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ARTICLE INFO ABSTRACT

Keywords: Motivation: Depressive disorders are highly prevalent and impairing psychiatric conditions with neurocognitive
EEG abnormalities, including reduced event-related potential (ERP) measures of reward processing and emotional

ERP reactivity. Accurate classification of Major Depressive Disorder (MDD) based on ERP data could help improve our

3%’];%510" understanding of these alterations and propel novel diagnostic or screening measures. However, it has been
Machine learning particularly challenging due to the lack of generalization for noisy raw data with small sample sizes. We aim to
Classification improve classification performance for MDD using noisy ERP datasets using machine learning (ML) techniques.

Results: We have developed two optimizations in our ML-based analysis of ERP datasets: effective feature
extraction in the preprocessing of high-dimensional noisy data and enhanced classification through ensemble ML
models. Together with a carefully designed validation strategy, our techniques provide a highly accurate method
for MDD classification even for ERP data that are limited in sample size, inherently noisy and high-dimensional
in nature. Our experimental results demonstrate that our ML optimizations achieve great accuracy and nearly
perfect sensitivity simultaneously, particularly in classifying data samples unseen during the training process,

compared to prior studies that perform regression-based classifications.
Supplementary information: A supplementary document on ERP data collection is available.

1. Introduction

Major depressive disorder (MDD), known colloquially as depression,
is a frequent and serious mental disorder characterized by symptoms of
depressed mood, loss of interest, and decreased energy. Depression is
often chronic, recurrent, and comorbid. According to the World Health
Organization (WHO), the proportion of the global population with
depression in 2015 is estimated to be 4.4% [47]. It is also the leading
cause of disease burden worldwide and was estimated to become the
second most common cause of death and disability by 2020 [46].

Diagnostic determination of depressive disorders, such as major
depressive disorder (MDD) or persistent depressive disorder (PDD), is
usually performed using diagnostic interviews based on criteria from the
Diagnostic and Statistical Manual of Mental Disorders [3]. Such in-
terviews are time consuming and require specialized personnel. In
addition, depressive disorders vary in symptomatology, and existing
DSM subtypes have only limited predictive utility with regards to clin-
ical course or therapy response. Moreover, the diagnostic criteria for
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MDD do not explain the etiopathogenesis of the disorder; depression is
descriptive, not mechanistic. Increasingly, depression is understood to
reflect abnormalities in the brain’s reward system-evident in blunted
neural response to reward and positive stimuli [17,38]. Thus, the quest
for additional objective biomarkers to aid early diagnosis and prognosis
of depressive disorders has recently attracted significant research in-
terests. Some have explored the use of Machine Learning (ML) and
artificial intelligence (AI) technologies because of their success and
popularity in other domains. new platforms and modern technologies,
new applications for machine learning are increasingly feasible [20,33].

Accurate classification of depression requires careful optimization
and thorough training of Machine Learning models. To this end, we need
to develop an ML model that has been trained by neural datasets
collected from individuals clinically diagnosed with MDD and healthy
controls (HC) from a previous study [25]. Then, based on the knowledge
learned from the prior cases, the best models are selected to predict
whether a new subject (with unseen neural measures) should be clas-
sified as having depression or not.
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A wide variety of data sources can be used for MDD classification
approaches, using either subjective methods such as questionnaires or
description of symptoms, or objective assessment methods such as
event-related potentials (ERP) or magnetic resonance imaging (MRI).
ERP are collected as time-locked Electroencephalogram (EEG) activities.
Both EEG [1,23,24,33,34] and MRI [20] have been employed as bio-
markers in machine learning models for the diagnosis of MDD. For
example, Mumtaz reported the application of the Support Vector Ma-
chine, Naive Bayes and Logistic Regression models in the diagnosis of
MDD [34]. As a follow-up, the same team developed a machine learning
framework that can leverage EEG-derived synchronization likelihood
features and detect MDD patients with a relatively high accuracy [35].
With the same dataset, [31] developed four different ML-based classi-
fiers for the detection of MDD patients based on the linear and non-
linear features of EEG signals. These recent publications demonstrate
that ML models can be developed to improve diagnosis and classification
of MDD patients using objective neural measures. The combination of
multiple diagnostic methods may provide even better predictive
performance.

Event-related potentials (ERPs) are direct measures of brain’s neural
responses to events, derived from the ongoing EEG. They have been
shown to be robust measures of neurocognitive functions with excellent
psychometric properties [22] and can relate to both individual differ-
ences in depressive symptoms and categorical clinical diagnoses of
depression. Furthermore, ERP measures allow for analysis and quanti-
fication of neural processing of events with high temporal resolution at
the scale of milliseconds. Moreover, they involve relatively low cost, and
can be collected and analyzed relatively rapidly [29]. Unlike MRI, ERP
data collection can be performed in diverse clinical settings and has very
few contraindications. Thus, ERPs as measures of neurocognitive alter-
ations in clinical depressive disorders are well-suited to support ML-
based classification of MDD patients.

