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Interpolators—estimators that achieve zero training error—have at-
tracted growing attention in machine learning, mainly because state-of-the art
neural networks appear to be models of this type. In this paper, we study min-
imum �2 norm (“ridgeless”) interpolation least squares regression, focusing
on the high-dimensional regime in which the number of unknown parameters
p is of the same order as the number of samples n. We consider two dif-
ferent models for the feature distribution: a linear model, where the feature
vectors xi ∈ R

p are obtained by applying a linear transform to a vector of
i.i.d. entries, xi = �1/2zi (with zi ∈ R

p); and a nonlinear model, where the
feature vectors are obtained by passing the input through a random one-layer
neural network, xi = ϕ(Wzi) (with zi ∈ R

d , W ∈ R
p×d a matrix of i.i.d.

entries, and ϕ an activation function acting componentwise on Wzi ). We
recover—in a precise quantitative way—several phenomena that have been
observed in large-scale neural networks and kernel machines, including the
“double descent” behavior of the prediction risk, and the potential benefits of
overparametrization.

1. Introduction. Modern deep learning models involve a huge number of parameters.
In many applications, current practice suggests that we should design the network to be suffi-
ciently complex so that the model (as trained, typically, by gradient descent) interpolates the
data, that is, achieves zero training error. Indeed, in a thought-provoking experiment, Zhang
et al. [71] showed that state-of-the-art deep neural network architectures are complex enough
that they can be trained to interpolate the data even when the actual labels are replaced by
entirely random ones.

Despite their enormous complexity, deep neural networks are frequently observed to gen-
eralize well in practice. At first sight, this seems to defy conventional statistical wisdom: in-
terpolation (vanishing training error) is commonly taken to be a proxy for poor generalization
(large gap between training and test error), and hence large test error. In an insightful series
of papers, Belkin et al. [8, 10, 11] pointed out that these concepts are in general distinct, and
interpolation does not contradict generalization. For example, recent work has investigated
interpolation—via kernel ridge regression—in reproducing kernel Hilbert spaces [30, 47].
While in low dimension a positive regularization is needed to achieve good interpolation, in
certain high-dimensional settings interpolation can be nearly optimal.

In this paper, we investigate these phenomena in the context of simple linear models. We
assume to be given i.i.d. data (yi, xi), i ≤ n, with xi ∈ R

p a feature vector and yi ∈ R a
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response variable. These are distributed according to the model (see Section 2 for further
definitions)

(xi, εi) ∼ Px × Pε, i = 1, . . . , n,(1)

yi = xT
i β + εi, i = 1, . . . , n,(2)

where Px is a distribution on R
p such that E(xi) = 0, Cov(xi) = �, and Pε is a distribution

on R such that E(εi) = 0, Var(εi) = σ 2.
We estimate β by linear regression. Since our focus is on the overparametrized regime

p > n, the usual least square objective does not have a unique minimizer, and needs to be
regularized. We consider two approaches: min-norm regression, which estimates β by the
least squares solution with minimum �2 norm; and ridge regression, which penalizes a co-
efficients vector β by its �2 norm square ‖β‖2

2. We denote these estimates by β̂ and β̂λ (λ
being the regularization parameter), and note that limλ→0 β̂λ = β̂ . If the design matrix has
full row rank, which is generically the case for p > n, the min-norm estimator is an interpo-
lator, namely xT

i β̂ = yi for all i ≤ n. In order to evaluate these methods, we will study the
prediction risk at a new (unseen) test point (y0, x0).

We study the model (2) in the proportional regime p � n, with a special focus on the
overparametrized case p > n. Our main contribution is to show that, by considering different
choices of the features distribution Px , we can reproduce a number of statistically interesting
phenomena that have emerged in the context of deep learning.

From a technical perspective, our main results are: Theorems 2 and 5, which assume the
linear model xi = �1/2zi with zi a vector with independent coordinates and Theorem 8,
which assumes a nonlinear model xi = ϕ(Wzi) with zi ∼ N(0, Id). While the linear model
has already a attracted significant amount of work (see Section 1.3 for an overview), Theo-
rems 2 and 5 provide a more accurate approximation of the prediction risk in the proportional
regime n � p, as compared to available results in the literature, and hold in a more general
setting.

The prediction risk depends on the geometry of the pair (�,β). We consider a few dif-
ferent choices for this geometry, which are broadly motivated by our objective to understand
overparametrized models, and specialize our formulas to these special cases:

1. Isotropic features. This is the simplest case, in which � = Ip and, therefore, as we
will see the asymptotic risk depends on β only through its norm ‖β‖2. This simple model
captures some interesting features of overparametrization, but misses others.

We first consider a well-specified case in which xi ∈ R
p and we regress against xi . We

then pass to a misspecified case, in which the model (2) holds for covariates xi ∈ R
p+q , but

we regress only against the first p covariates.
2. Latent space features. In the overparametrized regime, it is natural to assume that

both the covariates xi , and the coefficients vector β lie close to a low-dimensional subspace.
In order to model this property, we assume � = WWT + I , with W ∈ R

p×d , d � p and β

lies in the span of the columns of W . Interestingly, this model reproduces many phenomena
observed in more complex nonlinear models, and has a more direct connection to neural
networks.

3. Nonlinear model. In all of the previous cases, the distribution of xi is of the form
xi = �1/2zi where zi is a vector with independent coordinates. In order to test the generality
of our results, we consider a model in which xi is obtained by passing zi ∼ N(0, Id) through
a one-layer neural net with random first layer weights, namely xi = ϕ(Wzi), for W ∈ R

p×d .

We will summarize our results for these four examples in the next subsection.
A skeptical reader might ask what linear models have to do with neural networks. We

emphasize that linear models provide more than a simple analogy, and a recent line of work
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outlines a concrete connection between the two settings [4, 19, 24, 25, 39]. We will discuss
this connection in Section 1.2.

1.1. Summary of results. As mentioned above, we analyze the out-of-sample prediction
risk of the minimum �2 norm (or min-norm, for short) least squares estimator, and of ridge-
regularized least squares.

We denote by γn := p/n ∈ (0,∞) the overparametrization ratio. When γ < 1, we call the
problem underparametrized, and when γ > 1, we call it overparametrized. Our most general
results for the linear model (Theorem 2 and 5) apply to a nonasymptotic setting in which
n, p are finite, and provide a deterministic approximation of the risk with error bounds that
are uniform in the distribution of the data. We use these general results to derive asymptotic
formulas in the limit in which both p and n diverge with γn = p/n → γ . (We will drop the
subscript from γn whenever this is not cause for confusion.)

We assume the model (2) and denote by SNR = ‖β‖2
2/σ

2 the signal-to-noise ratio. We
refer to Figure 1 for supporting plots of the asymptotic risk curves for different cases of
interest.

Our main results are twofold: (i) We show that by suitable choices of β , �, we can easily
construct scenarios in which the minimum of the risk is achieved in the overparamertized
regime p > n; (ii) We show that these findings are robust to the details of the distribution of
(yi, xi).

As a preliminary remark, note that in the underparametrized regime (γ < 1), the min-norm
estimator coincides with the standard least squares estimator. Its risk is purely variance (there

FIG. 1. Asymptotic risk curves for the linear feature model, as a function of the limiting aspect ratio γ . Black
and yellow: risks for min-norm least squares in the isotropic well-specified model, for SNR = 1 and SNR = 5,
respectively. These two match for γ < 1 but differ for γ > 1. The null risks for SNR = 1 and SNR = 5 are
marked by the dotted black and yellow lines, respectively. Light blue: risk for a misspecified model with significant
approximation bias (a = 1.5 in (27)), when SNR = 5. Green: optimally-tuned (equivalently, CV-tuned) ridge
regression, in the same misspecified setup as for the light blue. Red: latent space model of Section 5.2, with r = 7,
σ = 0. The points denote finite-sample risks, with n = 200, p = [γ n], across various values of γ . Meanwhile,
the “×” points mark finite-sample risks for a nonlinear feature model, with n = 200, p = [γ n], d = 100 and
X = ϕ(ZWT ), where Z has i.i.d. N(0,1) entries, W has i.i.d. N(0,1/d) entries and ϕ(t) = a(|t | − b) is a
“purely nonlinear” activation function, for constants a, b. Theorem 8 predicts that this nonlinear risk should
converge to the linear risk with p features (regardless of d).
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is no bias), and does not depend on β , � (see Proposition 2). Interestingly, the asymptotic
risk diverges as we approach the interpolation boundary (as γ → 1).

In contrast, in the overparametrized regime (γ > 1), the risk is composed of both bias and
variance,1 and generally depends on β , � (see Theorem 2).

We next highlight some concrete results for the four models discussed in the previous
section (unless explicitly said, we refer to the min-norm estimator).

Isotropic features. The asymptotic risk depends on the coefficients vector only through its
norm ‖β‖2

2 or, up to a scaling, on SNR = ‖β‖2
2/σ

2.

1. If the model is well specified, we observe two different behaviors. For SNR ≤ 1,
the risk is decreasing for γ ∈ (1,∞). For SNR > 1, the risk has a local minimum on
γ ∈ (1,∞).

In either case, the risk approaches the null risk as γ → ∞, and achieves its global
minimum in the underparametrized regime (see Section 3.2).

2. If the model is misspecified, when SNR > 1, the risk can attain its global minimum
in the overparametrized regime γ ∈ (1,∞) (when there is strong enough approximation
bias, see Section 5.1.3). However, the risk is again increasing for γ large enough.

3. Optimally-tuned ridge regression uses a nonvanishing regularization λ > 0, and
dominates the min-norm least squares estimator in risk, across all values of γ and SNR,
both the well-specified and misspecified settings. For a misspecified model, optimally-
tuned ridge regression attains its global minimum around γ = 1 (see Section 6).

4. Optimal tuning of the ridge penalty can be achieved by leave-one-out cross-
validation (see Theorem 7).

Anisotropic features. In this case, � 
= I and the risk depends on the geometry of (�,β),
and in particular on how β aligns with the eigenvectors of �.

1. If the coefficients vector is equidistributed along the eigenvectors of �, the behav-
ior is qualitatively similar to the isotropic case. This situation arises, for instance, if β is
itself random with a spherical prior.

2. If β is aligned with the top eigenvectors of �, the situation is qualitatively differ-
ent. As an example we obtain an explicit formula for the asymptotic risk in the latent space
model discussed above; see the red line of Figure 1 (and Figure 5) for an illustration. We
find that, for natural choices of the model parameters, the risk is monotone decreasing in
the overparametrized regime, and reaches its global minimum as γ → ∞. This qualitative
behavior matches the one observed for neural networks (see Section 5.2).

3. For the latent space model, we observe that, at large overparametrization, the min-
imum error is achieved as λ → 0, that is, by min-norm interpolators (see Section 6.2, and
Section 1.3 for related work).

Nonlinear model. Finally, we consider a nonlinear model in which xi = ϕ(Wzi) where ϕ is
a nonlinear activation function applied componentwise, W ∈ R

p×d and zi ∼ N(0, Id).

1. We first consider the case of a purely nonlinear activation. We compute the lim-
iting risk of min-norm regression, and show that this matches the one for Gaussian
xi ∼ N(0, Id) (see Theorem 8). This is illustrated by the “x” symbols in Figure 1.

2. We then compute the limit of the variance component of the risk for more general
activations ϕ. We show that this depends on the activation function only through the size

1Note that in the overparametrized regime the bias is nonvanishing even in the interpolation limit λ → 0. The
reason is that the set of interpolators is an affine space of dimension p −n, and the min-norm criterion selects one
specific interpolator, whose mean has—in general—norm smaller than β .
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of its linear component. Further, the resulting variance turns out to coincide asymptotically
with the variance in the linear model xi = �1/2z̃i , if we take � = (1 − c1)Ip + c1WWT

for a certain constant c1. (see Theorem 9).

These results confirm that the results established for the case xi = �1/2zi with zi an i.i.d.
vector hold in greater generality

From a technical viewpoint, analysis of the isotropic covariates model is straightforward
and relies on standard random matrix theory results. However, we believe it provides useful
insights.

In contrast, the results for general covariance and coefficients structure (�,β) is techni-
cally novel. We discuss related work in Section 1.3. Our results for the nonlinear model are
also technically novel. In this setting, we derive a new asymptotic result on resolvents of
certain block matrices, which may be of independent interest (see Lemma 3).

We next discuss the intuitions that emerge from our results as well as earlier literature.

Bias and variance. The shape of the asymptotic risk curve for min-norm least squares is,
of course, controlled by its components: bias and variance. For fully specified models, the
bias increases with γ in the overparametrized regime, which is intuitive. When p > n, the
min-norm least squares estimate of β is constrained to lie the row space of X, the training
feature matrix. This is a subspace of dimension n lying in a feature space of dimension p.
Thus as p increases, so does the bias, since this row space accounts for less and less of the
ambient p-dimensional feature space.

