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The Lasso is a popular regression method for high-dimensional problems
in which the number of parameters θ1, . . . , θN , is larger than the number n

of samples: N > n. A useful heuristics relates the statistical properties of the
Lasso estimator to that of a simple soft-thresholding denoiser, in a denoising
problem in which the parameters (θi)i≤N are observed in Gaussian noise,
with a carefully tuned variance. Earlier work confirmed this picture in the
limit n,N → ∞, pointwise in the parameters θ and in the value of the regu-
larization parameter.

Here, we consider a standard random design model and prove exponential
concentration of its empirical distribution around the prediction provided by
the Gaussian denoising model. Crucially, our results are uniform with respect
to θ belonging to �q balls, q ∈ [0,1], and with respect to the regularization
parameter. This allows us to derive sharp results for the performances of var-
ious data-driven procedures to tune the regularization.

Our proofs make use of Gaussian comparison inequalities, and in particu-
lar of a version of Gordon’s minimax theorem developed by Thrampoulidis,
Oymak and Hassibi, which controls the optimum value of the Lasso opti-
mization problem. Crucially, we prove a stability property of the minimizer
in Wasserstein distance that allows one to characterize properties of the min-
imizer itself.

1. Introduction. Given data (xi, yi), 1 ≤ i ≤ n, with xi ∈R
N , yi ∈ R, the Lasso [15, 48]

fits a linear model by minimizing the cost function

Lλ(θ) = 1

2n

n∑
i=1

(
yi − 〈xi, θ〉)2 + λ√

n
|θ |

= 1

2n
‖y − Xθ‖2 + λ√

n
|θ |.

(1.1)

Here, X ∈ R
n×N is the matrix with rows x1, . . . , xn, y = (y1, . . . , yn), ‖v‖ denotes the �2

norm of vector v and |v| its �1 norm.
A large body of theoretical work supports the use of �1 regularization in the high-

dimensional regime n � N , when only a small subset of the coefficients θ are expected to
be large. Broadly speaking, we can distinguish two types of theoretical approaches. A first
line of work makes deterministic assumptions about the design matrix X, such as the re-
stricted isometry property and its generalizations [10, 13]. Under such conditions, minimax
optimal estimation rates as well as oracle inequalities have been proved in a remarkable se-
quence of papers [9, 12, 35, 38, 52]. As an example, assume that that the linear model is
correct. Namely,

(1.2) y = Xθ� + σz,
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FIG. 1. Estimation risk of the Lasso for different choices of λ, as a function of δ. N = 5000. In both plots,
σ = 0.2. The true coefficients vector θ� is chosen to be sN -sparse with s = 0.2. The entries on the support
of θ� are drawn i.i.d. N (0,1/n). Cross-validation is carried out using 4 folds. SURE is computed using the
estimator σ̂ for the plot on the left, and the true value of σ on the right. Left: A standard random design with

(Xij )
i.i.d.∼ N (0,1). Right: The rows of the design matrix X are i.i.d. Gaussian, with correlation structure given

by an autoregressive process; see equation (4.6). Here, we used φ = 2.

for σ > 0, z ∼ N (0, In), and θ� a vector with k0 nonzero entries. Then a theorem of Bickel,
Ritov and Tsybakov [9] implies that, with high probability,

λ = c0σ
√

logN ⇒ ∥∥θ̂λ − θ�
∥∥2 ≤ Ck0σ

2

n
logN,(1.3)

for some constants c0, C that depend on the specific assumptions on the design.
Unfortunately, this analysis provides limited insight into the choice of the regularization

parameter λ which—in practice—can impact significantly the estimation accuracy. As an ex-
ample, Figure 1 reports the result of a small simulation in which we compare four different
methods of selecting λ. The bound of equation (1.3) suggests to set λ = c0σ

√
logN . For

the standard random design used in the left frame, the optimal constant is expected to be
c0 = √

2 [19, 21]. We compare this method to three procedures that adapt the choice of λ to
the data: (i) cross-validation (CV), which splits the data in k = 4 folds and fits a model over
3 of the folds choosing λ as to minimize the prediction error over the 4-th fold; (ii) Stein’s
Unbiased Risk Estimate (SURE): we will prove in Section 4.1 that SURE provides a con-
sistent estimator P̂ SURE(λ) of the prediction error 1

n
‖X(θ̂λ − θ�‖2

2 + σ 2. We set λ by as to
minimize P̂ SURE(λ); (iii) a new procedure (EST) that is based on minimizing over λ a con-
sistent estimate of the �2 error ‖θ̂λ − θ�‖2, which we denote by τ̂ (λ). We refer to Section 4.1
for a description of this method and consistency results. We compare the estimation error of
these methods with the predicted asymptotics for the oracle risk minλ ‖θ̂λ − θ∗‖2 developed
in Section 3: the agreement is excellent already at moderate sizes.

Note that all of these adaptive procedures significantly outperform the “theory driven” λ:
over a broad range of sample sizes n, the resulting estimation error is 2 to 3 times smaller.
While the choice λ 
 √

logN retains a useful role for asymptotic guidance, it is also impor-
tant to develop a theory for adaptive choices. (We refer to Sections 4.2 and 4.3 for further
discussion.)

In the simulation of Figure 1, we generate the true parameter θ∗ with i.i.d. coefficients
θ∗
i ∼ P0 := (1 − s)δ0 + sN (0,1/n). The scale of the nonzeros is chosen of the same or-

der as the noise level on each of them, which is σ/
√

n. The ultimate lower bound on
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the mean square error of any statistical procedure is given by the error of the posterior
mean θ̂Bayes(y,X) := E{θ∗|y,X} (with the prior given by P ⊗N

0 ). While—in general—
we cannot compute θ̂Bayes(y,X) efficiently, the Bayes mean square error MMSEN :=
E{‖θ̂Bayes(y,X) − θ∗‖2} is known to converge in the proportional asymptotic n,N → ∞,
n/N → δ, namely MMSEN → MMSE in this limit. An explicit formula for the limiting
Bayes error MMSE was proved in [2, 39] and is also plotted in Figure 1. We refer to Sec-
tion 4.3 for further details on this prediction. Remarkably, the error achieved by the three
adaptive methods for selecting λ is very close to the Bayes error.

These empirical observations are not captured by the bound (1.3), or by similar results. An
alternative style of analysis postulates an idealized model for the data and derives asymptoti-
cally exact results. This type of analysis was first carried out in the context of the Lasso in [6]
and then extended to a number of other problems; see, for example, [17, 24, 25, 44, 46, 47].

We develop our theory in the case of uncorrelated covariates xi ∼ N (0, IN), which is also
the setting of Figure 1, left frame. Figure 1 reports the predictions of our theory for the risk of
the three adaptive procedure for selecting λ. The agreement with the numerical simulations
is excellent. It is natural to wonder whether the insights developed in this case might apply
to general correlation structures xi ∼ N (0,
N). In the right frame, we consider the case of
a nonsingular covariance 
N �= IN corresponding to the correlation structure of an autore-
gressive process. The qualitative picture in this case is very similar to the one obtained for
uncorrelated designs: data adaptive methods outperform the standard choice λ = c0σ

√
logN .

We refer to Section 4.3 for further simulations with correlated designs supporting this point:
methods for selecting λ developed with uncorrelated designs seem to perform well more
generally.

Finally, while assumption xi ∼ N (0, IN), is likely to be violated in practice, we believe
that the general mathematical approach developed here can be used to attack the general case
as well.

Unfortunately, the results in [6] (and in follow-up work) do not allow one to derive in a
mathematically rigorous way curves such as the ones in Figure 1. In fact, earlier results hold
“pointwise” over λ, and hence do not apply to adaptive procedures to select λ. Further, they
provide asymptotic estimates “pointwise” over θ , and hence do not allow one to compute, for
instance, minimax risk.

