
Emerging Frameworks for Advancing Scientific
Workflows Research, Development, and Education

Henri Casanova‡, Ewa Deelman§, Sandra Gesing¶, Michael Hildreth‖, Stephen Hudson∗∗, William Koch‡,
Jeffrey Larson∗∗, Mary Ann McDowell‖, Natalie Meyers‖, John-Luke Navarro∗∗, George Papadimitriou§,

Ryan Tanaka§, Ian Taylor‖, Douglas Thain‖, Stefan M. Wild∗∗, Rosa Filgueira†, Rafael Ferreira da Silva∗
‡Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA

§Information Sciences Institute, University of Southern California, Marina Del Rey, CA, USA
¶Discovery Partner Institute, University of Illinois Chicago, Chicago, IL, USA

‖University of Notre Dame, Notre Dame, IN, USA
∗∗Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA

†School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK
∗National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract—Lightning talks of the Workflows in Support of
Large-Scale Science (WORKS) workshop are a venue where the
workflow community (researchers, developers, and users) can
discuss work in progress, emerging technologies and frameworks,
and training and education materials. This paper summarizes
the WORKS 2021 lightning talks, which cover four broad
topics: (i) libEnsemble, a Python library to coordinate the
concurrent evaluation of dynamic ensembles of calculations;
(ii) EduWRENCH, a set of online pedagogic modules that
provides simulation-driven hands-on activity in the browser;
(iii) VisDict, an envisioned visual dictionary framework that
will translate terms, jargon, and concepts between research
domains and workflow providers; and (iv) Pegasus Kickstart,
a lightweight tool for capturing workflow tasks’ performance,
including performance metrics from Nvidia GPUs.

Index Terms—Scientific workflows, training and education, en-
sembles, python, concurrent computing, numerical optimization,
simulation, Nvidia, GPU, monitoring

I. INTRODUCTION

Scientific workflows have proved to be an excellent medium

for representing scientific methods and for enhancing the

efficiency and reproducibility of computational tasks. In the

meantime, modern scientific applications are becoming more

complex, run on heterogeneous resources, and require increas-

ingly computational power, storage capacity, and network and

I/O bandwidths. Workflows provide the necessary abstractions

and mechanisms for efficiently automating the management

of these applications across computing resources (e.g., clouds,

HPC, edge, etc.), while providing fault-tolerance, capturing

provenance records, and enabling reproducible results. Despite

the impressive results to date, workflow research and devel-

opment is still ad-hoc [1]–[3]. As a result, most workflow

systems do not share common and interoperable interfaces,

and therefore workflow applications are locked to a spe-

cific system; there is a steep learning curve for adopting a

workflow system, but limited training materials are available.

Furthermore, there is a strong need for close collaboration and

intensive communication with domain scientists to success-

fully translate high-impact scientific methods into workflows.

While there is a trend to make workflow editors and workflow

dashboards as intuitive as possible, there is a lack of tools that

support direct communication between scientists and workflow

providers.
In this context, the workshop on Workflows in Support of

Large-Scale Science (WORKS) has positioned itself as the

primary venue for workflow researchers and developers to

share and discuss innovative ideas to enhance the current

workflow research and development landscape. Specifically,

WORKS’ lightning talks provide a venue where members of

the community can introduce short talks on works in progress,

emerging technologies and frameworks, and training and ed-

ucation materials to lower the entry barrier and thus increase

adoption. This paper provides overviews of the four lightning

talks from the 16th edition of the workshop (WORKS 2021):

libEnsemble (Section II) – A Python library to coordinate the

concurrent evaluation of dynamic ensembles of calculations.

The library is developed to use massively parallel resources

to accelerate the solution of design, decision, and inference

problems and to expand the class of problems that can benefit

from increased concurrency levels. This talk gives an overview

of the libEnsemble package, highlighting the unique front-end,

modular design, and the capability to run on a large range

of platforms from laptops to thousands of compute nodes on

supercomputers.

EduWRENCH (Section III) – An online educational portal

which emphasizes simulation-based pedagogy for teaching

parallel and distributed computing concepts. This talk gives an

overview of EduWRENCH’s module about workflow concepts

divided into 5 sections. Each section includes: a pedagogic nar-

rative; a simulation-driven hands-on activity in the browser; a

set of practice questions that students answer using simulation

and reasoning, and whose answers can be revealed at will; and

a set of open questions for instructors to be used as homework

or exam questions.