Meanwhile, we find that, in the overparametrized regime, the variance decreases with γ .
This may seem counterintuitive at first, because it says, in a sense, that the min-norm least
squares estimator becomes more regularized as p grows. However, this too can be explained
intuitively, as follows. As p grows, the minimum �2 norm least squares solution—that is, the
minimum �2 norm solution to the linear system Xb = y, for a training feature matrix X and
response vector y—will generally have decreasing �2 norm. Why? Compare two such linear
systems: in each, we are asking for the min-norm solution to a linear system with the same
y, but in one instance we are given more columns in X, so we can generally decrease the
components of b (by distributing them over more columns), and achieve a smaller �2 norm.
This can in fact be formalized asymptotically; see Corollaries 1 and 3.

Double descent. Recently, Belkin et al. [8] pointed out a fascinating empirical trend
where, for popular methods like neural networks and random forests, we can see a second
bias-variance tradeoff in the out-of-sample prediction risk beyond the interpolation limit. The
risk curve here resembles a traditional U-shape curve before the interpolation limit, and then
descends again beyond the interpolation limit, which these authors call “double descent.” A
closely related phenomenon was found earlier by Spigler et al. [63], who studied the “jam-
ming transition” from underparametrized to overparametrized neural networks. Our results
formally verify that this double descent phenomenon occurs even in the simple and funda-
mental case of least squares regression. The appearance of the second descent in the risk, past
the interpolation boundary (γ = 1), is explained by the fact that the variance decreases as γ

grows, as discussed above.
In the misspecified case, the variance still decreases with γ (for the same reasons), but

interestingly, the bias can now also decrease with γ , provided γ is not too large (not too
far past the interpolation boundary). The intuition here is that in a misspecified model, some
part of the true regression function is always unaccounted for, and adding features generally
improves our approximation capacity. As a consequence, the double descent phenomenon
can be even more pronounced in the misspecified case (depending on the strength of the
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approximation bias), in that the risk can attain its global minimum past the interpolation
limit.

Finally, in the latent space model, we observe that the overall risk can be monotone
decreasing in the overparametrized regime, and attain its global minimum for large over-
parametrization γ → ∞ (after p,n → ∞). In this case, we can write the design matrix as
X = ZWT + U , where U is noise, and Z is the n × d matrix of latent covariates. Equiv-
alently, the ith column of X (the ith feature) takes the form x̃i = Zwi + ũi , where wi is
the ith column of WT and ũi is the ith column of U . Therefore, each new feature provides
new information about the underlying low-dimensional latent variables Z. As p gets large,
ridge regression with respect to the feature matrix X approximates increasingly well a ridge
regression with respect to the latent variables Z.

Interpolation versus regularization. The min-norm least squares estimator can be seen
as the limit of ridge regression as the tuning parameter tends to zero. A natural and impor-
tant question is whether (or when) letting the regularization to 0 is optimal. Min-norm least
squares is also the convergence point of gradient descent run on the least squares loss. Early-
stopped gradient descent is known to be closely connected to ridge regularization; see, for
example, Ali et al. [3], which proves a tight coupling between the two (see Section 1.3 for
further related work). The question of whether letting the regularization vanish is optimal
is closely related to the question of whether running gradient descent until convergence is
optimal or early stopping provides some advantage.

Closely related questions have been investigated in the context of classification. For in-
stance, it is common to run boosting until the training error is zero, and the boosting path is
tied to �1 regularization [37, 58, 65]. It is empirically observed that, for noisy labels, early
stopping (treating the number of boosting iterations as a tuning parameter) can be beneficial.

We would not expect the best-predicting ridge solution to be always at the end of its reg-
ularization path. Our results, comparing min-norm least squares to optimally-tuned ridge
regression, show that (asymptotically) this is never the case, when β is incoherent with re-
spect to the eigenvectors of �. This is for instance the case when � = Ip , or β is distributed
according to a spherically symmetric prior. In contrast, [42] recently pointed out that—when
β is aligned with the leading eigenvectors of �—min-norm regression can have optimal risk
(i.e., the optimal regularization vanishes). We show that this is indeed the case in the latent
space model mentioned above: this provides indeed an extremely simple example of a phe-
nomenon that has been observed in the past for kernel methods [47]. Notice that the results
we obtain for the latent space model are asymptotically sharper than the one of [47], in that
they imply optimality up to subleading terms (not just up to constant factors).

In practice, of course, we would not have access to the optimal tuning parameter for ridge
(optimal stopping for gradient descent), and we would rely on, for example, cross-validation
(CV). Our theory shows that for ridge regression, CV tuning is asymptotically equivalent to
optimal tuning (and we would expect the same results to carry over to gradient descent, but
have not pursued this formally).

1.2. Connection to neural networks. As mentioned above, recent literature has estab-
lished a direct connection between linear models and more complex models such as neural
networks, in a certain training regime [4, 19, 24, 25, 39]. Here, we will briefly outline this
connection, referring the reader to the literature for a more detailed exposition.

For the discussion in this section, it is convenient to consider a more general setting, in
which we are given data (yi, zi), i ≤ n, yi ∈ R, zi ∈ R

d , which are i.i.d. from an arbitrary dis-
tribution (yi, zi) ∼ Py,z. Imagine training a neural network with parameters (weights) θ ∈ R

p ,
f (·; θ) : Rd → R, z �→ f (z; θ). The specific form or architecture of the network is not im-
portant for our discussion. However, it is important to distinguish two conceptually different
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functions. One the one hand, we have the true regression function f∗(zi) = E{yi |zi}; this is
unknown to the statistician. For theoretical purposes, f∗ can be assumed to belong so some
function class, but for this section we will not specify this choice. On the other hand, we have
a parametric model f (zi; θ), which is determined by the specific network architecture. A
specific network with the given architecture is determined by assigning the network weights
θ ∈R

p .
From the point of view of optimization, the central role is played by the parametric model

f (z; θ). In modern machine learning, the number of parameters p is so large that—under
certain training schemes—θ only changes by a small amount with respect to a random ini-
tialization θ0 ∈ R

p . It thus makes sense to linearize the model around θ0. Supposing that
the initialization is such that f (z; θ0) ≈ 0, and letting θ = θ0 + β , we can approximate the
statistical model z �→ f (z; θ) by

(3) z �→ ∇θf (z; θ0)
T β.

This model is still nonlinear in the input z, but is linear in the parameters β . In other words,
if the linear approximation is accurate, learning reduces to computing feature vectors xi =
∇θf (zi; θ0), i = 1, . . . , n, from the data, and then fitting a linear model in the xi’s. Notice
that these feature vectors have high dimension (p > n) since the network is overparametrized,
and that the “featurization map” zi �→ ∇f (zi; θ0) is random because the initialization θ0 is.
Further, since p > n, many vectors β give rise to a model that interpolates the data.

The above scenario was made rigorous in a number of papers [4, 19, 24, 25, 39]. In partic-
ular, [19] shows—under some technical conditions—that the linearization (3) can be accurate
if the model is overparametrized (p > n), and closed under scalings (if f (·) is encoded by a
neural network, then sf (·) is also a neural network for any s ∈ R). Under these conditions,
there exists a scaling of the network’s parameters such that gradient-based training converges
to a model that can be approximated arbitrarily well by (3). Further, under the linearization
(3), gradient descent converges to the interpolator that minimizes 2 the �2 norm ‖β‖2 (see
Proposition 1 below).

What are the statistical consequences of these linearization results? In principle, we could
consider {(yi, zi)}i≤n to be i.i.d. samples with a certain population distribution Py,z, and then
study the behavior of minimum �2 norm interpolator of the form (3) under this data model.
Denoting by φ(z) := ∇θf (zi; θ0) the featurization map, this would amount to study

β̂ = arg min
{‖b‖2 subject to xT

i b = yi, xi = φ(zi)∀i ≤ n
}
.(4)

Even starting from a simple joint distribution Py,z for the data (yi, zi), the resulting joint
distribution for (yi, xi) (induced by the map zi �→ φ(zi) = ∇θf (zi; θ0)) can be very compli-
cated.

From this point of view, the present paper establishes results for two types of featuriza-
tion maps: in the linear model φ(zi) = �1/2zi , and in the nonlinear model φ(zi) = ϕ(Wzi)

where W ∈ R
p×d and ϕ : R → R is applied componentwise. While both models are signifi-

cantly simpler than the featurization map φ(z) = ∇θf (z; θ0) for a multilayer neural network,
our results imply that certain universality phenomena hold in the proportional asymptotics
n,p, d → ∞, with n � p � d . Namely, under the assumption of zi with independent coordi-
nates in the linear model, and zi ∼ N(0, Id) in the nonlinear model, we prove that:

1. If the activation function ϕ is “purely nonlinear” (in a sense to be made precise be-
low), then the risk of the nonlinear model is asymptotically equal to the one of the linear
model with � = Ip .

2Understanding the bias induced by gradient-based algorithms on fully nonlinear models is a broadly open
problem, which has attracted considerable attention recently; see, for example, [34, 35].
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2. For more general activations ϕ, we compute explicitly the asymptotics of the variance
of the nonlinear model. This does not coincide with the variance in the isotropic model, but
depends on ϕ only through the size of the linear component of ϕ (to be defined below). Once
more, the details of the activation function do not matter.

After the present work appeared, the analysis of the nonlinear model was generalized in [49],
which obtained the asymptotics of the risk for general activations, under a nonparametric
model for the responses yi . This required computing the bias term beyond purely nonlinear
activations, and hence solving several technical challenges. The results of [49] confirmed
that universality extends beyond purely nonlinear activations. For general activations, the
nonlinear model with isotropic zi ∈ R

d is asymptotically equivalent to a linear model with
anisotropic xi ∈ R

p (analogous to the latent space model of Section 5.2). It is currently an
open problem to which extent universality applies beyond the proportional regime.

Let us emphasize that universality is not expected to hold for any distribution of the data
(yi, zi), and for any function f . In particular, we not expect it to hold when zi is low-
dimensional. This is quite obvious from the proof of Theorem 8, and consistent with the
findings of [56], which point at a qualitatively different behavior for interpolating methods in
low dimension.

Finally, the correspondence outlined above only holds in a certain “lazy training” regime,
in which network weights do not change much during training, More generally, in a neural
network, the feature representation and the regression function or classifier are learned simul-
taneously. In terms of the first-order Taylor expansion (3) this means that θ0 depends itself on
the data, and hence the feature vectors xi = ∇θf (zi; θ0) are not merely observed but trained.
Learning the feature map could significantly change some aspects of the behavior of an in-
terpolator. (See, for instance, Chapter 9 of Goodfellow et al. [33], and also Chizat and Bach
[19], Zhang et al. [72], which emphasize the importance of learning the representation.)

1.3. Related work. The present work connects to and is motivated by the recent interest
in interpolators in machine learning [8, 10, 11, 28, 47, 48]. Several authors have argued
that minimum �2 norm least squares regression captures the basic behavior of deep neural
networks, at least in early (lazy) training [4, 19, 24, 25, 39, 44, 73]. The connection between
neural networks and kernel ridge regression arises when the number of hidden units diverges.
The infinite width limit was also studied (beyond the linearized regime) in [18, 50, 59, 62].

Interpolation has a long history in signal processing, where it is a method of choice to re-
construct a subsampled signal. The overparametrized regime corresponds to the use of over-
complete dictionaries, and the minimum-�2 norm criterion was used for selecting a specific
interpolator [21]. It was subsequently recognized that sparsity promoting interpolators pro-
vide better data representations [16].

Ridge regression with random designs has been studied in the past. Dicker [22] consid-
ers a model in which the covariates are isotropic Gaussian xi ∼ N(0, Ip) and computes
the asymptotic risk of ridge regression in the proportional asymptotics p,n → ∞, with
p/n → γ ∈ (0,∞). Dobriban and Wager [23] generalize these results to xi = �1/2zi , where
zi has independent entries with bounded 12th moment.

Recently, Advani and Saxe [2] study the effect of early stopping and ridge regularization in
a model with isotropic Gaussian covariates xi ∼ N(0, Ip), again focusing on the proportional
asymptotics p,n → ∞, with p/n → γ ∈ (0,∞). They show that this simple model repro-
duces several phenomena observed in neural networks training. The same model is reconsid-
ered in concurrent work by Belkin et al. [9], who obtain exact results for the expected risk of
min-norm regression, relying on the jointly Gaussian distribution of (yi, xi). We contribute
to this line of work by extending the analysis to general covariance structures, non-Gaussian
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covariates and to misspecified models. As we will see, these generalizations allow to pro-
duce examples for which the global minimum of the risk is achieved in the overparametrized
regime γ > 1.