In the context of depression, two neurocognitive functional alter-
ations have been studied using ERPs — reward insensitivity and impaired
emotional reactivity [38]. Both dysfunctions have been put forward as
mechanisms of anhedonia, a core symptom of depression [17]. ERP
studies on reward dysfunction in depression focus on the reward posi-
tivity (RewP), an ERP evident when participants win money in simple
guessing tasks. The RewP is maximal approximately 250 to 350 ms (ms)
following feedback indicating monetary gains and is absent or reduced
following losses [38], thus, the RewP is commonly measured as the
difference between the ERP response to gains minus losses. The RewP
has good psychometric properties [26], and relates to both behavioral
[8] and fMRI measures of reward circuit function [6,11]. Critically, the
RewP has been found to be reduced in individuals with current clinical
depression [10,16,25,28] Furthermore, it was demonstrated that RewP
improved sensitivity and positive predictive values in the classification
of first-onset depressive disorders when used in conjunction with base-
line depressive symptoms [36].

With regard to impairments in emotional reactivity in depression,
the processing of emotionally evocative stimuli has been studied using
the late positive potential (LPP), a stimulus-locked ERP component that
is increased following the presentation of emotional content [14]. The
increased LPP covaries with emotional arousal and is thought to reflect
increased attention to motivationally salient stimulus content [16,41]
and has been shown to possess good psychometric properties [32].
Previous work shows blunted neural response to emotional pictures, as
indicated by smaller amplitude of the LPP in individuals with current
depression [15,30,41-43].

Both LPP and RewP were recently assessed together in the same
relatively large sample of depressed adults [25]. We found that both
reduced RewP and LPP independently predicted depression status. In
addition, the differentiation between the depressed and healthy groups
was improved when both ERP measures were employed in combination.
However, our prediction was mostly made with a regression model, and
was not optimized on the predictive performance on unseen data. It is
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important to examine if other contemporary ML models or an ensemble
of multiple ML models can provide further improvement on the pre-
diction accuracy, particularly on data unseen by the model during
training.

To this end, we have developed a framework that can optimize ML
models for depression classification using ERPs. Our framework tackles
the noisy nature of ERP measures and its impact on the accuracy of
unseen data through two methods: engineered feature extraction and
principal component analysis for dimension reduction [4,5] of noisy
data. In addition, we have trained a total of seven ML models including
the Random Forest [7] and ExtraTree(Extremely Randomized Trees)
[21] models, which are well-known to address overfitting problem, to
identify a few selected models for their predictive efficacy, and created a
stacking ensemble ML models based on the base ML models. Some
ensemble base models and the stacking ensemble model carry built-in
noise reduction capability. Finally, the framework has employed a
validation strategy through a combination of cross-validation and in-
dependent holdout testing techniques to minimize the overfitting issue
on unseen data.

Our experimental results demonstrate that our ML optimizations
achieve great accuracy and nearly perfect sensitivity simultaneously,
particularly in classifying data samples unseen during the training pro-
cess, compared to prior studies that perform regression-based
classifications.

2. Methods

All EEG and clinical data used for the current study stem from a
dataset previously examined by means of classic ERP quantification and
regression-based analysis [25] and were re-analyzed here using ML
techniques. The details of ERP data collection and processing are
available from the supplementary document.

EEG data of adequate quality were available for 81 MDD and 43 HC
participants for the reward task (RewP), 80 MDD and 42 HC participants
for the picture viewing task (LPP), and 78 MDD and 40 HC participants
for analyses that combined data from both tasks.

Starting from these EEG clinical data, we have formulated a frame-
work that can develop optimized ML models for depression classification
using ERPs, as shown in Fig. 1. Using both RewP and LPP datasets, our
framework for the optimization of ML models consists of two main
phases, data pre-processing and model development, which are performed
in an iterative manner.

First of all, we formalize the RewP and LPP datasets into a stan-
dardized structure conformant to all the ML models, which is shown in
the first data pre-processing phase in Fig. 1. For our development of
optimized ML models on a small set of RewP and LPP samples, the lack
of generalization is a major challenge. Specifically, because the number
of samples is limited, the random noise from samples cannot cancel each
other and will be assimilated by the model. Therefore, the learned model
will perform poorly on future unseen data, a problem also known as
overfitting or high variance issue. To cope with the noisy nature of the
ERP measures and its effect on the accuracy of unseen data, we have
employed engineered feature extraction and principal component
analysis for dimension reduction of noisy data. Because the dimension
reduction methods require hyperparameter tuning together with
downstream ML models, it is performed in the second model development
stage inside the iteration whereas the feature extraction is performed in
the first pre-processing stage. Furthermore, we have trained a total of
seven base ML models including Random Forest and ExtraTree and
created a stacking ensemble ML models based on the base ML models.
Finally, the validation strategy of the combination of cross-validation
(CV) and holdout testing techniques was employed to minimize the
overfitting issue on unseen data.

