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A wide variety of data sources can be used for MDD classification 
approaches, using either subjective methods such as questionnaires or 
description of symptoms, or objective assessment methods such as 
event-related potentials (ERP) or magnetic resonance imaging (MRI). 
ERP are collected as time-locked Electroencephalogram (EEG) activities. 
Both EEG [1,23,24,33,34] and MRI [20] have been employed as bio
markers in machine learning models for the diagnosis of MDD. For 
example, Mumtaz reported the application of the Support Vector Ma
chine, Naive Bayes and Logistic Regression models in the diagnosis of 
MDD [34]. As a follow-up, the same team developed a machine learning 
framework that can leverage EEG-derived synchronization likelihood 
features and detect MDD patients with a relatively high accuracy [35]. 
With the same dataset, [31] developed four different ML-based classi
fiers for the detection of MDD patients based on the linear and non- 
linear features of EEG signals. These recent publications demonstrate 
that ML models can be developed to improve diagnosis and classification 
of MDD patients using objective neural measures. The combination of 
multiple diagnostic methods may provide even better predictive 
performance. 

Event-related potentials (ERPs) are direct measures of brain’s neural 
responses to events, derived from the ongoing EEG. They have been 
shown to be robust measures of neurocognitive functions with excellent 
psychometric properties [22] and can relate to both individual differ
ences in depressive symptoms and categorical clinical diagnoses of 
depression. Furthermore, ERP measures allow for analysis and quanti
fication of neural processing of events with high temporal resolution at 
the scale of milliseconds. Moreover, they involve relatively low cost, and 
can be collected and analyzed relatively rapidly [29]. Unlike MRI, ERP 
data collection can be performed in diverse clinical settings and has very 
few contraindications. Thus, ERPs as measures of neurocognitive alter
ations in clinical depressive disorders are well-suited to support ML- 
based classification of MDD patients. 

In the context of depression, two neurocognitive functional alter
ations have been studied using ERPs – reward insensitivity and impaired 
emotional reactivity [38]. Both dysfunctions have been put forward as 
mechanisms of anhedonia, a core symptom of depression [17]. ERP 
studies on reward dysfunction in depression focus on the reward posi
tivity (RewP), an ERP evident when participants win money in simple 
guessing tasks. The RewP is maximal approximately 250 to 350 ms (ms) 
following feedback indicating monetary gains and is absent or reduced 
following losses [38], thus, the RewP is commonly measured as the 
difference between the ERP response to gains minus losses. The RewP 
has good psychometric properties [26], and relates to both behavioral 
[8] and fMRI measures of reward circuit function [6,11]. Critically, the 
RewP has been found to be reduced in individuals with current clinical 
depression [10,16,25,28] Furthermore, it was demonstrated that RewP 
improved sensitivity and positive predictive values in the classification 
of first-onset depressive disorders when used in conjunction with base- 
line depressive symptoms [36]. 

With regard to impairments in emotional reactivity in depression, 
the processing of emotionally evocative stimuli has been studied using 
the late positive potential (LPP), a stimulus-locked ERP component that 
is increased following the presentation of emotional content [14]. The 
increased LPP covaries with emotional arousal and is thought to reflect 
increased attention to motivationally salient stimulus content [16,41] 
and has been shown to possess good psychometric properties [32]. 
Previous work shows blunted neural response to emotional pictures, as 
indicated by smaller amplitude of the LPP in individuals with current 
depression [15,30,41–43]. 

Both LPP and RewP were recently assessed together in the same 
relatively large sample of depressed adults [25]. We found that both 
reduced RewP and LPP independently predicted depression status. In 
addition, the differentiation between the depressed and healthy groups 
was improved when both ERP measures were employed in combination. 
However, our prediction was mostly made with a regression model, and 
was not optimized on the predictive performance on unseen data. It is 

important to examine if other contemporary ML models or an ensemble 
of multiple ML models can provide further improvement on the pre
diction accuracy, particularly on data unseen by the model during 
training. 