The importance of the relation between the coefficient vector β and the eigenvectors of
� was emphasized by Kobak et al. [42] and Bartlett et al. [6]. These papers point out—
under different asymptotic settings—that λ = 0+ (i.e., min-norm regression) can be optimal
or nearly optimal. After a preprint of this paper appeared, Wu and Xu [69] and Richards et al.
[57] generalized our earlier results to cover the case in which β is potentially aligned with �.
We review in further detail these important generalizations in Section 4. We contribute to this
line of work by obtaining nonasymptotic approximations for the risk, with explicit and nearly
optimal error bounds. These hold under weaker assumptions on the geometry of (�,β) than
the results of [57, 69].

High-dimensional regression under factor models for the covariates was recently studied
by Bunea et al. [14], Bing et al. [12]. These models are related to the latent space model of
Section 5.2 and present results complementary to ours.

For the nonlinear model, the random matrix theory literature is much sparser, and focuses
on the related model of kernel random matrices, namely, symmetric matrices of the form
Kij = ϕ(zT

i zj ). El Karoui [26] studied the spectrum of such matrices in a regime in which
ϕ can be approximated by a linear function (for i 
= j ), and hence the spectrum converges to
a rescaled Marchenko–Pastur law. This approximation does not hold for the regime of inter-
est here, which was studied instead by Cheng and Singer [17] (who determined the limiting
spectral distribution) and Fan and Montanari [27] (who characterized the extreme eigenval-
ues). The resulting eigenvalue distribution is the free convolution of a semicircle law and
a Marchenko–Pastur law. In the current paper, we must consider asymmetric (rectangular)
matrices xij = ϕ(wT

j zi), whose singular value distribution was recently computed by Pen-
nington and Worah [55], using the moment method. Unfortunately, the prediction variance
depends on both the singular values and vectors of this matrix. In order to address this issue,
we apply the leave-one out method of Cheng and Singer [17] to compute the asymptotics of
the resolvent of a suitably extended matrix. We then extract the information of interest from
this matrix. After appearance of a preprint of this paper, Mei and Montanari [49] extended
the results presented here, to obtain a complete characterization of the risk for the nonlinear
random features model.

Let us finally mention that the universality (or “invariance”) phenomenon is quite common
in random matrix theory [64]. In the context of kernel inner product random matrices, it
appears (somewhat implicitly) in [17] and (more explicitly) in [27]. After a first appearance
of this manuscript, universality has been investigated in the context of neural networks in
several papers [1, 29, 31, 38, 49, 52].

1.4. Outline. Section 2 provides important background. Sections 3–7 consider the linear
model, focusing on isotropic features, correlated features, misspecified models, ridge regular-
ization and cross-validation, respectively. Section 8 covers the nonlinear model case. Nearly
all proofs are deferred until the Appendix.

2. Preliminaries. We describe our setup and gather a number of important preliminary
results.

2.1. Data model and risk. Assume we observe training data (xi, yi) ∈ R
p × R, i =

1, . . . , n from the model of equations (1), (2). We collect the responses in a vector y ∈ R
n,

and the features in a matrix X ∈ R
n×p (with rows xi ∈R

p , i = 1, . . . , n).
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Consider a test point x0 ∼ Px , independent of the training data. For an estimator β̂ (a
function of the training data X, y), we define its out-of-sample prediction risk (or simply,
risk) as

RX(β̂;β) = E
[(

xT
0 β̂ − xT

0 β
)2|X]= E

[‖β̂ − β‖2
�|X],

where ‖x‖2
� = xT �x. Note that our definition of risk is conditional on X (as emphasized by

our notation RX). Note also that we have the bias-variance decomposition

RX(β̂;β) = ∥∥E(β̂|X) − β
∥∥2
�︸ ︷︷ ︸

BX(β̂;β)

+ Tr
[
Cov(β̂|X)�

]︸ ︷︷ ︸
VX(β̂;β)

.(5)

2.2. Ridgeless least squares. We consider the minimum �2 norm (min-norm) least
squares regression estimator, of y on X, defined by

(6) β̂ = arg min
{‖b‖2 : b minimizes ‖y − Xb‖2

2
}
.

This can be equivalently written as β̂ = (XT X)+XT y, where (XT X)+ is the pseudoinverse
of XT X. An alternative name for (6) is the “ridgeless” least squares estimator, motivated by
the fact that β̂ = limλ→0+ β̂λ, where β̂λ denotes the ridge regression estimator:

(7) β̂λ = arg min
b∈Rp

{
1

n
‖y − Xb‖2

2 + λ‖b‖2
2

}
,

or, equivalently, β̂λ = (XT X + nλI)−1XT y.
When X has full column rank the min-norm least squares estimator reduces to β̂ =

(XT X)−1XT y, the usual least squares estimator. When X has rank n, importantly, this esti-
mator interpolates the training data: yi = xT

i β̂ , for i = 1, . . . , n.
Lastly, the following is a well-known fact that connects the min-norm least squares solu-

tion to gradient descent (as referenced in the Introduction).

PROPOSITION 1. Initialize β(0) = 0, and consider running gradient descent on the least
squares loss, yielding iterates

β(k) = β(k−1) + tXT (y − Xβ(k−1)), k = 1,2,3, . . . ,

where we take 0 < t ≤ 1/λmax(X
T X) (and λmax(X

T X) is the largest eigenvalue of XT X).
Then limk→∞ β(k) = β̂ , the min-norm least squares solution in (6).

PROOF. The choice of step size guarantees that β(k) converges to a least squares solution
as k → ∞, call it β̃ . Note that β(k), k = 1,2,3, . . . all lie in the row space of X; therefore, β̃

must also lie in the row space of X; and the min-norm least squares solution β̂ is the unique
least squares solution with this property. �

2.3. Bias and variance. We recall expressions for the bias and variance of the min-norm
least squares estimator, which are standard.

LEMMA 1. Under the model (1), (2), the min-norm least squares estimator (6) has bias
and variance

BX(β̂;β) = βT ���β and VX(β̂;β) = σ 2

n
Tr
(
�̂+�

)
,

where �̂ = XT X/n is the (uncentered) sample covariance of X, and � = I − �̂+�̂ is the
projection onto the null space of X.

PROOF. As E(β̂|X) = (XT X)+XT Xβ = �̂+�̂β and Cov(β̂|X) = σ 2(XT X)+XT ×
X(XT X)+ = σ 2�̂+/n, the bias and variance expressions follow from plugging these into
their respective definitions. �
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2.4. Underparametrized asymptotics. We consider an asymptotic setup where n,p →
∞, in such a way that p/n → γ ∈ (0,∞). Recall that when γ < 1, we call the problem
underparametrized; when γ > 1, we call it overparametrized. Here, we recall the risk of
the min-norm least squares estimator in the underparametrized case. The rest of this paper
focuses on the overparametrized case.

The following is a known result in random matrix theory, and can be found in Chapter 6 of
Serdobolskii [61]. It can also be found in the wireless communications literature; see Chap-
ter 4 of Tulino and Verdu [67].

PROPOSITION 2. Assume the model (1), (2), and assume x ∼ Px is of the form x =
�1/2z, where z is a random vector with i.i.d. entries that have zero mean, unit variance and
a finite 4th moment, and � is a (sequence of) deterministic positive definite matrix, such that
λmin(�) ≥ c > 0, for all n, p and a constant c (here λmin(�) is the smallest eigenvalue of
�). Then as n,p → ∞, such that p/n → γ < 1, the risk of the least squares estimator (6)
satisfies, almost surely

lim
n→∞RX(β̂;β) = σ 2 γ

1 − γ
.

As it can be seen from the last proposition, in the underparametrized case the risk is
just variance. In contrast, in the overparametrized case, the bias BX(β̂;β) = βT ���β is
nonzero, because � is. This will be the focus of the next sections.

3. Isotropic features. We begin by considering the simpler case in which � = I . In this
case, the limiting bias is relatively straightforward to compute and depends on β only through
‖β‖2

2. In Section 4, we generalize our analysis and study the dependence of the prediction risk
on the geometry of � and β .

3.1. Limiting bias. As mentioned above, in the isotropic case the risk depends β only
on through r2 = ‖β‖2

2. To give some intuition as to why this is true, consider the special
case where X has i.i.d. entries from N(0,1). By rotational invariance, for any orthogonal
U ∈ R

p×p , the distribution of X and XU is the same. Thus

BX(β̂;β) = βT (I − (
XT X

)+
XT X

)
β

d= βT (I − UT (XT X
)+

UUT XT XU
)
β

= r2 − (Uβ)T
(
XT X

)+
XT X(Uβ).

Choosing U so that Uβ = rei , the ith standard basis vector, then averaging over i = 1, . . . , p,
yields

EBX(β̂;β) = r2
E
[
1 − Tr

((
XT X

)+
XT X

)
/p
]= r2(1 − n/p).

It is possible to show that, BX(β̂;β) concentrates around its expectation and, therefore,
BX(β̂;β) → r2(1 − 1/γ ), almost surely. This is stated formally in the next section.

3.2. Limiting risk. As the next result shows, the independence of the risk on β is still
true outside of the Gaussian case, provided the features are isotropic. The next result can be
proved as a corollary of the more general Theorem 3 below. We give a simpler self-contained
proof using a theorem of Rubio and Mestre [60] in Appendix A.4.2.
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THEOREM 1. Assume the model (1), (2), where xi ∼ Px has independent entries with
zero mean, unit variance. Further assume that either of these conditions hold for x ∼ Px : (i)
the entries (xj )j≤p have uniformly bounded moments of all order E[|xj |k] ≤ Ck for all k and
some constants Ck ; (ii) entries (xj )j≤p are identically distributed and have finite moment of
order 4 + δ, E{|xj |4+δ} ≤ C, for some C,δ > 0. Also assume that ‖β‖2

2 = r2 for all n, p.
Then for the min-norm least squares estimator β̂ in (6), as n,p → ∞, such that p/n → γ ∈
(1,∞), it holds almost surely that

BX(β̂;β) → r2
(

1 − 1

γ

)
,(8)

VX(β̂;β) → σ 2 1

γ − 1
.(9)

Hence, summarizing with Proposition 2, we have

(10) RX(β̂;β) →

⎧⎪⎪⎨⎪⎪⎩
σ 2 γ

1 − γ
for γ < 1,

r2
(

1 − 1

γ

)
+ σ 2 1

γ − 1
for γ > 1.

For γ ∈ (0,1), there is no bias, and the variance increases with γ . For γ ∈ (1,∞), the bias
increases with γ , and the variance decreases with γ . Let SNR = r2/σ 2. Observe that the risk
of the null estimator β̃ = 0 is r2, which we hence call the null risk. The following facts are
immediate from the form of the risk curve in (10). See Figure 2 for an accompanying plot
when SNR varies from 1 to 5.

1. On (0,1), the least squares risk R(γ ) is better than the null risk if and only if
γ < SNR

SNR+1 .
2. On (1,∞), when SNR ≤ 1, the min-norm least squares risk R(γ ) is always worse

than the null risk. Moreover, it is monotonically decreasing, and approaches the null risk
(from above) as γ → ∞.

FIG. 2. Asymptotic risk curves in (10) for the min-norm least squares estimator, when r2 varies from 1 to 5, and
σ 2 = 1. For each value of r2, the null risk is marked as a dotted line, and the points denote finite-sample risks,
with n = 200, p = [γ n], across various values of γ , computed from features X having i.i.d. N(0,1) entries.
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3. On (1,∞), when SNR > 1, the min-norm least squares risk R(γ ) beats the null risk
if and only if γ > SNR

SNR−1 . Further, it has a local minimum at γ =
√

SNR√
SNR−1

, and approaches
the null risk (from below) as γ → ∞.

3.3. Limiting �2 norm. Calculation of the limiting �2 norm of the min-norm least squares
estimator is quite similar to the study of the limiting risk in Theorem 1 and, therefore, we state
the next result without proof.

COROLLARY 1. Assume the conditions of Theorem 1. Then as n,p → ∞, such that
p/n → γ , the squared �2 norm of the min-norm least squares estimator (6) satisfies, almost
surely

E
[‖β̂‖2

2|X
]→

⎧⎪⎪⎨⎪⎪⎩
r2 + σ 2 γ

1 − γ
for γ < 1,

r2 1

γ
+ σ 2 1

γ − 1
for γ > 1.