For each iteration, we evaluate a combination of features with
various candidate models and model hyperparameters based on care-
fully selected classification metrics. The top candidate models exhibiting
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Fig. 1. Optimization of ML Models for MDD Classification.

best CV metrics are further tested on an independent holdout dataset to
confirm that the achieved performance would reproduce on future un-
seen data. The results are leveraged in the next iteration for further
evaluation of data pre-processing methods and ML models. In the rest of
the section, we describe these phases in detail.

2.1. Data pre-processing

2.1.1. Data organization

Data Exploration: The first step of the data pre-processing was to
explore and understand the data. The smallest units in the raw data were
time-domain electrical potential value vectors collected from many EEG
channels. The signals were collected in a certain period at a certain
frequency, so the sizes of the vectors were fixed. For each participant,
the signal vectors were collected from up to 31 EEG channels twice per
channel for gain/loss (RewP) or positive/neutral (LPP) tasks. The
diagnostic status of the participants in terms of a depression diagnosis
was known. Through the exploratory analysis of the dataset, we
confirmed that the signal vectors were collected without outliers or
missing values. Missing channels due to artifact rejection were identi-
fied. The number of participants was at the scale of a hundred which
may be relatively small for some models.

Labeling: General ML models require a dataset to be organized as a
two-dimensional table of numeric values with row-based samples and
column-based features. Classification models as employed in our
research require a class label for each sample vector.

Because the goal was to identify potential participants with a
depression diagnosis, by default, we set the “depressed” label as positive
(1) and the “healthy” label as negative (0). This arrangement of class
labels aligned with the purpose of this work to differentiate potential
depressed participants from the healthy controls. This arrangement af-
fects the statistical metrics which we will further elaborate in Section
2.2.2.

Organization Methods: Several methods of data organization were
attempted. The reason for comparing these variations was to effectively
address two major challenges of our dataset: 1. relatively small sample
size; and 2. missing channels for some participants.

Small sample size is a common challenge in experimental clinical
science because of the high recruitment effort and costs involved in
clinical data collection. An intuitive way to organize our data was to
prepare a single vector for each participant. It resulted in a dataset with
the same number of samples as the number of participants (i.e., at the
scale of around a hundred). The relatively small sample size might cause
high variance (overfitting) issues and hurt the predictive performance
on unseen data. We attempted several methods to address potential

overfitting problems: employment of extracted features as invariants of
the raw signal; dimension reduction before feeding to the ML model;
intrinsic randomness (i.e. BAGGING ensemble models) for some models.

After the sample vectors were organized one-per-participant, the
second challenge was to handle the variable subset of the numerous EEG
channels collected from each participant. We needed to effectively
organize the data into a uniformed format without either missing values
or variable length vectors. The first approach, as a widely employed
strategy, was to ask the domain experts to manually pick the best
channel(s) that are collected for all participants. It has worked well in
past works, but risks information loss from subjective human decision.
Another more data-driven method is to simply ignore participants with
missing channels or channels with missing participants. The latter is
more common because participants were usually more important than
channels. This family of methods can introduce more computation.

Our methods intended to generate samples one-per-participant of
features based on manually picked channel(s). According to the past
research, RewP is typically measured through channel Cz, FCz [16], and
LPP through channel Pz [27], which are all on sagittal plane. Thus, the
datasets with one or more empirically selected sagittal plane channels
were prepared for comparison.

2.1.2. Feature extraction

For each EEG channel of a participant, ERPs included gain and loss
conditions for the RewP dataset, and pleasant (positive) and neutral
ERPs for the LPP data. The difference signals were calculated for both
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Fig. 2. Example RewP signals at channel Cz.
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datasets. Fig. 2 shows a typical RewP ERP signal at one EEG channel for
both gain/loss signals and their difference.

Next, we had the option to directly use ERPs as raw features (option
1) or perform feature extraction on the raw signals to generate more
effective features and reduce noises. Without feature extraction, the raw
signal dataset was noisy and may require a built-in noise reduction
capability for the ML model to obtain good performance. Feature
extraction was performed either manually during the data pre-processing
(option 2) or by adding a dimension reduction model during the model
development (option 3). All three methods were attempted, and the
resulting model performances were compared.

Eight statistical features were extracted manually by applying sta-
tistical aggregation functions as listed in Table 1 to ERP signals of each
channel. They are common time invariants extracted from time-series
signals with minimal noise.

Another important family of feature extraction methods commonly
employed in EEG datasets was the band power analysis. In our case, the
data was transformed to frequency domain using either Fast Fourier
Transformation or the Welch method and the average power in the
delta, theta, alpha, beta, and gamma frequency ranges were collected as
the band features.