To this end, we have developed a framework that can optimize ML 
models for depression classification using ERPs. Our framework tackles 
the noisy nature of ERP measures and its impact on the accuracy of 
unseen data through two methods: engineered feature extraction and 
principal component analysis for dimension reduction [4,5] of noisy 
data. In addition, we have trained a total of seven ML models including 
the Random Forest [7] and ExtraTree(Extremely Randomized Trees) 
[21] models, which are well-known to address overfitting problem, to 
identify a few selected models for their predictive efficacy, and created a 
stacking ensemble ML models based on the base ML models. Some 
ensemble base models and the stacking ensemble model carry built-in 
noise reduction capability. Finally, the framework has employed a 
validation strategy through a combination of cross-validation and in
dependent holdout testing techniques to minimize the overfitting issue 
on unseen data. 

Our experimental results demonstrate that our ML optimizations 
achieve great accuracy and nearly perfect sensitivity simultaneously, 
particularly in classifying data samples unseen during the training pro
cess, compared to prior studies that perform regression-based 
classifications. 

2. Methods 

All EEG and clinical data used for the current study stem from a 
dataset previously examined by means of classic ERP quantification and 
regression-based analysis [25] and were re-analyzed here using ML 
techniques. The details of ERP data collection and processing are 
available from the supplementary document. 

EEG data of adequate quality were available for 81 MDD and 43 HC 
participants for the reward task (RewP), 80 MDD and 42 HC participants 
for the picture viewing task (LPP), and 78 MDD and 40 HC participants 
for analyses that combined data from both tasks. 

Starting from these EEG clinical data, we have formulated a frame
work that can develop optimized ML models for depression classification 
using ERPs, as shown in Fig. 1. Using both RewP and LPP datasets, our 
framework for the optimization of ML models consists of two main 
phases, data pre-processing and model development, which are performed 
in an iterative manner. 

First of all, we formalize the RewP and LPP datasets into a stan
dardized structure conformant to all the ML models, which is shown in 
the first data pre-processing phase in Fig. 1. For our development of 
optimized ML models on a small set of RewP and LPP samples, the lack 
of generalization is a major challenge. Specifically, because the number 
of samples is limited, the random noise from samples cannot cancel each 
other and will be assimilated by the model. Therefore, the learned model 
will perform poorly on future unseen data, a problem also known as 
overfitting or high variance issue. To cope with the noisy nature of the 
ERP measures and its effect on the accuracy of unseen data, we have 
employed engineered feature extraction and principal component 
analysis for dimension reduction of noisy data. Because the dimension 
reduction methods require hyperparameter tuning together with 
downstream ML models, it is performed in the second model development 
stage inside the iteration whereas the feature extraction is performed in 
the first pre-processing stage. Furthermore, we have trained a total of 
seven base ML models including Random Forest and ExtraTree and 
created a stacking ensemble ML models based on the base ML models. 
Finally, the validation strategy of the combination of cross-validation 
(CV) and holdout testing techniques was employed to minimize the 
overfitting issue on unseen data. 

For each iteration, we evaluate a combination of features with 
various candidate models and model hyperparameters based on care
fully selected classification metrics. The top candidate models exhibiting 
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best CV metrics are further tested on an independent holdout dataset to 
confirm that the achieved performance would reproduce on future un
seen data. The results are leveraged in the next iteration for further 
evaluation of data pre-processing methods and ML models. In the rest of 
the section, we describe these phases in detail. 

2.1. Data pre-processing 

2.1.1. Data organization 
Data Exploration: The first step of the data pre-processing was to 

explore and understand the data. The smallest units in the raw data were 
time-domain electrical potential value vectors collected from many EEG 
channels. The signals were collected in a certain period at a certain 
frequency, so the sizes of the vectors were fixed. For each participant, 
the signal vectors were collected from up to 31 EEG channels twice per 
channel for gain/loss (RewP) or positive/neutral (LPP) tasks. The 
diagnostic status of the participants in terms of a depression diagnosis 
was known. Through the exploratory analysis of the dataset, we 
confirmed that the signal vectors were collected without outliers or 
missing values. Missing channels due to artifact rejection were identi
fied. The number of participants was at the scale of a hundred which 
may be relatively small for some models. 

