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In high-dimensional regression, we attempt to estimate a parameter vec-
tor β0 ∈ R

p from n � p observations {(yi ,xi )}i≤n, where xi ∈ R
p is a vec-

tor of predictors and yi is a response variable. A well-established approach
uses convex regularizers to promote specific structures (e.g., sparsity) of the
estimate β̂ while allowing for practical algorithms. Theoretical analysis im-
plies that convex penalization schemes have nearly optimal estimation prop-
erties in certain settings. However, in general the gaps between statistically
optimal estimation (with unbounded computational resources) and convex
methods are poorly understood.

We show that when the statistican has very simple structural informa-
tion about the distribution of the entries of β0, a large gap frequently exists
between the best performance achieved by any convex regularizer satisfy-
ing a mild technical condition and either: (i) the optimal statistical error or
(ii) the statistical error achieved by optimal approximate message passing al-
gorithms. Remarkably, a gap occurs at high enough signal-to-noise ratio if
and only if the distribution of the coordinates of β0 is not log-concave. These
conclusions follow from an analysis of standard Gaussian designs. Our lower
bounds are expected to be generally tight, and we prove tightness under cer-
tain conditions.

1. Introduction. Consider the classical linear regression model

(1.1) y = Xβ0 + w,

where X ∈ R
n×p . The statistician observes y and X but not β0 or w, and she seeks to esti-

mate β0. We assume she approximately knows the �2-norm of the noise w and the empirical
distribution of the coordinates of β0 in senses we will make precise below.

We are interested in the high-dimensional regime in which p is comparable to n, and both
are large. In this regime, computational considerations are crucial: only estimators which can
be implemented by polynomial-time algorithms are relevant to statistical practice.

This paper develops precise lower bounds that characterize a broad class of estimators
which are attractive in large part for their computational tractability. These are penalized
least-squares estimators of the form

(1.2) β̂cvx ∈ arg min
β

{
1

n
‖y − Xβ‖2 + ρ(β)

}
,

where ρ : Rp → R ∪ {∞} is a lower semicontinuous (lsc), proper, convex function. The
penalty ρ is selected to incorporate prior knowledge on the structure of β0 into the esti-
mation procedure. Convexity typically yields an estimator, which is efficiently computable.
Concretely, we address the following question:
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How well can we hope estimator (1.2) to perform in the high-dimensional regime by op-
timally designing ρ? How does this performance compare to other polynomial-time algo-
rithms and to conjectured computational lower bounds?

The design of optimal penalties or loss functions was considered only when the distribu-
tion of the noise or—in the case of Bayesian models—the prior had log-concave density with
respect to Lebesgue measure [1, 12]. Log-concavity excludes important structural assump-
tions, like sparsity, and, as we will show, is exactly the condition which leads to gaps between
convex procedures and important computational or information-theoretic benchmarks. Thus,
the case of nonlog-concave priors is both practically important and algorithmically more sub-
tle.

We will illustrate our conclusions with two small simulation studies.

1.1. A surprise: Exact recovery of a vector from three-point prior. Consider the case of
noiseless linear measurements, namely, w = 0 in equation (1.1). We assume that the empirical
distribution of β0 is known and let S be the set of vectors with that empirical distribution
(i.e., vectors obtained by permuting the entries of β0). If we had unbounded computational
resources, we would attempt reconstruction by finding β ∈ S such that y = Xβ . If only one
such vector exists, then we are sure it coincides β0. Otherwise, exact recovery is impossible.

What is the best we can achieve by convex procedures and practical (polynomial-time)
algorithms? Most researchers with a knowledge of compressed sensing or high-dimensional
statistics would consider the following convex relaxation:

find β ∈ conv(S),

subject to y = Xβ.
(1.3)

This is the tightest possible relaxation of the combinatorial constraint β ∈ S. It can be written
in the form (1.2), where, setting C := conv(S), the penalty is ρ(β) = IC(β), and IC(β) := 0
if β ∈ C, IC(β) := ∞ otherwise.

Notice that the approach (1.3) is at least as effective as, for instance, basis pursuit [24]
which minimizes ‖β‖1 subject to y = Xβ . To see this, notice that (for a generic X) the
approach (1.3) fails if and only if there exists β∗ in the interior of conv(S) such that y = Xβ∗.
Since S ⊆ {β : ‖β‖1 ≤ ‖β0‖1}, this implies ‖β∗‖1 < ‖β‖1 and, therefore, basis pursuit fails
as well.