In addition to manual feature extraction, three dimension reduction
models known as the principal component analysis (PCA) [9], locally-
linear embedding (LLE) [39] and Isometric mapping (Isomap) [40]
were attempted. PCA was selected in model development for its fast
computation and improved predictive performance in the preliminary
model exploration.

A standardizing transformation was applied to the raw ERP signals
before feeding them to the machine learning model. This would typically
enhance the speed of the model convergence. After this standardization,
the raw features were ready for the model development.

2.2. Model development

Model selection and optimization were guided by its performance in
terms of the CV accuracy score on the training data. Fivefold CV was
employed according to the preliminary results. Other important CV
metrics such as precision, sensitivity/recall, specificity, etc. were
considered in the final selection of the best candidate models. In the
development, the average training metrics and the validation metrics, as
well as their standard deviations, were examined to monitor the po-
tential overfitting, underfitting, and outlier problems.

We chose a subset of available ML classification models according to
the characteristics of our dataset. The ensemble models, especially the
BAGGING (Bootstrap aggregating) models such as the Random Forest
model [7] and ExtraTrees (Extreme Randomized Trees) model [21],
were the focus of the study as they were known to reduce overfitting and
increase the effective sample size by using random subsets of samples.

Support vector machine models [13] using either the linear or the
radial basis function (RBF) kernels were selected for their capability of
reducing overfitting. More models such as K-nearest neighbor [2],
AdaBoost [18], gradient boosting trees [19,12], were also included in
comparison for diversity.

A dimension reduction step mentioned in Section 2.1.2, though

Table 1

Statistical features from manual feature extraction.
Name Description
Maximum The biggest value

Minimum The smallest value

Range The difference between the maximum and minimum
Mean The average of the signals

Standard deviation The variance level of the signals

Skewness The skewness of the major peaks in the signals
Kurtosis The shape of the major peak in the signals

Signal to noise The ratio of the mean to the standard deviation
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considered as a data pre-processing step, was closely integrated into the
model development. When high-dimensional samples were fed to the
model, a dimension reduction model such as the principal component
analysis (PCA) model was optionally pipelined to the ML model.

An ensemble method known as “stacking” was proposed as they were
known to be able to aggregate multiple weaker models and make a
better model [45]. In this approach, multiple base models were
employed to make out-of-fold predictions on the training data and their
combined predictions were aggregated and served as new features for
the consumption of a second level meta-model (usually a logistic
regression model) to make the final prediction. The stacking ensemble
model is a versatile approach to combine the power of multiple models
and take advantage of all models. Stacking models were known to be
robust when multiple uncorrelated ML models are included as base
models. A robust ML model will provide more reproducible results.

Hyperparameters of top models were optimized using a
hyperparameter-pipeline optimizer from the Scikit-Learn library [37].

2.2.1. Validation strategy

We followed the state-of-the-art model validation strategy as follows.
All samples in the dataset were split into two portions, the training set
and the holdout (test) set, in a certain ratio, 80% vs 20% ratio in our
work. The training set was employed in the model selection while the
holdout set was employed in the model testing step. In the model se-
lection step, the training set was further split into folds and a method
known as cross-validation (CV) was employed to obtain the desired
score/metric representing the predictive performance of a candidate
model. With a small sample size, small folds of three or five were favored
over the more commonly used ten. We went for five-folds according to a
preliminary result that favored five folds. The model with a better CV
score would be favored in the development. The holdout set would only
be employed to test the candidate models from the model selection to
confirm that their good CV scores can be reproduced on unseen data. To
avoid information leakage, the score/metric obtained from the holdout
test should only be used to accept/reject candidate models.

Because the numbers of positive and negative labels were not even,
both the train-test split and following CV split were performed in a
stratified way so the positive and negative samples were evenly
distributed in splits.

The statistical significance of the test metrics were tested using the
Wilson score interval [44] at the 95% confidence level.

2.2.2. Predictive performance metrics

Choosing the right statistical metric is essential in the model devel-
opment because it tells us which model is better. In our class label setup,
the depressed label is the positive label while the healthy label is the
negative label. For classification problems, there were several statistical
metrics to examine: The accuracy metric represents the overall predic-
tive performance which indicates how many predictions are correct. The
precision metric indicates how many positive predictions were correct
out of all positive predictions. The sensitivity, a.k.a. recall, metric in-
dicates how many positive predictions were correct out of true positive
cases. The specificity metric indicates how many negative predictions
were correct out of all true negative cases. The area under curve (AUC)
metric of the receiver operating characteristic (ROC) curve indicates the
overall accuracy of both positive and negative predictions but will
handle unbalanced problems, where class labels vastly differ, better than
the accuracy metric.