In order to clarify these points, it is useful to overview informally the picture emerging
from [6, 20]. Fix θ ∈ R

N , λ ∈ R>0, and let η(x;b) = (|x| − b)+ sign(x) be the soft thresh-
olding function. By the KKT conditions, the Lasso estimator θ̂λ satisfies

θ̂λ = η
(
θ̂ d
λ ;ατ/

√
n
)
, θ̂ d

λ = θ̂λ + ατ

λn
XT(y − Xθ̂λ),(1.4)

where the vector θ̂ d
λ is also referred to as the “debiased Lasso” [28, 51, 54]. The above iden-

tity holds for arbitrary α, τ > 0. However, [6] predicts that the distribution of the debiased
estimator θ̂ d

λ simplifies dramatically for specific choices of these parameters.
Namely, let 
 be a random variable with distribution given by the empirical distribution

of (θ∗
i )i≤N (i.e., 
 = θ∗

i with probability 1/N , for i ∈ {1, . . . ,N}) and let Z ∼ N (0,1) be
independent of 
. Define α∗, τ∗ to be the solution of the following system of equations (we
refer to Section 3.1 for a discussion of existence and uniqueness):

(1.5)

⎧⎪⎪⎨⎪⎪⎩
τ 2 = σ 2 + 1

δ
E

[(
η(

√
n
 + τZ,ατ) − √

n

)2]

,

λ = ατ

(
1 − 1

δ
P

(|√n
 + τZ| > ατ
))

.

When α, τ are selected in this way, θ̂ d
λ is approximately normal with mean θ� (the true pa-

rameters vector) and variance τ 2∗ /n: θ̂ d ≈ N (θ�, τ 2∗ I/n). More precisely, for any function
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f : R × R → R, with |f(x) − f(y)| ≤ L(1 + ‖x‖ + ‖y‖)‖x − y‖ (note that for x = (x1, x2) ∈
R×R, ‖x‖ ≡

√
x2

1 + x2
2 ), we have

1

N

N∑
i=1

f
(√

nθ�
i ,

√
nθ̂d

λ,i

) = E
{
f(
√

n
,
√

n
 + τ∗Z)
} + oP(1),(1.6)

1

N

N∑
i=1

f
(√

nθ�
i ,

√
nθ̂λ,i

) = E
{
f
(√

n
,η(
√

n
 + τ∗Z;α∗τ∗)
)} + oP(1),(1.7)

where oP(1) denotes a quantity going to zero in probability as N,n → ∞, while n/N → δ.
This is an asymptotic result, which holds along sequences of problems with: (i) converging
aspect ratio n/N → δ ∈ (0,∞); (ii) fixed regularization λ ∈ (0,∞); (iii) parameter vectors√

nθ� = √
nθ�(n) whose empirical distribution converges (weakly) to a limit law p
̄ (equiv-

alently
√

n
 converges in distribution to 
̄). As emphasized above, this does not allow one
to deduce the behavior of the Lasso with adaptive choices of λ (there could be deviations
from the above limits for exceptional values of λ), or to compute the minimax risk (there
could be deviations for exceptional vectors θ�).

REMARK 1.1. Notice that the arguments of f in equations (1.6), (1.7) are scaled in such
a way to probe the distribution of θ̂ d

λ,i , and θ̂λi
on a scale of the same order as the noise level,

that is, 1/
√

n. As shown from the right-hand side, the resulting distribution is nontrivial
when 
 is of order 1/

√
n. In an asymptotic setting, this corresponds to taking

√
n
 that

converges in distribution. In this paper, we will obtain nonasymptotic results and provide
explicit conditions at finite n,N .

The importance of establishing uniform convergence with respect to the regularization
parameter λ was recently emphasized by Mousavi, Maleki and Baraniuk [34]. Among other
results, these authors derive a uniform convergence statement for the related approximate
message passing (AMP) algorithm. However, in order to establish uniform convergence, they
have to construct an ad hoc smoothing of the quantity of interest, which is roughly equivalent
to discretizing the corresponding tuning parameter.

In this paper, we obtain uniform (in λ) convergence results for the Lasso, hence providing
a sound mathematical basis to the comparison of various adaptive procedures, as well as to
the study of minimax risk. Further, we establish explicit nonasymptotic bounds that hold at
finite n,N , without requiring assumptions about the asymptotic behavior of the aspect ratio
n/N , or on the empirical distribution of the entries of

√
nθ∗.

The rest of the paper is organized as follows. Section 2 reviews related work. We state
our main theoretical results in Section 3. In Section 4, we apply these results to two types
of statistical questions: estimating the risk and noise level, and selecting λ through adaptive
procedures. Further, we illustrate our results in numerical simulations. Finally, Section 5
outlines the main proof ideas, with most technical legwork deferred to the Appendices [32].

2. Related work. There is by now a substantial literature on determining exact asymp-
totics in high-dimensional statistical models, and a number of mathematical techniques
have been developed for this task. We will only provide a few pointers focusing on high-
dimensional regression problems.

The original proof of [6] was based on an asymptotically exact analysis of an approximate
message passing (AMP) algorithm [5] that was first proposed in [20] to minimize the Lasso
cost function. Variants of AMP have been developed in a number of contexts, opening the
way to the analysis of various statistical estimation problems. A short list includes generalized
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linear models [37], phase retrieval [31, 40], robust regression [17], logistic regression [44],
generalized compressed sensing [8]. This approach is technically less direct than others, but
has the advantage of providing an efficient algorithm, and is and not necessarily limited to
convex problems (see [33] for a nonconvex example).

As mentioned above, our work was partially motivated by the recent results of Mousavi,
Maleki and Baraniuk [34] that establish a form of uniformity for the AMP estimates but not
for the Lasso solution. It would be interesting to understand whether the approach of [34]
could also be used to obtain uniform results for the Lasso or other statistical estimators.

Here, we follow a different route that exploits powerful Gaussian comparison inequalities
first proved by Gordon [26, 27]. Gordon inequality allows one to bound the distribution of
a minimax value, that is, the value of a random variable G∗ = mini≤N maxj≤M Gij , where
(Gij )i≤N,j≤M is a Gaussian process, in terms of a similar quantity for a “simpler” Gaussian
process. The use of Gordon’s inequality in this context was pioneered by Stojnic [43] and then
developed by a number of authors in the context of regularized regression [47], M-estimation
[46], generalized compressed sensing [1], binary compressed sensing [42] and so on. The key
idea is to write the optimization problem of interest as a minimax problem, and then apply a
suitable version of Gordon’s inequality. A matching bound is obtained by convex duality and
then a second application of Gordon’s inequality. In particular, convexity of the cost function
of interest is a crucial ingredient.

While the Gaussian comparison inequality provides direct access to the value of the opti-
mization problem, understanding the properties of the estimator can be more challenging. In
this paper, we identify a property (that we call local stability) that allows one to transfer in-
formation on the minimum (the Lasso cost) into information about the minimizer (the Lasso
estimator). We believe this strategy can be applied to other examples beyond the Lasso.

Independently, a different approach based on leave-one-out techniques was developed by
El Karoui in the context of ridge-regularized robust regression [24, 25].

Finally, a parallel line of research determines exact asymptotics for Bayes optimal esti-
mation, under a model in which the coordinates of

√
nθ are i.i.d. with common distribution

p
. In particular, the asymptotic Bayes optimal error for linear regression with random de-
signs was recently determined in [2, 39]. Of course, in general, Bayes optimal estimation
requires knowledge of the distribution p
, and is not computationally efficient. We will use
this Bayes-optimal error as a benchmark of our adaptive procedures, as we have already done
in Figure 1. Generalizations of these results were also obtained in [3] for other regression
problems. A successful approach to these models uses smart interpolation techniques that
generalize ideas in spin-glass theory.

3. Main results.

3.1. Definitions. As stated above, we consider the standard linear model (1.2) where y =
Xθ� + σz, with noise z ∼ N (0, In), and X a Gaussian design: (Xi,j )i≤n,j≤N

i.i.d.∼ N (0,1).
The Lasso estimator is defined by

(3.1) θ̂λ = arg min
θ∈RN

Lλ(θ).

(The minimizer is almost surely unique since the columns of X are in generic positions.)
We set δ = n/N to be the number of samples per dimension. We are interested in uniform
estimation over sparse vectors θ�. Following [19, 30], we formalize this notion using �p-balls
(which are convex sets only for p ≥ 1).

