
sions and propagation time modeling, are discussed.

2.2.2. Pulse Delays

The delay portion of the timing model characterizes the total
pulse propagation time, determined by a variety of physical
processes between the pulsar and the observer. Given the TOA
at the observatory, we can compute the pulse emission time via
the total delay,

fe = lobs — A, (2)

where f, is the pulse emission time, #. is the pulse observation
time, and A represents the total delay, from a wide variety of
causes. The total delay

A =Ap + Aro + Apo + Ase + Asp
+ Afd + Abinary"’~--a (3)

where we have listed the most common delays in the timing
process (e.g., Lorimer & Kramer 2004). The first term Ap
represents the delay caused by the “hydrostatic” atmospheric
effects of topocentric observations, modeled as the product of
the delay at zenith (Davis et al. 1985) and an azimuthally
symmetric function that maps the delay onto any other position
in the sky (Niell 1996). The next three terms, Are, Age, and
Age, are the solar system geometric or Rgmer delay, Einstein
delay (comprised of gravitational redshift and time dilation;
Taylor & Weisberg 1989), and solar system Shapiro delay (due
to the gravitational perturbation of the light path; Shapiro 1964).
Although the Shapiro delay term formally includes contribu-
tions from all solar system bodies, we normally only include
those from the Sun and major planets (i.e., time delays bigger
than 1 ns; Hobbs et al. 2006). The Agg term gives the light
travel time from the pulsar system to the solar system. Its initial
value, which is a very large quantity, can be absorbed in the
phase calculation because a phase is computed relative to a
reference epoch (see below). The time-dependent part of this
delay due to relative motion is separated into delays that vary
due to the transverse and radial motion of the pulsar. The
former is modeled as the proper motions via the solar system
Rgmer delay; however, the radial component effect is generally
hard to distinguish from the pulse period derivative. The Agy
term includes a variety of radio-frequency-dependent time
delays, such as the dispersion delay caused by the ionized
interstellar and interplanetary media. The last term, Apinary,
includes the pulsar system’s Rgmer, Einstein,*> and Shapiro

32 This “Einstein delay” is not actually a delay; instead, it is the cumulative
effect of gravitational and special-relativistic time dilation on the pulsar. In
normal pulsar work, the units of time for the pulsar are rescaled so that the
mean time dilation is zero and the “Einstein delay” oscillates around zero.
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delays. The pulsar Rgmer delay is controlled by the position of
the pulsar at the moment of pulse emission, rather than the
moment of pulse arrival at the solar system Barycenter. Thus,
Apinary needs to be evaluated at a time that needs Ayp,ry itself
as input; older timing models incorporate an approximate
solution to this inversion problem in their formulas (Damour &
Deruelle 1986), while more modern ones solve it directly by
root finding (Ransom et al. 2014). These delay terms’ typical
range of values are summarized in Hobbs et al.’s (2006)
Table 2.

Given the transformation from pulse observed time s to
pulse emission time (ignoring a constant pulsar system Einstein
delay, see footnote 29)

1
N (tobs) = No + vo(tops — A — 19) + EVO(tobs — A — 1)

1
+ EVNO(tobs - A - t())3 =+ ...
“4)

The computed phases are described relative to a reference
phase N, at the reference time #,. In practice, Ny is defined by
specifying a moment at which the phase is zero (N = 0). This
moment is specified in the reference frame by a reference MID,
observatory site, and radio frequency (often denoted by the
parameters TZRMJD, TZRSITE, and TZRFRQ), as was done
in TEMPO/TEMPO2. TZRMJD is treated as a hypothetical arrival
time measurement, in the timescale of the observatory clock.
To transform that time to other timescales, standard clock
corrections need to be applied as per any other TOA (see
Section 3.1). The resulting phases are used in the process of
refining the timing model. Currently, if TZRMJD is not
specified, the phase of the first TOA in the TOAs table is
defined to be zero.

2.3. Comparing Model with the Data

In order to improve the accuracy of a timing model, the
timing residuals, defined as the differences between the
observed TOAs and the TOAs predicted by the given timing
model, are introduced:

Rlime = fobs — Imodel- (5)

Because of the periodic nature of the pulsar’s signal, the
residuals thus obtained are known only modulo one rotation of
the pulsar—that is, a priori, we do not know the integer number
of rotations between two pulse arrival time measurements. In
an established pulsar timing program, as described in
Section 2.2.1, our estimated model is generally accurate
enough that the predicted TOAs will differ from the observed
TOAs by less than one pulse period. That is, a sufficiently good
model allows us to infer the exact number of rotations between
any two observations. When the model is insufficient, perhaps
because we are observing a new pulsar, or there has been a long
gap in observations, or a glitch has occurred, the uncertain
number of rotations between observations can make the task of
finding or improving a timing solution a highly discontinuous
and difficult optimization problem. Traditionally, this has been
addressed by hand, with users introducing turn-number
guidance into the TOA data files, iteratively working with
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larger and larger subsets of observations until a satisfactory
“phase-connected” solution has been found. Automated tools
for phase connection have been implemented (Freire &
Ridolfi 2018). Alternatively, if precise rotation numbers have
been inferred for the TOAs, these can be coded into the input
files, reducing or removing the discontinuous nature of the
fitting problem.

Multiplying the time residual by the pulse frequency, we can
write the residuals in terms of phase number:

Rphase = N (tobs) — Ni(fobs), (6)

where N; is the inferred integer phase number at ?,s. In terms of
the phase residual, the time residual can be also written as

Riime = Rphase/’/ (Zobs), @)

where 1(t,ps) is the apparent pulsar pulse frequency at ., in the
frame of the observer. Traditionally, vy, the pulsar pulse
frequency at reference time #, has been used for this scaling,
and for many pulsars, the error is negligible, but PINT
implements this more correct time residual calculation. From
the residuals, the current timing model can be updated by using
a variety of fitting methods. Because of the issue of phase
connection, pulsar timing is generally carried out in an iterative
way: an approximate model is successively updated as new
data becomes available or as more complex models are applied.
In each iteration, the previous postfit timing model is treated as
the input model and gets updated by tuning the parameter
values or using new models (Lorimer & Kramer 2004).

For traditional gravitational-wave detection projects, the
residuals generated by a good deterministic timing model are
the starting point of analyses (Detweiler 1979). Hellings &
Downs (1983) describe the contribution of an isotropic
gravitational-wave background on correlations in the timing
residuals from an array of well-timed pulsars, that is, a Pulsar
Timing Array (PTA; Sazhin 1978). A main objective for the
PINT package is to provide high-quality timing and software
tools for this type of analysis. Currently, PINT can be used
by NANOGrav’s gravitational-wave analysis package, the
Enhanced Numerical Toolbox Enabling a Robust PulsaR
Inference SuitE (ENTERPRISE).™ In addition, PINT provides
analytical derivatives of the phase with respect to most timing
parameters and the capability to use numerical derivatives (i.e.,
finite differences) for all timing parameters (see Section 2.2).
Many gravitational-wave analyses (for example, van Haasteren
et al. 2009) are able to use the derivatives of the residuals with
respect to the timing model parameters as a more efficient
proxy for the full timing model that permits analytical
marginalization.

3. PINT

PINT is a Python library and a set of executable scripts,
compatible with Python 3.6 or greater.”* In this section, we
introduce the PINT software package version 0.8.0 and provide
code examples. The operational model of PINT is illustrated in
Figure 1. In the following subsections, the fundamental
assumptions, including the coordinate definitions and the

3 https://github.com/nanograv /enterprise

34 Support for Python 2.7 was dropped in 2020, in conjunction with many
other astronomical Python packages (see http://python3statement.org).
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Figure 1. PINT operational model. This is a rough model as to how PINT is designed and implemented as well as how it is used for timing a pulsar. Lines without
arrows indicate that the object in question contains the data; arrows indicate that results computed in one object are passed to the other. The TOAs and timing models
are kept as independent as possible and only interact through other parts of PINT functionality, such as creating residuals and fitting models to data.

treatment of time, are discussed first. Code architecture details
and the basic application programming interface (API) of the
major modules are presented afterward.

3.1. PINT Coordinates and Time

As discussed in Section 2.2.1, the description of the pulsar
signal is relatively simple in a nearly inertial frame, such as that
of the SSB. As with most other timing packages, PINT uses the
SSB as its reference frame for pulsar timing models. Given the
design of PINT, if other reference frames are required, such
as that of the pulsar, they can be added in a relatively
straightforward manner.

NASA’s Jet Propulsion Laboratory (JPL) has adopted the
International Celestial Reference System (ICRS) J2000 refer-
ence frame as the base coordinate system for all of their solar
system ephemeris calculations (Folkner et al. 2014). Therefore,
because PINT uses the JPL ephemerides, all internal PINT
calculations are performed in this coordinate system. A pulsar’s
position and velocity are generally specified by astrometric
parameters (e.g., R.A., decl., and proper motions in the ICRS
frame) as part of a timing model. The observatories’ positions
and velocities are tabulated by the PINT observatory
module, which is discussed in Section 3.3.2. Coordinate
transformations are performed using ASTROPY routines whose
algorithms are provided via the Essential Routines for
Fundamental Astronomy package (ERFA), a rebranding of the
Standards Of Fundamental Astronomy (SOFA) library™
Astropy Collaboration et al. (2013).

PINT assumes the TOAs it reads to be MJD values in the
timescale of the observatory where they were recorded (the
observatory timescales are handled in the observatory
module; see Section 3.3.2), although PINT can also accept

» http: / /www.iausofa.org/

TOAs in other “special” reference frames, such as those at the
SSB or at the geocenter. To store these MJDs at the required
numerical precision of ~1 ns, PINT uses the astropy.time.
Time object,’® where two 64 bit floats represent the integer and
fractional parts of each MJD. Because there is no standard way
of representing UTC times on leap days as normal MJDs,”’
PINT follows TEMPO and TEMPO?2 in defining a custom time
format called pulsar_mjd, in which the integer part is the
normal integer MJD and the fractional part is the seconds of the
day divided by 86,400. This means that MJDs “tick” at a
constant rate, but there is no representation for a time during a
leap second and, therefore, no way to represent a TOA during
that time. This is not normally an issue as leap seconds are rare.
One can usually just make the reference time for the TOA
a second earlier or later so it does not occur during a leap
second. In order to convert TOAs to Barycentric Dynamical
Time (TDB), a sequence of clock corrections has to be applied
to the TOAs. The raw TOAs are typically referenced to an
observatory clock, often a GPS-disciplined rubidium clock or
hydrogen maser. This timescale is denoted as UTC(obs),
where “obs” is the name of the observatory. PINT applies
the usually known local clock corrections to convert UTC(obs)
to UTC(GPS), a timescale maintained by the U.S. Naval
Observatory (USNO). Those corrections use either TEMPO or

36 http://docs.astropy.org /en/stable/time /

37 MIDs with fractional days are commonly used for UTC times in many

applications; however, there is no unique way to assign MJDs to times during
days with leap seconds. Two conventions are in use: the fractional part can be
seconds divided by 86,400 (in which case there is no way to represent a time
during a leap second), or the fractional part can be seconds divided by 86,401
(in which case MJD advances at a different rate during days with leap seconds).
In addition, for two MJDs, the difference MJD2 — MJD1 does not correctly
give the time interval between two times because of possible leap seconds
between MJD1 and MJD2, so care must be taken when computing time
intervals.


http://www.iausofa.org/
http://docs.astropy.org/en/stable/time/
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Note: In this version, TT (BIPM)
correction is performed by PINT.