In our specific case, the ROC AUC metric is not helpful as the class
labels of healthy and depressed participants are relatively balanced at
the ratio of around 2 to 1. We consider the sensitivity/recall metric most
important in the diagnostic-type application, as a high sensitivity score
indicates that the number of misdiagnosed depressed participants is
minimal. Along the same lines, accurately predicting healthy partici-
pants (the negative class) was relatively less significant, so the speci-
ficity metric was less relevant. However, because the sensitivity metrics
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from all top models were so high that the values were too close to
compare. The near perfect sensitivity also lead to the fact that the ac-
curacy, precision, ROC AUC, F-score, and « statistic all correlated. Thus,
the accuracy metric was chosen as the metric to lead model develop-
ment.

3. Results
3.1. Constructed datasets

The dataset with only raw signals and the dataset with all 13 com-
mon EEG channels were excluded from further testing for their poor
performances and high computation overheads in the preliminary
exploration.

RewP and LPP datasets were constructed as combinations of raw
signals and extracted features. Three groups of features were prepared:
1. Standardized raw signals; 2. Statistical invariant features; 3. Fre-
quency Bands features. The standardized raw signal features were
generated by normalization of raw ERP signals using a standard scalar.
The raw signals collected in the gain and loss tasks for the RewP (posi-
tive and neutral tasks for LPP dataset) as well as their difference signals
(gain —loss or positive —neutral) were horizontally concatenated to form
wide vectors as raw signal features. Eight statistical features and five
band features were extracted as described in Section 2.1.2. The features
were combined to construct the base datasets for model development.

Starting from the base datasets which contains all EEG channels, a
single or all channel(s) were selected to produce the derived datasets
(Table 3) for the downstream model selection.

3.2. Selected models

The first round of model development was based on the RewP data.
As mentioned in Section 2.2.1, we use 5-fold CV because of its compa-
rable metrics and smaller standard deviation when compared to 3-fold
CV. For dimension reduction, several methods were tested. Besides
LLE and Isomap, PCA was chosen for its similar performance and less
computation time.

All models as listed in Table 2 in Section 2.2 with default parameters
were tested on datasets consisting of Cz, FCz and Fz channels. Runs with
datasets 2 and 4 have optionally enabled PCA for dimension reduction.
The training performance of top models is listed in the Table 4. K-nearest
neighbor (KNN) models were eliminated from further testing after low
accuracy scores of 0.52 and 0.44 were observed on the holdout test
dataset. Furthermore, the XGB model was also excluded because of
compatibility issues with pipeline libraries and its similar performance
to peer ensemble tree models from the Scikit learn library.

3.3. Classification results

The Linear SVM, ET, RF and RBF SVM models with or without PCA
were employed in the hyperparameter optimization. The grid search
tool from SciKit learn library was employed. A comprehensive grid
search in the hyperparameter space was performed on several datasets
first to obtain a good understanding on the various hyperparameters on

Table 3
Datasets, Feature Combinations and Selected Channels.

Dataset Type Feature combinations Selected channel(s)
1 RewP Statistical Fz, FCz, Cz

2 RewP Raw + Statistical Bands Fz, FCz, Cz

3 RewP Bands + Statistical Fz, FCz, Cz

4 RewP Raw + Bands + Statistical Raw Fz, FCz, Cz

5 LPP Bands + Statistical Cz, Pz

6 LPP Raw + Bands + Statistical Cz, Pz

7 Both Raw + Bands Cz, Pz

8 Both Raw + Bands + Statistical Cz, Pz

Biomedical Signal Processing and Control 71 (2022) 103237

Table 2
Machine learning models.

Model # Detail

Linear support vector machine (Linear SVM)
Radial-basis function support vector machine (RBF SVM)
K-nearest neighbor (KNN)

Ada boost (Ada)

Extreme gradient boosting tree (XGB)

Extra tree (ET)

Random forest (RF)

Stacking ensemble model, models 1-7 as base models

ONOUAWN -

Table 4
Preliminary training (CV) performance with RewP datasets.
Dataset Model Accuracy Precision Sensitivity ROC AUC
1 RBF SVC 0.657 0.657 1.000 0.517
2 RF 0.677 0.670 1.000 0.575
2 ET 0.667 0.663 1.000 0.465
2 XGB 0.677 0.706 0.877 0.622
4 KNN 0.677 0.700 0.892 0.584

the predictive performances. The grids of hyperparameters on all data-
sets were thus chosen as described: For support vector machine (SVM)
models, we set the search space of C to {0.1,1, 10} and the search space
of gamma to {0.1,1}. For ensemble tree models such as RF and ET, we
set the number of sub-classifiers to {10,50,100} when the dataset
include high-dimensional raw features and to {5,10,20,50} otherwise.
When a PCA model was employed, the search space of the number of
components was set to {10, 50, 100}. The grid search in the hyper-
parameter space was performed on all 16 derived RewP datasets and
resulted in 492 runs.