VisDict (Section IV) – A science gateway to enhance the

communication between domain researchers and workflow

74

2021 IEEE Workshop on Workflows in Support of Large-Scale Science (WORKS)

978-1-6654-1136-3/21/$31.00 ©2021 IEEE
DOI 10.1109/WORKS54523.2021.00015

20
21

 IE
EE

 W
or

ks
ho

p
on

 W
or

kf
lo

w
s i

n
Su

pp
or

t o
f L

ar
ge

-S
ca

le
 S

ci
en

ce
 (W

O
RK

S)
 |

 9
78

-1
-6

65
4-

11
36

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
W

O
RK

S5
45

23
.2

02
1.

00
01

5

Authorized licensed use limited to: University of Southern California. Downloaded on April 16,2022 at 18:11:51 UTC from IEEE Xplore. Restrictions apply.

providers by implementing a visual dictionary which trans-

lates terms, jargon, and concepts between both communities.

VisDict will also define a methodology to represent and

map different definitions of knowledge by using semantic

representations (e.g., knowledge graphs using ontology).

Pegasus Kickstart (Section V) – A tool for launching com-

puting tasks, monitoring the behavior of tasks, and capturing

information about tasks’ performance and provenance data.

This talk presents a lightweight tool, designed as an extension

to Pegasus Kickstart, to capture monitoring information from

Nvidia GPUs.

II. COORDINATING DYNAMIC ENSEMBLE CALCULATIONS

WITH LIBENSEMBLE

By: Stephen Hudson, Jeffrey Larson, John-Luke Navarro, and
Stefan M. Wild

libEnsemble [4], [5] is one of a number of extreme-scale

workflow software packages, and primarily distinguishes itself

via its generator-simulator function paradigm that sidesteps

requiring users to define task dependencies in favor of data

dependencies between configurable Python user functions.

This allows the user to focus their attention on function logic.

libEnsemble is quick to install and get started with, re-

quiring minimal dependencies. User functions are accessible,

being written in Python, a language already familiar to a

multitude of researchers. User applications can be launched

with no modification via the supplied executors.

This composable design also lends itself to exploiting the

large library of example user functions that are provided with

libEnsemble, maximizing code re-use. For example, users can

easily select an existing generator function while modifying a

simulator function for their specific use case.

While libEnsemble provides a complete ensemble toolkit,

including a task executor interface, its modular design also

allows users to plug in components from other workflow pack-

ages. For example, in scenarios where the direct launching of

MPI applications from the workers is infeasible, libEnsemble

can use the Balsam workflow manager by swapping to the

Balsam Executor.

libEnsemble coordinates its computations via a simple

manager-workers paradigm as shown in Figure 1. Workers call

the Python generator and simulator functions to perform any

type of computation, then exchange data with the manager to

determine and initiate future ensemble members. The manager

and workers can run on one of three communication mediums:

MPI (via mpi4py), multiprocessing (via Python’s built-in

module), and TCP (for distributed/cloud-based environments).

libEnsemble can dynamically change whether workers are

used for simulators or generators and, as of version 0.8, can

re-allocate resources available to each worker, even at a sub-

node level. Again, this helps users avoid manually specifying

directed task dependencies in a DAG or another paradigm

in favor of focusing on data-flow between generator and

simulator function instances.

Manager
Workers

Receive

Allocator
function

Update active
& idle workers

completed
sim

persistent
gen

active sim

...

idle worker

outpu
t

desiredwork

si
m

ou
tp
ut

sim
work

Fig. 1. Example of data movement between libEnsemble’s manager and
workers. Here, the manager receives output from a completed simulation and
also some other work requested by a persistent generator. This is given to the
allocation function, along with information about what workers are active or
idle. The allocation function determines what work should be done and with
what resources.

Some of our current use-cases take advantage of libEnsem-

ble’s advanced features. These include multi-fidelity stud-

ies that require dynamic scheduling of resources, generator-

directed cancellation of previously issued simulations (in-

cludes killing of running simulations and retrieving partial

results), and restarting ensembles.