Labeling: General ML models require a dataset to be organized as a 
two-dimensional table of numeric values with row-based samples and 
column-based features. Classification models as employed in our 
research require a class label for each sample vector. 

Because the goal was to identify potential participants with a 
depression diagnosis, by default, we set the “depressed” label as positive 
(1) and the “healthy” label as negative (0). This arrangement of class 
labels aligned with the purpose of this work to differentiate potential 
depressed participants from the healthy controls. This arrangement af
fects the statistical metrics which we will further elaborate in Section 
2.2.2. 

Organization Methods: Several methods of data organization were 
attempted. The reason for comparing these variations was to effectively 
address two major challenges of our dataset: 1. relatively small sample 
size; and 2. missing channels for some participants. 

Small sample size is a common challenge in experimental clinical 
science because of the high recruitment effort and costs involved in 
clinical data collection. An intuitive way to organize our data was to 
prepare a single vector for each participant. It resulted in a dataset with 
the same number of samples as the number of participants (i.e., at the 
scale of around a hundred). The relatively small sample size might cause 
high variance (overfitting) issues and hurt the predictive performance 
on unseen data. We attempted several methods to address potential 

overfitting problems: employment of extracted features as invariants of 
the raw signal; dimension reduction before feeding to the ML model; 
intrinsic randomness (i.e. BAGGING ensemble models) for some models. 

After the sample vectors were organized one-per-participant, the 
second challenge was to handle the variable subset of the numerous EEG 
channels collected from each participant. We needed to effectively 
organize the data into a uniformed format without either missing values 
or variable length vectors. The first approach, as a widely employed 
strategy, was to ask the domain experts to manually pick the best 
channel(s) that are collected for all participants. It has worked well in 
past works, but risks information loss from subjective human decision. 
Another more data-driven method is to simply ignore participants with 
missing channels or channels with missing participants. The latter is 
more common because participants were usually more important than 
channels. This family of methods can introduce more computation. 

Our methods intended to generate samples one-per-participant of 
features based on manually picked channel(s). According to the past 
research, RewP is typically measured through channel Cz, FCz [16], and 
LPP through channel Pz [27], which are all on sagittal plane. Thus, the 
datasets with one or more empirically selected sagittal plane channels 
were prepared for comparison. 

2.1.2. Feature extraction 
For each EEG channel of a participant, ERPs included gain and loss 

conditions for the RewP dataset, and pleasant (positive) and neutral 
ERPs for the LPP data. The difference signals were calculated for both 

Fig. 1. Optimization of ML Models for MDD Classification.  

Fig. 2. Example RewP signals at channel Cz.  
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datasets. Fig. 2 shows a typical RewP ERP signal at one EEG channel for 
both gain/loss signals and their difference. 

Next, we had the option to directly use ERPs as raw features (option 
1) or perform feature extraction on the raw signals to generate more 
effective features and reduce noises. Without feature extraction, the raw 
signal dataset was noisy and may require a built-in noise reduction 
capability for the ML model to obtain good performance. Feature 
extraction was performed either manually during the data pre-processing 
(option 2) or by adding a dimension reduction model during the model 
development (option 3). All three methods were attempted, and the 
resulting model performances were compared. 

Eight statistical features were extracted manually by applying sta
tistical aggregation functions as listed in Table 1 to ERP signals of each 
channel. They are common time invariants extracted from time-series 
signals with minimal noise. 

Another important family of feature extraction methods commonly 
employed in EEG datasets was the band power analysis. In our case, the 
data was transformed to frequency domain using either Fast Fourier 
Transformation or the Welch method and the average power in the 
delta, theta, alpha, beta, and gamma frequency ranges were collected as 
the band features. 

In addition to manual feature extraction, three dimension reduction 
models known as the principal component analysis (PCA) [9], locally- 
linear embedding (LLE) [39] and Isometric mapping (Isomap) [40] 
were attempted. PCA was selected in model development for its fast 
computation and improved predictive performance in the preliminary 
model exploration. 