UTC (obs)

UTC (GPS) > uTtC

TAl

\ 4

TT(TAI/BIPM) > TDB

Corrected by PINT

Corrected by Astropy

Figure 2. PINT converts TOAs from the observatory local time UTC(obs) to TDB following the steps illustrated. PINT handles the conversion from UTC(obs) to UTC
(GPS) and the TT(BIPM) correction. The other parts of the clock corrections are performed by ASTROPY.

TEMPO2 format clock files, which are obtained from observa-
tories by various means and must be kept up to date. By
default, PINT uses the set of TEMPO-format clock files
distributed with PINT in src/pint/datafiles. If needed,
PINT is also able to read the clock correction files from TEMPO/
TEMPO2 clock directories. A further correction can be applied
to convert UTC(GPS) to the standard UTC, maintained by the
International Bureau of Weights and Measurements (BIPM),
using the TEMPO2-format gps2utc.clk file (which must
also be kept up-to-date) in pint/datafiles. Those correc-
tions are derived from BIPM Circular T.*® Whether this
correction is applied can be controlled via the observatory
API, which is discussed in Section 3.3.2.

UTC is converted to International Atomic Time (TAI; using
ASTROPY) by adding an integer number of leap seconds and
then to Terrestrial Time (TT, also known as Terrestrial
Dynamical Time, or TDT), which ticks at the same rate as
TAI and UTC but, for reasons of continuity, has an offset. A
TT day has a duration of 86,400 s on the geoid and is the
independent argument of apparent geocentric ephemerides. The
most common realization of TT is TT(TAI), which is defined as
TT(TAD=TAI + 32.184s. However, PINT can also use
TT(BIPM), which is a more accurate realization of TT
published by the BIPM. In PINT, this clock correction is read
from the TEMPO2-style clock file pint/datafiles/
tai2tt_bipm2015.clk (or an alternative file based on
the approximately annual publication of the BIPM timescales).
Whether this correction is enabled is controlled by the
include_bipm argument to pint.observatory.get_
observatory (), and if it is, the version of TT(BIPM) can
be selected by the bipm_version argument.

Finally, times are converted from TT to a barycentric time.
There are two such time systems in common use. Traditionally,
pulsar timing has been done using TDB, which is the
independent variable of the JPL planetary ephemerides
(Standish 1998). The alternative is Barycentric Coordinate
Time (TCB), which is the preferred timescale according to the
International Astronomical Union (IAU). TCB is a relativistic
coordinate time and the modern definition of TDB is a linear
scaling of TCB (IAU Resolution 3 of 2006°%). The tick rates of
the two differ by about a part in 10%, so the value of model
parameters that have a time component in the unit are different
depending on the choice of barycentric timescale. Currently,
TEMPO and PINT only support TDB, while TEMPO2 uses TCB
as its default but allows the choice of TDB for compatibility. In
the future, PINT will be extended to support TCB.

3 hitps: //www.bipm.org/en/bipm-services /timescales /time-ftp/Circular-
T.html

3 https: //www.iau.org/administration /resolutions /ga2006 /

In PINT, the default conversion from TT to TDB is handled
by ASTROPY, which uses the SOFA library to perform the
conversion. The difference TDB-TT is quasi-periodic, domi-
nated by an annual term of amplitude 1.7 ms. The SOFA
routines implement an approximation to this function using
over 800 terms from Fairhead & Bretagnon (1990) and include
a location-dependent correction. PINT also provides the
infrastructure to incorporate other types of TT-TDB
corrections (e.g., numerical the TT-TDB difference provided
by JPL ephemerides or the IF99 method; see Irwin &
Fukushima 1999). The complete PINT clock correction chain
is illustrated in Figure 2.

Several of the clock corrections are based on published or
measured data provided by observatories or international
organizations. Section 3.3.3 describes the scheme PINT uses
for reading and updating these external data sets.

Note that clock corrections as described here are independent
of corrections for light travel time: although the times at the end
of this process are in TDB, they have not been corrected for
light travel time across the solar system and are therefore not
what pulsar astronomers conventionally call “barycentered.”
That process happens later because the correction depends on
astrometric parameters from the timing model and a solar
system ephemeris, not just the TOAs themselves.

3.2. PINT Code Architecture

PINT is designed to be highly modular. According to the
pulsar timing procedures introduced in Section 2, PINT
organizes its code in four major independent modules:
pint.toa, pint.models, pint.residuals, and
pint.fitter.

The pint.toa module provides the container classes used
to store and manipulate TOAs and their corresponding
metadata, while pint.models contains the classes that
implement the various timing models to predict TOAs. The
pint.fitter module provides classes that vary timing model
parameters to optimally fit the TOAs. Typically, such a
comparison between the TOAs and timing model occurs
through the use of the pint.residuals module.

Each of these modules provides public interface classes for
common usages. The classes TOAs, TimingModel, and
Residuals are used to interface with the modules pint.
toa, pint.models, and pint.residuals, respectively.
These interface classes can be initialized independently,
allowing one to analyze details of a pulsar’s timing model
without having TOAs from the pulsar. This flexibility is one of
the key innovations of the PINT package. The interface to the
pint.fitter module depends on the chosen fitting method
(e.g., the WLSFitter class for a weighted least-squares fit


https://www.bipm.org/en/bipm-services/timescales/time-ftp/Circular-T.html
https://www.bipm.org/en/bipm-services/timescales/time-ftp/Circular-T.html
https://www.iau.org/administration/resolutions/ga2006/
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Table 1
PINT Common Modules

Module Name Provides Reference Section
toa TOA® container and API 2.1
observatory Observatory’s position, velocity, and clock corrections 332
models Timing model API and built-in model components 22
residual Residual container and API 35
fitter Fitter API and built-in fitting algorithms 3.6
pintk PINT Graphical user interface 6
scripts Commonly used command-line scripts 6

Note.

4 Time of arrival.

versus the GLSFitter class for generalized least squares), but
all fitter classes require instances of both TOAs and
TimingModel, which are compared internally using Resi-
duals. Table 1 lists the frequently used modules in PINT.

One of the most common uses of PINT is to mirror the
standard TEMPO functionality of updating existing timing
models using newly observed data. All four modules must be
used together in order to achieve this functionality. The code
example in Figure 3 demonstrates how to use PINT as a
substitute for TEMPO/TEMPO2. In this example, the four
primary PINT classes or class types (TOAs, TimingModel,
resids, and the fitting classes in pint.fitter) work
together following the operation model in Figure 1.

In the following sections, these four key modules and APIs
will be discussed in detail.

3.3. TOA Module

As introduced above, the pint.toa module provides the
container class (TOAs) and APIs for reading, processing,
storing, and interacting with TOAs. However, during TOA
processing, the pint.observatory module also plays an
essential role behind the scenes.

3.3.1. Handling TOAs

Typically, a user will read in and preprocess TOAs using
the convenience function toa.get_toas () as shown in the
code example in Figure 3 and discussed in Section 3.2. The
TOAs and associated metadata (e.g., observing frequencies,
TOA errors, observatories used, etc.) are typically read from a
set of text files known as .TIM files. Currently, toa.
get_toas () can read “Princeton,” “Parkes,” and “TEMPO2”
formatted TOAs.** All of the TOA information is stored in the
publicly accessible attribute TOAs.table, which is an
instance of an astropy.Table object, allowing PINT to
take advantage of the latter’s high-level table access and
manipulation capabilities. For example, table columns and
associations can be easily defined or modified, and subsets of
TOAs can easily be selected or deselected. Figure 4 provides
examples of using the TOA . table object.

The toa.get_toas () function processes the raw TOAs
upon reading using three TOAs class methods: apply_
clock_corrections (), compute_TDBs (), and com-
pute_posvels (). These methods transform the TOAs to the
TDB timescale and compute the solar system objects’ positions
and velocities in the ICRS J2000 coordinate system at those times.

4 hitp: //tempo.sourceforge.net/ref_man_sections/toa.txt

Because the coordinate and time transformations are highly
observatory dependent, these three TOAs class methods are
actually high-level wrappers of several detailed computations
provided in the observatory module, which is discussed in
Section 3.3.2. The toa.get_toas () method also allows the
user to control the version of external data (Section 3.3.3 discusses
the external data handling scheme) used in these wrapped
functions via the input arguments. Traditionally, this information
is stored in the timing model parameter (PAR) files, which
are processed by the pint.models module. To avoid the
inconvenience, PINT 0.8.0’s toa.get_toas () accepts the
TimingModel object, where the versions of external data
are saved, as an input argument and applies them to the TOAs.
The read-in and clock-corrected TOAs are stored in the TOAs.
table[Y'mjd’’] column as astropy.time.Time
objects.”’ The use of tables allows for flexible organization
and handling of TOAs, allowing users and developers the
ability to quickly and efficiently index and select TOAs. For
convenience, and with approximately the same ~1 ns preci-
sion, the TDB times in MJD format from compute_TDBs ()
are stored in the TOAs.table[ *‘tdbld’’] column as an
np . longdouble®” array, which can be directly used in most
NUMPY and SCIPY vector calculations. Some intermediary
results of the time transformations (e.g., TOAs in Terrestrial
Time) are saved in additional TOAs.table columns,
allowing the user to have easy access to these results if
needed. Observatories’ positions and velocities, using
ASTROPY quantities and units, in the ICRS J2000 frame are
computed by the compute_posvels () class method and
saved in the TOAs . table columns *‘ssb_obs_pos’’ and
‘Yssb_obs_vel, '’ respectively. The positions of the Sun
and major planets are also computed by compute_posvels
() to enable solar system Shapiro delay calculations. Table 2
lists the TOAs.table columns after calling the get_toas
() function. For efficiency, PINT can pickle43 the TOAs and

4! The astropy.time.Time object uses a pair of 64 bit floating-point
numbers to represent times (integer and fractional parts of the Julian Day
number) and, as a result, is capable of 20 ps precision. Unfortunately, few
mathematical operations can be used directly on these objects.

2 The type np. longdouble uses the underlying C implementation’s 1ong
double type. On most Intel machines, this is a hardware-supported 80 bit
floating point packed into larger blocks of memory. The Microsoft Visual C
runtime defines this type to have only 64 bits, and so PINT cannot run there.
Other machines may define 1ong double to be either software- or hardware-
supported quadruple precision or software-supported double—double precision
(for example Arm64, Power9, and Power7 architectures, respectively). In any
case, PINT will refuse to run if this data type cannot support nanosecond
precision on MJDs.

a3 Pickling is a process that serializes a Python object to a binary format that
can be efficiently written to a file. https://docs.python.org/3/library/
pickle.html.


http://tempo.sourceforge.net/ref_man_sections/toa.txt
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
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>>> from pint.models import get_model
>>> from pint.toa import get_TOAs

>>> from pint.residuals import Residuals
>>> import pint.fitter

>>> import astropy.units as u

Luo et al.

>>> # Initialize PINT TimingModel object using a TEMPO/TEMPO2 style parameter file

>>> m = get_model ("NGC6440E.par")

>>> # Initialize PINT TOAs object using a TEMPO/TEMPOZ2 style TOAs file

>>> t = get_TOAs("NGC6440E.tim")

>>> # Create the restiduals with a less accurate model

>>> rst = Residuals(t, m).time_resids
>>> # Print out the rms of the residuals.