We can see that the limiting norm, as a function of γ , has a somewhat similar profile to the
limiting risk in (10): it is monotonically increasing for γ ∈ (0,1), diverges at the interpolation
boundary and is monotonically decreasing for (1,∞). These findings confirm the intuition
given in the Introduction: as γ grows above the interpolation threshold, the minimum norm
interpolator becomes increasingly simpler, in the sense of having smaller �2 norm.

4. Correlated features. We broaden the scope of our analysis from the last section,
where we examined isotropic features. In this section, we take x ∼ Px to be of the form
x = �1/2z, where z is a random vector with independent entries that have zero mean and unit
variance, and � is arbitrary (but still deterministic and positive definite).

The risk of min-norm regression depends on the geometry of � and β . Denote by � =∑p
i=1 siviv

T
i the eigenvalue decomposition of � with s1 ≥ s2 ≥ · · · ≥ sp ≥ 0. The geometry

of the problem is captured by the sequence of eigenvalues (s1, . . . , sp), and by the coefficients
of β in the basis of eigenvectors (〈v1, β〉, . . . , 〈vp,β〉). We encode these via two probability
distributions on R≥0:

Ĥn(s) := 1

p

p∑
i=1

1{s≥si}, Ĝn(s) = 1

‖β‖2
2

p∑
i=1

〈β,vi〉21{s≥si}.(11)

We next state our assumptions about the data distribution: our results will be uniform with
respect to the (large) constants M , {Ck}k≥2 appearing in this assumption.

ASSUMPTION 1. The covariates vector x ∼ Px is of the form x = �1/2z, where defining
Ĥn as per equation (11), we have:

(a) The vector z = (z1, . . . , zp) has independent (not necessarily identically distributed)
entries with E{zi} = 0, E{z2

i } = 1, and E{|zi |k} ≤ Ck < ∞ for all i ≤ p, k ≥ 2.
(b) s1 = ‖�‖op ≤ M ,

∫
s−1 dĤn(s) < M .

(c) |1 − (p/n)| ≥ 1/M , 1/M ≤ p/n ≤ M .

Condition (a) bounds the tail probabilities on the covariates. Requiring finite moment of
all orders is useful to get strong bounds on the deviations of the risk from its predicted value.
As discussed below, bounds on the first few moments are sufficient if we are satisfied with
weaker probability bounds.
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Conditions (b) requires the eigenvalues of � to be bounded, and not to accumulate3 near 0.
For the analysis of min-norm interpolation, we will add the additional assumption that the
minimum eigenvalue of � is bounded away from zero. However, condition (b) is sufficient
for the analysis of ridge regression in Section 6.

Finally, as our statements are nonasymptotic, we do not assume p/n to converge to a value.
However, condition (c) requires p/n to be bounded and bounded away from the interpolation
threshold p/n = 1.

4.1. Prediction risk.

DEFINITION 1 (Predicted bias and variance: min-norm regression). Let Ĥn be the em-
pirical distribution of eigenvalues of �, and Ĝn the reweighted distribution as per equation
(11). For γ ∈ R>0, define c0 = c0(γ, Ĥn) ∈ R>0 to be the unique nonnegative solution of

1 − 1

γ
=
∫ 1

1 + c0γ s
dĤn(s).(12)

We then define the predicted bias and variance by

B(Ĥn, Ĝn, γ ) := ‖β‖2
2

{
1 + γ c0

∫
s2

(1+c0γ s)2 dĤn(s)∫
s

(1+c0γ s)2 dĤn(s)

}
·
∫

s

(1 + c0γ s)2 dĜn(s),(13)

V (Ĥn, γ ) := σ 2γ c0

∫
s2

(1+c0γ s)2 dĤn(s)∫
s

(1+c0γ s)2 dĤn(s)
.(14)

Note that evaluating B(H,G,γ ), V (H,γ ) numerically is relatively straightforward, with
the most complex part being the solution of equation (12). The next theorem establishes
that—under suitable technical conditions—the functions B, V characterize the test error.
Similar theorems were proved in [57, 69], which generalized an earlier version of this
manuscript to account for the geometry of (�,β).

THEOREM 2. Assume the data model (1), (2) and that the covariates distribution satisfies
Assumption 1. Further assume sp = λmin(�) > 1/M . Define γ = p/n and let β̂ be the min-
norm least squares estimator in equation (6).

Then for any constant D > 0 (arbitrarily large) there exist C = C(M,D) such that, with
probability at least 1 − Cn−D the following hold:

RX(β̂;β) = BX(β̂;β) + VX(β̂;β),(15)

∣∣BX(β̂;β) − B(Ĥn, Ĝn, γ )
∣∣≤ C‖β‖2

2

n1/7 ,(16)

∣∣VX(β̂;β) − V (Ĥn, γ )
∣∣≤ C

n1/7 ,(17)

where B and V are given in Definition 2, and the first identity is just the general bias-
variance decomposition of equation (5).

The proof of this theorem is deferred to Section A.2.

3The latter assumption could have been further relaxed, by requiring only p+ of the p eigenvalues to be non-
vanishing and to satisfy the other conditions. This would require to redefine γ as p+/n.
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REMARK 1. The order of the error bound in equations (16), (17) is not optimal: a central
limit theorem heuristics suggests the deterministic approximation to be accurate up to an
error of order n−1/2. Indeed, we are able to establish the optimal order in the case of ridge
regression; see Theorem 5.

Let us emphasize that, while suboptimal, the O(n−1/7) terms in equation (16), (17) are
often negligible as compared to the leading terms B(Ĥn, Ĝn, γ ), V (Ĥn, γ ). In particular, as
stated in Theorem 3 below, whenever p,n → ∞ with p/n → γ ∈ (0,∞) and the two prob-
ability measures Ĥn, Ĝn converge weakly to finite limits H , G, B(Ĥn, Ĝn, γ ), V (Ĥn, γ )

remain bounded away from zero, and hence dominate the O(n−1/7) errors.
Notice that this is in particular the case for isotropic features, and Theorem 1 (under the

stronger moment assumption on the zi ’s) is recovered as a corollary of Theorem 2.

REMARK 2. Note that Theorem 2 establishes deterministic approximations for the bias
and variance, that are valid at finite n, p. The overparametrization ratio γ = p/n is a
nonasymptotic quantity, and the error bounds are uniform, that is, depend only on the con-
stant M . This is to be contrasted with the asymptotic setting of [57, 69]. Both of these papers
assume a sequence of regression problems with n,p → ∞, p/n → γ , and obtain an asymp-
totically exact expression for the risk.

In order for the asymptotics to make sense, additional assumptions are required by [57,
69]. In [57], this is achieved by assuming β to be random with E[ββT ] = r2�(�)/d for
a certain (deterministic) function � : R → R (promoted to a function on matrices in the
usual way). In addition, the empirical spectral distribution of � is assumed to converge. To
state the assumptions in [69], recall that (si)i≤p are the eigenvalues of �, and denote by
bi = p · (vT

i β)2 the projection of β onto the eigenvectors of �. Then [69] assumes that the
joint empirical distribution p−1∑p

i=1 δsi ,bi
converges weakly as n,p → ∞.

Technically, [57, 69] apply asymptotic random matrix theory results, such as [43], while
we have to take a longer detour to exploit nonasymptotic results established in [41]. We
believe that the nonasymptotic approach provides more concrete and accurate statements.

Theorem 2 also implies asymptotic predictions under minimal assumptions. In particular,
if the two probability measures Ĥn, Ĝn converge weakly to probability measures H , G on
[0,∞), then we obtain4 BX(β̂;β)/‖β‖2 → B(H,G,γ ), VX(β̂;β) → V (H,γ ). Hence, the
first part of the following asymptotic statement follows immediately from Theorem 2 by
taking the limit n,p → ∞ in equations (16), (17) (and using Borel–Cantelli to obtain almost
sure convergence).

THEOREM 3. Consider the setting of Theorem 2. Further assume n,p → ∞, p/n →
γ ∈ (0,∞), Ĥn ⇒ H , Ĝn ⇒ G. Define B1(H,G,γ ) as in equation (13), with ‖β‖2

2 replaced
by 1. Then, almost surely

(18)
1

‖β‖2
2

BX(β̂;β) → B1(H,G,γ ), VX(β̂;β) → V (H,γ ).

with B1(H,G,γ ), V (H,γ ) > 0 strictly.
The same conclusion holds if instead of Assumption 1(a), the coordinates of z, (zi)i≤p are

i.i.d. and satisfy the conditions Ezi = 0, E(z2
i ) = 1, E(|zi |4+δ) ≤ C < ∞.

4Indeed all the expressions in equations (12), (13), (14) are continuous in Ĥn, Ĝn (with respect to the weak
topology) since they are expectations of bounded continuous functions.
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The last part of this theorem (under the weaker moment condition E(|zi |4+δ) < C) is
proved via a truncation argument in Appendix A.1.4. For carrying out this argument, we
make use of estimates on the norm of random matrices that are available only for the case of
identically distributed entries (zi)i≤p .

As pointed out above the condition Ĥn ⇒ H , Ĝn ⇒ G (here ⇒ denotes weak conver-
gence) is strictly weaker than the condition assumed in [69] to establish asymptotic results.
Further, we require weaker moment conditions.

In the next sections, we illustrate the role of the geometry of β , � by considering two
models for which Ĥn ⇒ H , Ĝn ⇒ G as n,p → ∞. First, we consider the case G = H ,
which we refer to as “equidistributed”: the components of β are roughly equally distributed
along the eigenvectors of �. In this case, there is no special relation between β and �.

As a further application, we consider a latent space model in which β is aligned with
the top eigenvectors of �. This can be regarded as a misspecified model, and is therefore
presented in Section 5.2 below.

4.2. Equidistributed coefficients. In this section, we assume G = H , ‖β‖2 → r , and
p/n → γ . One way to generate β satisfying this condition is to draw it uniformly at random
on the p-dimensional sphere of radius ‖β‖2 = r . In this case, the conditions of Theorem 2
(or Theorem 3), hold with Ĝn → G = H .

COROLLARY 2. Under the assumptions of Theorem 3, further assume G = H , ‖β‖2 →
r2. Then for n,p → ∞, with p/n → γ > 1, almost surely

BX(β̂;β) → Bequi(H,γ ) := r2

c0(H,γ )γ 2 ,(19)

VX(β̂;β) → Vequi(H,γ ) := V (H,γ ).(20)

As a special case, we can revisit the isotropic case � = I , which results in dH = δ1. In this
case, c0(H,γ ) = γ (γ − 1) yielding immediately Bequi(H,γ ) = 1 − γ −1 and Vequi(H,γ ) =
1/(γ − 1).

4.3. Limiting �2 norm. Again, as in the isotropic case, analysis of the limiting �2 norm
is similar to analysis of the risk in Theorem 2. We give the next result without proof, as it is
an immediate generalization of previous results.

COROLLARY 3. Under the assumptions of Theorem 3, further assume ‖β‖2 → r2, and
let c0 = c0(H,γ ) be defined as there. Then as n,p → ∞, such that p/n → γ , the min-norm
least squares estimator (6) satisfies, almost surely

‖β̂‖2
2 →

⎧⎪⎪⎨⎪⎪⎩
r2 + σ 2 γ

1 − γ

∫ 1

s
dH(s) for γ < 1,∫

c0γ s

1 + c0γ s
dG(s) + c0γ σ 2 for γ > 1,

(21)

4.4. Benign overfitting. Theorem 2 (and its generalization to nonzero ridge regulariza-
tion, Theorem 5) can be used to delineate regimes in which interpolation is statistically opti-
mal or nearly optimal. “Statistical optimality” can be given different meanings in this context.
Section 6.2 explores optimality in the context of the latent space model and shows that (in
certain regimes) RX(β̂0;β) ≤ (1 + on(1))RX(β̂λ;β) for any λ > 0: min-norm interpolation
is optimal up to subleading factors.
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A different notion of optimality was explored (in concurrent work) in [6] and [66]. In
these works, optimality is understood to hold up to constant multiplicative factors. A weaker
notion is also considered whereby the interpolator is only required to be consistent. The term
“benign overfitting” was proposed in [6] for such phenomena.

Theorem 2 can be used to establish upper bounds that are closely related to the ones of
[6, 66] and in particular imply benign overfitting. As an example, the following bound was
proven in joint work with Peter Bartlett and Alexander Rakhlin [7]. Recall that s1 ≥ s2 ≥
· · · ≥ sp denote the eigenvalues of the covariance � in decreasing order, and we define the
effective rank rk(�) =∑p

i=k+1 λi/λk+1. We also denote by β≤k the projection of β onto the
top k eigenvectors of � and β>k = β − β≤k .