DEFINITION 3.1. Define for p, ξ > 0 the �p-ball

Fp(ξ) = {
x ∈ R

N |‖xi‖p
p ≤ N1−p/2ξp}

,
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and for s ∈ [0,1]
F0(s) = {

x ∈ R
N |‖x‖0 ≤ sN

}
.

By Jensen’s inequality, we have for p ≥ p′ > 0, Fp(ξ) ⊂ Fp′(ξ).

Let φ(x) = e−x2/2√
2π

be the standard Gaussian density and �(x) = ∫ x
−∞ φ(t)dt be the asso-

ciated cumulative function. In the case of �0 balls (sparse vectors), a crucial role is played by
the following sparsity level.

DEFINITION 3.2. Define the critical sparsity as follows for δ ∈ [0,1]:

smax(δ) = δ max
α≥0

{ 1 − 2
δ
((1 + α2)�(−α) − αφ(α))

1 + α2 − 2((1 + α2)�(−α) − αφ(α))

}
.

For δ > 1, choose smax(δ) > 1 arbitrarily (in particular, for δ > 1, s < smax(δ) for any s ∈
[0,1]).

The critical sparsity curve first appears in the seminal work by Donoho and Tanner on
compressed sensing [18, 22]. These authors consider the noiseless case (z = 0) of model
(1.2) and reconstruction via �1 minimization (which corresponds to the λ → 0 limit of the
Lasso). They prove that �1 minimization reconstructs exactly θ� with high probability, if
‖θ�‖0 ≤ N(smax(δ) − ε), and fails with high probability if ‖θ�‖0 ≥ N(smax(δ) + ε) (for any
ε > 0). A second interpretation of the critical sparsity smax(δ) was given in [21, 47, 50].
For ‖θ�‖0 ≤ N(smax(δ) − ε), the Lasso achieves stable reconstruction. Namely, there exists
M = M(s, δ) < ∞ for s < smax(δ), such that, if ‖θ�‖0 ≤ Ns, then ‖θ̂λ − θ�‖2 ≤ M(s, δ)σ 2.
Our results provide a third interpretation: For δ ∈ [0,1], uniform limit laws for the Lasso will
be obtained on �0 balls only for s < smax(δ).

The following max-min problem plays an important role in our results:

max
β≥0

min
τ≥σ

ψλ(β, τ ),

ψλ(β, τ ) ≡
(

σ 2

τ
+ τ

)
β

2
− 1

2
β2

+ 1

δ
Emin

w∈R

{
w2

2τ
β − βZw + λ|w + √

n
| − λ|√n
|
}
.

(3.2)

The expectation above is with respect to (
,Z) ∼ μ̂θ� ⊗ N (0,1), where μ̂θ� denotes the
empirical distribution of the entries of the vector θ�:

μ̂θ� = 1

N

N∑
i=1

δθ�
i
.

PROPOSITION 3.1. The max-min (3.2) is achieved at a unique couple (β∗(λ), τ∗(λ)).
Moreover, (τ∗(λ), β∗(λ)) is also the unique couple (β, τ ) ∈ (0,+∞)2 that verify

(3.3)

⎧⎪⎪⎨⎪⎪⎩
τ 2 = σ 2 + 1

δ
E

[(
η

(√
n
 + τZ, τ

λ

β

)
− √

n


)2]
,

β = τ

(
1 − 1

δ
E

[
η′

(√
n
 + τZ,

τλ

β

)])
.

We will also use the notation α∗(λ) = λ/β∗(λ) and

(3.4) s∗(λ) = E
[
η′(√n
 + τ∗(λ)Z, τ∗(λ)α∗(λ)

)] = P
(∣∣√n
 + τ∗(λ)Z

∣∣ ≥ α∗(λ)τ∗(λ)
)
.
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We will sometimes omit the dependency on λ and write simply α∗, β∗, τ∗, s∗. The distri-
bution μ∗

λ defined below will correspond (see Theorem 3.1 in the next section) to the limit of
the empirical distribution of the entries of (θ̂λ, θ

�).

DEFINITION 3.3. Let (
,Z) ∼ μ̂θ� ⊗ N (0,1). We denote by μ∗
λ the law of the couple

(η(
 + τ∗(λ)Z/
√

n,α∗(λ)τ∗(λ)/
√

n),
).

3.2. Results. We fix from now on 0 < λmin ≤ λmax and D ⊂R
N that can be either Fp(ξ)

for some ξ,p > 0, or F0(s) for some s < smax(δ). Our uniformity domain is defined by
� = (δ, σ,D, λmin, λmax). Namely, we will control θ̂λ uniformly with respect to θ� ∈ D and
λ ∈ [λmin, λmax], with n/N = δ. We will call constant any quantity that only depends on �.
In absence of further specifications, C,c will be constants (that depend only on �) that are
allowed to change from one line to another.

REMARK 3.1. In what follows, we control the behavior of the Lasso for λ in the bounded
interval [λmin, λmax] with λmin, λmax of order 1 and bounded away from 0 as N,n → ∞. This
rules out the more classical prescription λ = c0σ

√
logN . We will show in Lemma 4.1 that

any choice of the regularization such that λ → ∞ as N,n → ∞ is suboptimal in the present
setting, and therefore there is no loss of generality in assuming λmin, λmax bounded. Namely,
for λ = O(1) the �2-estimation error is uniformly bounded by a quantity of order one (In
fact, we characterize precisely its limit in Theorem 3.2). In contrast, for λ → ∞ there exists
sequences of sparse vectors θ� ∈ R

N such the risk ‖θ̂λ − θ�‖ diverges. We also notice that
[16] points out that—empirically—the value of λ selected by cross-validation is often smaller
than the one from classical prescriptions.

The assumption of λmin bounded away from 0 is motivated by the need to control the
solution of equation (3.3) uniformly over the law of 
, and the given range of λ. The case
λ = 0 is singular (in that case we are performing unregularized least squares), and therefore
can lead to nonuniformity. While it might be possible to extend our results to (0, λmax] under
additional assumptions, we also expect that the optimal λ will be bounded away from 0 as
long as σ > 0, so we regard λmin > 0 as a minor limitation.

Our first result shows that the empirical distribution of the entries {(θ̂λ,i , θ
�
i )}i≤N is uni-

formly close to the model μ∗
λ. We quantify deviations using the Wasserstein distance. Recall

that, given two probability measures μ,ν on R
d with finite second moment, their Wasserstein

distance of order 2 is

W2(μ, ν) =
(

inf
γ∈C(μ,ν)

∫
‖x − y‖2

2γ (dx,dy)

)1/2
,(3.5)

where the infimum is taken over all couplings of μ and ν. Note that W2 metrizes the conver-
gence in equation (1.7). Namely limn→∞ W2(μn,μ∗) = 0 if and only if, for any function f :
R×R →R, with |f(x)− f(y)| ≤ L(1+‖x‖+‖y‖)‖x −y‖, we have limn→∞

∫
f(x)μn(dx) =∫

f(x)μ∗(dx) [53]. It provides therefore a natural way to extend earlier results to a nonasymp-
totic regime.

THEOREM 3.1. Assume that D = Fp(ξ) for some ξ > 0 and p > 0. Then there exists a
constant c > 0 that only depends on �, such that for all ε ∈ (0, 1

2 ]
sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]
W2

(
μ̂(θ̂λ,θ�),μ

∗
λ

)2 ≥ ε/n
)

≤ N exp
(−cNεa log(ε)−2)

,

where a = 1
2 + 1

p
.
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Theorem 3.1 is proved in Section C.2 of the Supplementary Material [32].

REMARK 3.2. It is worth emphasizing in what sense Theorem 3.1 is uniform with re-
spect to λ ∈ [λmin, λmax] and to θ� ∈ D:

• Uniformity with respect to λ. We bound (in probability) the maximum (over λ) deviation
between the empirical distribution μ̂(θ̂λ,θ�) and the predicted distribution μ∗

λ. (The supre-
mum over λ is “inside” the probability.)

• Uniformity with respect to θ�. We bound the maximum probability (over θ�) of a deviation
between μ̂(θ̂λ,θ�) and μ∗

λ. (The supremum over θ� is “outside” the probability.)