>>> print ("RMS of pre-fit time residual is {}".format(rst.std().to(u.us)))
RMS of pre-fit time residual is 1099.12298526 us

>>> # Updating the model.

>>> # Initialize Fitter object with TimingModel object and TUAs object

>>> f = pint.fitter.WLSFitter(t, m)
>>> # Fit the data and update the model.
>>> chi2 = f.fit_toas()

>>> print("Post-fit Chi square is {}".format(chi2))

Post-fit Chi square is 59.5742964653

>>> print ("RMS of post-fit time residual is {}".format(f.resids.time_resids.std().to(u.us)))
RMS of post-fit time residual is 33.3342840421 us

>>> print (f.model.as_parfile())

PSR 1748-2021E

EPHEM DE421

UNITS TDB

RAJ 17:48:52.80034692 1 0.00000003756850254201
DECJ -20:21:29.38330660 1 0.00000912542586891696
PMRA 0.0

PMDEC 0.0

PX 0.0

POSEPOCH 53750.000000000000000

FO 61.485476554372500035 1 1.8086084392781505522e-11
F1 -1.1813316309089768527e-15 1 1.4418540386147890052e-18
PEPOCH 53750.000000000000000

TZRMJD 53801.386051182230000

TZRSITE 1

TZRFRQ 1949.609

PLANET_SHAPIRO N

NE_SW 0.0

SWM 0.0

DM 224.11379738507580495 1 0.034938980494130779386
DM1 0.0

Figure 3. Code example showing PINT being used like TEMPO to update an existing pulsar timing model using observed TOAs.

computed data for later use if the usepickle flag is enabled
in get_toas (). The performance difference between pick-
ling and non-pickling is discussed in Section 5.1.

3.3.2. Handling Observatories

The observatory module stores fundamental observatory
information and provides additional coordinate and time
transform functionality for both stationary and moving
observatories (i.e., satellites). The base class, Observatory,
provides the unified API for obtaining observatory positions
and velocities, computing the clock correction values and
calculating time transformations to TDB with the methods
posvel (), clock_corrections (), and get_TDBs (),
respectively. However, because these calculations may be
observatory specific, their implementations are in the various
Observatory subclasses. This scheme allows PINT to handle
TOAs from different observatories simultaneously and clearly.

There are currently two observatory subclasses,
TopoObs and SpecialLocation. The TopoObs class is
implemented for stationary, ground-based observatories, such as
most traditional radio telescopes (e.g., Arecibo Observatory and
Green Bank Observatory). Ground-based observatories follow
the standard procedure of coordinate transformation and clock
correction from the Earth corotating frame to the ICRS frame
(i.e., applying the clock corrections and coordinate transforma-
tions introduced in Section 3.1). Creating a TopoObs object
requires the observatory name, aliases (i.e., as often used on
TOA lines), and coordinates under the International Terrestrial
Reference Frame** (ITRF; Altamimi et al. 2011).

In contrast, the Speciallocation class is designed to
implement the observatories that are not in a fixed location
corotating with Earth, such as the imaginary solar system

a4 http:/ /itrf.ensg.ign.fr/
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>>> import pint.toa as toa

>>> tim = "NGC6440E.tim"

>>> t = toa.get_TOAs(tim)

INFO: Applying clock corrections (include_GPS = True, include_BIPM = True. [pint
.toal

INFO: Evaluating observatory clock corrections. [pint.observatory.topo_obs]
INFO: Applying GPS to UTC clock correction (“few nanoseconds) [pint.observatory.
topo_obs]

INFO: Applying TT(TAI) to TT(BIPM) clock correction (727 us) [pint.observatory.t
opo_obs]

INFO: Computing TDB columns. [pint.toal

INFO: Doing astropy mode TDB conversion [pint.observatory.observatory]

INFO: Computing positions and velocities of observatories and Earth (planets = F
alse), using DE421 ephemeris [pint.toal

WARNING: No ephemeris provided to TOAs object or compute_TDBs. Using DE421 [pint
.toal

Print out the summary

>>> t.print_summary ()

Number of TOAs: 62

Number of commands: 1

Number of observatories: 1 [’gbt’]
MJD span: 53478.286 to 54187.587
gbt TOAs (62):

Min error: 13.2 us
Max error: 118 us
Mean error: 26.9 us

Median error: 22.1 us
Error stddev: 15.6 us

Print out the toa table’s first 5 row.
>>> print(t.table[0:5])

index mjd A obs_sun_pos [3]
km
0 53478.2858714 ... 132300219.0054355 .. 28301415.35927446
1 53483.2767052 ... 125950526.54693596 .. 32709720.950028352
2 53489.4683898 ... 116811489.07975 .. 37847344.14583803
3 53679.8756459 ... -107617035.22822961 .. -40589908.43792468
4 53679.8756454 ... -107617036.21852377 .. -40589908.02736856

Check out the columns in the table

>>> t.table.columns

<TableColumns names=(’index’,’mjd’,’mjd_float’,’error’,’freq’,’obs’,’flags’,’tdb
>,’tdbld’, ’ssb_obs_pos’,’ssb_obs_vel’,’obs_sun_pos’)>

Check out the toas stored in the table
>>> t.table[0] ["mjd"]
<Time object: scale=’utc’ format=’pulsar_mjd’ value=53478.2858714>

Print out tdb time in longdouble format

>>> t.table["tdbld"] [0:5]

<Column name=’tdbld’ dtype=’floatl128’ length=5>
53478.286614308378386

53483.277448077169016

53489.469132675783513

53679.87638877491714

53679.87638821944874

Figure 4. Code example for TOA module.
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Table 2
Information Stored in the TOAs. table Object

Column Name Descriptions Data Type Unit
mjd TOA? at observatory in UTC astropy.time.Time MID
error TOA error np.float us
freq TOA observing frequency np.float MHz
obs Observatory name/code str None
flags Command flags dict None
tdb TOA in TDB® astropy.time.Time MID
tdbld TOA in TDB in long double format np.longdouble MID
ssb_obs_pos SSB® — Observatory position vector np.float km
ssb_obs_vel Observatory velocity (referenced to SSB) np.float kms™!
obs_Sun_pos Observatory — Sun center position vector np.float km

Notes.
4 Time of arrival.
b Barycentric dynamical time.
[~
Solar system barycenter.

barycenter (SSB) “observatory” or an Earth-centered “obser-
vatory” (i.e., the geocenter). Another use case for the
Speciallocation class is the implementation of space-
based observatories such as Fermi (Atwood et al. 2009) and
NICER (Gendreau et al. 2012), where orbital information or
other spacecraft flight data are required rather than ITRF
coordinates. Detailed and observatory-specific calculations are
provided by individual Observatory objects, whereas the
Speciallocation class implements only the high-level
APIs for these calculations.

In the current PINT version, many observatories, both real
and imaginary (like the geocenter and SSB), are predefined in
the observatory module. Most users will create an
observatory instance with the convenience function get_ob-
servatory (), which takes the observatory string name or
TEMPO-style observatory code as an input argument. The
special position /velocity or time transformation algorithms and
their required external data sets or versions can be selected with
optional arguments (e.g., the include_gps and the inclu-
de_bipm arguments).

3.3.3. Handling External Data

Performing time and coordinate transformation requires
external data such as JPL solar system ephemerides and
observatory clock correction files. Traditionally, TEMPO
provides copies of these data within the packages, and TEMPO
developers keep them up to date. However, the upstream data
are updated frequently, resulting in TEMPO developers
frequently updating their packages. Thus, their users must
reinstall their packages frequently, rather than simply updating
the data directly. ASTROPY provides PINT with an easier way to
keep these data up to date as many standard timing-related data
sets (including but not limited to Earth rotation data, leap
seconds, and JPL solar system ephemerides) are updated by
ASTROPY. For Earth-orientation parameters (i.e., IERS table A
and B*’) and solar system ephemerides, ASTROPY downloads
and caches them when requested. However, for ASTROPY
versions earlier than 3.2, it requests an upgrade on the package
itself to keep the leap seconds up to date instead of
downloading the newest version of leap seconds. Data not
currently handled by ASTROPY, such as observatory-specific

45 https: / /datacenter.iers.org /eop.php
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clock corrections, are updated by the PINT development team in
the traditional manner. Furthermore, there are plans for
automatic updates of many of these data sets in future PINT
releases.

3.4. Models Module

The PINT models module provides an API for implement-
ing and interacting with pulsar timing models. In this section,
the overall design of the models module is presented in the
beginning, and the public interface object, the TimingModel
class, is discussed after. The details of how to programmati-
cally implement a timing model are in the Appendix. Note that
this paper does not discuss the implementation of any specific
timing model. For these details, please see the online
documentation.*®

Following the philosophy of modularity, PINT implements
different physical effects separately as model components,
which are implemented independently in the Component
class and its subclasses. Results computed for a timing model
are produced by combining the values from the selected
components. The delays produced by each component are
simply added together, but for components whose value
depends on time—for example, the Romer delay depends on
the pulsar’s position in its orbit—the time at which each
component is evaluated depends on the delays of other
components. This requires the components to be computed in
a specific order; this order is enforced by PINT but can be
overridden by users if necessary (say for custom model
components).

A model component implementing a particular mathematical
model of a physical effect would be implemented in a subclass
of the base Component class; this base class is where the
common attributes and functionality of all model components
are implemented. The TimingModel class is designed to
manage the set of included components and provides the
overall interface for collecting and returning the results from
them, without requiring the calling code to know the details of
the specific model.

As described in Section 2.2, modeling TOAs includes two
fundamental calculations, total time delay (A in Equations (2)
and (3)), and total phase (Equation (1)). PINT therefore

6 hitps:/ /nanograv-pint.readthedocs.io /en /latest/api /pint.models.timing_
model.html
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Astrometry

RAJ, DECJ, PX,PMRA, PMDEC: models.Parameter

astrometry_delay(TOAs.table)
d_astrometry_delay_d_param(TOAs.table, param)

DelayComponent

delay_funcs_component:list

Dispersion

<J——__| DM: models.parameter

dispersion_delay(TOAs.table)
d_astrometry_delay_d_param(TOAs.table, param)

Binary

Component

PB, TO ... (binary parameters): models.parameter

TimingModel

params: list
categroy: str
deriv_funcs: dict

binarymodel_delay(TOAs.table)
d_binary_delay_d_xxxx(TOAs.table, param)

DelayComponents: list
“——\__‘ PhaseComponents: list

delay(TOAs.table)

add_param(Parameter)
remove_param(Parameter_name)

phase(TOAs.table)
design_matrix(TOAs.table)

print_par()

Spin_down

FO, F1 ... : models.parameter

PhaseComponent

phase_funcs_component: list

spindown_phase(TOAs.table, delay)
d_phase_d_F(TOAs.table, param, delay)
d_spindown_phase_d_delay(TOAs.table, delay)

phase_derivs_wrt_delay: list

L
|

Glitch

GLPH1, GLEP1, GLF1... : models.parameter

glitch_phase(TOAs.table, delay)
d_phase_d_param(TOAs.table, param,delay)
d_glitch_phase_d_delay(TOAs.table, delay)

Figure 5. This figure shows an example of how PINT implements a full timing model. Hollow arrows indicate inheritance, while solid arrows indicate containment.
Astrometry, Dispersion, and Binary classes inherit from the DelayComponent class. Spin_down and Glitch inherit from PhaseComponent. Both
DelayComponent and PhaseComponent inherit from the generic Component base class. A TimingModel instance manages all of the specific model
components needed to build the full model. Here, we only use DelayComponent and PhaseComponent, yet if other component types (e.g.,

NoiseComponent) are present, they follow the same relationship structure.

implements two explicit Component subclasses, Delay-
Component and PhaseComponent. The TimingModel
class provides two corresponding methods, .delay () and
.phase (), to compute the total delay and total phase by
adding the results from all the delay and phase components that
are included in the model.