COROLLARY 4 ([7]). Under the assumptions of Theorem 2, further assume that there
exists an integer k and a constant c∗ > 0 such that rk(�) ≥ (1 + c∗)n. Then there exists a
constant C = C(M,D) such that, with probability at least 1 − Cn−D ,

BX(β̂;β) ≤ 4

(
1

n

p∑
i=k+1

λi

)2

‖β≤k‖2
�−1 + ‖β>k‖2

� + Cn−1/7,(22)

VX(β̂;β) ≤ 2kσ 2

n
+ 4nσ 2

c∗

∑p
i=k+1 λ2

i

(
∑p

i=k+1 λi)2
+ Cn−1/7.(23)

This corollary is an immediate consequence of Theorem 2. It upper bounds the excess risk
over an “ideal” (underparametrized) estimator that only fits the projection of β onto the top
eigenvector of �. This excess risk will be small when β is well aligned to the top eigenvectors
of � and the ratio

∑p
i=k+1 λ2

i /(
∑p

i=k+1 λi)
2 is small.

This result is analogous to the ones of [6, 66] although not precisely comparable. The
upper bound on the variance term in [6] is sharp up to universal multiplicative constants. The
upper bound on the bias in [66] depends on the (random) condition number of the component
of the bias along less important directions. On the other hand, both of [6, 66] apply to cases
in which �−1/2x does not have independent coordinates. Corollary 4 has a larger additive
slack Cn−1/7 (which can be improved to Cn−1/2 for ridge regression), but a more precise
prefactor.

5. Misspecified models.

5.1. Regression with respect to a subset of features. In this section, we consider a mis-
specified model, in which the regression function is still linear, but we observe only a subset
of the features. Such a setting provides another potential motivation for interpolation: in many
problems, we do not know the form of the regression function, and we generate features in
order to improve our approximation capacity. Increasing the number of features past the point
of interpolation (increasing γ past 1) can now decrease both bias and variance.

As such, the misspecified model setting also yields further interesting asymptotic com-
parisons between the γ < 1 and γ > 1 regimes. Recall the isotropic features model of Sec-
tion 3.2: the risk function in (10) is globally minimized at γ = 0. This is a consequence of
the fact that, in a well-specified linear model at γ = 0 there is no bias and no variance, and
hence no risk. In a misspecified model, we will see that the story can be quite different, and
the asymptotic risk can actually attain its global minimum on (1,∞).
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5.1.1. Data model and risk. Consider, instead of (1), (2), a data model(
(xi,wi), εi

)∼ Px,w × Pε, i = 1, . . . , n,(24)

yi = xT
i β + wT

i θ + εi, i = 1, . . . , n,(25)

where as before the random draws across i = 1, . . . , n are independent. Here, we partition the
features according to (xi,wi) ∈ R

p+q , i = 1, . . . , n, where the joint distribution Px,w is such
that E((xi,wi)) = 0 and

Cov
(
(xi,wi)

)= � =
[

�x �xw

�T
xw �w

]
.

We collect the features in a block matrix [XW ] ∈ R
n×(p+q) (which has rows (xi,wi) ∈R

p+q ,
i = 1, . . . , n). We presume that X is observed but W is unobserved, and focus on the min-
norm least squares estimator exactly as before in (6), from the regression of y on X (not the
full feature matrix [XW ]).

Given a test point (x0,w0) ∼ Px,w , and an estimator β̂ (fit using X, y only, and not W ),
we define its out-of-sample prediction risk as

RX(β̂;β, θ) = E
[(

xT
0 β̂ −E(y0|x0,w0)

)2|X]= E
[(

xT
0 β̂ − xT

0 β − wT
0 θ
)2|X].

Note that this definition is conditional on X, and we are integrating over the randomness not
only in ε (the training errors), but in the unobserved features W , as well. The next lemma
decomposes this notion of risk in a useful way.

LEMMA 2. Under the misspecified model (24), (25), for any estimator β̂ , we have

RX(β̂;β, θ) = E
[(

xT
0 β̂ −E(y0|x0)

)2|X]︸ ︷︷ ︸
R∗

X(β̂;β,θ)

+E
[(
E(y0|x0) −E(y0|x0,w0)

)2]︸ ︷︷ ︸
M(β,θ)

.

PROOF. Simply add an subtract E(y0|x0) inside the square in the definition of RX(β̂;
β, θ), then expand, and note that the cross term vanishes because E[(E(y0|x0) − E(y0|x0,

w0))|x0] = 0. �

The first term R∗
X(β̂;β, θ) in the decomposition in Lemma 2 is precisely the risk that

we studied previously in the well-specified case, except that the response distribution has
changed (due to the presence of the middle term in (25)). We call the second term M(β, θ) in
Lemma 2 the misspecification bias.

REMARK 3. If (xi,wi) are jointly Gaussian, then the above expressions simplify and
Theorem 2 can be used to characterize the risk RX(β̂;β, θ). In particular, the conditional
distribution of w given x is Pw|x = N(�wx�

−1
x x,�w|x) where �wx = �T

xw , and �w|x =
�w − �wx�

−1
x �T

wx . Further, y = β̃T x + ε̃, where β̃ = β + �−1
x �xwθ and ε̃ ∼ N(0, σ̃ 2),

σ̃ 2 = σ 2 + θT �w|xθ . It is then easy to show that the misspecification bias is M(β, θ) =
θT �w|xθ and the term R∗

X(β̂;β, θ) can be approximated using Theorem 2.

In order to discuss some qualitative features, we focus on the simplest possible model by
assuming independent covariates.
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5.1.2. Isotropic features. Here, we make the additional simplifying assumption that
(x,w) ∼ Px,w has i.i.d. entries with unit variance, which implies that � = I . (The case of
independent features but general covariances �x , �w is similar, and we omit the details.)
Therefore, we may write the response distribution in (25) as

yi = xT
i β + δi, i = 1, . . . , n,

where δi is independent of xi , having mean zero and variance σ 2 + ‖θ‖2
2, for i = 1, . . . , n.

Denote the total signal by r2 = ‖β‖2
2 + ‖θ‖2

2, and the fraction of the signal captured by
the observed features by κ = ‖β‖2

2/r2. Then R∗
X(β̂;β, θ) behaves exactly as we computed

previously, for isotropic features in the well-specified setting (Theorem 2 for γ < 1, and
Theorem 1 for γ > 1), after we make the substitutions:

(26) r2 �→ r2κ and σ 2 �→ σ 2 + r2(1 − κ).

Furthermore, we can easily calculate the misspecification bias:

M(β, θ) = E
(
wT

0 θ
)2 = r2(1 − κ).

Putting these results together leads to the next conclusion.

THEOREM 4. Assume the misspecified model (24), (25) and assume (x,w) ∼ Px,w has
i.i.d. entries with zero mean, unit variance and a finite moment of order 4+ δ, for some δ > 0.
Also assume that ‖β‖2

2 + ‖θ‖2
2 = r2 and ‖β‖2

2/r2 = κ for all n, p. Then for the min-norm
least squares estimator β̂ in (6), as n,p → ∞, with p/n → γ , it holds almost surely that

RX(β̂;β, θ) →

⎧⎪⎪⎨⎪⎪⎩
r2(1 − κ) + (

r2(1 − κ) + σ 2) γ

1 − γ
for γ < 1,

r2(1 − κ) + r2κ

(
1 − 1

γ

)
+ (

r2(1 − κ) + σ 2) 1

γ − 1
for γ > 1.

We remark that, in the independence setting considered in Theorem 4, the dimension q of
the unobserved feature space does not play any role: we may equally well take q = ∞ for all
n, p (i.e., infinitely many unobserved features).

The components of the limiting risk from Theorem 4 are intuitive and can be interpreted
as follows. The first term r2(1 − κ) is the misspecification bias (irreducible). The second
term, which we deem as 0 for γ < 1 and r2κ(1 − 1/γ ) for γ > 1, is the bias. The third
term, r2(1 − κ)γ /(1 − γ ) for γ < 1 and r2(1 − κ)/(γ − 1) for γ > 1, is what we call the
misspecification bias: the inflation in risk due to unobserved features, when we take E(y0|x0)

to be the target of estimation. The last term, σ 2γ /(1 − γ ) for γ < 1 and σ 2/(γ − 1) for
γ > 1, is the variance itself.

5.1.3. Polynomial approximation bias. Since adding features should generally improve
our approximation capacity, it is reasonable to model κ = κ(γ ) as an increasing function of
γ . To get an idea of the possible shapes taken by the asymptotic risk curve from Theorem 4,
we consider the example of a polynomial decay for the approximation bias,

(27) 1 − κ(γ ) = (1 + γ )−a,

for some a > 0. In this case, the limiting risk in the isotropic setting, from Theorem 4, be-
comes

(28) Ra(γ ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r2(1 + γ )−a + (
r2(1 + γ )−a + σ 2) γ

1 − γ
for γ < 1,

r2(1 + γ )−a + r2(1 − (1 + γ )−a)(1 − 1

γ

)
+ (

r2(1 + γ )−a + σ 2) 1

γ − 1
for γ > 1.
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FIG. 3. Asymptotic risk curves in (28) for the min-norm least squares estimator in the misspecified case, when
the approximation bias has polynomial decay as in (27), as a varies from 0.5 to 5. Here, r2 = 1 and σ 2 = 1,
so SNR = 1. The null risk r2 = 5 is marked as a dotted black line. The points denote finite-sample risks, with
n = 200, p = [γ n], across various values of γ , computed from features X having i.i.d. N(0,1) entries.

We next summarize some interesting features of these risk curves, and Figures 3 and 4 give
accompanying plots for SNR = 1 and 5, respectively. Recall that the null risk is r2, which
comes from predicting with the null estimator β̃ = 0.

FIG. 4. Asymptotic risk curves in (28) for the min-norm least squares estimator in the misspecified case, when
the approximation bias has polynomial decay as in (27), as a varies from 0.5 to 5. Here, r2 = 5 and σ 2 = 1, so
SNR = 5. The null risk r2 = 5 is marked as a dotted black line. The points are again finite-sample risks, with
n = 200, p = [γ n], across various values of γ .
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1. On (0,1), the least squares risk Ra(γ ) can only be better than the null risk if
a > 1 + 1

SNR . Further, in this case, we have Ra(γ ) < r2 if and only if γ < γ0, where γ0
is the unique zero of the function

(1 + x)−a +
(

1 + 1

SNR

)
x − 1

that lies in (0, SNR
SNR+1). Finally, on ( SNR

SNR+1 ,1), the least squares risk Ra(γ ) is always worse
than the null risk, regardless of a > 0, and it is monotonically increasing.

2. On (1,∞), when SNR ≤ 1, the min-norm least squares risk Ra(γ ) is always worse
than the null risk. Moreover, it is monotonically decreasing, and approaches the null risk
(from above) as γ → ∞.

3. On (1,∞), when SNR > 1, the min-norm least squares risk Ra(γ ) can be better than
the null risk for any a > 0, and in particular we have Ra(γ ) < r2 if and only if γ < γ0, where
γ0 is the unique zero of the function

(1 + x)−a(2x − 1) + 1 −
(

1 − 1

SNR

)
x

lying in ( SNR
SNR−1 ,∞). Indeed, on (1, SNR

SNR−1), the min-norm least squares risk Ra(γ ) is always
worse than the null risk (regardless of a > 0), and it is monotonically decreasing.

4. When SNR > 1, for small enough a > 0, the global minimum of the min-norm
least squares risk Ra(γ ) occurs after γ = 1. A sufficient but not necessary condition is
a ≤ 1 + 1

SNR (because, due to points 1 and 3 above, we see that in this case Ra(γ ) is always
worse than null risk for γ < 1, but will be better than the null risk at some γ > 1).

5.2. Latent space model. We next consider an example in which β is aligned with the
top eigenvectors of �. To motivate this example, assume that the responses yi are linear in
the latent features vectors zi ∈ R

d . We do not observe this latent vector, but rather observe
p ≥ d covariates xi := (xi1, . . . , xip) that are also linear in the latent vector zi :

yi = θT zi + ξi, xij = wT
j zi + uij .(29)

Here, (ξi)i≤n, (uij )i≤n,j≤p are noise variables that are mutually independent, and inde-
pendent of zi , with ξi ∼ N(0, σ 2

ξ ), uij ∼ N(0,1). The features matrix takes the form

X = ZWT + U and, therefore, for p > n, min-norm regression amounts to

β̂ = arg min
{‖b‖2 : ZWT b + Ub = y

}
.(30)

Apart from its intrinsic interest, this latent-space model is directly connected to nonlin-
ear random features models, as the ones studied in Section 8. Indeed, in nonlinear random
features models we have xij = ϕ(wT

j zi). We can decompose this as xij = a0 + a1w
T
j zi +

ϕ̃(wT
j zi), where ϕ̃ is such that ϕ̃(wT

j zi) has zero mean and is uncorrelated with wT
j zi , condi-

tional on wj . Equation (29) then corresponds to replacing the uncorrelated random variable
ϕ̃(wT

j zi) by the independent Gaussians uij . This connection was discussed in [49, 52], after
a first appearance of the present paper. Recent studies of high-dimensional linear discrimi-
nant analysis [15, 40, 53] share important elements of the model studied here: anisotropic
covariance and signal aligned with its top eigenvectors.