A standardizing transformation was applied to the raw ERP signals 
before feeding them to the machine learning model. This would typically 
enhance the speed of the model convergence. After this standardization, 
the raw features were ready for the model development. 

2.2. Model development 

Model selection and optimization were guided by its performance in 
terms of the CV accuracy score on the training data. Fivefold CV was 
employed according to the preliminary results. Other important CV 
metrics such as precision, sensitivity/recall, specificity, etc. were 
considered in the final selection of the best candidate models. In the 
development, the average training metrics and the validation metrics, as 
well as their standard deviations, were examined to monitor the po
tential overfitting, underfitting, and outlier problems. 

We chose a subset of available ML classification models according to 
the characteristics of our dataset. The ensemble models, especially the 
BAGGING (Bootstrap aggregating) models such as the Random Forest 
model [7] and ExtraTrees (Extreme Randomized Trees) model [21], 
were the focus of the study as they were known to reduce overfitting and 
increase the effective sample size by using random subsets of samples. 

Support vector machine models [13] using either the linear or the 
radial basis function (RBF) kernels were selected for their capability of 
reducing overfitting. More models such as K-nearest neighbor [2], 
AdaBoost [18], gradient boosting trees [19,12], were also included in 
comparison for diversity. 

A dimension reduction step mentioned in Section 2.1.2, though 

considered as a data pre-processing step, was closely integrated into the 
model development. When high-dimensional samples were fed to the 
model, a dimension reduction model such as the principal component 
analysis (PCA) model was optionally pipelined to the ML model. 

An ensemble method known as “stacking” was proposed as they were 
known to be able to aggregate multiple weaker models and make a 
better model [45]. In this approach, multiple base models were 
employed to make out-of-fold predictions on the training data and their 
combined predictions were aggregated and served as new features for 
the consumption of a second level meta-model (usually a logistic 
regression model) to make the final prediction. The stacking ensemble 
model is a versatile approach to combine the power of multiple models 
and take advantage of all models. Stacking models were known to be 
robust when multiple uncorrelated ML models are included as base 
models. A robust ML model will provide more reproducible results. 

Hyperparameters of top models were optimized using a 
hyperparameter-pipeline optimizer from the Scikit-Learn library [37]. 

2.2.1. Validation strategy 
We followed the state-of-the-art model validation strategy as follows. 

All samples in the dataset were split into two portions, the training set 
and the holdout (test) set, in a certain ratio, 80% vs 20% ratio in our 
work. The training set was employed in the model selection while the 
holdout set was employed in the model testing step. In the model se
lection step, the training set was further split into folds and a method 
known as cross-validation (CV) was employed to obtain the desired 
score/metric representing the predictive performance of a candidate 
model. With a small sample size, small folds of three or five were favored 
over the more commonly used ten. We went for five-folds according to a 
preliminary result that favored five folds. The model with a better CV 
score would be favored in the development. The holdout set would only 
be employed to test the candidate models from the model selection to 
confirm that their good CV scores can be reproduced on unseen data. To 
avoid information leakage, the score/metric obtained from the holdout 
test should only be used to accept/reject candidate models. 

Because the numbers of positive and negative labels were not even, 
both the train-test split and following CV split were performed in a 
stratified way so the positive and negative samples were evenly 
distributed in splits. 

The statistical significance of the test metrics were tested using the 
Wilson score interval [44] at the 95% confidence level. 

2.2.2. Predictive performance metrics 
Choosing the right statistical metric is essential in the model devel

opment because it tells us which model is better. In our class label setup, 
the depressed label is the positive label while the healthy label is the 
negative label. For classification problems, there were several statistical 
metrics to examine: The accuracy metric represents the overall predic
tive performance which indicates how many predictions are correct. The 
precision metric indicates how many positive predictions were correct 
out of all positive predictions. The sensitivity, a.k.a. recall, metric in
dicates how many positive predictions were correct out of true positive 
cases. The specificity metric indicates how many negative predictions 
were correct out of all true negative cases. The area under curve (AUC) 
metric of the receiver operating characteristic (ROC) curve indicates the 
overall accuracy of both positive and negative predictions but will 
handle unbalanced problems, where class labels vastly differ, better than 
the accuracy metric. 