PINT is not limited to these component types and is
completely extensible to other types. For example, PINT also
provides a noise model component type, NoiseComponent,
for handling timing noise models used in generalized least-
squares (GLS) fitting and Bayesian timing analyses (Ellis 2013;
van Haasteren 2013). Similarly, the TimingModel class also
includes the APIs to compute other useful quantities. For
instance, the TimingModel class is able to compute the
design matrix, a key feature needed by the fit ter module, via
the .designmatrix () method. In Figure 5, the layout of
the model and component class system is visually illustrated
using example model components.

As described in Section 3.2, a TimingModel object can be
initialized via the models.get_model () function with a
TEMPO,/TEMPO2-style .PAR file as input. Based on the input
PAR file, the models.get_model () function selects and
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sorts the required components, constructs the TimingModel
object, and parses the parameter values. More details about the
construction of TimingModel instances are discussed in
Appendix A.2. Since version 0.8, PINT has also provided a
wrapper function, models.get_model_and_toas (), that
creates the TimingModel object and TOAs object together
from the input .PAR and .TIM files, while applying relevant
information in the .PAR file to the new TOAs object (e.g., which
solar system ephemeris to use, for instance). Additionally, the
TimingModel object allows users to manipulate the
components interactively, beyond simply changing parameter
values. For example, one can change the order of the
components or disable individual components. This design
facilitates interactive pulsar timing data processing, which can
sometimes be difficult with compiled programs. A timing
model can be adjusted and examined interactively and
intermediate computational results can be accessed as needed.

The models module comes with commonly used timing-
model components and functionality. Table 3 lists the built-in
model components in PINT 0.8.0. For the most updated mode 1
module and built-in components information, please visit our
online documentation.
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Table 3
PINT Version 0.8.0 Built-in Timing Model Categories and Components
Model Category Category Description Component Name Reference
astrometry Solar system geometric effects AstrometryEquatorial 1
AstrometryEcliptic 2
solar_system_shapiro Solar system Shapiro delay SolarSystemShapiro 3
dispersion_model Interstellar media dispersion effects Dispersion 4
DMX 5
pulsar_system Pulsar system time delay BinaryELL1 6
BinaryELL1H 7
BinaryDD 8
BinaryDDK 9
BinaryBT 10
spindown Spindown phase Spindown 11
glitch Glitch phase Glitch 12
frequency_dependent Frequency evolution of pulsar profiles FDdelay 13
jump Jump phase offset JumpPhase 14
scale_toa_error Template fitting timing noise correction ScaleToaError 15
€corr_noise ECORR type noise model EcorrNoise 16
pl_red_noise Power-law red-noise-type noise model PLRedNoise 17
ifunc Interpolated timing noise IFunc 18
wave Sinusoidal timing noise decomposition Wave 19
solar_wind Dispersion due to the solar wind SolarWindDispersion 20
troposphere Delay due to the local atmosphere TroposphereDelay 21

Note. (1), (4), (11) Backer & Hellings (1986), (2), (5), (13), (15)-(17) The NANOGrav Collaboration et al. (2015), (3) Shapiro (1964), (6) Lange et al. (2001), (7)
Freire & Wex (2010), (8) Damour & Deruelle (1986), (9) Kopeikin (1995, 1996), (10) Blandford & Teukolsky (1976), (12), (14) Hobbs et al. (2006), (18) Deng et al.
(2012), (19) Hobbs et al. (2010), (20) Edwards et al. (2006), (21) Davis et al. (1985), Niell (1996), CRC Handbook (2004).

3.5. Residual Module

Residuals between the data (i.e., TOAs) and the timing
model are key to updating model parameters and assessing
the goodness of fit. The residuals module is designed
to compute the residuals using Equations (6) and (7).
The interface class, Residuals, instantiated by providing
TOAs and TimingModel instances, implements the
.calc_phase_resids () method and .calc_time_r-
esids () method to compute the phase residuals and time
residuals, respectively. For a better representation of the
difference between the timing model and the TOAs, the
residuals are by default weighted by the TOA uncertainty, but
this feature can be switched off in the class method argument.
In addition, if specific pulse numbers are provided, the
residuals can be calculated based on those, rather than using
the calculated nearest integer pulse. Together with the residual
calculation methods, a handful of convenience methods for
computing statistics of the residuals are provided (e.g., the x>
and reduced x? values).

3.6. Fitter Module

The updating of timing models is performed by the pint.
fitter module, which includes a general API base class
fitter.Fitter and a set of predefined fitter subclasses
implementing specific optimization algorithms. The general
API base class Fitter sets up the framework, and the fitter
subclasses implement the fitting algorithms under the
.fit_toas () class method. This setup allows the user to
implement a new fitting algorithm with minimum code
modifications (only overwriting the .fit_toas () method),
but using the same interface. Table 4 lists all of the built-in
fitters in PINT 0.8.0. PINT implements priors for parameters (see
Appendix A.1) that are used in the Markov Chain Monte Carlo
(MCMC) fitter (and which can be used also to effectively
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Table 4
PINT Implemented Fitting Algorithms
Fitter Name Algorithm
PowellFitter SCIPY Powell minimizing
WLSFitter Weighted least-squares fitting
GLSFitter Generalized least-squares fitting
MCMCFitter Markov Chain Monte Carlo optimization fitting
WidebandTOAFitter ~ TOAs and independent dispersion measurements joint
fitting®
Note.

4 The independent dispersion measurements are fitted with TOAs simulta-
neously using generalized least-squares fitting (Pennucci 2019; Alam et al.
2021b).

constrain the values of parameters). However, the other fitters
currently do not use priors or constraints, and no fitters can
currently fit for noise parameters. A common package used to
compute noise parameter values is enterprise.

As described in the code example in Figure 3, a fitter class
should be instantiated with TOAs and TimingModel objects.
The TimingModel object will be linked to the fitter.
model_init attribute, and an extra copy will be saved in the
fitter.model attribute in order to retain the initial timing
model. During fitting, the fitter.model attribute will be
updated, but the fitter.model_init stays the same. Under
this scheme, the original timing model can be easily reset using
the class method fitter.reset_model (). Residuals are
calculated and saved in the fitter.resids attribute, and a
copy of the initial residuals is saved to fitter.resids_
init using the same scheme.

One of the most important functionalities of the fitter API is
to alter the model parameter values. The Fitter base class
already provides a set of convenience functions for this
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Figure 6. Residuals generated by PINT for PSR J1600—3053 from the NANOGrav 11 yr data set. The top panel shows residuals before performing a generalized
least-squares fit based on the published TEMPO-based timing solution. The bottom panel shows the residuals after the fit using PINT. The rms of the residuals are nearly

identical.

purpose. For example, the . set_params () class method is
designed for changing parameter values, and the .free_
params () method (originally the .set_fitparams ()
method) can be used for selecting the parameters to be fitted.

As described above, the postfit results are returned via the
fitter.model attribute, and the fitter.resids attribute
will be updated with the postfit residuals. This newly fitted
timing model and residuals are then ready for the next iteration.

4. Comparison of PINT with TEMPO/TEMPO2

One way to validate PINT is to compare its results with those
from the existing high-precision pulsar timing software packages
(i.e., TEMPO version 13.101 and TEMPO2 version 2019.01.1). In
addition to validating PINT, such a comparison checks the
accuracy and precision limitations of the various software
packages. As of version 0.8.0, PINT is capable of analyzing the
TOAs from most pulsars, including the 45 pulsars from the
NANOGrav 11 yr data release (Arzoumanian et al. 2018). Here
we present the results of a PINT analysis of PSR J1600—3053
from the NANOGrav 11 yr data set, using the DD binary model,
including a detailed comparison between PINT and TEMPO results.
PSR J1600—3053 was chosen for this comparison because it has a
large number of TOAs (12433) with sub-microsecond timing
precision over a long time span (8 yr). This comparison will also
highlight some implementation differences between PINT and
TEMPO/TEMPO2. A full-scale PINT-TEMPO/TEMPO2 comparison
using all of the pulsars from NANOGrav’s 12.5 yr data is reported
in Alam et al. (2021a). The Jupyter notebook for this comparison
is included in the PINT examples and can be viewed from the PINT
online documentation.*’

4.1. Comparison Using PSR J1600—3053

We used the published NANOGrav 11 yr ephemeris (originally
produced using the TEMPO software package) as our initial timing

4 https: / /nanograv-pint.readthedocs.io/en/latest/examples-rendered /paper_
validation_example.html
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model, fitted to TOAs from the NANOGrav 11 yr data using the
PINT GLS fitter pint.fitter.GLSfitter.

The prefit residuals from PINT had a weighted rms (WRMS)
value of 0.944 yis. The fitting process reported a final y? value
of 12368.10 for 12,307 degrees of freedom, and the postfit
residuals had a WRMS of 0.944 us. Figure 6 shows the PINT
prefit and postfit residuals.

In the following subsections, the results of a detailed
comparison between PINT and TEMPO/TEMPO?2 are presented.

4.1.1. Comparison with TEMPO Results

The TEMPO-based fitting for the same data set returns a x>
value of 12,368.46 and the residuals have a WRMS of 0.944 us.
We directly compared both the prefit and postfit residuals
between these two packages. In Figure 7, the residual differences
between PINT and TEMPO are presented. Note that because we
dropped the constant part of the absolute phase in our calculation,
a constant offset in the residual differences has been ignored.

In the prefit residual differences, a distinct annual periodic
signature, with a peak amplitude of about 20ns, is present
throughout the whole data set. This discrepancy is due
primarily to different precession—nutation models used in PINT
and TEMPO. PINT uses ASTROPYs built-in precession—nutation
model (see the TAU 2000 resolution; McCarthy & Capitaine
2002), while TEMPO uses much older models, the IAU 1976
precession (Lieske et al. 1977) and IAU 1980 nutation
(Seidelmann 1982) models. The difference between these
models and their impact on timing residuals has been discussed
in Hobbs et al. (2006). Due to a lack of polar motion in the
TEMPO-style precession—nutation model, the expected timing
residual differences should have an amplitude near £30 ns with
a diurnal signature that is modulated by annual and 435 day
periodicities. Figure 8 illustrates the residual discrepancies due
to the different precession—nutation models.