We give a demonstration of one generator from the

libEnsemble library. APOSMM, one of the motivating ex-

amples for libEnsemble, implements a parallel multistart op-

timization algorithm (Figure 2). APOSMM accepts or per-

forms an initial sample of the parameter space and starts

local optimization runs from points that do not have better

points in their respective neighborhood. This neighborhood is

adjusted dynamically as simulation outputs are observed from

APOSMM’s requested candidate points distributed to workers

for evaluation via the simulation function.

libEnsemble is in active development in close collaboration

with researchers from a variety of fields. Other example gener-

ator functions include optimization routines, machine learning,

parameter estimation, or sensitivity analysis. Example simu-

lator functions include particle accelerator simulations, sub-

surface flow, and applications using PETSc/Tao. libEnsemble

has been run on many clusters and HPC systems, including

thousand workers runs on ALCF’s Theta and OLCF’s Summit.

We hope to expand libEnsemble’s user-base, support the

needs of scientists performing ensemble computations, and

continue to demonstrate the capabilities of Python in high-

performance computing.

Acknowledgments. libEnsemble was developed as part of the soft-

ware ecosystem for the U.S. Department of Energy exascale comput-

ing project (ECP).

75

Authorized licensed use limited to: University of Southern California. Downloaded on April 16,2022 at 18:11:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Example of the APOSMM generator. Random samples with better
points in their neighborhood are marked as blue circles; red pentagons show
random points that start runs; and black squares are points arising from local
optimization runs.

III. LEARNING FUNDAMENTAL WORKFLOW CONCEPTS

WITH EDUWRENCH

By: Henri Casanova, Ryan Tanaka, William Koch, and Rafael
Ferreira da Silva

Education and training in the field of Parallel and Dis-

tributed Computing (PDC) is known to be challenging (a

testimony to this is the establishment of the EduHPC and

EduPar workshop series, as well as the NSF/IEEE-TCPP

Curriculum Initiative on Parallel and Distributed Computing).

One of the challenges is that many relevant learning objectives

are better achieved by providing students with hands-on active

learning opportunities. This requires providing students with

access to compute platforms and application workloads, which

is (i) not feasible at many institutions; (ii) less feasible as

platform and application configurations of interest are more

complex and distributed; and (iii) requires that students be

trained for several technologies and usage policies, which

requires time and effort, and which can get in the way of

achieving basic learning objectives.

The EduWRENCH project (https://eduwrench.org) aims at

providing teaching and training material for fundamental PDC

topics. The material is organized in modules. Each module, or

subset thereof, can be used to enhance/complement the ped-

agogic content in existing courses and/or to provide training

on particular topics. Independent learners can also complete

the modules as a sequence. The main innovation is that each

module provides several in-the-browser hands-on activities.

These activities are in simulation, meaning that they do not

require access to any particular hardware or software besides

a Web browser. Students can achieve hands-on learning:

they can explore various questions and develop answers to

these questions by running simulations with different input

parameters and by analyzing simulation output. Simulators

are implemented using the WRENCH [6] and SimGrid [7]

simulation frameworks.

The EduWRENCH site provides several modules, some

introductory and others more advanced, such as the module

dedicated to workflows.

A. Overview

The Workflow EduWRENCH module is available at https://

eduwrench.org/pedagogic modules/workflows/ and comprises

five sections. Each section includes: a pedagogic narrative; a

simulation-driven hands-on activity in the browser; a set of

practice questions that students answer using simulation and

reasoning, and whose answers can be revealed at will; and a

set of open questions for instructors to be used as homework

or exam questions. The sections in the module are as follow:

Fundamentals – The concept of a workflow as a task-graph

with data dependencies is presented to the students. Then,

using simulation, students are able to observe and reason about

a workflow’s execution on a single multi-core host with a given

RAM capacity and a single disk.

Distributed Execution – The workflow execution is now

distributed on the network, using a remote cluster of multi-

core hosts and a remote data store. Students then observe and

reason about the workflow execution on this platform.

Data Locality – A “cache” data store is now co-located with

the cluster. Using simulation, students can then observe and

reason about the effect of data locality on the execution.

Mixed Parallelism – In this section, workflow tasks are data-

parallel programs, so that the workflow exhibits both task- and

data-parallelism. Students are introduced to these concepts,

and once again are able to understand and experiment with

them hands-on via simulation for a workflow execution.

Capstone – This last section does not include any simulation

activity. Instead, it is a small case-study in which students

apply everything that they have learned in the module to

make decisions regarding resource provisioning (given a fixed

budget) to optimize the execution of a particular workflow.