In our specific case, the ROC AUC metric is not helpful as the class 
labels of healthy and depressed participants are relatively balanced at 
the ratio of around 2 to 1. We consider the sensitivity/recall metric most 
important in the diagnostic-type application, as a high sensitivity score 
indicates that the number of misdiagnosed depressed participants is 
minimal. Along the same lines, accurately predicting healthy partici
pants (the negative class) was relatively less significant, so the speci
ficity metric was less relevant. However, because the sensitivity metrics 

Table 1 
Statistical features from manual feature extraction.  

Name Description 

Maximum The biggest value 
Minimum The smallest value 
Range The difference between the maximum and minimum 
Mean The average of the signals 
Standard deviation The variance level of the signals 
Skewness The skewness of the major peaks in the signals 
Kurtosis The shape of the major peak in the signals 
Signal to noise The ratio of the mean to the standard deviation  
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showed that the incorporation of LPP data with RewP data into the 
group status prediction enhanced the predicative performance, we 
tested the same set of models on LPP data only and the datasets with 
both RewP and LPP data. The Cz and Pz channels were selected in the 
comparison according to prior domain knowledge. The top CV results 
were listed in Table 7. The trend was similar to that of the RewP data
sets. The RBF kernel SVM model, stacked model, and ensemble tree 
models performed best among all models. It was interesting to see that 
the stacking model of all base models (entry 4 in Table 7) exhibited 
comparable performance. The predictive performance was also similar. 

Similarly, the performance for Entries #1, #2 and #4 is confirmed by 
the final validation on the holdout test datasets to represent the two 
groups of models (shown in Table 8) on the combined RewP  + LPP 
datasets. The accuracy scores were slightly different from that of the 
RewP only dataset albeit overall similar (around one more or less 
participant was correctly predicted). The 95% confidence intervals 
confirmed the significance of the results. 

In our current study, the incorporation of the LPP datasets in addi
tion to the RewP datasets was not affecting the predictive performance 
by much. This observation is in contrast with the prior work [25], where 
by integrating both RewP and LPP measures the accuracy of diagnostic 
status classification improved from 53% to up to 66% with a linear 
regression model. One possible reason for the relative non-relevance of 
the additional data in the current study could be that the machine 
learning models with larger internal complexity were able to learn 
enough important information from the RewP data alone. From the 
perspective of the ML models, the LPP dataset may have contained the 
same or related information as the RewP data, so the predictive per
formance was not improved by integrating both data sources. In 
contrast, for simpler linear regression family of models employed in the 
referred paper, the simpler model might have leveraged additional 
variance in the LPP to improve predictions from the RewP. Another 
difference compared to the linear regression-based model is that our ML 
models are optimized for better predictive performance on future data 
using models trained with past data. Thus, the results are not directly 
comparable. 

4. Conclusion 

In this research, we have extensively explored the combination space 
of datasets, models and model hyperparameters, and found two groups 
of combinations of features and models that provided excellent sensi
tivity metrics and high accuracy metrics. 

The first group of combinations consisted of: 1. Statistical features; 2. 
A simple model like RBF SVM or RF with a small number of base esti
mators; 3. No dimension reduction. This group had the benefit of the 

smallest data and model sizes and fastest model executions. One draw
back was the slightly lower sensitivity metrics. Because of the smaller 
number of parameters in the model, this group of models may not 
benefit from added data of same type in the future. 

The second group of combinations consisted of: 1. Raw signals plus 
statistical features; 2. ensemble tree models with a relatively larger 
number of base estimators; 3. an optional PCA as dimension reduction to 
reduce the dimension to 100. This group exhibited perfect sensitivity 
metrics. It is also expected to benefit from added data of same type in the 
future because the intrinsically high complexity of the model. High 
sensitivity indicates the high confidence in the detection of depressed 
individuals, which is a valuable characteristic of a screening tool. Both 
group of models exhibited nearly perfect sensitivity with only a few (or 
no) participants in the test dataset misclassified as depressed. 