We compared the parameters resulting from GLS fits using
TEMPO and PINT as well. The timing model parameter
differences are listed in Table 5. All of the PINT postfit
parameters are consistent with the TEMPO parameter values to
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Figure 7. Residual differences between PINT and TEMPO for PSR J1600—3053. The upper panel presents the difference of prefit residuals, and the lower panel
presents the postfit residuals difference.
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Figure 8. The residual difference due to different precession—nutation models. We use PINT to simulate 8 yr regularly sampled (2.4 hr cadence) TOAs with a simple
timing model, only has a constant pulse frequency, and pulsar position. Orange marks represent the PINT residuals, the blue points are the TEMPO residuals, and green
data points mark the TEMPO2 residuals. The first panel on the top shows the PINT and TEMPO/TEMPO2 residuals when TEMPO? is under the IAU 2000 resolution of
precession and nutation. The second panel displays the same results with TEMPO2’s old precession and nutation mode, and TEMPO2’s residuals have a similar signature
to TEMPO residuals. The third panel is a zoomed-in version of the second panel on days from MJD 55010 to MJD 55020. We can see the diurnal sinusoidal oscillation
from the TEMPO/TEMPO2 residuals. Given the sampling rate of NANOGrav 11 yr data, the TEMPO prefit residual differences in Figure 7 is one trace of the blue dots.
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Table 5
PINT Parameter Comparison with TEMPO for PSR J1600—3053
Parameter Vit Unit Ve — Vp° Vi — Vol|/or® Upd/ or
FO 277.9377112429746(5) Hz —1.471 x 1071 0.028 1.000
Fl —7.33874(5) x 10716 Hzs™! 6.362 x 10723 0.014 1.000
FD1 402) x 107° s —2.546 x 107° 0.002 1.000
FD2 —1.5(1) x 1073 s 1.370 x 107° 0.001 1.000
JUMP —8.8(1) x 107 s —4.650 x 10710 0.004 1.004
PX 0.50(7) mas —2.070 x 1073 0.028 1.000
ELONG 244 347677844(6) deg —5.924 x 10710 0.099 1.000
ELAT —10.07183903(3) deg —3.191 x 107° 0.095 1.000
PMELONG 0.46(1) mas yr 7.119 x 10°* 0.068 1.003
PMELAT —7.16(6) mas yr~ ! —5.048 x 107* 0.009 0.999
PB 14.348466(2) day —3.457 x 1078 0.016 1.000
Al 8.8016531(8) It-s 1.491 x 1078 0.018 0.984
A1DOT —4.06) x 1071 lt-s s~ ! 8913 x 10713 0.014 1.000
ECC 1.73729(9) x 10~* dimensionless —2.386 x 10710 0.027 1.002
TO 55878.2619(5) day —1.051 x 107° 0.020 0.991
OM 181.85(1) deg —2.638 x 107 0.020 0.991
OMDOT 5(1) x 1073 deg yr ! —2211 x 107 0.016 1.000
M2 0.27(9) solar mass —1.641 x 1073 0.018 0.979
SINI 0.91(3) dimensionless 5.436 x 107* 0.016 0.984
DMX_0010° 6(2) x 107* pcem —5.089 x 10°° 0.025 1.000
Notes.

4 TEMPO fit parameter value.

® PINT fit parameter value.

¢ TEMPO fit parameter uncertainty.
4 PINT fit parameter uncertainty.

¢ In the NANOGrav 11 yr data, PSR J1600—3053 has 106 DMX time ranges. Here we only list the one DMX parameter that has the largest difference between PINT

and TEMPO.

well within the 1o uncertainties. This shows that PINT is
capable of reproducing the published result for PSR J1600
—3053 in the NANOGrav 11 yr data set.

4.1.2. Comparison with TEMPO2 Results

Prior to the PINT-TEMPO2 comparison, we modified the
timing model parameter files from the published NANOGrav
11 yr data set for a more controlled comparison. The 11 yr data
set timing models used TEMPO, which has adopted the ecliptic
coordinate frames with the 2010 IAU value of the obliquity
(The NANOGrav Collaboration et al. 2015). However,
TEMPO2 implements the ecliptic coordinate frame using the
2003 TAU obliquity value. Thus, we chose to use the 2003 IAU
obliquity value in this comparison. Another modification is due
to the discrepancy in the precession and nutation model
mentioned in the previous section. Fortunately, TEMPO2 allows
for the user to choose between the IAU 2000 resolution and the
TEMPO-style precession—nutation model (Hobbs et al. 2006).
Naturally, we decided to run TEMPO2 under the same
precession—nutation model (IAU 2000 resolution) as PINT.

TEMPO2’s GLS fitting gives a final x> value of 12,265.16
and the postfit residuals have a WRMS of 0.944 ys. TEMPO2
residuals were also directly compared against the PINT
residuals, and the comparison is shown in Figure 9. Again, a
constant residual offset has been ignored here as well. Both the
prefit and postfit residual differences are less than 10 ns, which
is within the accuracy goal of TEMPO2 (Hobbs et al. 2000).
However, the residual differences show a systematic quasi-
periodic signature with a semiannual term that occurs
consistently over the whole data set. The same signature is
present in the PINT-TEMPO2 solar system geometric delay (i.e.,
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Rgmer Delay) difference as well. In Figure 10, the solar system
geometric delay difference and the residual differences are
plotted together. This common signature indicates that the
2.5 ns level residual discrepancies are due to a difference in the
solar system geometric delay calculation (e.g., observatory
position or pulsar sky location). We also compared the postfit
parameters between PINT and TEMPO2 and all agree within the
TEMPO2-reported parameter uncertainties (see Table 6).

4.2. Other Known Implementation Differences between PINT
and TEMPO/TEMPO2

In this section, we present four major known implementation
differences between PINT and TEMPO that could cause
substantial differences in the results. We show differences in
the timing between PINT and TEMPO for several other pulsars
presented in the NANOGrav 11 yr data set.

UTC(GPS) to standard UTC clock conversion (TEMPO only).
As described in Section 3.1, PINT converts UTC(GPS) time
to the standard UTC timescale. However, the TEMPO
package does not apply this 10 ns-level clock correction to
the TOAs. In Figure 11, the UTC(GPS) and standard UTC
clock correction values over the past two decades are plotted.
Constant time offset between TOAs correction (JUMP). The
constant time offset between TOAs, implemented as JUMPs
in the timing model, can be introduced from two major
effects: (1) a constant time delay from different
instruments (e.g., different cable length), and (2) pulse-
profile evolution delays (e.g., from the frequency evolution
of the intrinsic pulse profile). Because the first type of time
offset occurs at the observatory, it should be corrected at the
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Figure 9. Residual difference between PINT and TEMPO2 for the J1600—3053 NANOGrav 11 yr data. The upper panel shows the prefit residual difference, and the

lower panel shows the postfit residual difference.
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Figure 10. PINT-TEMPO?2 residual differences and the PINT-TEMPO?2 solar system geometry delay difference plotted on top of each other. The blue data points mark the
difference between THE PINT and TEMPO2 postfit residuals, and the orange points mark the difference between THE PINT and TEMPO2 solar system geometric delay.
Their envelopes trace each other and show that the 2 ns level residual discrepancies are caused by the solar system geometric delay implementation difference of these

two software.

observatory frame (before computing the solar system
barycentric TOAs). The pulse-profile offset is part of the
intrinsic pulsar emission process. Thus, the second type of
JUMPs is more appropriately applied under the pulsar frame.
However, neither TEMPO nor TEMPO2 distinguishes these
two types of JUMPs, and they correct both of them under the
same reference frame. TEMPO corrects the JUMPs in either
the observatory frame or the pulsar frame (TEMPO gives the
options to the user). TEMPO2 applies the JUMP corrections in
the pulsar frame in terms of phase offset. In this release of
PINT, the JUMPs are applied in the same way as the TEMPO2
method. However, PINT has the infrastructure to apply the
two types of JUMPs separately, and it is planned in future
releases. Therefore, if TEMPO corrects the JUMPs at the
observatory, a highly radio-frequency-dependent residual
discrepancy with a period of one year will be present in the
PINT-TEMPO residuals difference (see Figure 12). The peak
value of this yearly signature is dependent on the JUMP
offset values.

Frequency-dependent delay (FD delay). The frequency-
dependent delay is implemented for modeling the pulse-
profile variation at different radio frequencies by NANOGrav
(The NANOGrav Collaboration et al. 2015). Instead of
applying the FD delay before the pulsar binary correction
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like TEMPO / TEMPO?2, PINT applies it to the TOAs after the
binary model in the pulsar frame. This delay introduces an
offset in the binary model input TOAs, which leads to a
~10 ns level of residual difference, which depends on the FD
parameter values (see Figure 13).

Aside from the difference mentioned above, PINT uses a
uniform definition of the longitude of ascending node, known
as the “KOM” parameter in the DDK binary model (Kopeikin
1995, 1996), which is measured with respect to equatorial
north. In TEMPO/TEMPO2, the KOM parameter is defined with
respect to the north of the reference frame under which the
pulsar position is given (i.e., if the pulsar position is given as an
ecliptic coordinate, the KOM parameter is measured from
ecliptic north).

4.3. Independence from TEMPO/TEMPO2

One of the motivations of the PINT project is to provide
independent (or as independent as is reasonably possible)
cross-checks and/or validation of the timing results from other
pulsar timing packages. For high-impact precision timing
programs, such as gravitational-wave detection efforts, it is
critical to compare results from more than a single data analysis
pipeline.
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Table 6
PINT Fit Parameter vs. the TEMPO2 Parameter

Parameter Vo Unit Vi — Vil [V — Vol /om2° op?/ors
FO 277.9377112429746(5) Hz —6.661 x 107'® 0.001 1.000
Fl —7.33874(5) x 10716 Hz s ! —8.192 x 10°* 0.002 1.000
FD1 4.0(2) x 107° s —1.636 x 107° 0.001 1.000
FD2 —1.5(1) x 1073 s 1.416 x 107° 0.001 1.000
JUMP —8.7887456483 x 107° s —4.904 x 107" 0.0004" N/A
PX 0.50(7) mas 1.878 x 1073 0.0003 1.000
ELONG 244.347677843(6) deg 9.123 x 10712 0.002 1.000
ELAT —10.07183905(3) deg —1.449 x 107! 0.0004 1.000
PMELONG 0.46(1) mas yr—! 7.420 x 107° 0.0007 1.000
PMELAT —7.16(6) mas yr~ ! —7.171 x 107° 0.001 1.000
PB 14.348466(2) day —1.924 x 107% 0.0009 1.000
Al 8.8016531(8) It-s —8.197 x 1071° 0.001 1.000
A1DOT —4.0(6) x 107" lt-s s~ —1.034 x 10718 0.002 1.000
ECC 1.73730(9) x 10~* dimensionless 4.159 x 107" 0.005 1.000
TO 55878.2619(5) day 4.883 x 1077 0.0009 1.000
oM 181.84(1) deg 1.226 x 1073 0.0009 1.000
OMDOT 0.005(1) deg yr! —1.229 x 10°° 0.0009 1.000
M2 0.27(9) solar mass 1.043 x 1074 0.001 1.000
SINI 0.91(3) dimensionless —4278 x 107° 0.001 1.000
DMX_0098° 0.0013(2) pcem™? —5.204 x 1077 0.003 1.000
Notes.

4 TEMPO2 postfit parameter value.

® pINT postfit parameter value.

© TEMPO2 postfit parameter uncertainty.
4 pINT postfit parameter uncertainty.

¢ In the NANOGrav 11 yr data, PSR J1600—3053 has 106 DMX time ranges. Here we only list the DMX parameter with the largest discrepancy between two

ackages.