We consider a variant of model (29), which is a special case of the model studied in Sec-
tion 4. Namely we assume xi = �1/2z̃i , yi = βT xi +εi , where z̃i is a vector with independent
coordinates satisfying Assumption 1, and we set

� = Ip + WWT , β = W
(
I + WT W

)−1
θ,(31)

E(εi) = 0, E
(
ε2
i

)= σ 2, σ 2 = σ 2
ξ + θT (I + WT W

)−1
θ.(32)
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Here, W ∈ R
p×d is the matrix with rows (wi)i≤p . In what follows, r2

θ := ‖θ‖2
2, ψ = d/p. As

anticipated, the coefficients vector is aligned with the top eigenspace of � (the span of the
columns of W ).

The connection between the last formulation and the model of equation (29) is easy to see
if the latent vector zi ∼ N(0, Id). In this case, the two models coincide because (yi, xi) ∈
R

p+1 is a centered Gaussian vector with the same covariance structure.
In order to simplify our calculations, we assume all the nonzero singular values of W to

be equal, whence WT W = (pμ/d)Id , for μ > 0 a constant. The factor p/d is justified by the
remark that the average norm of the vectors wj is given by

1

p

p∑
j=1

‖wj‖2
2 = 1

p
tr
(
WT W

)= μ.

Hence, μ is the signal-to-noise ratio in the features xij = wT
j zi +uij , and keeping μ constant

corresponds to keeping this signal-to-noise ratio constant. This is also motivated by the non-
linear random features model xij = ϕ(wT

j zi) (if we identify the nonlinear component with
the noise); see Section 8 and [49].

Note that with this setting, the eigenvalues of � are

s1 = s2 = · · · = sd = 1 + μψ−1 > sd+1 = s2 = · · · = sp = 1.

If p,d,n → ∞, with p/n → γ , d/p → ψ , then this model satisfies the assumptions of
Theorem 2, with

H(s) = (1 − ψ)1(s ≥ 1) + ψ1
(
s ≥ 1 + ψ−1),(33)

G(s) = 1
(
s ≥ 1 + ψ−1),‖β‖2

2 = μψ−1r2
θ

(1 + μψ−1)2(34)

Using Theorem 2, we get the following explicit expressions.

COROLLARY 5. Consider the latent space model described above, namely xi = �1/2z̃i ,
yi = βT xi + εi , where z̃i is a vector with independent coordinates satisfying Assumption 1.
Further assume equations (31), (32) and d/p → ψ ∈ (1,∞), p/n → γ ∈ (1,∞) to hold.
(The case γ ∈ (0,1) being covered by Proposition 2.)

Then almost surely

RX(β̂;β) → Blat(ψ, γ ) + Vlat(ψ, γ ),(35)

Blat(ψ, γ ) :=
{

1 + γ c0
E1(ψ, γ )

E2(ψ, γ )

}
· μψ−1r2

θ

(1 + μψ−1)(1 + c0γ (1 + μψ−1))2 ,(36)

Vlat(ψ, γ ) := σ 2γ c0
E1(ψ, γ )

E2(ψ, γ )
,(37)

E1(ψ, γ ) := 1 − ψ

(1 + c0γ )2 + ψ(1 + μψ−1)2

(1 + c0(1 + μψ−1)γ )2 ,(38)

E2(ψ, γ ) := 1 − ψ

(1 + c0γ )2 + ψ(1 + μψ−1)

(1 + c0(1 + μψ−1)γ )2 .(39)

where σ 2 = σ 2
ξ + r2

θ /(1 + μψ−1), and c0 = c0(ψ, γ ) ≥ 0 is the unique nonnegative solution
of the following second-order equation:

1 − 1

γ
= 1 − ψ

1 + c0γ
+ ψ

1 + c0(1 + μψ−1)γ
.(40)
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FIG. 5. Latent space model of Section 5.2: test error RX(β̂;β) of minimum norm regression as a function of the
overparametrization ratio γ . Here, d = 20, r = 1, μ = 1, σξ = 0 and n varies across various curves. Symbols are
averages over 100 realizations; continuous lines report the analytical prediction of Corollary 5.

REMARK 4. The proof of Theorem 2 holds almost unchanged for the case in which xi =
�1/2z̃i with �1/2 a nonsymmetric square root of � and z̃i a vector with independent entries
satisfying Assumption 2. This case includes the general model equation (29) for zi with
independent entries as a special case. It is sufficient to set z̃i = (zi, ui) and �1/2 = (W, Ip).

Figures 5 and 6 illustrate this corollary by comparing analytical predictions to numer-
ical simulations. We observe that the prediction risk is monotone decreasing in the over-
parametrization ratio for γ > 1, and reaches its global minimum asymptotically as γ → ∞
(after p,n, d → ∞). To understand why this happens, notice that each feature vector xi can
be viewed as a noisy measurement of the latent covariates zi . If the noise uij was absent,
then performing min-norm regression with respect to (xi)i≤n would be equivalent to min-
norm regression with respect to (zi)i≤n. To see this, consider again equation (30). If we

FIG. 6. Latent space model of Section 5.2: test error RX(β̂;β) of minimum norm regression as a function of
the overparametrization ratio γ . Here, d = 20, r = 1, μ = 1, n = 400 and the noise variance σξ varies across
different curves. Symbols are averages over 100 realizations; continuous lines report the analytical prediction of
Corollary 5.



972 HASTIE, MONTANARI, ROSSET AND TIBSHIRANI

drop the noise U , we are minimizing ‖b‖2 subject to Z(WT b) = 0, and the regression func-
tion is f̂ (z) = xT β̂ = zT (WT β̂). Since W is orthogonal, this is equivalent to computing
θ̂ = arg min{‖t‖2: subject to Zt = y}, with y = Zθ + ξ . In other words, we are back to the
underparametrized model.

In presence of noise uij , the latent features cannot be estimated exactly. However, as p

gets larger, the noise is effectively “averaged out” and we approach the idealized situation in
which the zi ’s are observed.

All of the simulations in Figures 5, 6 are carried out with μ = 1. In Appendix A.3, we
explore the dependence on μ, and show that the generalization curves are insensitive over a
broad range of choices of this parameter.

6. Ridge regularization. We generalize the formulas of Section 4 to nonvanishing ridge
regularization. We work under the same assumptions of that section. In particular, recall that
Ĥn(s) = p−1∑p

i=1 1{s≥si} is the empirical distribution of the eigenvalues of �, and Ĝn(s) =∑p
i=1〈β,vi〉21{s≥si}/‖β‖2 the same empirical distribution, reweighted by the projection of

β onto the eigenvectors vi of the covariance �. (Recall the eigenvalue decomposition � =∑p
i=1 siviv

T
i .)

DEFINITION 2 (Predicted bias and variance: ridge regression). For γ ∈ R>0, and z ∈ C+
(the set of complex numbers with Im(z) > 0), define mn(z) = m(z; Ĥn, γ ) as the unique
solution of

mn(z) =
∫ 1

s[1 − γ − γ zmn(z)] − z
dĤn(s).(41)

Further define mn,1(z) = mn,1(z; Ĥn, γ ) via

mn,1(z) :=
∫ s2[1−γ−γ zmn(z)]

[s[1−γ−γ zmn(z)]−z]2 dĤn(s)

1 − γ
∫

zs
[s[1−γ−γ zmn(z)]−z]2 dĤn(s)

.(42)

These definitions are extended analytically to Im(z) = 0 whenever possible. We then define
the predicted bias and variance by

B(λ; Ĥn, Ĝn, γ ) := λ2‖β‖2(1 + γmn,1(−λ)
)

×
∫

s

[λ + (1 − γ + γ λmn(−λ))s]2 dĜn(s),
(43)

V (λ; Ĥn, γ ) := σ 2γ

∫
s2(1 − γ + γ λ2m′

n(−λ))

[λ + s(1 − γ + γ λmn(−λ))]2 dĤn(s).(44)

We next state our deterministic approximation of the risk.

THEOREM 5. Let M−1 ≤ p/n ≤ M , and Assumption 1 hold. Further assume λ ∨
smin(�) > 1/M and n−2/3+1/M < λ < M . Let β̂λ be the ridge estimator of equation (7).

Then for any constants D > 0 (arbitrarily large) and ε > 0 (arbitrarily small), there exist
C = C(M,D) such that, with probability at least 1 − Cn−D the following hold:

RX(β̂λ;β) = BX(β̂λ;β) + VX(β̂λ;β),(45)

∣∣BX(β̂λ;β) − B(λ; Ĥn, Ĝn, γ )
∣∣≤ C‖β‖2

2

λn(1−ε)/2 ,(46)

∣∣VX(β̂λ;β) − V (λ; Ĥn, γ )
∣∣≤ C

λ2n(1−ε)/2 ,(47)
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where B and V are given in Definition 2, and the first identity is just the general bias-
variance decomposition of equation (5).

The proof of this theorem is deferred to Appendix A.1. As for Theorem 2, similar results
were proved in [57, 69], subsequently to a first version of this manuscript that only focused
on random β . The same comparison of Remark 2 applies here.

In particular, Theorem 5 establishes nonasymptotic deterministic approximations for the
bias BX(β̂λ;β) and variance VX(β̂;β). The error terms are uniform over the covariance ma-
trix, and have nearly optimal dependence upon the sample size n. Indeed, a central-limit
theorem heuristics suggests fluctuations of order n−1/2.

As for the case of min-norm regression, Theorem 5 directly implies a characterization
of the asymptotics of bias and variance of ridge regression. This statement is analogous to
Theorem 6.

THEOREM 6. Consider the setting of Theorem 5. Further assume p/n → γ ∈ (0,∞),
Ĥn ⇒ H , Ĝn ⇒ G. Define B1(λ;H,G,γ ) as in equation (43), with ‖β‖2

2 replaced by 1.
Then, for any λ > 0, almost surely

(48)
1

‖β‖2
2

BX(β̂λ;β) → B1(λ;H,G,γ ), VX(β̂λ;β) → V (λ;H,γ ).

The same conclusion holds if instead of Assumption 1(a), the coordinates of z, (zi)i≤p are
i.i.d. and satisfy the conditions Ezi = 0, E(z2

i ) = 1, E(|zi |4+δ) ≤ C < ∞.

6.1. Isotropic features. As a special case, we can consider the simple isotropic model
that was already studied in Section 3. Very similar (though not identical) results can be found
in Dicker [22], Dobriban and Wager [23].

COROLLARY 6. Assume the conditions of Theorem 1 (well-specified model, isotropic
features). Then for ridge regression estimator in (7) as n,p → ∞, such that p/n → γ ∈
(0,∞), it holds almost surely that

RX(β̂λ;β) → r2λ2m′(−λ) + σ 2γ
(
m(−λ) − λm′(−λ)

)
.(49)

Here, m(z) is given by equation (41), which in this case has the explicit solution m(z) =
[1 − γ − z −

√
(1 − γ − z)2 − 4γ z]/(2γ z).

Furthermore, the limiting ridge risk is minimized at λ∗ = σ 2γ /r2, in which case we have
the simpler expression RX(β̂λ;β) → σ 2γm(−λ∗).

It is easy to recover the formulas in Theorem 1 as a limiting case of equation (49), by using
the z → 0 asymptotics m(z) = (1 − γ )−1 + O(z) for γ < 1 and m(z) = (1 − γ )−1 + O(z)

for γ < 1 and m(z) = −(γ − 1)/(γ z) + [(γ − 1)γ ]−1 + O(z) for γ > 1.
Figures 7 and 8 compare the risk curves of min-norm least squares to those from optimally-

tuned ridge regression, in the well-specified and misspecified settings, respectively. There are
two important points to make. The first is that optimally-tuned ridge regression is seen to
have strictly better asymptotic risk throughout, regardless of r2, γ , κ . This should not be a
surprise, as by definition optimal tuning should yield better risk than min-norm least squares,
which is the special case given by λ → 0+.