The top results are presented in Table 5. Because of the high sensi-
tivity scores lead to strong correlations among the accuracy, precision,
ROC AUC, F-score, and « statistic, only the accuracy, precision and
sensitivity scores are listed in the table. A pattern observed from the runs
was the ineffectiveness of band features, as none of the top combinations
involved these features. The entry #7 was rejected as the CV training
accuracy was only 0.657, and after further analysis, in both runs, all
class labels were predicted to be positive, meaning that these models
turned out to be doing no classification at all. A group (group #1) of
combinations of statistical features and simple models that carried less
internal parameters such as SVM models (#4) and ensemble models with
small number of base estimators (#1) exhibited excellent performance.
Most top combinations (group #2) (all entries except #1, #4, and #7)
consisted of three key components: 1. BAGGING ensemble tree models
(ET, RF) with relatively large numbers of base estimators (50 or 100); 2.
PCA to reduce the dimension to 100; 3. Raw signals together with sta-
tistical features. In terms of the channel(s), either all three sagittal plane
channels together or FCz and Cz provided high predictive performance.
The preliminary exploration of the data and results of other runs showed
a high correlation among these three sagittal plane channels, so it was
not surprising to see similar performance among the runs on various
channel combinations. We also observed that all models exhibited high
sensitivity performance in cross-validation tests except #1 with small
numbers of estimators. This suggests that more complex ensemble tree
models are preferred for high sensitivity.

The final test of the model performance on the holdout test dataset
were performed on the combination #4 representing group 1 and #6
representing group 2. The results were listed in Table 6. Both the ac-
curacy and sensitivity metrics were comparable to the training results.
The 95% confidence intervals were reported and confirmed the signifi-
cance of the results. Thus these models do not suffer from high variance
(overfitting) issues. They are expected to work well with future unseen
data.

As the results of the original traditionally analyzed study, [25]
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Table 5
Training performance with RewP datasets.
Train Test
Run Dataset Channels Model Dim Red Accuracy Precision Sensitivity Accuracy Precision Sensitivity
1 1 FCz RF-5 None 0.960 0.955 0.985 0.697 0.732 0.862
2 2 all ET-100 PCA-100 1.000 1.000 1.000 0.687 0.678 1.000
3 2 Cz RF-50 PCA-100 1.000 1.000 1.000 0.687 0.685 0.969
4 1 FCz RBF SVM None 1.000 1.000 1.000 0.677 0.671 1.000
5 2 all ET-50 PCA-100 1.000 1.000 1.000 0.677 0.671 1.000
6 2 all RF-100 PCA-100 1.000 1.000 1.000 0.667 0.667 0.984
7 1 all RBF SVM None 0.657 0.657 1.000 0.657 0.657 1.000
Table 6 smallest data and model sizes and fastest model executions. One draw-
able . sps s N
. back was the slightly lower sensitivity metrics. Because of the smaller
Test performance with RewP datasets. . .
number of parameters in the model, this group of models may not
Run Model Accuracy Sensitivity benefit from added data of same type in the future.
4 RBF SVM 0.640 + 0.04 1.000 + 0.00 The second group of combinations consisted of: 1. Raw signals plus
6 RF 0.640 + 0.04 0.938 £ 0.01 statistical features; 2. ensemble tree models with a relatively larger

showed that the incorporation of LPP data with RewP data into the
group status prediction enhanced the predicative performance, we
tested the same set of models on LPP data only and the datasets with
both RewP and LPP data. The Cz and Pz channels were selected in the
comparison according to prior domain knowledge. The top CV results
were listed in Table 7. The trend was similar to that of the RewP data-
sets. The RBF kernel SVM model, stacked model, and ensemble tree
models performed best among all models. It was interesting to see that
the stacking model of all base models (entry 4 in Table 7) exhibited
comparable performance. The predictive performance was also similar.

Similarly, the performance for Entries #1, #2 and #4 is confirmed by
the final validation on the holdout test datasets to represent the two
groups of models (shown in Table 8) on the combined RewP + LPP
datasets. The accuracy scores were slightly different from that of the
RewP only dataset albeit overall similar (around one more or less
participant was correctly predicted). The 95% confidence intervals
confirmed the significance of the results.

In our current study, the incorporation of the LPP datasets in addi-
tion to the RewP datasets was not affecting the predictive performance
by much. This observation is in contrast with the prior work [25], where
by integrating both RewP and LPP measures the accuracy of diagnostic
status classification improved from 53% to up to 66% with a linear
regression model. One possible reason for the relative non-relevance of
the additional data in the current study could be that the machine
learning models with larger internal complexity were able to learn
enough important information from the RewP data alone. From the
perspective of the ML models, the LPP dataset may have contained the
same or related information as the RewP data, so the predictive per-
formance was not improved by integrating both data sources. In
contrast, for simpler linear regression family of models employed in the
referred paper, the simpler model might have leveraged additional
variance in the LPP to improve predictions from the RewP. Another
difference compared to the linear regression-based model is that our ML
models are optimized for better predictive performance on future data
using models trained with past data. Thus, the results are not directly
comparable.