Because this version of TEMPO?2 did not report the JUMP uncertainty. The relative difference is computed using the PINT fit uncertainty, and the uncertainty division

is not applicable.
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Figure 11. UTC(GPS) and standard UTC clock correction over 20 yr since the GPS timescale was established.

PINT is not a Python wrapper of other code, nor is it a
Python translation of a C or FORTRAN code from previous
timing packages. The framework, APIs, and internal data
storage are implemented independently. The fundamental
algorithms, such as linear algebra, solar system coordinate
transformations, and unit conversions, are from widely used
and well-tested public Python packages (e.g., NUMPY,
ASTROPY). PINT’s built-in models are implemented based on
the physical formulas from their respective publications, and
the detailed references are incorporated in the code
documentation (e.g., the equation numbers from the papers
and necessary derivations are documented in the documenta-
tion strings and/or source code). This reimplementation
automatically provides a cross-check to the same models as
implemented in, for example, TEMPO/TEMPO2. When validat-
ing the built-in models, we compare PINT’s results (e.g.,
residual and postfit parameter values and uncertainties, or
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direct calculations of delay times, for example) with TEMPO/
TEMPO?2 and attempt to resolve all the discrepancies by auditing
both packages’ code and their references carefully. This is
how we identified implementation differences described in
Section 4, as well as long-standing bugs in TEMPO2 related to
planetary Shapiro delays*® and the solar angle calculation.*’
Aside from comparing the same physical model with different
implementations, PINT’s flexibility, such as being able to call
model components from the Python command line, enables
the user to easily test or compare algorithms and implementa-
tions with other versions in PINT or with other software.
Despite these differences in implementation, PINT adopts the
most current standard pulsar timing conventions, including data

8 See https: //bitbucket.org /psrsoft/tempo2 /issues /63 /incorrect-planetary-
shapiro-delays.

4 See https: / /bitbucket.org/psrsoft/tempo2 /issues /68 /sign-error-in-solar-
angle-calculation.
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Figure 12. Residual difference between PINT and TEMPO prefit residuals for PSR J1944+0907 NANOGrav 11 yr data. This discrepancy is introduced by different
JUMP calculations. Because the JUMPs in TEMPO are applied on the 430 MHz receiver, the annual sinusoid variations only show up for the 430 MHz TOAs.
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Figure 13. Residual differences between PINT and TEMPO due to a discrepancy in the radio-frequency-dependent delay (FD delay). The first panel illustrates the PSR
J2317+41439 NANOGrav 11 yr data PINT-TEMPO residual difference, and the second panel illustrates the PINT-TEMPO2 residual differences for the same data set. In
the radio-frequency band, 1440 MHz, residual differences are marked in orange, and the band of 430 MHz residual differences is marked in blue. The 430 MHz shows
a higher variation on the difference plot. Because the FD delay is higher at the lower frequency band, this leads to bigger discrepancies in the binary delay input TOAs.
Because TEMPO and TEMPO2 both apply the FD delay before the binary correction, these two results are very similar, so that both panels show almost identical plots.

formats and the use of external data (e.g., the JPL solar system
ephemerides and standard clock correction files). PINT supports
most TEMPO/TEMPO2-accepted styles of TOA and parameter
files, and attempts to provide as much backwards compatibility
as is reasonably possible. This allows users to cross-check or
reproduce earlier results without changing their input data
formats. There are plans to include additional compatibility
options in future releases of PINT, such as timing using the
INPOP solar system ephemerides series™® (Fienga et al. 2019)
or with reference to TCB rather than TDB time.

5. Performance, Testing, and Maintenance

The PINT project’s goal is to provide a high-precision,
reliable, relatively efficient (i.e., fast), and user-friendly soft-
ware package. To achieve this goal, we require a comprehen-
sive test suite, profiling, effective version control and other
development practices, and good documentation. In this
section, we discuss the PINT’s performance, testing, and
maintenance in detail.

5.1. Performance

Compared to compiled languages, one potential drawback of
using a high-level interpreted language like Python is
execution speed. In particular, there is a substantial startup
cost for a Python script as all the necessary packages are
imported, and portions of the code that do a lot of looping and
object creation are slower than for compiled languages.

50 https: //www.imcce.fr/recherche /equipes /asd /inpop/
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However, PINT makes use of highly optimized vectorized code
from NUMPY and SCIPY for array and linear algebra
operations, and can save intermediate results, such as the
TOA table as a Python “pickle” file, which can be loaded
very quickly. Thus, the relative performance depends on the
particular problem and how PINT is used. In this subsection, we
report the PINT runtime for a typical use case of loading a
model and TOAs and fitting and comparing it with that of
TEMPO and TEMPO2. We chose two test cases: (1) a simple
timing model for PSR NGC6440E, which includes astrometry,
dispersion, and spindown components, comprising five free
parameters, and (2) a more complex timing model for PSR
J19104-1256 from the NANOGrav 12.5 yr data set, with 13
model components and 103 free parameters. These were run on
Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz, Ubuntu
20.04.1 LTS VM with 8 GB RAM. Different computers and
software libraries will give different results. The script used to
generate these tables is available in the PINT GitHub
repository.”’

Table 7 lists the runtime of PINT and TEMPO/TEMPO? for the
case of PSR NGC6440E (with the same timing model and the
same fitter as the code example in Figure 3) with different
numbers of simulated TOAs. Given the efficiency of
FORTRAN and C/C++, TEMPO and TEMPO? are faster and
more RAM efficient than PINT for small problems dominated
by reading TOAs from text files and doing preprocessing
(applying clock corrections, and computing positions and

>l See the Python notebook at https://github.com/nanograv/PINT/tree/
master/profiling /paper_timing_tables.


https://www.imcce.fr/recherche/equipes/asd/inpop/
https://github.com/nanograv/PINT/tree/master/profiling/paper_timing_tables
https://github.com/nanograv/PINT/tree/master/profiling/paper_timing_tables
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Table 7
Performance Comparison between PINT, TEMPO, and TEMPO2 for a Simple
Model®
TEMPO TEMPO 2 PINT PINT
Number of TOAs (s) (s) No Pickling Using Pickle
(s) (s)

100 0.250 1.194 2.174 1.894
1,000 0.288 1.320 3.346 1.954
10,000 0.426 1.680 17.020 3.054
100,000 1.972 6.370 151.170 12.734
Note.

# Averaged over five runs.

velocities of the observatory and solar system bodies). The
PINT TOAs object’s pickling functionality allows users to read
in TOAs and process them once, save the results to a binary
file, and then perform multiple fits or other operations. Table 8
shows the breakdown of the PINT runtime for different parts of
the problem. Reading from TOA object pickle files is 10-50
times faster than parsing the TOA text files.

For the case of PSR J1910+41256 with the complicated
timing model, we use the NANOGrav 12.5yr data set’s
TOAs (5012 TOAs in total) and timing parameters (103 free
parameters). We fit data using GLS fitting with noise
parameters. To test the speed of a large number of TOAs
within the modeled time span, we duplicated the TOAs two and
five times. As seen in Table 9, the GLS fitting in TEMPO/
TEMPO2, coupled with a more complex model, can increase
runtime significantly. When using the GLS fitter, the execution
time will depend on the linear algebra libraries (i.e., LAPACK)
installed and the configuration of the respective software
packages. In the case of large numbers of TOAs, PINT GLS
fitting outperforms TEMPO/TEMPO2. This could be due to
different linear algebra libraries or different implementations of
the GLS fitting algorithm in these packages.

To aid current and future optimization efforts, PINT comes
with a folder of profiling code, allowing users and developers
to see both a general summary and a detailed report of how
long it takes PINT to perform tasks. These files make use of
cProfile, Python’s built-in profiling tool. Users and devel-
opers can produce flowcharts to visualize where PINT spent the
most time and find bottlenecks in the code. An HTML viewer
(independent of PINT and cProfile) for the cProfile output is
also available, allowing the user to click into a function and see
the subsequent functions called. Thus, the user can find the root
function consuming the most time, or a function taking an
unexpectedly long time, and optimize the embedded code. It is
our hope that with these features, PINT will become faster as
more and more people use the profiling features. The authors
themselves have been able to reduce certain benchmark speeds
by over 15% using these features.

5.2. Testing

PINT provides various scripts for testing the package, most of
which are systematically executed before incorporating any
change into the code base. The aim of this testing is to ensure
reliability and reproducibility, and ensure that code changes or
updates to external packages do not introduce errors. As of
version 0.8.0, 58.05% of the code is executed during these
tests, and increasing this fraction, as well as ensuring that tests
check essential properties, is a goal for future releases. In the
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Table 8
PINT Timing Breakdown™"
Loading Loading
Import TOAs TOAs Fitting
Number
of TOAs Statements No Pickling Using Pickle =~ WLSFitter
(s) (s) O] (s)
100 1.476 0.471 0.010 0.120
1,000 1.476 2.098 0.096 0.143
10,000 1.476 14.961 1.037 0.432
100,000 1.476 162.165 12.332 2.818
Notes.

 These times were recorded separately from the runs in Table 7, and there are
additional, smaller operations not displayed. Thus, there may be small
disparities in timing between the summation of these individual parts and the
total runtime recorded in Table 7.
b

Averaged over five runs.

Table 9
Complex Model for PSR J1910+1256 Performance Comparison between
PINT, TEMPO, and TEMPO2*"

TEMPO TEMPO2 PINT PINT
Number of TOAs (s) (s) No Pickling ~ Using Pickling
(s) (s)
5012 32.644 24.630 42.636 35.972
10,024 249.492 52.394 60.458 47.206
25,060 3695400  211.972 119.190 79.730
Notes.

4 GLSFitter is used for the above runs.
b
Averaged over five runs.

development process, providing testing code for new features is
strongly encouraged for code contributions to be merged into
the main code base. In order to maintain the package’s stability
and compatibility, the PINT project has adopted the online and
offline testing tools pytest,”” hypothesis,” GitHub
Actions,™ and tox.” These tools execute our tests on major
Unix-based operating systems with different Python versions.

5.3. PINT Maintenance

Following the design philosophy of “for and by the user,”
the PINT software package is an open-source project under the
BSD three-clause license.”® A user can develop and modify
PINT software freely as long as the copyrights are recognized.

Because PINT is an ongoing development project, it adopts a
modern version control scheme using git and GitHub.”” The
GitHub page (https://github.com/nanograv/PINT) is where
the PINT software official versions are released and where a
user can communicate with the development team, open issues,
and propose changes through pull requests. The PINT user
manual can be found at the link above as well. We encourage
the user community to contribute to the PINT project by
submitting pull requests and reporting issues.

52 https://docs.pytest.org/en/latest/

3 https://github.com/HypothesisWorks /hypothesis

i https://github.com/features /actions

35 hitps:/ /tox.readthedocs.io/en /latest/

36 hitps: //github.com/nanograv /PINT /blob /master/ LICENSE.md
57 https://git-scm.com/, https://github.com/
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The documentation is compiled in Restructured Text format
using standalone text files and the document strings inside the
Python code, using Sphinx.”® Each time a change is merged
into the master branch, the documentation is deployed to
readthedocs.io, where it is automatically compiled and made
available as a website (https://nanograv-pint.readthedocs.io).

6. Example PINT Use Cases

Fundamentally, PINT is a Python library that users can
employ to do pulsar timing calculations in Python scripts or
Jupyter™ notebooks of their own creation. As such, PINT is
now included as a dependency in other Python timing
libraries (e.g., NANOGrav’s enterpriseGO; stingray L
HENDRICS®).