The performance has been evaluated using the holdout(test) dataset 
constructed to minimize the possibility of overfitting. Our models are 
expected to work well with future unseen data. Accurate classification 
on unseen data is a major advantage of the ML models developed in the 
current study in comparison to the previous regression-based analyses of 
the same data. These traditional regression models would only be rele
vant for the specific datasets. In contrast, the ML models derived in the 
current study have been tested on the unseen holdout data and 
demonstrated to perform well on new datasets. However, our ML models 
could not gain much in their accuracy or sensitivity when the LPP data 
were included with RewP data. This is because the LPP data are collected 
from different stimuli and our ML models are not sensitive to ERP data of 
mixed compositions. 

In conclusion, through a combination of an effective noise reduction 
method and ensemble ML models, we have developed a highly accurate 
method for MDD categorization. Our experimental results with exten
sive training and test datasets demonstrate that our optimized ML 
techniques achieve high accuracy and nearly perfect sensitivity - an 
innovation relative to prior studies that provides enhanced effectiveness 
of classifying neurocognitive alterations associated with MDD. Future 
studies could test this ML model in novel participant data, collected 
across multiple labs, to further examine sensitivity and classification 
accuracy. 
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Appendix A. ERP data collection procedure 

A.1. Participants 

Participants were recruited from the local community of Florida State University (FSU). Participants were labeled as MDD positive if they met 
standard diagnostic criteria for a current mood disorder (major depressive episode or persistent depressive disorder) in the past two weeks. Exclusion 
criteria for the MDD group were the presence of a lifetime diagnosis of a bipolar or psychotic disorder, or a current substance or alcohol use disorder. 
Participants were labeled as healthy control if they had never met diagnostic criteria for a mood disorder and did not currently meet criteria for any 
other psychiatric disorder. Potential participants were invited to the lab for interview after they passed a SCID-based screening administered over the 
telephone. Groups were equated for age, gender, and level of education. Participants were informed about the purpose and procedural details before 
the experiments and provided informed written consent. The study was conducted in accordance with the ethical guidelines of the Declaration of 
Helsinki and approved by the Florida State University Institutional Review Board. The final sample included 83 MDD individuals and 45 healthy 
control participants (HC). EEG data of adequate quality were available for 81 MDD and 43 HC participants for the reward task, 80 MDD and 42 HC 
participants for the picture viewing task, and 78 MDD and 40 HC participants for analyses that combined data from both tasks. 

A.2. Measures 

Presence of current and past mood disorders was assessed in all participants with the Structured Clinical Interview for DSM-5 (SCID-5-RV) First 
et al. (2016) by two PhD level clinical psychologists. Other past and present psychopathology was evaluated using the Mini International Neuro
psychiatric Interview (M.I.N.I.) (Sheehan et al., 1997, 1998) updated for DSM-5 (version 7.0.2). 

A.3. Electroencephalogram recording 

The electroencephalogram (EEG) was recorded using an active electrode EEG-system (ActiCHamp, Brain Products GmbH) with 32 scalp electrodes 
positioned in accordance with the 10–20-system (ActiCAP, Brain Products GmbH). Electrode Cz served as the recording reference, a ground electrode 
was placed on the forehead, two further electrodes on both mastoids, and the electrooculogram (EOG) was recorded from four additional electrodes: 
two approximately 1 cm above and below the left eye, two at the outer canthi of both eyes. Continuous EEG signals were recorded at a sampling rate of 
1000 Hz using a bandpass recording filter of 0.01 to 100 Hz. 