The reader might wonder whether it is possible to strengthen this result and bound the max-
imum deviation over θ� (“move the supremum over θ� inside”). The answer is negative. In
particular, we can choose the support of θ� to coincide with a submatrix of X with atypically
small minimum singular value. This will result in larger estimation error ‖θ̂λ − θ�‖2, and
hence in a large Wasserstein distance W2(μ̂(θ̂λ,θ�),μ

∗
λ).

REMARK 3.3. Theorem 3.1 compares the Wasserstein distance W2(μ̂(θ̂λ,θ�),μ
∗
λ) with

the scale 1/
√

n, that is the scale of the noise level. In particular, it implies that, form most
coordinates i,

(3.6) θ̂λ,i = η

(
θ�
i + τ∗Zi√

n
,
α∗τ∗√

n

)
+ O

(√
ε

n

)
,

for Zi ∼ N (0,1). Hence the factor 1/n the theorem’s statement is crucial for the error term
to be negligible compared to the noise τ∗Zi/

√
n.

REMARK 3.4. Note that Theorem 3.1 does not hold for �0 balls. This is probably a
fundamental problem, since controlling W2 distance uniformly over �0 balls is impossible
even in the simple sequence model (or, equivalently, for orthogonal designs X). Namely,

consider the case in which we observe yi = θ�
i + zi , i ≤ N , where (zi)i≤N

i.i.d.∼ N (0, τ 2∗ /n),
and we try to estimate θ� by computing θ̂λ,i = η(yi;λ/

√
n). Then there are vectors θ� ∈

F0(s) such that the empirical law μ̂(θ̂λ,θ�) does not concentrate in Wasserstein distance around
its expectation μ∗

λ, that is, the law of (
,η(
 + Z;λ/
√

n)) for Z ∼ N (0, τ∗/n).
In order to see this, it is sufficient to consider the vector

θ� = (N,2N, . . . , kN,0, . . . ,0)/
√

n ∈F0(s),

for k = sN . In Section F.1 of the Supplementary Material [32], we prove that (for this choice
of θ�) there exists a constant c0 such that W2(μ̂(θ̂λ,θ�),μ

∗
λ)

2 ≥ k/(Nn) = s/n with probability
at least 1 − e−c0k for all N large enough. This means that we cannot hope for Theorem 3.1 to
hold for ε < s, leading to a nonnegligible error term in (3.6).

We can think of several possibilities to overcome this intrinsic nonuniformity over �0 balls.
One option would be to consider a weaker notion of distance between probability measures.
Here, we follow a different route, and prove uniform estimates over �0 balls for several spe-
cific quantities of interest. In order to state these results, we introduce the following quanti-
ties, which correspond to the risk and the prediction error (and are expressed in terms of the
solution (τ∗, β∗) of (3.3))

R∗(λ) = τ∗(λ)2 − σ 2,(3.7)

P∗(λ) = β∗(λ)2 + 2σ 2

δ
s∗(λ) − σ 2

δ
.(3.8)



THE DISTRIBUTION OF THE LASSO 2321

THEOREM 3.2. Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ)

and ξ > 0,p > 0. There exist a constant c > 0 that only depends on �, such that for all
ε ∈ (0,1]

sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]
(∥∥θ̂λ − θ�

∥∥2 − R∗(λ)
)2 ≥ ε

)
≤ Ne−cNε2

,(3.9)

sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]

(
1

n
‖y − Xθ̂λ‖2 − β∗(λ)2

)2
≥ ε

)
≤ Ne−cNε2

,(3.10)

sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]

(
1

n

∥∥X(
θ� − θ̂λ

)∥∥2 − P∗(λ)

)2
≥ ε

)
≤ Ne−cNε2

.(3.11)

The statement (3.9) is proved in Section C.2, while (3.10)–(3.11) are proved in Section D
of the Supplementary Material [32].

So far we focused on the Lasso estimator θ̂λ. The debiased Lasso estimator is defined as

θ̂ d
λ = θ̂λ + XT(y − Xθ̂λ)

n − ‖θ̂λ‖0
.

This estimator plays a crucial role in the construction of confidence intervals and p-
values [28, 45, 51, 54], and provide an explicit construction of the “direct observations”
model in the sense that θ̂ d

λ is approximately distributed as N (θ�, τ∗I/
√

n). We let μ
(d)
λ be the

law of the couple (
 + τ∗(λ)Z/
√

n,
), where (
,Z) ∼ μ̂θ� ⊗N (0,1).

THEOREM 3.3. Let μ̂(θ̂d
λ ,θ�) denote the empirical distribution (on R

2) of the entries of

(θ̂d
λ , θ�). There exists a constant c > 0 such that for all ε ∈ (0,1],

sup
θ�∈F4(ξ)

P

(
sup

λ∈[λmin,λmax]
W2

(
μ̂(θ̂d

λ ,θ�),μ
(d)
λ

)2 ≥ ε/n
)

≤ Ne−cNε17/2
.

Theorem 3.3 is proved in Section F.6 of the Supplementary Material [32].

REMARK 3.5. Theorems 3.1, 3.2, 3.3 appear to capture the correct probability decay as
N → ∞ for ε fixed, which is exponentially vanishing in N . On the other hand, our bounds are
not always tight when N → ∞ and ε → 0 at the same time. In particular, the exponent 17/2
in Theorem 3.3 is most likely a weakness of the proof. Notice in particular that the probability
bound in Theorem 3.3 is less precise than the one in Theorem 3.1, probably because the more
intricate structure of θ̂ d

λ makes our proof less direct.

We developed our analysis for the case of uncorrelated covariates xi ∼ N (0, IN). However,
we believe that the general approach developed in this paper can be extended to general
correlation structures. Indeed a characterization similar to the present one is expected to hold
for correlated features [29]. The correlated case poses new technical challenges as well, in
particular to prove a generalization of Proposition 3.1.

Nevertheless, we believe the theory for i.i.d. designs to be reasonably accurate in a broader
domain, as illustrated by numerical simulations in the next section.
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4. Applications.

4.1. Estimation of the risk and the noise level. In order to select the regularization pa-
rameter and to evaluate the quality of the Lasso solution θ̂λ, it is useful to estimate the risk
and noise level. The paper [4] developed a suite of estimators of these quantities based on the
asymptotic theory of [6]. The same paper also proposed generalizations of these estimators
to correlated designs. Here, we revisit these estimators and prove stronger guarantees. First,
we obtain quantitative bound on the consistency rate of our estimators. Second, our results
are uniform over λ, which justifies using these estimators to select λ.

Let us start with the estimation of τ∗(λ) which plays a crucial role in the asymptotic theory.
We define

τ̂ (λ) = √
n
‖y − Xθ̂λ‖
n − ‖θ̂λ‖0

.

We will see with Theorem F.1 presented in Section F.5 of the Supplementary Material [32]
that

lim
N,n→∞

1

N
‖θ̂λ‖0 = P

(|√n
 + τ∗Z| ≥ τ∗λ/β∗
) ≡ s∗(λ).

Further, by Theorem 3.2, we have 1√
n
‖y − Xθ̂λ‖ = β∗(λ) + on(1). Recall that by (3.3) we

have β∗(λ) = τ∗(λ)(1 − 1
δ
s∗(λ)). We deduce τ̂ (λ) = τ∗(λ) + on(1). More precisely we have

the following consistency result.

COROLLARY 4.1. Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ)

and ξ > 0,p > 0. There exists a constant c > 0 that only depend on � such that for all
ε ∈ (0,1],

sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]
∣∣τ̂ (λ) − τ∗(λ)

∣∣ ≥ ε
)

≤ N exp
(−cNε6)

.

We next consider estimating the �2 error of the Lasso. Following [6], we define

R̂(λ) = τ̂ (λ)2
(

2

n
‖θ̂λ‖0 − N

n

)
+ ‖XT(y − Xθ̂λ)‖2

(n − ‖θ̂λ‖0)2
.