However, several common use cases have been implemented
as command-line Python scripts that are distributed with
PINT, serving as examples and allowing many users to employ
PINT without needing to explicitly write Python code:

pintempo: a command-line script that provides similar
functionality to the TEMPO and TEMPO2 programs. It reads a
timing model and TOAs from specified files and fits
parameters, optionally making a residuals plot.

pintbary: a simple script for barycentering (i.e., convert-
ing to TDB timescale and applying solar system delays)
specified times, allowing specification of the observatory and
observation frequency.

pintk: a graphical user interface inspired by the p1k plugin
for TEMPO2. Users can modify the model and TOAs, perform
fits, revert to previous fits, and view the results on a residuals
plot with a choice of axes. The interface is highly interactive,
and subsets of TOAs can be selected for fitting. In addition,
JUMPs and phase wraps can be easily added and removed
without changing the parfile or timfile. As an aid for phase
connection, pintk can also plot sets of random models with
parameters drawn from the covariance matrix of each fit to
see how well a model extrapolates across data gaps.

zima: a script to generate a set of simulated TOAs based on
an input timing model.

In addition to these applications, there are also scripts included
that are specific to handling high-energy (X-ray, y-ray) photon
data, as described below.

6.1. High-energy Photon Timing

PINT has a number of tools that enable the processing of
photon data by treating the arrival time of each photon event as
a TOA. These are often from space-borne X-ray and ~v-ray
telescopes. The biggest difference between these events and
traditional TOAs is that they are not expected to have occurred
at a fiducial phase; they have some distribution in phase, and
the goal of the project may even be to determine whether there
is any evidence of phase dependency in this distribution.
Moreover, these events are often taken from an observatory
that is in orbit and thus not at a fixed ITRF coordinate like a
ground-based observatory. PINT’s observatory module
smoothly handles these cases, as described in Section 3.3.2.

58 http: / /www.sphinx-doc.org

9 http:/ /jupyter.org

%0 https: / /github.com /nanograv /enterprise

o1 Huppenkothen et al. (2019); github.com/stingraysoftware /stingray.
62 Bachetti (2018); github.com/stingraysoftware /HENDRICS.
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PINT is able to handle events from FITS files that contain
unmodified spacecraft times, or those that have been
barycentered or geocentered by mission-specific software such
as gtbary (Fermi Science Support development Team 2019)
or barycorr (NASA High Energy Astrophysics Science
Archive Research Center (Heasarc) 2014). For unmodified
spacecraft times, the relevant SatelliteObs class is
initialized with a (mission-specific) orbit file that contains data
on the position of the spacecraft as a function of time. PINT
builds a univariate spline interpolator that allows for easy
computation of the spacecraft position (and velocity) at the
precise time of any photon event. Given this, the rest of the
PINT machinery can be used on these data. Such data sets often
contain large numbers of events, so this often puts a premium
on efficient, vectorized computations, made possible by the
NUMPY arrays that PINT uses.

Here again, these functions are available for use as Python
modules, but several common use cases have been implemen-
ted as command-line scripts distributed with PINT:

photonphase: a code that reads common X-ray event data
(e.g., from NICER, XMM-Newton, NuSTAR, RXTE) from
FITS files and computes the pulse phase of each event using a
provided timing model. The output can be plotted or written
back out to a column in a FITS file.

fermiphase: a code similar to photonphase that is
specific to Fermi ~-ray data. One addition is the ability to
handle photon weights.

event_optimize: a code that demonstrates fitting a
pulsar timing model to photon data, using PINT to compute
model phases and emcee (Foreman-Mackey et al. 2013) to
perform an MCMC maximum-likelihood optimization.

The NuSTAR team is using PINT for their new clock
correction pipeline (Bachetti et al. 2021). Recently, the Very-
High-Energy (VHE) ~-ray community has been investigating
the use of PINT as part of their processing pipelines. Their data
are photon events from ground-based observatories.

7. Conclusion and Discussion

High-precision pulsar timing experiments, including ground-
based and space-based projects, are now monitoring a large
number of pulsars regularly (for example, NANOGrav mon-
itored 45 ms pulsars for its 11 yr data release). Around the
globe, thousands of precisely measured TOAs are generated
using high-sensitivity radio telescopes and their modern
receivers and backends (wideband receivers and GPU-based
backends, etc.) every year. These efforts aim to detect new,
extreme astrophysical signals, like the low-frequency stochastic
gravitational-wave background. However, it has been very
challenging to analyze these large and intricate data sets and
share them between international pulsar timing groups (see,
e.g., Verbiest et al. 2016 as each group uses its own tools to
record and analyze data). In addition, historical data sets are
still very valuable for current and future timing projects (e.g.,
comparing the differences between instruments). This requires
that an analysis pipeline has sufficient backwards compatibility.

We present the PINT software package, which provides a
platform to overcome these challenges by using an object-
oriented and modular design, adopting well-debugged Python
libraries, and incorporating the modern version control tools
git and GitHub. The PINT package is capable of processing
high-precision pulsar timing data with a numerical precision of
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http://github.com/stingraysoftware/HENDRICS
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~1 ns and with algorithmic precision of a few nanoseconds or
better.

We briefly summarize the code architecture and four core
modules: the toa, models, fitter, and residuals
modules.

1. toa module provides the functionality of storing and
preprocessing (i.e., applying clock corrections and com-
puting the observatory location and velocity) the TOAs
from different observatories.

2. models module maintains a set of built-in model
components and the public interface class, TimingMo-
del, for interacting and organizing the model compo-
nents. The model component class, Component, and its
subclasses provide the infrastructure for implementing a
new model with minimum effort and for performing
pulsar data analysis smoothly.

3. fitter module provides the infrastructures for fitting a
model to a set of TOAs and allows a new fitting
algorithm routine to be implemented without modifying
the main code.

4. residuals module implements the container class,
Residuals class, for storing timing residuals and their
statistical attributes and methods.

A comparison between PINT and TEMPO/TEMPO2 packages
is presented in this paper. After the GLS fitting on the
same test data set, PINT’s postfit parameters are consistent
with the results from TEMPO/TEMPO2, within their TEMPO/
TEMPO2 fit uncertainties, and PINT postfit residuals differ
from TEMPO and TEMPO2 result at the level of 10 ns and 1 ns,
respectively. Some known sources of the discrepancies are
described.

We also demonstrate the unique features of PINT. PINT
modules and functions are designed as an interactive data
analysis platform where the user has access to each step of the
internal calculation. Because PINT is a Python-based package,
importing other packages provided by the Python community
becomes extremely simple. This innovation creates the
possibility for applications or features that are hard to
implement with the traditional software packages. Using the
modern version control tool git and the powerful online
interface of GitHub, PINT developers are able to communicate
with PINT users and provide technical support. Along with the
package, some convenient command-line scripts are also
provided for the common use cases. In future releases, the
PINT project will keep providing new features and improve-
ments to the code.

This project was initiated and supported by the NANOGrav
collaboration, which receives support from NSF Physics
Frontiers Center award number 1430284. The National Radio
Astronomy Observatory is a facility of the National Science
Foundation operated under cooperative agreement by Asso-
ciated Universities, Inc. Portions of this work performed at
NRL were supported by Office of Naval Research 6.1 funding.
Student research at NRL was sponsored by the Office of Naval
Research NREIP program. S.M.R. is a CIFAR Fellow. R.v.H.
was supported by NASA Einstein Fellowship grant PF3-
140116.

Software: Astropy (Astropy Collaboration et al. 2013),
emcee, Tempo, Tempo2 (Hobbs et al. 2006), git, NumPy.
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Appendix
Creating a Timing Model Component

PINT is designed to be expandable to incorporate new models
and new features, and we encourage users to build custom
models that suit their needs. Here, we present both the
ingredients needed for a new timing model component and the
mechanics of automatic model building. A brief code example
is provided in Figure 14 to illustrate how to implement a
complete PINT model component that can interact with the
TimingModel class. Along with the descriptions, a detailed
example for composing a model component is included in our
online documentation.®?

A typical timing model component includes three major
parts: model parameters (see Appendix A.l for more details),
model functions, and derivative functions. Model parameters,
implemented by the Parameter class, represent the astro-
physical quantities the model depends on, e.g., the pulsar
position (RAJ, DECJ), the dispersion measure (DM), and the
pulsar pulse frequency (F0). The model functions then
compute needed outputs, e.g., delay, phase, or noise contribu-
tions. The derivatives of the modeled quantities with respect to
the parameters are required for many fitting algorithms, and so
the derivative functions are provided to compute these.

To allow the TimingModel’s high-level methods to collect
the result from the model component, two API conventions
must be followed: (1) the returned result has to be in the
accepted format, and (2) the model function must be registered.
For instance, DelayComponent must return delays as an
astropy.units.quantity object with time units. This
allows TimingModel.delay () to sum all of the delays
correctly without explicit unit conventions needing to be
followed in the code. For PhaseComponent, the final result
should be a pint.phase.Phase object, which represents
pulse phase at the required precision. In addition, the model
functions must be added to the appropriate function lists. The
TimingModel computes the modeled quantity by sequen-
tially summing the results of the functions in these lists. Taking
the same example, the delay/phase model functions should
be added to .delay_funcs_component or .phase_
funcs_component lists in the delayComponent or
phaseComponent classes, respectively.

The model component class is also responsible for providing
derivative functions with respect to the parameters. To enable
the TimingModel class to compute the derivatives using
high-level wrapper functions, d_delay_d_param() and
d_phase_d_param(), for example, PINT implements a
registration scheme for derivative functions. This scheme
requires all derivative functions to follow a consistent API; that
is, these functions should have specific input arguments and
return values, e.g., the phase derivatives should have the TOA
table, parameter name, and total delay as the input arguments.
When setting up a model component, derivative functions
should be registered using the Component.register_
deriv_funcs () class method which maps the parameter to
its derivatives. The TimingModel class computes the
derivatives by enumerating the derivative functions with
respect to the target parameter from all the model components
and then summing the result from these derivative functions.
Users are encouraged to provide accurate derivative functions;

63 https: / /nanograv-pint.readthedocs.io /en/latest/examples /How_to_build_
a_timing_model_component.html
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1 import numpy as np

2 import astropy.units as u

s from pint.models.timing_model import TimingModel, Component, PhaseComponent
4+ import pint.models.parameter as p

7 class PeriodSpindown(PhaseComponent) :

5 """This is a simple model component of pular spindown using spin period.”""
o register = True # Flags for the model builder to find this component.

10 category = "spindown" # Give a category for the component sorting.

1 def __init__(self):

12 # Get the attruibutes that initilzed in the parent class

13 super () . __init__()

14 # Add parameters using the add_params in the TimingModel

15 # Add spin period as parameter

16 self.add_param(p.floatParameter (name="P0", value=None, units=u.s,

17 description="Spin period", longdouble=True))

18 # Add spin period derivative P1, and default value to 0.0

19 self.add_param(p.floatParameter(name="P1", value=0.0, units=u.s / u.s,
20 description="Spin period derivative", longdouble=True))

21 # Add reference epoch time.

22 self.add_param(p.MJDParameter (name="PEPOCH_PO", time_scale="tdb",

23 description="Reference epoch for spin-down"))

21 # Add spindown phase model function to phase functions.