The second point is that, in this example, the limiting risk of optimally-tuned ridge re-
gression appears to have a minimum around γ = 1, and this occurs closer and closer to
γ = 1 as SNR grows. This behavior is interesting, especially because it is antipodal to that
of the min-norm least squares risk, and leads us to very different suggestions for practical
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FIG. 7. Asymptotic risk curves for the min-norm least squares estimator in (10) as solid lines, and optimally–
tuned ridge regression (from Theorem 5) as dashed lines. Here, r2 varies from 1 to 5, and σ 2 = 1. The null risks
are marked by the dotted lines.

usage for feature generators: in settings where we apply substantial �2 regularization (say,
using CV tuning to mimic optimal tuning, which the next section shows to be asymptotically
equivalent), it seems we want the complexity of the feature space to put us as close to the
interpolation boundary (γ = 1) as possible.

As we will see, the behavior is rather different in the latent space model.

FIG. 8. Asymptotic risk curves for the min-norm least squares estimator in (28) as solid lines, and optimally–
tuned ridge regression (from Theorem 5) as dashed lines, in the misspecified case, when the approximation bias
has polynomial decay as in (27), with a = 2. Here, r2 varies from 1 to 5, and σ 2 = 1. The null risks are marked
by the dotted lines.
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FIG. 9. Asymptotic risk as a function of the overparametrization ratio γ = p/n, for ridge regression in the
latent space model of Section 6.2. Here, n = 400, d = 20, μ = 1, rθ = 1, σξ = 0, and each curve corresponds
to a different value of the regularization λ. The dashed curve correspond to the min-norm interpolator (which
coincides with the λ → 0 limit of ridge regression).

6.2. Latent space model. As a special application, we consider the latent space model of
Section 5.2. It is immediate to specialize equations (43) and (44) to this case. We omit giving
giving explicit formulas for brevity, and instead plot the resulting curves for the prediction
risk (test error).

In Figure 9, we plot the risk as a function of the overparametrization ration γ = p/n for
several values of the regularization parameter λ (included the ridgeless limit λ → 0). The
setting here is analogous to the one of Figure 5. We observe several interesting phenomena:

1. Independently of λ in the probed range, the risk is minimized at large over-
parametrization γ � 1.

2. As expected, the divergence of the risk at the interpolation threshold γ = 1 is
smoothed out by regularization, and the risk becomes a monotone decreasing function of
γ when λ is large enough. Crucially, the optimal amount of regularization (corresponding to
the lower envelope of these curves) results in a monotonically decreasing risk.

3. At large overparametrization, the optimal value of the regularization parameter is
λ → 0.

We confirm the last finding in Figure 10, which plots the risk as a function of λ: the optimal
regularization is λ → 0. Notice that this is the case despite the fact that the observations are
noisy, namely σξ > 0 strictly.

The optimality of λ → 0 has a known intuitive explanation that is worth recalling here.
Recall that ridge predictor at point x0 takes the form

f̂λ(x0) = 〈x0, β̂λ〉 = K(x0,X)
(
K(X,X) + λI

)−1
y,(50)

where we introduced the kernel matrix K(X,X) = XXT /n, and the vector K(x0,X) =
xT

0 X/n. Consider the case in which the covariates X contain noise, as is our case, X =
X + ηU where X = ZWT and uij ∼ N(0,1). (While we are considering η = 1, it is in-
structive to regard the noise standard deviation as a parameter.) Then we might expect
K(X,X) ≈ K(X,X) + η2UUT ≈ K(X,X) + η2In. If this approximation holds, the noise
acts as an extra ridge term, which can be sufficient to regularize the problem.

To the best of our knowledge, this argument was first presented by Webb [68] and, more
explicitly, by Bishop [13]. Recently, Kobak et al. [42] elucidated its role in linear regression,
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FIG. 10. Asymptotic risk as a function of the regularization parameter λ, for ridge regression in the latent space
model of Section 6.2. Here, n = 400, d = 20, μ = 1, rθ = 1, σξ = 0.1, and each curve corresponds to a different
value of the overparametrization ratio γ = p/n.

establishing several of its consequences. In a parallel line of work, a closely related idea has
recently emerged in the analysis of kernel methods in high dimension [26, 47].

7. Cross-validation. We analyze the effect of using cross-validation to choose the tun-
ing parameter in ridge regression. In short, we find that choosing the ridge tuning param-
eter to minimize the leave-one-out cross-validation error leads to the same asymptotic risk
as the optimally-tuned ridge estimator. The next subsection gives the details; the following
subsection presents a new “shortcut formula” for leave-one-out cross-validation in the over-
parametrized regime, for min-norm least squares, akin to the well-known formula for under-
parametrized least squares and ridge regression. We refer to [20, 32] for background on CV
and GCV, and to [5] for a more recent review.

7.1. Limiting behavior of CV tuning. Given the ridge regression solution β̂λ in (7),
trained on (xi, yi), i = 1, . . . , n, denote by f̂λ the corresponding ridge predictor, defined as
f̂λ(x) = xT β̂λ for x ∈ R

p . Additionally, for each i = 1, . . . , n, denote by f̂ −i
λ the ridge pre-

dictor trained on all but ith data point (xi, yi).5 Recall that the leave-one-out cross-validation
(leave-one-out CV, or simply CV) error of the ridge solution at a tuning parameter value λ is

(51) CVn(λ) = 1

n

n∑
i=1

(
yi − f̂ −i

λ (xi)
)2

.

We typically view this as an estimate of the out-of-sample prediction error E(y0 − xT
0 β̂λ)

2,
where the expectation is taken over everything that is random: the training data (xi, yi), i =
1, . . . , n used to fit β̂λ, as well as the independent test point (x0, y0). Note also that, when
we observe training data from the model (1), (2), and when (x0, y0) is drawn independently
according to the same process, we have the relationship

E
(
y0 − xT

0 β̂λ

)2 = σ 2 +E
(
xT

0 β − xT
0 β̂λ

)2 = σ 2 +E
[
RX(β̂λ;β)

]
,

5To be precise, this is f̂ −i (x) = xT (XT−iX−i + nλI)−1XT−iy−i , where X−i denotes X with the ith row re-
moved, and y−i denotes y with the ith component removed. Arguably, it may seem more natural to replace the
factor of n here by a factor of n − 1; we leave the factor of n as is because it simplifies the presentation in what
follows, but we remark that the same asymptotic results would hold with n − 1 in place of n.
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where RX(β̂λ;β)] = E[(xT
0 β − xT

0 β̂λ)
2|X] is the conditional prediction risk, which has been

our focus throughout.
Recomputing the leave-one-out predictors f̂ −i

λ , i = 1, . . . , n can be burdensome, espe-
cially for large n. Importantly, there is a well-known “shortcut formula” that allows us to
express the leave-one-out CV error (51) as a weighted average of the training errors,

(52) CVn(λ) = 1

n

n∑
i=1

(
yi − f̂λ(xi)

1 − (Sλ)ii

)2
,

where Sλ = X(XT X + nλ)−1XT is the ridge smoother matrix. This identity is an immediate
consequence of the Sherman–Morrison–Woodbury formula. In the next subsection, we give
an extension to the case λ = 0 and rank(X) = n, that is, to min-norm least squares.

The next result shows that, for isotropic features, the CV error of a ridge estimator con-
verges almost surely to its prediction error. The focus on isotropic features is only for sim-
plicity: a more general analysis is possible but is not pursued here. The proof, given in Ap-
pendix A.4.6, relies on the shortcut formula (52). In the proof, we actually first analyze gen-
eralized cross-validation (GCV), which turns out to be somewhat of an easier calculation (see
the proof for details on the precise form of GCV), and then relate leave-one-out CV to GCV.

THEOREM 7. Assume the a isotropic prior, namely E(β) = 0, Cov(β) = r2Ip/p, and
the data model (1), (2). Assume that x ∼ Px has i.i.d. entries with zero mean, unit variance,
and a finite moment of order 4 + η, for some η > 0. Then for the CV error (51) of the ridge
estimator in (7) with tuning parameter λ > 0, as n,p → ∞, with p/n → γ ∈ (0,∞), it holds
almost surely that

CVn(λ) − σ 2 → σ 2γ
(
m(−λ) − λ(1 − αλ)m′(−λ)

)
,

where m(z) denotes the Stieltjes transform of the Marchenko–Pastur law Fγ (as in Corol-
lary 6), and α = r2/(σ 2γ ). Observe that the right-hand side is the asymptotic risk of
ridge regression from Theorem 5. Moreover, the above convergence is uniform over com-
pacts intervals excluding zero. Thus if λ1, λ2 are constants with 0 < λ1 ≤ λ∗ ≤ λ2 < ∞,
where λ∗ = 1/α is the asymptotically optimal ridge tuning parameter value, and we de-
fine λn = arg minλ∈[λ1,λ2] CVn(λ), then the expected risk of the CV-tuned ridge estimator
RX(β̂) := EβRX(β̂;β) β̂λn satisfies, almost surely

RX(β̂λn) → σ 2γm(−1/α),

with the right-hand side above being the asymptotic risk of optimally-tuned ridge regression.
Further, the exact same set of results holds for GCV.

Similar results were obtained for various linear smoothers in Li [45, 46], for the lasso in the
high-dimensional (proportional) asymptotics in Miolane and Montanari [51], and for general
smooth penalized estimators in Xu et al. [70]. The latter paper covers ridge regression as a
special case, and gives more precise results (convergence rates), but assumes more restrictive
conditions. After submission of this paper, consistency of CV and GVC was proved in a
significantly more general setting in [54], in particular dispensing with the assumption of
random β .

The key implication of Theorem 7, in the context of the current paper and its central focus,
is that the CV-tuned or GCV-tuned ridge estimator has the same asymptotic performance as
the optimally-tuned ridge estimator. In other words, the ridge curves in Figures 1, 7 and 8 can
be alternatively viewed as the asymptotic risk of ridge under CV tuning.
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7.2. Shortcut formula for ridgeless CV. We extend the leave-one-out CV shortcut for-
mula (52) to work when p > n and λ = 0+, that is, for min-norm least squares. In this case,
both the numerator and denominator are zero in each summand of (52). To circumvent this,
we can use the so-called “kernel trick” to rewrite the ridge regression solution (7) with λ > 0
as

(53) β̂λ = XT (XXT + nλI
)−1

y.

Using this expression, the shortcut formula for leave-one-out CV in (52) can be rewritten as

CVn(λ) = 1

n

n∑
i=1

[(XXT + nλI)−1y]2
i

[(XXT + nλI)−1]2
ii

.

Taking λ → 0+ yields the shortcut formula for leave-one-out CV in min-norm least squares
(assuming without a loss of generality that rank(X) = n),

(54) CVn(0) = 1

n

n∑
i=1

[(XXT )−1y]2
i

[(XXT )−1]2
ii

.

In fact, the exact same arguments given here still apply when we replace XXT by a positive
definite kernel matrix K (i.e., Kij = k(xi, xj ) for each i, j = 1, . . . , n, where k is a posi-
tive definite kernel function), in which case (54) gives a shortcut formula for leave-one-out
CV in kernel ridgeless regression (the limit in kernel ridge regression as λ → 0+). We also
remark that, when we include an unpenalized intercept in the model, in either the linear or
kernelized setting, the shortcut formula (54) still applies with XXT or K replaced by their
doubly-centered (row- and column-centered) versions, and the matrix inverses replaced by
pseudoinverses.

8. Nonlinear model. Our analysis in the previous sections assumed xi = �1/2zi , with
zi a vector with independent entries.

In this section, we test universality on one simple example. We observe data as in (1), (2),
but now xi = ϕ(Wzi) ∈ R

p , where zi ∈ R
d has i.i.d. entries from N(0,1), for i = 1, . . . , n.

Also, W ∈ R
p×d has i.i.d. entries from N(0,1/d). Finally, ϕ : R → R is an activation func-

tion acting entrywise on vectors.
We first consider the case of purely nonlinear activations, namely activation functions that

are uncorrelated with linear functions: E{ϕ(G)} = E{Gϕ(G)} = 0 for G ∼ N(0,1). In this
case, the second-order statistics of the features xi match the ones of the isotropic model and
the same happen for the asymptotic of the risk. We then consider more general activations,
and show that the asymptotic variance depends on the activation through the value of c1 =
E{Gϕ(G)}2.

8.1. Limiting risk for purely nonlinear activations. Notice that, conditionally on W , the
vectors xi = ϕ(Wzi), i ≤ n are independent. However, they do not have independent coordi-
nates. For instance, if ϕ(t) = at2 + b, we can reconstruct zi from the first 2d coordinates of
xi and, therefore, the remaining p − 2d coordinates of xi are a function of the first 2d .