Is replacing the combinatorial constraint S with its tightest convex relaxation C ≡ conv(S)

the best we can do? We report the results of a simulation study, with p = 2000, n = 0.4 · p =
800. We generate a parameter vector β0 in which 0.75 · p = 1500 coordinates are equal to
0, 0.15p = 300 coordinates are equal to 0.2/

√
p, and 0.1 · p = 200 coordinates are equal

to 1/
√

p. In particular, the empirical distribution of the coordinates of
√

pβ0 is π := .75 ·
δ0 + .15 · δ0.2 + .1 · δ1, which is far from being log-concave. We generate Gaussian features

(Xij )i≤n,j≤p
iid∼ N(0,1) and response y according to linear model (1.1) with w = 0.

We attempt to recover β0 using two different methods: (i) an accelerated proximal gradient
method to solve (1.3) and (ii) a Bayes-optimal approximate message passing (Bayes-AMP)
algorithm at prior π (see Section 2.2). The former is a convex optimization method, while
the latter is an efficient but nonconvex procedure. We generate 500 independent realizations
of the data, and for each realization, we attempt to recover β0 by each method. In Table 1 we
report the percentage of simulations in which full recovery was achieved by each method. For
498 of the 500 realizations of the data, Bayes-AMP achieved full recovery; that is, β̂ = β0
up to machine precision. In contrast, the convex procedure never fully recovered β0. We
also report the median, minimal, and maximal value of the relative estimation error ‖β̂ −
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TABLE 1
Percentage of simulations in which full recovery is achieved by convex projection
(estimator (1.3)) and by Bayes-AMP as well as median, minimum, and maximum

value of ‖β̂ − β0‖2/‖β0‖2
2 observed over 500 independent realization of the data.

Full recovery for Bayes-AMP means β̂ = β0 up to machine precision. “Theory
lower bounds” are high-probability asymptotic lower bounds on

‖β̂ − β0‖2/‖β0‖2
2 for any convex procedure (left) and for Bayes-AMP (right)

Projection denoising Bayes-AMP

% Full Recovery 0.00 99.60
Median Est. Error 0.14 0.00
Min Est. Error 0.06 0.00
Max Est. Error 0.22 0.03
Theory Lower Bounds 0.06 0.00

β0‖2/‖β0‖2
2. The relative errors displayed indicate that projection denoising never comes

close to achieving exact recovery of the true parameter vector.
This study supports the perhaps surprising conclusion that estimator (1.3) is suboptimal

among polynomial-time estimators for the task of noiseless recovery of a parameter vector
whose coordinates have known empirical distribution π . In fact, this paper rigorously estab-
lishes a substantially more powerful conclusions, namely, that (i) any convex estimator of the
form (1.2) will with high probability not only fail to recover the true signal, but also have
estimation error lower-bounded by a constant (we refer to Section 2 for precise asymptotic
statements). This lower bound is reported in Table 1. Thus, in this case full recovery is pos-
sible both information theoretically and in polynomial-time but not via convex procedures.
As we will see, this gap is driven by the nonlog-concavity of π . In fact, the convex estimator
(1.3) is suboptimal with respect to �2-estimation error, even among convex procedures.

In contrast to convex procedures, Bayes-AMP achieves vanishingly small reconstruction
error in the current setting with probability approaching 1. Let us mention that, for noiseless
or nearly noiseless observations, an alternative polynomial-time algorithm that achieves exact
recovery for discrete priors was recently developed in [32]. However, the approach of [32]
does not apply when the signal-to-noise ratio is of order one, which is the main focus of the
present paper.

1.2. An example: Noisy estimation of a sparse vector. Gaps between the performance
of convex procedures and optimal polynomial-time algorithm persist in the presence of
noise. They may also occur in regimes in which all known polynomial-time algorithms are
suboptimal information theoretically. To illustrate these claims, in Figure 1 we report the
results of a simulation study for p = 2000, n = 2000δ. We generated Gaussian features

(Xij )i≤n,j≤p
iid∼ N(0,1), noise w ∼ Unif(

√
nσSn−1) the uniform distribution on the sphere

of radius
√

nσ in R
n, and β0 such that 0.1p coefficients are 1/

√
p, 0.1p coefficients are

−1/
√

p, and 0.8p coefficients are 0. Observe that the empirical distribution of the coordi-
nates of

√
pβ0 is π := (ε/2)δ−1 + (1 − ε)δ0 + (ε/2)δ1 with ε = 0.2 which is, of course,

nonlog-concave. We generated response variables y according to the linear model (1.1) and
attempted to estimate the parameter vector β0 using two different methods: (i) a convex M-
estimator of the form (1.2) with a penalty ρ(β) which was carefully optimized for the prior
π and (ii) an approximate message passing (AMP) algorithm called Bayes AMP (which is
optimal among AMP algorithms for the prior π , but not always Bayes optimal).