A.4. EEG tasks 

For the collection of RewP data, the Doors task was administered using the Presentation software (Neurobehavioral Systems, Albany, California). It 
consisted of three blocks of 20 trials, each trail began with the presentation of two identical images of doors. Participants were instructed to select the 
left or right door. They were informed that they could either win $0.50 or lose $0.25 on each trial. The images of the doors were presented until 
participants made a selection. A fixation cross was then displayed for 1000 ms, followed by a feedback stimulus presented for 2000 ms. An upward 
green arrow or a downward red arrow was displayed to indicate the gain or loss, respectively. Another fixation cross was presented for 1500 ms, 
followed by the prompt “Click for next round” to let the participant enter the next trial. In the 60 trials for each participant, 30 gain and loss feedback 
stimuli were presented in a pseudo-random order. 

For the collection of LPP data, we utilized a picture viewing task with 60 pictures selected from the International Affective Picture System (IAPS; 
Lang, Bradley, & Cuthbert, 2008), including 30 pleasant images (e.g. erotic and affiliative images) and 30 neutral images (e.g. objects, humans with 

Table 7 
Training performance with LPP and RewP + LPP datasets.       

Train Test 

Run Dataset Channels Model Dim Red Accuracy Precision Sensitivity Accuracy Precision Sensitivity 

1 6 Pz Stacking None 1.000 1.000 1.000 0.691 0.685 0.984 
2 5 Cz RBF SVM None 0.992 0.988 1.000 0.670 0.678 0.952 
3 6 Cz ET None 1.000 1.000 1.000 0.670 0.691 0.906 
4 7 Pz Stacking None 1.000 1.000 1.000 0.670 0.674 0.968 
5 8 Cz RBF SVM PCA-100 1.000 1.000 1.000 0.660 0.660 1.000  

Table 8 
Test performance with LPP and RewP + LPP datasets.  

Run Model Accuracy Sensitivity 

1 Stacking 0.640 ± 0.04  0.938 ± 0.02  
2 ET 0.640 ± 0.04  0.938 ± 0.02  
4 Stacking 0.625 ± 0.04  0.938 ± 0.02   
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neutral facial expression 1). Normative ratings indicated that the 30 pleasant images were rated as more pleasant (valence M  = 6.76, SD  = 0.34) than 
the 30 neutral images (valence M  = 5.36, SD  = 0.53). All pictures were presented in random order across three sets of 20 trials. Each trial began with 
the display of a fixation cross for a random duration of 500 to 900 ms followed by pictures for 1500 ms, spanning approximately 15 to 20 degrees of 
visual angle. After picture offset, a blank screen was presented for a period of 500–900 ms. Participants were instructed to focus on the screen and view 
the pictures. 

A.5. RewP and LPP Raw Dataset Construction 

Both raw EEG datasets were processed using Brain Vision Analyzer, Version 2.1 (Brain Products, Gilching, Germany) to extract the RewP and LPP 
measures. Data were referenced to the average of the mastoid electrodes. A bandpass filter from 0.01 to 30 Hz was applied. 

For the Doors task (RewP data), feedback-locked epochs were extracted with a duration of 1500 ms, starting 500 ms before feedback onset. Data 
were corrected for eye movement artifacts using the algorithm developed by Gratton & Coles (1983). Segments that contained voltage steps > 50 mV 
between sample points, a voltage difference of 175 mV within a 400 ms interval, or a maximum voltage difference of < 0.5 mV within 100 ms intervals 
were automatically rejected for individual channels. Additional artifacts were identified and removed based on visual inspection. Baseline-correction 
was applied using the 200 ms pre-stimulus interval as baseline. Feedback-locked ERPs were averaged separately for gains and losses and exported for 
ML analysis using the complete data segment for all channels. 

For the picture-viewing task (LPP data), epochs from 200 ms before until 1200 ms after picture onset were extracted. Processing phases were 
identical to those described above with the exception that stimulus-locked averages were calculated separately for pleasant and neutral images, and 
data was exported for all channels using the whole segment. 

A total of 118 participants had both RewP and LPP data collected, among which 78 participants had MDD and 40 participants were healthy 
controls. The Cz and FCz channels were employed in further analyses of the RewP data, whereas the Pz and Cz channels were employed for analyses of 
the LPP data. 

Appendix B. Supplementary data 

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.bspc.2021.103237. 
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