COROLLARY 4.2. Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ)

and ξ > 0,p > 0. There exists a constant c > 0 such that for all ε ∈ (0,1],
sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]
∣∣R̂(λ) − ∥∥θ̂λ − θ�

∥∥2∣∣ ≥ ε
)

≤ Ne−cNε6
,

Corollary 4.2 is proved in Section F.7 of [32]. Since by Corollary 4.2, Corollary 4.1, The-
orem 3.2 we have with high probability R̂(λ) � ‖θ̂λ − θ�‖2 � τ∗(λ)2 − σ 2 � τ̂ (λ)2 − σ 2, the
estimator

(4.1) σ̂ 2(λ) = τ̂ (λ)2 − R̂(λ) = τ̂ (λ)2
(

1 + N

n
− 2

n
‖θ̂λ‖0

)
− ‖XT(y − Xθ̂λ)‖2

(n − ‖θ̂λ‖0)2

is a consistent estimator of the noise level σ 2.

COROLLARY 4.3. There exists a constant c > 0 that only depends on �, such that for
all ε ∈ (0,1],

sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]
∣∣σ̂ 2(λ) − σ 2∣∣ > ε

)
≤ Ne−cNε6

.
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Finally, we consider the prediction error ‖Xθ� − Xθ̂λ‖. Stein Unbiased Risk Estimator
(SURE) provides a general method to estimate the prediction error, see, for example, [23, 41,
49]. In the present case, it takes the form

(4.2) P̂ SURE(λ) = 1

n
‖y − Xθ̂λ‖2 + 2σ 2

n
‖θ̂λ‖0.

Tibshirani and Taylor [49] proved that P̂ SURE(λ) is an unbiased estimator of the prediction
error, namely

E
{
P̂ SURE(λ)

} = 1

n

∥∥Xθ� − Xθ̂λ

∥∥2 + σ 2.(4.3)

The next result establishes consistency, uniformly over λ and θ�, with quantitative concen-
tration estimates.

COROLLARY 4.4. Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ)

and ξ > 0,p > 0. There exists a constant c > 0 that only depends on � such that for all
ε ∈ (0,1]

sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]

∣∣∣∣1

n

∥∥Xθ� − Xθ̂λ

∥∥2 + σ 2 − P̂ SURE(λ)

∣∣∣∣ ≥ ε

)
≤ Ne−cNε6

.

The same result holds if σ in (4.2) is replaced by an estimator of the noise level satisfying
the same consistency condition as σ̂ defined by (4.1) (cf. Corollary 4.3).

This corollary follows simply from Theorem F.1 from [32] and Theorem 3.2.

REMARK 4.1. Notice that exact unbiasedness of P̂ SURE(λ) only holds if the noise z in
the linear model (1.2) is Gaussian [49]. In contrast, it is not hard to generalize the proofs in
the present paper to include other noise distributions.

REMARK 4.2. In Corollaries 4.1, 4.2, 4.3, 4.4, we need to take ε ≥ C((logN)/N)1/6 in
order for the probability bounds on the right-hand side to vanish asymptotically. Therefore,
considering for instance Corollary 4.2, we get

∥∥θ̂λ − θ�
∥∥2 = R̂(λ) + OP

((
logN

N

)1/6)
.(4.4)

We do not expect the exponent 1/6 in this result to be tight. Nevertheless, in the proportional
regime which is our focus here (n 
 N 
 k0, with k0 the number of nonzeros in θ∗), the risk
‖θ̂λ − θ�‖2 is typically of order one, and therefore the N−1/6 term is negligible.

If k0 � N , the risk is of order (k0 logN)/n. Keeping to the proportional regime1 n 
 N

the error term in equation (4.4) is negligible provided k0 � (N/ logN)5/6.
We can also compare equation (4.4) with the results of [11], Theorem 1, establishing that

the minimax rates for estimating ‖θ̂λ −θ�‖2 is min(k logN)/n;1/
√

n). In the present propor-
tional regime n 
 N , this is much smaller than the error bound in equation (4.4). On the other
hand, [11], Theorem 1, requires k0 � √

N , while our guarantee holds up to linear sparsity.

1In the proof of Corollary 4.2, some of the inequalities are less precise outside the regime n 
 N .
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4.2. Adaptive selection of λ. As anticipated, we can use our uniform bounds to select
λ through an adaptive procedure. We discuss here three such procedures, that have already
been illustrated in Figure 1 (we refer to Sections 4.1 to 4.3 for further details on these quan-
tities): (i) selecting λ by minimizing the estimate τ̂ (λ), we denote this by λ̂EST; (ii) select
λ as to minimize Stein’s Unbiased Risk Estimate P̂ SURE(λ), λ̂SURE; (iii) select λ by k-fold
cross-validation, λ̂k-CV. We will next describe these procedures in greater detail, and state the
corresponding guarantees. Before getting into the analysis of these adaptive procedures, it is
useful to discuss why the minimax choice λ 
 √

log(N) is not satisfactory.

LEMMA 4.1. Let γ ∈R>0 be such that the largest singular value of X is at most γ with
probability at least 1 − q . For all s ∈ (0,1] and all λ ≥ 4σγ/

√
sN , there exists θ� ∈ F0(s)

such that

(4.5)
∥∥θ̂λ − θ�

∥∥2 ≥ nN

4γ 4 sλ2,

with probability at least 1 − e−2n − q .

Lemma 4.1 is proved in Section F.2 of the Supplementary Material [32]. For independent

Gaussian design Xi,j
i.i.d.∼ N (0,1) we have γ � √

N + √
n with high probability. Hence

if λ −−−−−→
N,n→∞ +∞ we have λ ≥ 4σγ/

√
sN with high probability for N,n large enough.

Lemma 4.1 gives that with high probability

∥∥θ̂λ − θ�
∥∥2 ≥ nN

4γ 4 sλ2 � δ

4(1 + √
δ)4

sλ2,

which diverges as N,n → ∞. We conclude that a diverging λ leads to a risk that goes to
infinity. The underlying mechanism is well known: If the nonzero entries of θ∗ are large
enough, the Lasso incurs a bias of order λ on those entries, and hence a mean square error of
order sλ2.

As this point a few remarks are in order:

(i) The minimax choice λ 
 √
logN is motivated by cases in which the sparsity ‖θ∗‖0 =

k0 is such that k0 ≤ N1−ε , and (k0 logN)/n → 0. An alternative would be to use the minimax
regularization for the proportional asymptotics k0,N,n → ∞, with k0/N = s, n/N = δ as
determined in [21]. In the next section, we carry out such a comparison. For s � 0.1, the
minimax choice is, again, substantially suboptimal.

(ii) Both in the proportional regime k0 
 n 
 N , and in the sparse regime k0 ≤ N1−ε ,
the minimax and adaptive choices of λ can differ by an arbitrarily large constant factor.
The resulting estimation errors also differ by an arbitrarily large constant factor. To see
this, consider the case of an s0 sparse vector in which s ≤ s0 of the nonzero entries are
very large, and the other are extremely small. The minimax choice λ 
 √

logN/s0 leads
to ‖θ̂λ − θ�‖2

2 
 s log(N/s0)/n, while the adaptive selection λ 
 √
log(N/s) leads to2

‖θ̂λ − θ�‖2
2 
 s log(N/s)/n.

In practice, the regularization selected by cross-validation is often smaller than this classi-
cal value [16].

2An arbitrarily constant factor is obtained, for instance, by taking s0 = Nα0 and s = Nα for some 0 < α <

α0 < 1. Notice that in fact a diverging factor can also arise by taking s0 = N/ logN , s = Nα , 0 < α < 1.
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Minimization of τ̂ (λ). Since the �2 risk of the Lasso is by Theorem 3.2 approximately equal
to R∗(λ) = τ∗(λ)2 − σ 2 and since by Corollary 4.1, τ̂ is a consistent estimator (uniformly in
λ) of τ∗, a natural procedure for selecting λ is to minimize τ̂ . We then define

λ̂EST = arg min
λ∈[λmin,λmax]

τ̂ (λ).

The next result is an immediate consequence of Theorem 3.2 and Corollary 4.1:

PROPOSITION 4.1. Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s <

smax(δ) and ξ > 0,p > 0. There exists a constants c > 0 that only depends on � such that
for all ε ∈ (0,1],

inf
θ�∈DP

(∥∥θ̂λ̂EST − θ�
∥∥2 ≤ inf

λ∈[λmin,λmax]
{∥∥θ̂λ − θ�

∥∥2} + ε
)

≥ 1 − Ne−cNε6
.