Nevertheless, the next theorem shows that if ϕ is purely nonlinear (in the sense that
E{ϕ(G)} = E{Gϕ(G)} = 0), then the feature matrix X behaves “as if” it had i.i.d. entries, in
that the asymptotic bias and variance are exactly as in the linear isotropic case; recall equa-
tion (10). In other words, this theorem provides a rigorous confirmation of the universality
hypothesis stated in the Introduction.
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THEOREM 8. Assume the model (1), (2), where each xi = ϕ(Wzi) ∈ R
p , for zi ∈ R

d

having i.i.d. entries from N(0,1), W ∈ R
p×d having i.i.d. entries from N(0,1/d) (with W

independent of zi), and is ϕ an activation function that acts componentwise. Assume that
|ϕ(x)| ≤ c0(1+|x|)c0 for a constant c0 > 0. Also, for G ∼ N(0,1), assume that the following
standardization conditions hold: E[ϕ(G)] = 0 and E[ϕ(G)2] = 1, E[Gϕ(G)] = 0. Consider
the limit n,p, d → ∞, with p/n → γ and d/p → ψ ∈ (0,∞).

Then for γ > 1, the variance satisfies, almost surely

lim
λ→0+ lim

n,p,d→∞VX(β̂λ;β) = σ 2

γ − 1
,

which is precisely as in the case of linear isotropic features; recall Theorem 1. Also, un-
der a isotropic prior, namely E(β) = 0, Cov(β) = r2Ip/p), the Bayes bias BX(β̂λ) :=
EβBX(β̂λ;β) satisfies, almost surely

lim
λ→0+ lim

n,p,d→∞BX(β̂λ) =
{

0 for γ < 1,

r2(1 − 1/γ ) for γ > 1,

which is again as in the case of linear isotropic features; recall Theorem 1.

The proof of Theorem 8 is lengthy and will be sketched shortly. We notice that the def-
inition of VX(β̂λ;β) and BX(β̂λ) is conditional on X. In fact, we will prove that the stated
limits hold asymptotically almost surely, conditionally both on W and on the covariates xi .

The origin of the conditions E{ϕ(G)} = E{Gϕ(G)} = 0 can be easily explained (through-
out G ∼ N(0,1)). In summary, these conditions ensure that the first- and second-order statis-
tics of xi = ϕ(Wzi) approximately match those of the isotropic model. To illustrate this point,
let i 
= j , and assume that the corresponding rows of W (denoted by wT

i and wT
j ) have unit

norm (this will only be approximately true, but simplifies our explanation). We then have
Ez{ϕ(wT

i z1)} = Ez{ϕ(wT
j z1)} = E{ϕ(G)} = 0. Further,

Ez{x1,ix1,j |W } = Ez

{
ϕ
(
wT

i z1
)
ϕ
(
wT

j z1
)|W}= E

{
ϕ(G1)ϕ(G2)

}
,(55)

where G1, G2 are jointly Gaussian with unit variance and covariance wT
i wj . Denoting by

ϕ(x) =∑
k≥0 λk(ϕ)hk(x) the decomposition of ϕ into orthonormal Hermite polynomials, we

thus obtain

E{x1,ix1,j |W } =
∞∑

k=0

λ2
k(ϕ)

(
wT

i wj

)k
,(56)

Since λ0(ϕ) = E{ϕ(G)} = 0, λ1(ϕ) = E{Gϕ(G)} = 0, we have E{x1,ix1,j |W } =
O((wT

i wj )
2) = O(1/d). In other words, the population covariance E{x1x

T
1 |W } has small

entries out-of diagonal, and in fact ‖E{x1x
T
1 |W } − Ip‖op = oP (1) [26].

Even if the nonlinear model xi = ϕ(Wzi) matches the second-order population statistics
of the isotropic model, it is far from obvious that the asymptotics of the risk is the same.
Indeed the coordinates of vector xi are highly dependent. Theorem 8 confirms that—despite
dependence—the risk is asymptotically the same, thus providing a concrete example of the
general universality phenomenon.

Figure 11 compares the asymptotic risk curve from Theorem 8 to that computed by simula-
tion, using an activation function ϕabs(t) = a(|t |−b), where a = √

π/(π − 2) and b = √
2/π

are chosen to meet the standardization conditions. This activation function is purely nonlin-
ear, that is, it satisfies E[Gϕabs(G)] = 0 for G ∼ N(0,1), by symmetry. Again, the agreement
between finite-sample and asymptotic risks is excellent. Notice in particular that, as predicted
by Theorem 8, the risk depends only on p/n and not on d/n.
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FIG. 11. Asymptotic variance curves for the min-norm least squares estimator in the nonlinear feature model
(from Theorem 8), for the purely nonlinear activation ϕabs. Here σ 2 = 1, and the points are finite-sample risks,
with n = 200, p = [γ n], over various values of γ , and varying input dimensions: d = 100 in black, d = 200
in red, d = 300 in green, and d = 400 in black. As before, the features used for finite-sample calculations are
X = ϕ(ZWT ), where Z has i.i.d. N(0,1) entries and W has i.i.d. N(0,1/d) entries.

8.2. Limiting variance for general activations. Consider now the case of a general acti-
vation with vanishing mean E{ϕ(G)} = 0, but nonvanishing linear component E{Gϕ(G)}2 =
c1, and normalized so that E{ϕ(G)2} = 1. Following the same argument as in the last section,
we obtain the following approximation for the conditional covariance of xi given W :∥∥E{x1x

T
1 |W}− �̃X|W

∥∥
op = oP (1), �̃X|W = (1 − c1)Ip + c1WWT .(57)

In other words, the conditional covariance is well approximated by the covariance of the the
latent space model of Sections 5.2 and 6.2. Let us emphasize that the conditional covariance
is what matters (not the unconditional one) because the xi ’s are independent only conditional
on W .

In Appendix A.5, we derive the asymptotic variance for this model. The next result con-
firms once more the universality scenario outlined above. In words, the asymptotic variance
of the nonlinear model xi = ϕ(Wzi) coincides with the asymptotic variance of the corre-
sponding linear model xi ∼ N(0,�W).

THEOREM 9. In the setting of Theorem 8, assume E[ϕ(G)] = 0 and E[ϕ(G)2] = 1,
E[Gϕ(G)]2 = c1, and let VX(β̂λ;β) denote the corresponding variance of ridge regression.

Further, consider a different problem with x̃i ∼ N(0, �̃X|W), �̃X|W := (1 − c1)Ip +
c1WWT , and denote by VX̃(β̂λ;β) denote the corresponding variance of ridge regression.
Assume p,n, d,→ ∞ with p/n → γ ∈ (1,∞, and d/p → ψ ∈ (0,∞). Then we have, al-
most surely

lim
λ→0+ lim

n,p,d→∞VX(β̂λ;β) = lim
λ→0+ lim

n,p,d→∞VX̃(β̂λ;β).

REMARK 5. After the last result was proved and a preprint posted online, the techniques
developed here were significantly sharpened and generalized in [49], which proved in par-
ticular that the same universality result holds for the bias term as well. We notice that both
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Theorem 8 and Theorems 9 as well as its generalization in [49] assume a particularly simple
model for the latent covariates zi . While this simple model simplifies the proof, the result is
likely to generalize to other models, for example, zi with independent sub-Gaussian entries.

REMARK 6. Notice that the assumption of isotropic W in Theorem 8 and Theorem 9
is realistic as this is the standard choice of random features models. On the other hand, it is
an interesting research question to which extent these results generalize to other distributions
of zi , for example, zi ∼ N(0,�Z). We believe that the results obtained here extend to that
case as well as long as p/n → γ ∈ (1,∞), and d/p → ψ ∈ (0,∞) and �Z has a positive
fraction of eigenvalues of the same order as its largest eigenvalue (as requested for � in
Assumption 1). In that case of course, one has to replace the above formula for �̃X|W by
�̃X|W = Ez{ϕ(Wz)ϕ(Wz)T }.

8.3. Proof outline for Theorem 8. We define γn = p/n and ψn = d/p. Recall that as
n,p, d → ∞, we have γn → γ and ψn → ψ . To reduce notational overhead, we will gen-
erally drop the subscripts from γn, ψn, writing these simply as γ , ψ , since their mean-
ings should be clear from the context. Let N = p + n and define the symmetric matrix
A(s) ∈ R

N×N , for s ≥ 0, with the block structure:

(58) A(s) =

⎡⎢⎢⎣ sIp

1√
n
XT

1√
n
X 0n

⎤⎥⎥⎦ ,

where Ip ∈ R
p×p and 0n ∈ R

n×n are the identity and zero matrix, respectively. As we will
see, this matrix allows to construct the traces of interest by taking suitable derivatives of its
resolvent.

We introduce the following resolvents (as usual, these are defined for Im(ξ) > 0 and by
analytic continuation, whenever possible, for Im(ξ) = 0):

m1,n(ξ, s) = E
{(

A(s) − ξIN

)−1
1,1

}= EM1,n(ξ, s),

M1,n(ξ, s) = 1

p
Tr[1,p]

{(
A(s) − ξIN

)−1}
,

m2,n(ξ, s) = E
{(

A(s) − ξIN

)−1
p+1,p+1

}= EM2,n(ξ, s),

M2,n(ξ, s) = 1

n
Tr[p+1,p+n]

{(
A(s) − ξIN

)−1}
.

Here and henceforth, we write [i, j ] = {i + 1, . . . , i + j} for integers i, j . We also write
M−1

ij = (M−1)ij for a matrix M , and TrS(M) =∑
i∈S Mii for a subset S. The equalities in

the first and third lines above follow by invariance of the distribution of A(s) under per-
mutations of [1,p] and [p + 1,p + n]. Whenever clear from the context, we will omit the
arguments from block matrix and resolvents, and write A = A(s), m1,n = m1,n(ξ, s) and
m2,n = m2,n(ξ, s).

The next lemma characterizes the asymptotics of m1,n, m2,n.

LEMMA 3. Assume the conditions of Theorem 8. Consider Im(ξ) > 0 or Im(ξ) = 0,
Re(ξ) < 0, with s ≥ t ≥ 0. Let m1 and m2 be the unique solutions of the following quadratic
equations:

m2 = (−ξ − γm1)
−1, m1 = (−ξ − s − m2)

−1,(59)
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subject to the condition of being analytic functions for Im(z) > 0, and satisfying |m1(z, s)|,
|m2(z, s)| ≤ 1/Im(z) for Im(z) > C (with C a sufficiently large constant). Then, as n,p, d →
∞, such that p/n → γ and d/p → ψ , we have almost surely (and in L1),

lim
n,p,d→∞M1,n(ξ, s) = m1(ξ, s),(60)

lim
n,p,d→∞M2,n(ξ, s) = m2(ξ, s).(61)

The proof of this lemma is given in Appendix A.5.2. As a corollary of the above, we obtain
that the asymptotical empirical spectral distribution of the empirical covariance �̂ = XT X/n

matches the one for the independent entries model, and is hence given by the Marchenko–
Pastur law (a result already obtained in Pennington and Worah [55]). We state this formally
using the Stieltjes transform

(62) Rn(z) = 1

p
Tr
(
(�̂ − zIp)−1).

COROLLARY 7. Assume the conditions of Theorem 8. Consider Im(z) > 0. As n,p, d →
∞, with p/n → γ and d/p → ψ , we have (almost surely and in L1) Rn(ξ) → r(ξ) where
r is nonrandom and coincides with the Stieltjes transform of the Marchenko–Pastur law,
namely

r(z) = 1 − γ − z −
√

(1 − γ − z)2 − 4γ z

2γ z
.(63)

We refer to Appendix A.5.4 for a proof of this corollary. The next lemma connects the
above resolvents computed in Lemma 3 to the variance of min-norm least squares, hence
completing our proof outline.

LEMMA 4. Assume the conditions of Theorem 8. Let m1, m2 be the asymptotic resolvents
given in Lemma 3. Define

m(ξ, s) = γm1(ξ, s) + m2(ξ, s).

Then for γ 
= 1, ∂xm(ξ, x)|x=0 as a simple pole at ξ = 0, and hence admits a Taylor–Laurent
expansion around ξ = 0, whose coefficients will be denoted by D−1, D0,

−∂xm(ξ, x)|x=0 = D−1

ξ2 + D0 + O
(
ξ2).(64)

Here, each coefficient is a function of γ , ψ : D−1 = D−1(γ,ψ), D0 = D0(γ,ψ). Further-
more, for the ridge regression estimator β̂λ in (7), as n,p, d → ∞, such that p/n → γ ∈
(0,∞), d/p → ψ ∈ (0,1), the following ridgeless limit holds almost surely:

lim
λ→0+ lim

n,p,d→∞VX(β̂λ;β) = D0.

The proof of this lemma can be found in Appendix A.5.3. Theorem 8 follows by evaluating
the formula in Lemma 4, by using the result of Lemma 3. We refer to the Appendix in the
Supplementary Material for details [36].
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