4. Conclusion

In this research, we have extensively explored the combination space
of datasets, models and model hyperparameters, and found two groups
of combinations of features and models that provided excellent sensi-
tivity metrics and high accuracy metrics.

The first group of combinations consisted of: 1. Statistical features; 2.
A simple model like RBF SVM or RF with a small number of base esti-
mators; 3. No dimension reduction. This group had the benefit of the

number of base estimators; 3. an optional PCA as dimension reduction to
reduce the dimension to 100. This group exhibited perfect sensitivity
metrics. It is also expected to benefit from added data of same type in the
future because the intrinsically high complexity of the model. High
sensitivity indicates the high confidence in the detection of depressed
individuals, which is a valuable characteristic of a screening tool. Both
group of models exhibited nearly perfect sensitivity with only a few (or
no) participants in the test dataset misclassified as depressed.

The performance has been evaluated using the holdout(test) dataset
constructed to minimize the possibility of overfitting. Our models are
expected to work well with future unseen data. Accurate classification
on unseen data is a major advantage of the ML models developed in the
current study in comparison to the previous regression-based analyses of
the same data. These traditional regression models would only be rele-
vant for the specific datasets. In contrast, the ML models derived in the
current study have been tested on the unseen holdout data and
demonstrated to perform well on new datasets. However, our ML models
could not gain much in their accuracy or sensitivity when the LPP data
were included with RewP data. This is because the LPP data are collected
from different stimuli and our ML models are not sensitive to ERP data of
mixed compositions.

In conclusion, through a combination of an effective noise reduction
method and ensemble ML models, we have developed a highly accurate
method for MDD categorization. Our experimental results with exten-
sive training and test datasets demonstrate that our optimized ML
techniques achieve high accuracy and nearly perfect sensitivity - an
innovation relative to prior studies that provides enhanced effectiveness
of classifying neurocognitive alterations associated with MDD. Future
studies could test this ML model in novel participant data, collected
across multiple labs, to further examine sensitivity and classification
accuracy.

Funding

Google LLC for partial funding of the original study. This work is also
supported in part by the National Science Foundation awards 1744336
and 1763547. This work uses the NoleLand infrastructure that is funded
by the U.S. National Science Foundation grant CNS-1822737. Any
opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

CRediT authorship contribution statement
Xingang Fang: Methodology, Investigation, Software, Formal anal-

ysis, Validation, Writing - original draft, Visualization. Julia Klawohn:
Data curation, Writing - review & editing. Alexander De Sabatino:



X. Fang et al. Biomedical Signal Processing and Control 71 (2022) 103237

Table 7
Training performance with LPP and RewP + LPP datasets.
Train Test
Run Dataset Channels Model Dim Red Accuracy Precision Sensitivity Accuracy Precision Sensitivity
1 6 Pz Stacking None 1.000 1.000 1.000 0.691 0.685 0.984
2 5 Cz RBF SVM None 0.992 0.988 1.000 0.670 0.678 0.952
3 6 Cz ET None 1.000 1.000 1.000 0.670 0.691 0.906
4 7 Pz Stacking None 1.000 1.000 1.000 0.670 0.674 0.968
5 8 Cz RBF SVM PCA-100 1.000 1.000 1.000 0.660 0.660 1.000
editing, Supervision, Funding acquisition.
Table 8
Test performance with LPP and RewP + LPP datasets.
Run Model Accuracy Sensitivity Declaration of Competing Interest
1 Stacking 0.640 + 0.04 0.938 + 0.02 o .
5 BT 0.640 & 0.04 0.938 4 0.02 . The authors decllar;: t.hat 1tlkiley ll1lave ncidk}rllown compe(timg .ﬁganmal
4 Stacking 0.625 4 0.04 0.938 - 0.02 interests or personal re z.itlons ips that could have appeared to influence
the work reported in this paper.
Investigation, Software, Writing - review & editing. Harsh Kundnani: Acknowledgements
Investigation. Jonathan Ryan: Writing - review & editing. Weikuan
Yu: Conceptualization, Writing - review & editing, Supervision, Project Dr. Kristen Schmidt for clinical assessments, Alec Bruchnak and
administration. Greg Hajcak: Conceptualization, Writing - review & Nicholas Santopetro for data collection.