We provide here an overview of the “Mixed Parallelism”

section in which students first go through a pedagogic narrative

that introduces relevant concepts driven by an example work-

flow. Students are then presented with a simulation scenario for

that same example workflow, as depicted in Figure 3. A 5-task

diamond workflow, in which three tasks are data-parallel with

a different Amdahl’s law parameter α, is to be executed on two

compute nodes, each with 3 cores. The goal is to understand

how using different numbers of cores for the data-parallel tasks

impacts workflow execution and the performance thereof. To

this end, the students can provide parameters to the simulation,

as depicted in Figure 4. The simulation produces different

kinds of output, including a Gantt chart of task executions

(Figure 5) as well as a view of host/core utilization (Figure 6).

76

Authorized licensed use limited to: University of Southern California. Downloaded on April 16,2022 at 18:11:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Mixed parallelism simulation scenario.

Fig. 4. Mixed parallelism simulation input form.

Students are then asked to answer several practice questions,

using the above simulation to determine or double-check

answers. For instance, one question is “Say that you must

configure two of the data-parallel tasks to use 1 core, and

the third one to use 3 cores. Which task should use 3 cores

to achieve the shortest execution time? Come up with an

answer based on reasoning and then check your intuition in

simulation.” When observing students going through this and

other simulation activities, we find that the vast majority of

Fig. 5. Mixed parallelism simulation output: Gantt chart of task execution.

Fig. 6. Mixed parallelism simulation output: host/core utilization throughput
time.

them use the simulation to explore scenarios/options that are

not part of the specific questions of them, but often merely to

satisfy their own curiosity.

B. Usage

The effectiveness of the simulation-based pedagogic ap-

proach used in EduWRENCH has been demonstrated via

qualitative and quantitative user-studies in the classroom. In

terms of the specific workflow module, it has been used

successfully to date in more than four undergraduate university

courses at our institutions. Early evaluation results obtained in

the classroom have shown the effectiveness of the simulation-

driven pedagogic approach, and student feedback has been

used to improve the pedagogic content and its delivery [8].

Usage logs show that the module has been used by users

worldwide as part of other university courses. Also, this

module has been used for other purposes, such as for training

incoming Masters students that join the SciTech research

group at the USC Information Sciences Institute.

Acknowledgments. This work is funded by NSF contracts #1923539

and #1923621; and partly funded by NSF contracts #2103489, and

#2103508. This research used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory, which is

supported by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC05-00OR22725.

77

Authorized licensed use limited to: University of Southern California. Downloaded on April 16,2022 at 18:11:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. An example for an entry for the visual dictionary where the definition is the same while the illustration illuminates the different aspects of an
experiment per domain.

IV. VISDICT: ENHANCING THE COMMUNICATION

BETWEEN WORKFLOW PROVIDERS AND USER

COMMUNITIES VIA A VISUAL DICTIONARY

By: Sandra Gesing, Rafael Ferreira da Silva, Ewa Deelman,
Michael Hildreth, Mary Ann McDowell, Natalie Meyers, Ian
Taylor, and Douglas Thain

Thousands of researchers [9] rely on scientific workflows

for managing analyses, simulations, and other computations in

almost every scientific domain [10], [11]. Scientific workflows

have underpinned some of the most significant discoveries of

the last decade, including the first detection of gravitational

waves from colliding black holes [12]. The creation of work-

flows supporting a research topic requires an understanding of

the targeted problem and can be a labor-intensive and error-

prone process. One source of errors is the communication

between domain researchers and workflow providers. While

the agreement on one natural language for communication -

or involving a translator - is the typical set up communication,

there is a lack of tools or translators for communication

between research domains and computer science. The project

VisDict will fill this gap by providing a set of vocabularies

in a science gateway to enhance communication. The goal

is to present a definition for different domains and workflow

providers and thus, serve as source for terms. Adding visual-

ization will lower the communication barrier further following

the saying “A picture is worth a thousand words.”

VisDict just started and the project plans a series of surveys

and interactions with the workflow and domain science com-

munities. Surveys and focus groups are an integral part of the

project, and will be crucial for identifying the terms that will

compose the base of common knowledge between the commu-

nities. Another goal is to define a methodology to represent

and map different definitions of knowledge. This goal will

be accomplished through the use of semantic representations

(e.g., knowledge graphs using ontology) in which computer- or

domain-specific terms will be related to definition of terms in

each domain. A science gateway will convey knowledge maps

of the domain-specific terms in the form of visual dictionaries.