Minimization of SURE. We define

λ̂SURE = arg min
λ∈[λmin,λmax]

P̂ SURE(λ).

Here, it is understood that we can use either σ or σ̂ (λ) (cf. equation (4.1), in the definition of
P̂ SURE. We deduce from Corollary 4.4 the following.

PROPOSITION 4.2. Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s <

smax(δ) and ξ > 0,p > 0. There exists a constant c > 0 that only depends on � such that for
all ε ∈ (0,1],

inf
θ�∈DP

(
1

n

∥∥Xθ̂λ̂SURE − Xθ�
∥∥2 ≤ inf

λ∈[λmin,λmax]

{
1

n

∥∥Xθ̂λ − Xθ�
∥∥2

}
+ ε

)
≥ 1 − N exp

(−cNε6)
.

Cross-validation. We analyze now k-fold cross-validation. Let k ≥ 2 and define nk = n(k −
1)/k. We partition the rows of X in k groups: we obtain k-submatrices of size (n/k)×N that
we denote X(1), . . . ,X(k). Let us also write for i ∈ {1, . . . , k}, X(-i) for the submatrix of X

obtained by removing the rows X(i). We denote by y(i), z(i) and y(-i), z(-i) the corresponding
subvectors of y and z.

The estimator R̂k-CV of the risk using k-fold cross-validation if defined as follows. For
i = 1, . . . , k solve the Lasso problem

θ̂ i
λ = arg min

θ∈RN

{
1

2nk

∥∥y(-i) − X(-i)θ
∥∥2 + λ√

n
|θ |

}
,

and then compute

R̂k-CV(λ) = 1

n

k∑
i=1

∥∥y(i) − X(i)θ̂ i
λ

∥∥2
.

Finally, we set λ as follows:

λ̂k-CV = arg min
λ∈[λmin,λmax]

R̂k-CV(λ).

The next proposition shows that R̂k-CV(λ) is equal to the true risk (shifted by σ 2) up to
O(k−1/2).
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PROPOSITION 4.3. There exists a constant c > 0 that depends only on �, such that for
all k ≥ 2 such that smax((k − 1)δ/k) > s in the case where D = F0(s), we have

sup
θ�∈D

P

(
sup

λ∈[λmin,λmax]
∣∣R̂k-CV(λ) − ∥∥θ̂λ − θ�

∥∥2 − σ 2∣∣ ≥ C√
k

)
≤ Ne−cN/k6

.

Proposition 4.3 is proved in Section F.8 from [32]. It follows from Proposition 4.3 that
with high probability,∥∥θ̂λ̂k- CV − θ�

∥∥2 ≤ inf
λ∈[λmin,λmax]

∥∥θ̂λ − θ�
∥∥2 + O

(
k−1/2)

.

Discussion. The three methods discussed in this section (EST, SURE, CV) present impor-
tant differences: for this reason it is useful for the statistician to have multiple approaches
available.

First of all, these three approaches minimize estimates of different quantities. SURE esti-
mates the average prediction error at the points in the training sample, namely n−1‖X(θ̂λ −
θ�)‖2

2 + σ 2.
CV estimates the prediction error on a test sample (xtest, ytest), namely Etest{(ytest −

〈θ̂λ, x
test〉)2}. Under the linear model y = 〈θ�, x〉 + σz, this coincides with ‖
1/2(θ̂λ −

θ�)‖2
2 + σ 2, where 
 = E(xxT) is the population covariance. While in this paper, we are

focusing on 
 = Ip , this quantity is in general different from the estimation error ‖θ̂λ − θ�‖2
2.

Finally, τ̂ (λ)2 was conjectured in [4] to be an alternative estimate of the same quantity
‖
1/2(θ̂λ − θ�)‖2

2 + σ 2 for general Gaussian designs.3

CV is the most robust: we expect it to be consistent under significantly weaker assumptions
than the ones in Proposition 4.3. On the other hand, it presents an inconvenient computation-
accuracy tradeoff. For small k, it is biased since it use the prediction error from a sample of
size n(k − 1)/k to estimate the prediction error corresponding to the full sample. We expect
this bias to be at least of order k−1 and Proposition 4.3 shows that it is at most of order k−1/2.
On the other hand, for large k it is computationally expensive (it requires solving k Lassos).
SURE and EST are likely to be more sensitive to the model assumptions, but do not have
a large bias (in fact SURE is unbiased) and are very inexpensive. The bias of CV is clearly
visible in Figure 2 below.

4.3. Numerical experiments. In this section, we compare numerically various different
choices for the regularization parameter λ, namely λ̂EST, λ̂SURE and λ̂k-CV, presented in the
previous section. For these experiments, we take the components θ�

1 , . . . , θ�
N to be i.i.d. from

P0 = sN (0,1/n) + (1 − s)δ0.

Within this probabilistic model, we can compare achieved by our various choice of λ to the
Bayes optimal error (Minimal Mean Squared Error):

MMSEN = min
θ̂

E
[∥∥θ� − θ̂ (y,X)

∥∥2] = E
[∥∥θ� −E

[
θ�|y,X

]∥∥2]
,

where the minimum is taken over all estimators θ̂ (i.e., measurable functions of X,y). The
limit of the MMSE has been recently computed by [2] and [39]. Recall, that given two random
variables U,V , their mutual information is the Kullback–Leibler divergence between their
joint distribution and the product of the marginals: I (U ;V ) ≡ DKL(pU,V ‖pU × pV ).

3This conjecture was proved long after a first submission of this manuscript in two independent papers [7, 14].
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THEOREM 4.1 (Information-theoretic limit, from [2, 39]). Consider the linear re-
gression model (1.2) with standard Gaussian designs and parameter vector θ∗ such that
(
√

nθ∗
i )i≤n ∼iid P , with P a probability distribution with finite second moment. Define the

function

�δ,σ (m) = IP

(
σ−2

1 + m

)
+ δ

2

(
log(1 + m) − m

1 + m

)
,

where IP (r) = I (
;√r
̄ + Z) for (
̄,Z) ∼ P ⊗ N (0,1). Then, for almost every δ, σ > 0
the function �δ,σ admits a unique maximizer m∗(δ, σ ) on R≥0. Further, in the limit N,n →
∞ with n/N → δ, we have

MMSEN −−−−→
N→∞ δσ 2m∗(δ, σ ).

We also refer to the MMSE predicted in this theorem as to the Bayes optimum. Figure 1
reports the risk achieved by the various choices of λ as a function of the number of samples
per dimension δ. We also compare the data-driven procedures of the previous section to the
theory-driven choice λ = σ

√
2 logN . In the left frame, we consider uncorrelated random

designs: Xi,j
i.i.d.∼ N (0,1). On the right, we consider i.i.d. Gaussian rows with covariance

structure determined by an autoregressive model. Explicitly, the columns (Xj )1≤j≤N of X

are generated according to

(4.6) X1 = u0,Xj+1 = 1√
1 + φ2

(φXj + uj ),

where uj
i.i.d.∼ N (0,1) and φ = 2. For both types of designs, λ̂EST, λ̂SURE and λ̂k-CV perform

similarly, and substantially outperform the theoretical choice λ = σ
√

2 logN .
For uncorrelated designs, the resulting risk is closely tracked by the asymptotic theory,

and is surprisingly close to the asymptotic prediction for the Bayes risk MMSEN . While our
theory does not cover the case of correlated designs, the qualitative behavior is remarkably
similar.

In Figure 2, we investigate in greater detail the effect of correlations among the covariates.
We consider again the autoregressive correlation structure of equation (4.6) and plot the es-
timation error ‖θ̂λ − θ∗‖2

2 and test error 〈θ̂λ − θ∗,
(θ̂λ − θ∗)〉, as functions of λ. We also
plot the cross-validation estimator R̂k-CV(λ) as well as the estimator R̂(λ) introduced in Sec-
tion 4.1. Notice that the cross-validation estimator is expected to be a consistent estimator of
the test error 〈θ̂λ − θ∗,
(θ̂λ − θ∗)〉, for large k, but we to not expect R̂(λ) to be necessarily
consistent for correlated designs.