Appendix A. ERP data collection procedure
A.1. Participants

Participants were recruited from the local community of Florida State University (FSU). Participants were labeled as MDD positive if they met
standard diagnostic criteria for a current mood disorder (major depressive episode or persistent depressive disorder) in the past two weeks. Exclusion
criteria for the MDD group were the presence of a lifetime diagnosis of a bipolar or psychotic disorder, or a current substance or alcohol use disorder.
Participants were labeled as healthy control if they had never met diagnostic criteria for a mood disorder and did not currently meet criteria for any
other psychiatric disorder. Potential participants were invited to the lab for interview after they passed a SCID-based screening administered over the
telephone. Groups were equated for age, gender, and level of education. Participants were informed about the purpose and procedural details before
the experiments and provided informed written consent. The study was conducted in accordance with the ethical guidelines of the Declaration of
Helsinki and approved by the Florida State University Institutional Review Board. The final sample included 83 MDD individuals and 45 healthy
control participants (HC). EEG data of adequate quality were available for 81 MDD and 43 HC participants for the reward task, 80 MDD and 42 HC
participants for the picture viewing task, and 78 MDD and 40 HC participants for analyses that combined data from both tasks.

A.2. Measures

Presence of current and past mood disorders was assessed in all participants with the Structured Clinical Interview for DSM-5 (SCID-5-RV) First
et al. (2016) by two PhD level clinical psychologists. Other past and present psychopathology was evaluated using the Mini International Neuro-
psychiatric Interview (M.L.N.I.) (Sheehan et al., 1997, 1998) updated for DSM-5 (version 7.0.2).

A.3. Electroencephalogram recording

The electroencephalogram (EEG) was recorded using an active electrode EEG-system (ActiCHamp, Brain Products GmbH) with 32 scalp electrodes
positioned in accordance with the 10-20-system (ActiCAP, Brain Products GmbH). Electrode Cz served as the recording reference, a ground electrode
was placed on the forehead, two further electrodes on both mastoids, and the electrooculogram (EOG) was recorded from four additional electrodes:
two approximately 1 cm above and below the left eye, two at the outer canthi of both eyes. Continuous EEG signals were recorded at a sampling rate of
1000 Hz using a bandpass recording filter of 0.01 to 100 Hz.

A.4. EEG tasks

For the collection of RewP data, the Doors task was administered using the Presentation software (Neurobehavioral Systems, Albany, California). It
consisted of three blocks of 20 trials, each trail began with the presentation of two identical images of doors. Participants were instructed to select the
left or right door. They were informed that they could either win $0.50 or lose $0.25 on each trial. The images of the doors were presented until
participants made a selection. A fixation cross was then displayed for 1000 ms, followed by a feedback stimulus presented for 2000 ms. An upward
green arrow or a downward red arrow was displayed to indicate the gain or loss, respectively. Another fixation cross was presented for 1500 ms,
followed by the prompt “Click for next round” to let the participant enter the next trial. In the 60 trials for each participant, 30 gain and loss feedback
stimuli were presented in a pseudo-random order.

For the collection of LPP data, we utilized a picture viewing task with 60 pictures selected from the International Affective Picture System (IAPS;
Lang, Bradley, & Cuthbert, 2008), including 30 pleasant images (e.g. erotic and affiliative images) and 30 neutral images (e.g. objects, humans with
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neutral facial expression '). Normative ratings indicated that the 30 pleasant images were rated as more pleasant (valence M = 6.76, SD = 0.34) than
the 30 neutral images (valence M = 5.36, SD = 0.53). All pictures were presented in random order across three sets of 20 trials. Each trial began with
the display of a fixation cross for a random duration of 500 to 900 ms followed by pictures for 1500 ms, spanning approximately 15 to 20 degrees of
visual angle. After picture offset, a blank screen was presented for a period of 500-900 ms. Participants were instructed to focus on the screen and view
the pictures.

A.5. RewP and LPP Raw Dataset Construction

Both raw EEG datasets were processed using Brain Vision Analyzer, Version 2.1 (Brain Products, Gilching, Germany) to extract the RewP and LPP
measures. Data were referenced to the average of the mastoid electrodes. A bandpass filter from 0.01 to 30 Hz was applied.

For the Doors task (RewP data), feedback-locked epochs were extracted with a duration of 1500 ms, starting 500 ms before feedback onset. Data
were corrected for eye movement artifacts using the algorithm developed by Gratton & Coles (1983). Segments that contained voltage steps > 50 mV
between sample points, a voltage difference of 175 mV within a 400 ms interval, or a maximum voltage difference of < 0.5 mV within 100 ms intervals
were automatically rejected for individual channels. Additional artifacts were identified and removed based on visual inspection. Baseline-correction
was applied using the 200 ms pre-stimulus interval as baseline. Feedback-locked ERPs were averaged separately for gains and losses and exported for
ML analysis using the complete data segment for all channels.

For the picture-viewing task (LPP data), epochs from 200 ms before until 1200 ms after picture onset were extracted. Processing phases were
identical to those described above with the exception that stimulus-locked averages were calculated separately for pleasant and neutral images, and
data was exported for all channels using the whole segment.

A total of 118 participants had both RewP and LPP data collected, among which 78 participants had MDD and 40 participants were healthy
controls. The Cz and FCz channels were employed in further analyses of the RewP data, whereas the Pz and Cz channels were employed for analyses of
the LPP data.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.bspc.2021.103237.
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