The key for an excellent dictionary is to understand the

pain points of user communities and workflow providers in

the communication. The goal is to integrate definitions of

the terms each group uses and they are familiar with and

extend definitions via visual presentations. Figure 7 shows

the example of the term “experiment”. While the definition

is the same for computer science, biology and physics, the

illustration reveals the different aspects the researchers might

have in mind when talking about experiments. Another use

case for the visual dictionary would be a term like library.

The definitions per domain would be different as well as the

visualization per domain.

The vision is that the VisDict framework can be used as

DaaS (dictionary-as-a-service) for many research domains and

more IT-related domains beyond workflows.

Acknowledgments. This work is funded by NSF contracts #2100561

and #2100636.

V. A LIGHTWEIGHT GPU MONITORING EXTENSION FOR

PEGASUS KICKSTART

By: George Papadimitriou and Ewa Deelman

Compute jobs in the Pegasus workflow management system

(WMS) [12] are wrapped using a lightweight C executable

called “pegasus-kickstart” (Kickstart) [13], [14] that captures

runtime job performance and provenance data. The toolkit

78

Authorized licensed use limited to: University of Southern California. Downloaded on April 16,2022 at 18:11:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Kickstart online monitoring.

collects useful information about the execution of the wrapped

task such as the environment setup, performance data and

output logs. Kickstart is a very important component of

the Panorama data collection architecture [15]. In Pegasus’

Panorama branch [16], Kickstart has been extended to include

fine-grained monitoring capabilities that can pull resource

usage statistics of workflow running tasks within a user-

defined time interval. This information is then published to an

AMQP [17] endpoint in JavaScript Object Notation (JSON)

format so it can be ingested into a repository, saved to a

storage system, or uploaded to an analysis framework (e.g.,

Elasticsearch [18]). Until now though, Kickstart could only

collect statistics available in Linux’s procfs [19], ignoring

other subsystems, such as graphics processing units (GPUs).

A. Approach

To extend Kickstart’s capabilities with monitoring support

for Nvidia GPUs, we are leveraging Nvidia’s monitoring

library (NVML) [20]. NVML offers a C-based API for mon-

itoring and managing various states of Nvidia GPU devices.

We have extended Kickstart (Figure 8) with a lightweight C

wrapper for the NVML library that queries the state of all

the GPU devices available on an execution host machine.

Kickstart polls for new GPU statistics on a user-defined

interval and populates JSON formatted events. Kickstart GPU

polling supports multithreading and creates a new polling

thread for each GPU device, which is essential when sampling

the PCI-Express bus utilization.

Events. During a job’s execution there are three events pro-

duced by Kickstart containing information about the Nvidia

GPUs.

• kickstart.inv.online.gpu.env: This event is produced

once at the beginning of the job and it contains informa-

tion about the GPU environment (e.g., number of GPUs,

driver version, type of GPUs etc.)

• kickstart.inv.online.gpu.stats: This event is produced

throughout the execution and it contains a snapshot of the

GPU counters at that given time (e.g., GPU utilization,

memory usage, power consumption etc.)

• kickstart.inv.online.gpu.stats.max: This event is pro-

duced at the end of the execution, and it contains max

values observed during the run (e.g., max GPU utilization,

max GPU temperature etc.)

All of the events are easily correlated with workflow runs

and their respective jobs, since they are annotated with work-

flow related attributes (e.g., workflow uuid, dag job id). In the

case of the GPU statistics event, there are some optional fields

that are controlled via environment variables. The full list and

description of the fields available in the produced events can

be found on GitHub [21].

B. How to use

Installation. This tool is available under Pegasus Panorama

branch [16] and can be used independently of Pegasus.

Precompiled versions of this branch can also be found on

the Pegasus download server [22]. Even though this tool is

distributed with the Pegasus WMS it is a standalone tool

and can be installed and used without using the rest of the

system. On the Pegasus download server you will find the

lightweight worker package that contains Kickstart and other

essential Pegasus’ tools (e.g., pegasus-transfer), which can be

downloaded and installed independently.

Configuration. An example of using GPU-aware Kickstart

with Pegasus is the “Predict Future Sales” workflow [23].