It is worth emphasizing two observations that seem generalize to other examples. The risk
changes significantly as the correlation strength increases, but gracefully so. For instance,
for φ = 1 (which means that consecutive covariates have correlation 1/

√
2 ≈ 0.71), the error

estimator R̂(λ) is nearly identical to the actual prediction error. Further, it is only a factor 2
larger than the estimation error. Second, and practically more important, the value of λ se-
lected by minimizing R̂(λ) is very close to optimal. This is to be compared with the standard
theory prescription λ = σ

√
2 logN ≈ 0.82 (beyond the axis limit in these figures).

We also observed that in this case, the risk estimator R̂(λ) is not consistent but its minimum
is roughly located at the same value of λ as for uncorrelated designs.

Next, we study adaptivity to sparsity. On Figure 3, we plot the risk as a function of the
sparsity of the signal θ�. We compare the three adaptive procedures (namely, λ̂EST, λ̂SURE
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FIG. 2. Estimation risk of the Lasso as a function of λ. Here, N = 5000, δ = 0.7, σ = 0.2. The true coefficients
vector θ� is chosen to be sN -sparse with s = 0.1. The entries on the support of θ� are i.i.d. N (0,1/n). Cross-val-
idation is carried out using 4 folds. SURE is computed using the estimator σ̂ for the plot on the left, and the true

value of σ on the right. Left: A standard random design with (Xij )
i.i.d.∼ N (0,1). Center: The rows of the design

matrix X are i.i.d. Gaussian, with correlation structure given by an autoregressive process (see equation (4.6))
with φ = 1. Bottom: Same as for the previous plot, but with φ = 2.

and λ̂k-CV), to the following choice:

λMM(s0) = α0σ

√
1 − 1

δ
Ms0(α0),

Ms(α) = s
(
1 + α2) + 2(1 − s)

((
1 + α2)

�(−α) − αφ(α)
)
,

α0 = arg min
α≥0

Ms0(α),

where s0 < smax(δ) is a nominal value for the sparsity (in Figure 3, we use s0 = 0.3). The
value λMM(s0) is expected to be asymptotically minimax optimal over F0(s0) [21].
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FIG. 3. Risk of the Lasso for different choices of λ. N = 10,000, σ = 0.2, δ = 0.8. Here, θ� is chosen to be
sN -sparse, and we vary the sparsity level s. The entries on the support of θ� are i.i.d. N (0,1). Cross-validation
is carried out using 4 folds. SURE is computed using the estimator σ̂ . The minimax regularization λMM(s0) is
used at the nominal level s0 = 0.3.

Also in this example, adaptive procedures dramatically outperform the fixed choice λ =
σ
√

2 logN , and also the minimax optimal λ at the nominal sparsity level.

5. Proof strategy. As mentioned above, our proofs are based on Gaussian comparison
inequalities, and in particular on Gordon’s min-max theorem [26, 27]. In this section, we
review the application of this inequality to the Lasso as developed in [47]. We then discuss
the limitations of earlier work, which does not characterize the empirical distribution of the
Lasso estimator θ̂λ (or need extra sparsity assumptions [36]) nor uniform bounds as in Theo-
rem 3.1. A key challenge is related to the fact that the Lasso cost function (1.1) is convex but
not strongly convex. Hence, a small change in λ could cause a priori a large change in the
minimizer θ̂λ.

In order to overcome these problems, we establish a property that we call “local stability.”
Namely, if the empirical distribution of (θ̂λ, θ

�) deviates from our prediction, then the value of
the optimization problem increases significantly. This implies that the empirical distribution
is stable with respect to perturbations of the cost (e.g., changes in λ). Gordon’s comparison
is again crucial to prove this stability property.

Finally, we describe how local stability is used to prove the theorems in the previous sec-
tions. A full description of the proofs is provided in the Appendices [32].

5.1. Tight Gaussian min-max theorem. For convenience, we will use a different (but

equivalent) scaling for the proofs. Instead of taking Xi,j
i.i.d.∼ N (0,1) as we did above, we

should consider from now (and in the Supplementary Material) that Xi,j
i.i.d.∼ N (0,1/n). This

amounts of replacing θ by θ/
√

n, so that Xθ remains unchanged. With this new normaliza-
tion, a statement like ‖θ̂λ − θ�‖2 � R∗(λ) becomes 1

N
‖θ̂λ − θ�‖2 � δR∗(λ)

It is more convenient (but equivalent) to study ŵλ = θ̂λ − θ� instead of θ̂λ. The vector ŵλ

is the minimizer of the cost function

(5.1) Cλ(w) = 1

2n
‖Xw − σz‖2 + λ

n

(∣∣w + θ�
∣∣ − ∣∣θ�

∣∣).
Following [47], we rewrite the minimization of Cλ as a saddle point problem:

(5.2) min
w∈RN

Cλ(w) = min
w∈RN

max
u∈Rn

{
1

n
uT(Xw − σz) − 1

2n
‖u‖2 + λ

n

(∣∣w + θ�
∣∣ − ∣∣θ�

∣∣)}.
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We apply the following Theorem from [47] which improves over Gordon’s Theorem [27] by
exploiting convex duality.

THEOREM 5.1 (Theorem 3 from [47]). Let Sw ⊂ R
N and Su ⊂ R

n be two compact

sets and let Q : Sw × Su → R be a continuous function. Let G = (Gi,j )
i.i.d.∼ N (0,1),

g ∼ N (0, IN) and h ∼ N (0, In) be independent standard Gaussian vectors. Define⎧⎪⎨⎪⎩
C∗(G) = min

w∈Sw

max
u∈Su

uTGw + Q(w,u),

L∗(g,h) = min
w∈Sw

max
u∈Su

‖u‖2g
Tw + ‖w‖2h

Tu + Q(w,u).

Then we have:

• For all t ∈ R,

P
(
C∗(G) ≤ t

) ≤ 2P
(
L∗(g,h) ≤ t

)
.

• If Sw and Su are convex and if Q is convex concave, then for all t ∈ R,

P
(
C∗(G) ≥ t

) ≤ 2P
(
L∗(g,h) ≥ t

)
.

For the reader’s convenience, we provide in Section G.3 of the Supplementary Mate-
rial [32] a proof of this theorem.

Because of Gordon’s theorem, it suffices now to study (see Corollary 5.1 below) for
(g, g′, h) ∼ N (0, IN) ⊗N (0,1) ⊗N (0, In).

(5.3) Lλ(w) = 1

2

(√
‖w‖2

n
+ σ 2 ‖h‖√

n
− 1

n
gTw + g′σ√

n

)2

+
+ λ

n

∣∣w + θ�
∣∣ − λ

n

∣∣θ�
∣∣.

COROLLARY 5.1.

(a) Let D ⊂ R
N be a closed set. We have for all t ∈ R

P

(
min
w∈D

Cλ(w) ≤ t
)

≤ 2P
(

min
w∈D

Lλ(w) ≤ t
)
.

(b) Let D ⊂ R
N be a convex closed set. We have for all t ∈ R

P

(
min
w∈D

Cλ(w) ≥ t
)

≤ 2P
(

min
w∈D

Lλ(w) ≥ t
)
.

PROOF. We will only prove the first point, since the second follows from the same argu-
ments. Define for (w,u) ∈ R

N ×R
n,

cλ(w,u) = 1

n
uTXw − σ

n
uTz − 1

2n
‖u‖2 + λ

n

(∣∣w + θ�
∣∣ − ∣∣θ�

∣∣),
lλ(w,u) = − 1

n3/2 ‖u‖gTw + 1

n
‖u‖g′σ +

√
‖w‖2

n
+ σ 2 hTu

n

− 1

2n
‖u‖2 + λ

n

(∣∣w + θ�
∣∣ − ∣∣θ�

∣∣).
Notice that for all w ∈ R

N , Lλ(w) = maxu∈Rn lλ(w,u) and Cλ(w) = maxu∈Rn cλ(w,u).
Let us suppose that X,z, g,h, g′ live on the same probability space and are independent.