25 self.phase_funcs_component += [self.spindown_phase_period]

26 # Add the d_phase_d_delay derivative to the list.

27 self .phase_derivs_wrt_delay += [self.d_spindown_phase_period_d_delay]
28 # Setup the unique parameters for the component.

20 self.set_special_params([’P0’, ’P1’])

30

3 def setup(self):

a2 """Setup the model. Register the derivative functions"""

53 super() .setup() # This will run the setup in the Component class.

34 # Resgister the derivative functions to the timingmodel.

35 self.register_deriv_funcs(self.d_phase_d_PO, "P0O")

36 self.register_deriv_funcs(self.d_phase_d_P1, "P1")

a7

38 def validate(self):

39 """Check the parameter value."""

10 super() .validate() # This will run the parent class .validate()

2 # Check required parameters.

a2 for param in ["P0"]:

a3 if getattr(self, param) is None:

14 raise ValueError("Spindown period model needs {}".format(param))
5

46 # One can always setup properties for updating attributes automatically.
a7 @property

s def FO(self):

a9 # We return FO as a parameter object, which are used in the TimingModel
50 return p.floatParameter(name="F0", value=1.0 / self.PO.quantity,

51 units="Hz", description="Spin-frequency", long_double=True)

52

53 # Defining the derivatives, a common format is d_zzz_d_zzTT

54 @property

55 def d_FO_d_PO(self):

56 return -1.0 / self.PO.quantity ** 2

57

58 Q@property

50 def Fil(self):

60 return p.floatParameter(name="F1", description="Spin down frequency",
61 value=self.d_FO_d_PO * self.Pl.quantity, units=u.Hz / u.s, long_doub1e=True)
o2

63 @property

64 def d_F1_d_PO(self):

5 return self.Pl.quantity * 2.0 / self.PO.quantity ** 3

o6

67 @property

68 def d_F1_d_P1(self):

69 return self.d_FO_d_PO

0

71 def get_dt(self, toas, delay):

72 ""tdt from the toas to the reference time."""

7« # toas.table[’tdbld’] stores the tdb time in longdouble.

" return (toas.table["tdbld"] - self.PEPOCH_PO.value) * u.day - delay
75

76 # Defining the phase function, which is added to the self.phase_funcs_component
[ def spindown_phase_period(self, toas, delay):

8 """Spindown phase using PO and P1"""

0 dt = self.get_dt(toas, delay)

50 return self.FO.quantity * dt + 0.5 * self.Fl.quantity * dt **x 2

51

52 def d_spindown_phase_period_d_delay(self, toas, delay):

83 """This is part of the derivative chain for the parameters in the delay term.
84 o

55 dt = self.get_dt(toas, delay)

s6 return -(self.FO.quantity + dt * self.F1.quantity)

&7

88 def d_phase_d_PO(self, toas, param, delay):

s0 dt = self.get_dt(toas, delay)

90 return self.d_FO_d_PO * dt + 0.5 * self.d_F1_d_P0O * dt ** 2

o1

02 def d_phase_d_P1(self, toas, param, delay):

03 dt = self.get_dt(toas, delay)

04 return 0.5 * self.d_F1_d_P1 * dt ** 2

Figure 14. Example implementation of a timing model component for pulsar spindown.
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Table 10
Parameter Class Key Attributes

Attribute Description
name Parameter name
aliases Aliases (alternative names) for the parameter
units Default unit of the parameter
simple Description of the parameter
quantity Parameter quantity (with units)
value Parameter numerical value in the default unit
prior Prior probability distribution for the parameter
uncertainty Postfit parameter uncertainty (with units)
uncertainty_value Parameter uncertainty numerical value in the

default unit
frozen Boolean flag for turning on/off fitting of the

Parameter

fitters that depend on these derivatives may fail completely or
converge very slowly if they are wrong or inaccurate. Other
fitters, like those based on MCMC algorithms, may not use the
derivatives at all but often run much more slowly. However, if
analytic derivatives are not provided, approximate derivatives can
be obtained automatically by numerical methods in Timing-
Model.d_delay d_param_num() or TimingModel.
d_phase_d_param_num () with appropriate differential steps.
In the case of phase derivatives, d_phase_d_param/()

also applies the derivative chain rule, i.e., the phase is first
differentiated with respect to delay, and then multiplied by the
derivative of the delay with respect to the parameter. If applicable,
the phase derivative with respect to delays should be provided in
the phase component.

A.1. Parameter Module

Information about the parameters of a timing model is stored
in instances of the Parameter class and its subclasses
defined in the models.parameter submodule. These
collect all information relevant to a specific model parameter,
including its value, uncertainty, units, and description (see
Table 10 for a list of key attributes). There is a profusion of
subclasses of Parameter in order to handle the variety of
different types and formats that parameters can have (for
example, strings, right ascensions, floating point) and also to
handle extensible families of parameters like the pulse
frequency derivatives FO, F1, ..., or like JUMP parameters
that select subsets of the arrival time measurements to apply
time delays to.

One of the innovative features of the Parameter class is
programmatic integration between a parameter’s value and its
units. The .quantity attribute saves the parameter value as
an astropy.unit.Quantity object, or compatible type
of object (e.g., astropy.time.Time), which contains the
physical units and allows automatic unit conversions when
performing arithmetic with other quantities. This feature avoids
confusion and errors arising from unit conversions having to be
manually implemented in the code. Each parameter’s uncer-
tainty is saved in the . uncertainty attribute using the same
scheme. For calculations that do not require unit information,
the raw numerical parameter and uncertainty values can still be
accessed via the .value and .uncertainty_value
properties; these are always guaranteed to return the numerical
value in the units specified in the .units attribute. The
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parameter value and uncertainty can be changed by setting
the .quantity and .uncertainty attribute, with unit
conversions handled automatically, or .value and
uncertainty_value.

To read a parameter’s information from a .PAR-style
parameter file, the Parameter class provides the .from_
parfile_line () method, which parses the parameter file
line that has the matching parameter name. The Parameter
class also implements the .as_parfile_line () method to
write a parameter as a .PAR-style string line.

Another advanced feature is that the parameter’s prior
probability density function can be set at the . prior attribute
for Bayesian timing parameter estimation (e.g., MCMC fitting;
Gregory 2005).

In pulsar timing analysis, timing model parameters are applied
to more use cases than typical numerical parameters. For
instance, the “BINARY” parameter represents the binary model
name as a string. Thus, in PINT, a set of Parameter subclasses
for different use cases are also implemented. In the section
below, the parameter types provided in this release are listed.

floatParameter: a parameter type for storing floating-
point values. The data are stored as an astropy.units.
quantity object, and the precision can be either 64 bit
float or np. longdouble.

strParameter: a parameter object to store a string value.
boolParameter: a type of parameter object used as
Boolean flags. It is able to recognize different expressions of
Boolean value (e.g., “Y/N,” “YES/NO” or “1/0”).
MJDParameter: a parameter type created for the MJD time
values. In order to keep the precision and allow a convenient
timescale transformation, it is stored as the astropy.
time.Time object.

AngleParameter: a parameter type implemented for the
astronomical angle parameters (e.g., R.A. or decl.). The
parameter value is saved in the astropy.coordinates.
Angle object which provides angle conversion functions.
This object accepts different input angle formats as well (e.g.,
“hour:minute:second” or “degree:minute:second”).
PrefixParameter: a parameter type designed for para-
meters that have the same name prefix but a different suffix,
e.g., “DMX_0001,” “DMX_0002,” etc. Because this object
is implemented according to the parameter name, not the
value type, it is able to store any other Parameter types
(e.g., MJDParameter, AngleParameter). These internal para-
meter types can be specified via its input argument
parameter_type.

maskParameter: This parameter object provides func-
tionality for parameters that apply only to a subset of TOAs
(e.g., a JUMP). It accepts different parameter values like the
PrefixParameter object as well. It is able to handle a
parameter that has a key value pair for selecting TOAs (e.g.,
“ECORR -f Rcvrl_2_GASP 0.00370,” which applies an
ECORR value only to TOAs with a particular flag).

Although the Parameter objects introduced above can be
initialized and used independently (see the code example in
Figure 15), it is recommended to use the Component.
add_param () class method to add the Parameter object
into the Component object and register it to the parameter
name space. This allows the automatic model builder
(discussed below in Appendix A.2) to select model compo-
nents by comparing the parameter names.
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description="Spin-frequency", long_double=True)

>>> import pint.models.parameter as p

>>> import astropy.units as u

>>> # Create a new floatParameter type class.

>>> param = p.floatParameter(name="F0", value=0.0, units="Hz",
>>>

>>> # Read parameter from a .par style file line.

>>> param.from_parfile_line("FO 61.485476554000000001 1 1e-12")
True

>>> # Print the parameter information.

>>> print (param)

FO (Hz) 61.485476554000000001 +/- le-12 Hz
>>> # Print the parameter information as parfile style.

>>> param.as_parfile_line()
’FO 61.485476554000000001 1 1le-12\n’

>>> # Access the parameter quantity with unit.

>>> param.quantity

<Quantity 61.485476554000000001 Hz>
>>> # Access the parameter unit
>>> param.units

Unit("Hz")

>>> # Access the parameter pure value, without unit.

>>> param.value
61.485476554000000001

>>> # The parameter wvalue can be changed via .quantity or .value

>>> param.quantity = 120.0 * u.Hz

>>> print(param.quantity, param.value)

(<Quantity 120.0 Hz>, 120.0)
>>> param.value 100.0

>>> print(param.quantity, param.value)

(<Quantity 100.0 Hz>, 100.0)

>>> # Access the parameter uncertainty.

>>> param.uncertainty
<Quantity le-12 Hz>

>>> # Check 1if the parameter fittable or not

>>> param.frozen
False
>>> # This is a fittable parameter.

Figure 15. Code example for the Parameter module.

A.2. Connecting Components to the TimingModel

In order to properly instantiate the various timing model
components, including, for example, properly registering the
partial derivative functions used by PINT for fitting, a user will
typically use the get_model () function (introduced in
Section 2.2), which utilizes the model_builder module
and associated Mode1Builder class behind the scenes. The
model_builder selects the correct model components and
sorts them into a preferred order and reads the input parameter
values. The model_builder searches for all registered
model components, whose attribute . register is set to be
True, as demonstrated in the code example in Figure 14 (see
line 10). After listing all of the components, it compares each
component’s parameters with the parameters in the .PAR file
and selects matching components. However, this method has
two challenges that could lead to an incorrect model selection:
(1) the same astrophysical effect can be modeled using
different parameterizations (e.g., the DM variation can be
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modeled by a Taylor expansion or a set of discrete DM values);
(2) different components may share a set of common
parameters (e.g., some more complicated components are
derived from simple components). To help the model_
builder filter the components, PINT implements a comp-
onent category system and a special parameter identifier.
model_builder reads the component’s category from the
component attribute .category, and only one component
from the same category will be selected. For instance, even
though PINT has five built-in model components in the
pulsargye.m category, a timing model can only make use of
only one pulsar binary component. As of PINT 0.8.0, we
classify all the components in the categories listed in Table 3.
Each model component specifies its unique parameters in the .
component_special_params attribute, and the model_
builder will first check if these unique parameters are
specified in the .PAR file. In the end, the selected components
are sorted by category, and model parameter values are read in.
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