It has been configured to use the “–monitoring” flag during

workflow generation. This flag instructs Pegasus Panorama to

enable GPU monitoring for the jobs requesting GPUs, and

orchestrates the data collection via an AMQP point.

To collect GPU traces using Kickstart as a standalone tool,

one must set the following flags to “pegasus-kickstart”:

• -m ¡interval¿: enables online monitoring and collects

traces at every ¡interval¿

• -G: enables GPU monitoring (Note: this flag is considered

only if the -m flag has been provided)

Finally, an environment variable sets the location where the

statistics will be published (KICKSTART MON URL). Either

file or AMQP endpoints can be specified. An example of a

standalone invocation can be seen in Listing 1. For more we

refer you to the “pegasus-kickstart” documentation [14].

C. Related and Future Work

Nvidia offers tools for detailed profiling and analysis (e.g.,

NVIDIA Nsight Tools), which provide in depth analysis of

GPU kernels and can aid in debugging and performance

optimizations. However, these tools add extra overhead that

cannot be tolerated in production and they don’t integrate well

with other third party tools (e.g., monitoring tools of workflow

management systems). Additionally, HTCondor [24] in version

8.8.9 introduced GPU monitoring, but it only offers statistics

about the avg. GPU utilization and maximum memory usage,

and no tracing is supported. With Kickstart we are able to

79

Authorized licensed use limited to: University of Southern California. Downloaded on April 16,2022 at 18:11:51 UTC from IEEE Xplore. Restrictions apply.

Listing 1 Example invocation of GPU monitoring
export KICKSTART_MON_URL = \

rabbitmq://[USERNAME:PASSWORD]@hostname[:port]/api/exchanges/[VIRTUAL_HOST]/[EXCHANGE_NAME]/publish
or
export KICKSTART_MON_URL = file://filename
pegasus-kickstart <args> -G -m 10 ./exec

correlate GPU monitoring traces directly with workflow job

executions.

We are currently working on extending the GPU monitoring

feature to more devices such as AMD’s ROCm GPUs.

Acknowledgments. This work is funded by DOE contract #DE-

SC0012636 and NSF contract #1664162.

REFERENCES

[1] R. Ferreira da Silva, H. Casanova, K. Chard, D. Laney, D. Ahn,
S. Jha, C. Goble, L. Ramakrishnan, L. Peterson, B. Enders, D. Thain,
I. Altintas, Y. Babuji, R. Badia, V. Bonazzi, T. Coleman, M. Crusoe,
E. Deelman, F. Di Natale, P. Di Tommaso, T. Fahringer, R. Filgueira,
G. Fursin, A. Ganose, B. Gruning, D. S. Katz, O. Kuchar, A. Kupresanin,
B. Ludascher, K. Maheshwari, M. Mattoso, K. Mehta, T. Munson,
J. Ozik, T. Peterka, L. Pottier, T. Randles, S. Soiland-Reyes, B. Tovar,
M. Turilli, T. Uram, K. Vahi, M. Wilde, M. Wolf, and J. Wozniak,
“Workflows Community Summit: Bringing the Scientific Workflows
Community Together,” Mar. 2021.

[2] R. Ferreira da Silva, H. Casanova, K. Chard, T. a. Coleman, D. Laney,
D. Ahn, S. Jha, D. Howell, S. Soiland-Reys, I. Altintas, D. Thain,
R. Filgueira, Y. Babuji, R. M. Badia, B. Balis, S. Caino-Lores,
S. Callaghan, F. Coppens, M. R. Crusoe, K. De, F. Di Natale, T. M. A.
Do, B. Enders, T. Fahringer, A. Fouilloux, G. Fursin, A. Gaignard,
A. Ganose, D. Garijo, S. Gesing, C. Goble, A. Hasan, S. Huber, D. S.
Katz, U. Leser, D. Lowe, B. Ludaescher, K. Maheshwari, M. Malawski,
R. Mayani, K. Mehta, A. Merzky, T. Munson, J. Ozik, L. Pottier,
S. Ristov, M. Roozmeh, R. Souza, F. Suter, B. Tovar, M. Turilli, K. Vahi,
A. Vidal-Torreira, W. Whitcup, M. Wilde, A. Williams, M. Wolf, and
J. Wozniak, “Workflows Community Summit: Advancing the State-
of-the-art of Scientific Workflows Management Systems Research and
Development,” Jun. 2021.