Let ε ∈ (0,1]. Let σmax(X) denote the largest singular value of the matrix X. By tightness,
we can find K > 0 such that the event

(5.4)
{
σmax(X) ≤ K,‖z‖ ≤ K,‖g‖ ≤ K,‖h‖ ≤ K,

∣∣g′∣∣ ≤ K
}
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has probability at least 1 − ε. Let D ⊂ R
N be a (nonempty, otherwise the result is trivial)

closed set. Let us fix w0 ∈ D. On the event (5.4) Cλ(w0) and Lλ(w0) are both upper bounded
by some nonrandom quantity R. Let now w ∈ D such that Cλ(w) ≤ R. We have then λ

n
|w +

θ�| ≤ R + λ
n
|θ�|, which implies that ‖w‖ is upper bounded by some nonrandom quantity

R1. This implies that, on the event (5.4), the minimum of Cλ over D is achieved on D ∩
B(0,R1). Similarly on (5.4), the minimum of Lλ over D is achieved on D ∩ B(0,R2), for
some nonrandom quantity R2. Without loss of generalities, one can assume R1 = R2. On the
event (5.4), we have

min
w∈D

Cλ(w) = min
w∈D∩B(0,R1)

Cλ(w) = min
w∈D∩B(0,R1)

max
u∈B(0,R3)

cλ(w,u),

for some nonrandom R3 > 0. This gives that for all t ∈ R, we have

P

(
min
w∈D

Cλ(w) ≤ t
)

≤ P

(
min

w∈D∩B(0,R1)
max

u∈B(0,R3)
cλ(w,u) ≤ t

)
+ ε,

and similarly

P

(
min

w∈D∩B(0,R1)
max

u∈B(0,R3)
lλ(w,u) ≤ t

)
≤ P

(
min
w∈D

Lλ(w) ≤ t
)

+ ε.

Since the sets D ∩ B(0,R1) and B(0,R3) are compact, one can apply Theorem 5.1 to cλ and
lλ and obtain

P

(
min
w∈D

Cλ(w) ≤ t
)

≤ 2P
(

min
w∈D

Lλ(w) ≤ t
)

+ 2ε.

The corollary follows then from the fact one can take ε arbitrarily small. �

5.2. Local stability. In order to prove that (for instance) ŵλ verifies with high probability
some property, let us say for instance that the empirical distribution of (θ̂λ = θ� + ŵλ, θ

�) is
close to μ�

λ, we define a set Dε ⊂ R
N that contains all the vectors that do not verify this

property, for example, Dε = {w ∈ R
N |W2(μ̂(θ�+w,θ�),μ

∗
λ)

2 ≥ ε}, for some ε ∈ (0,1). The
goal now is to prove that with high probability

min
w∈D

Cλ(w) ≥ min
w∈RN

Cλ(w) + ε,

for some ε > 0. Using Gordon’s min-max theorem (Corollary 5.1), we will be able to show

(5.5) P

(
min
w∈Dε

Cλ(w) ≤ min
w∈RN

Cλ(w) + ε
)

≤ 2P
(

min
w∈Dε

Lλ(w) ≤ min
w∈RN

Lλ(w) + ε
)

+ oN(1).

Informally, this is a consequence of the following two remarks. First, by applying parts
(a) and (b) of Corollary 5.1 to the convex domain R

N , we deduce that minw∈RN Cλ(w) ≈
minw∈RN Lλ(w). Second, by applying part (a) to the closed domain D, we obtain
minw∈Dε Cλ(w) � minw∈Dε Lλ(w)

It remains now to study the cost function Lλ, which is much simpler. This is done in
Section B of [32]. The key step will be to establish the following “local stability” result
(the next statement is an immediate consequence of Proposition B.1 and Theorem B.1 in the
Supplementary Material [32]. We prove in fact that the cost function Lλ is strongly convex
on a neighborhood of its minimizer.).

THEOREM 5.2. The minimizer w∗
λ = arg minw Lλ(w) exists and is almost surely unique.

Further, there exists constants γ, c > 0 that only depend on � such that for all θ� ∈ D, all
λ ∈ [λmin, λmax] and all ε ∈ (0,1],

P

(
∃w ∈ R

N,
1

N

∥∥w − w∗
λ

∥∥2
> ε and Lλ(w) ≤ min

v∈RN
Lλ(v) + γ ε

)
≤ Ne−cNε2

.
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We do not obtain an equally strong result for the cost function Cλ(w), but we prove the fol-
lowing statement, which is sufficient for obtaining uniform control (for the sake of argument,
we focus here on the domain Fp(ξ) and control of the empirical distribution).

THEOREM 5.3. Assume that D = Fp(ξ) for some ξ,p > 0. There exists constants c, γ >

0 that only depend on � such that for all ε ∈ (0, 1
2 ],

sup
λ∈[λmin,λmax]

sup
θ�∈D

P
(∃θ ∈ R

N,W2
(
μ̂(θ,θ�),μ

∗
λ

)2 ≥ ε and Lλ(θ) ≤ minLλ + γ ε
)

≤ N exp
(−cNεa log(ε)−2)

,

where a = 5
2 + 1

p
.

Theorem 5.3 is proved in Section C.1 of the Supplementary Material [32].

5.3. Sketch of proof of main results. For the sake of simplicity, we will illustrate the
prove strategy by considering the empirical distribution of ŵλ = θ̂λ − θ�, as the argument is
similar for other quantities. According to Theorem 3.1, this should be well approximated by
μλ that is the law of 
̂ − 
, when (
̂,
) ∼ μ∗

λ; cf. Definition 3.3.
As anticipated, equation (5.5) and Theorem 5.2, allow one to control W2(μ̂ŵλ,μλ) for a

fixed λ (μ̂ŵλ denotes the empirical distribution of the entries of ŵλ). Namely, we can de-
fine Dε to be the set of vectors w such that W2(μ̂w,μλ) ≥ ε > 0. We then prove that the
minimizer w∗

λ of Lλ has empirical distribution close to μλ and, therefore, by Theorem 5.2,
Lλ(w) > Lλ(w

∗
λ)+ γ ε for all w ∈ Dε , with high probability. This implies that the right-hand

side of (5.5) is very small and we deduce that, with high probability, all minimizers or near
minimizers of Cλ(w) have empirical distribution close to μλ,

We now would like to prove Theorem 3.1 and show that with high probability μ̂ŵλ ≈ μλ,
uniformly in λ ∈ [λmin, λmax]. To do so, we apply the above argument for λ = λ1, . . . , λk ,
where λ1, . . . , λk is an ε-net of [λmin, λmax]. This implies that, with high probability for
λ ∈ {λ1, . . . , λk}, W2(μ̂ŵλi

,μλi
) ≤ ε. Next, for λ ∈ [λi, λi+1], we show that

Cλi
(ŵλ) = min

w∈RN
Cλi

(w) + O
(|λi+1 − λi |).

Consequently, if |λi+1 − λi | = O(ε) (using again equation (5.5) and Theorem 5.2), we
obtain that W2(μ̂ŵλ,μλi

) = O(ε) and, therefore, W2(μ̂ŵλ,μλ) = O(ε). We conclude that
W2(μ̂ŵλ,μλ) = O(ε) for all λ ∈ [λmin, λmax], with high probability, which is the desired
claim.

If the strategy exposed above allows one to obtain the risk of the Lasso and the empiri-
cal distribution of its coordinates, it is not enough to get its sparsity ‖θ̂λ‖0 or to obtain the
empirical distribution of the debiased lasso

θ̂ d
λ = θ̂λ + XT(y − Xθ̂λ)

1 − 1
n
‖θ̂λ‖0

.

Therefore, we will need to analyze the vector

v̂λ = 1

λ
XT(y − Xθ̂λ),

which is a subgradient of the �1-norm at θ̂λ. We are able to study v̂λ using Gordon’s min-max
theorem because v̂λ is the unique maximizer of

v �→ min
w∈RN

{
1

2n
‖Xw − σz‖2 + λ

n
vT(

w + θ�)}.

The detailed analysis is done in Section E from [32].
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