[3] R. Ferreira da Silva, H. Casanova, K. Chard, I. Altintas, R. M. Badia,
B. Balis, T. a. Coleman, F. Coppens, F. D. Natale, T. Fahringer,
R. Filgueira, G. Fursin, D. Garijo, C. Goble, D. Howell, S. Jha, D. S.
Katz, D. Laney, U. Leser, M. Malawski, K. Mehta, L. Pottier, J. Ozik,
J. L. Peterson, L. Ramakrishnan, S. Soiland-Reyes, D. Thain, and
M. Wolf, “A community roadmap for scientific workflows research and
development,” arXiv preprint arXiv:2110.02168, 2021.

[4] S. Hudson, J. Larson, J.-L. Navarro, and S. M. Wild, “libEnsemble: A
library to coordinate the concurrent evaluation of dynamic ensembles of
calculations,” IEEE Transactions on Parallel and Distributed Systems,
2021, to appear.

[5] S. Hudson, J. Larson, S. M. Wild, D. Bindel, and J.-L. Navarro,
“libEnsemble user manual, version 0.7.1,” Argonne, Tech report, 2021.
[Online]. Available: https://libensemble.readthedocs.io

[6] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,
W. Koch, S. Albrecht, J. Oeth, and F. Suter, “Developing accurate and
scalable simulators of production workflow management systems with
wrench,” Future Generation Computer Systems, vol. 112, pp. 162–175,
2020.

[7] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, 2014.

[8] H. Casanova, R. Tanaka, W. Koch, and R. Ferreira da Silva, “Teach-
ing Parallel and Distributed Computing Concepts in Simulation with
WRENCH,” Journal of Parallel and Distributed Computing (JPDC),
no. 156, pp. 53–63, 2021.

[9] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. Ferreira da Silva,
G. Papadimitriou, and M. Livny, “The evolution of the pegasus workflow
management software,” Computing in Science Engineering, vol. 21,
no. 4, pp. 22–36, 2019.

[10] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields et al., Workflows
for e-Science: scientific workflows for grids. Springer, 2007, vol. 1.

[11] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor, “Scientific work-
flows: Past, present and future,” 2017.

[12] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus: a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[13] G. Juve, B. Tovar, R. Ferreira da Silva, D. Krol, D. Thain, E. Deelman,
W. Allcock, and M. Livny, “Practical resource monitoring for robust
high throughput computing,” in Workshop on Monitoring and Analysis
for High Performance Computing Systems Plus Applications, 2015.

[14] SciTech, “Pegasus Kickstart Documentation,” https://pegasus.isi.edu/
documentation/manpages/pegasus-kickstart.html?highlight=kickstart.

[15] G. Papadimitriou, C. Wang, K. Vahi, R. Ferreira da Silva, A. Mandal,
L. Zhengchun, R. Mayani, M. Rynge, M. Kiran, V. E. Lynch, R. Ket-
timuthu, E. Deelman, J. S. Vetter, and I. Foster, “End-to-end online
performance data capture and analysis for scientific workflows,” Future
Generation Computer Systems, vol. 117, pp. 387–400, 2021.

[16] SciTech, “Pegasus panorama,” https://github.com/pegasus-isi/pegasus/
tree/panorama.

[17] Pivotal, “Rabbitmq,” https://www.rabbitmq.com/.
[18] “ELK stack,” https://www.elastic.co/elk-stack, 2018.
[19] L. Foundation, “procfs,” https://www.kernel.org/doc/html/latest/

filesystems/proc.html.
[20] Nvidia, “NVML,” https://docs.nvidia.com/deploy/nvml-api/index.html.
[21] SciTech, “Kickstart gpu events,” https://github.com/pegasus-isi/pegasus/

blob/panorama/src/tools/pegasus-kickstart/nvidia/README.md.
[22] ——, “Pegasus download server,” http://download.pegasus.isi.edu/

pegasus.
[23] ——, “Predict Future Sales Workflow,” https://github.com/pegasus-isi/

predict-future-sales-workflow.
[24] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in

practice: the condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

80

Authorized licensed use limited to: University of Southern California. Downloaded on April 16,2022 at 18:11:51 UTC from IEEE Xplore. Restrictions apply.