The choice of Bayes-AMP as a reference algorithm is not arbitrary. It is, in fact, justified by
the following conjecture, which is motivated by ideas in statistical physics and has appeared
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FIG. 1. Median squared error of estimation in high-dimensional regression. Symbols refer to simulations for two
different polynomial-time algorithms. Crosses: M-estimator (1.2) for a certain optimized penalty ρ(β). Circles:
Bayes-Approximate Message Passing. Dashed and solid lines correspond to our theoretical predictions for the
asymptotic behavior of these algorithms. Dotted line corresponds to the asymptotics of the Bayes error; see main
text for further details.

informally several times in the literature. In the context of statistical estimation problems
arising in information theory, this conjecture appears in Chapters 15 and 21 of [39]. For
tutorials discussing it in the context of statistical estimation, see Sections III E and IV B
of [62] and Sections 4.2 and 4.3 of [4]. For recent contributions mentioning this idea or
analogous ones in the context of matrix estimation, see [5, 8, 37].

CONJECTURE 1.1. Consider the problem of estimating β0 in the linear model (1.1) with

standard Gaussian features (Xij )i≤n,j≤p
iid∼ N(0,1), noise (wi)i≤n

iid∼ N(0, σ 2) with σ > 0,

and coefficients such that (
√

pβ0,i )i≤p
iid∼ π with π a distribution with finite second moment.

Assume π is known to the statistician. Then, Bayes-AMP achieves the minimum mean square
estimation error among all polynomial-time algorithms in the limit n,p → ∞ with n/p → δ

fixed.

We plot the median error under square loss achieved by these two estimators, as a function
of the noise level, for four values of δ = n/p. We also plot: (i ′) the asymptotic Bayes risk,
as predicted by [7, 8, 57] (see Section 3.2); (ii′) the predicted performance of Bayes-AMP
(see Section 2.2); (iii′) our lower bound on the risk of convex M-estimators (cf. Theorem 1).
Three qualitatively different behaviors can be discerned:

• For δ = 0.45, optimal convex M-estimators matches the performance of Bayes-AMP, and
they are both substantially suboptimal with respect to Bayes estimation.

• For δ ∈ {0.5,0.6}, optimal convex M-estimation is suboptimal compared to Bayes AMP,
and, in turn, they are both inferior to Bayes estimation.
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• For δ = 0.75, Bayes-AMP is Bayes optimal for all noise levels σ , and both Bayes-AMP
and Bayes estimation are superior to optimal convex M-estimation.

We further note that our lower bound for convex M-estimation is nearly matched by the error
achieved by the specific regularizer used in simulations. Our results rigorously establish the
existence of these three qualitative behaviors and, as we will see, are driven by the nonlog-
concavity of π convolved with various levels of Gaussian noise. Moreover, our convex lower
bounds appear to be tight and are consistent with the conjectured computational lower bound
achieved by Bayes AMP.

1.3. Summary of contributions. The present paper establishes the scenario illustrated by
Figure 1 and Table 1 in a precise way. Our results hold for the case of standard Gaussian
features. Since convex regularizers are thought to perform well in this setting, establishing
lower bounds in this case is particularly informative. Namely:

1. We prove that, for any given convex penalty, a solution to a certain system of equations
provides a lower bound on the asymptotic estimation error achieved by this penalty. Further,
this lower bound is tight—and hence precisely characterizes the asymptotic mean square
error—if the penalty ρ is strongly convex.

2. We prove the lower bound on the error of any convex M-estimator plotted in Figure 1
and reported in Table 1. This lower bound applies to both log-concave and nonlog-concave
priors for β0.

3. We prove that the three behaviors illustrated by Figure 1 are the only possible and that
they indeed occur. Namely, the Bayes error is smaller than the Bayes-AMP error, sometimes
strictly smaller, and the Bayes-AMP error is always smaller than the convex M-estimation
error and sometimes strictly smaller.

4. The occurrence of these three phases is determined by the log-concavity or not of the
prior convolved with Gaussian noise at a certain variance, which we specify. Importantly,
nontrivial phase diagrams occur exactly when the prior is nonlog-concave. In particular, we
provide a nearly complete characterization of when convex M-estimation achieves Bayes-
optimal error and when it does not. In order get a quantitative understanding on the statistical-
convex gap, we characterize it in the high and low signal-to-noise ratio regimes.

5. Finally, our general lower bound holds under a certain technical condition on the regu-
larizers ρ, which we call δ-bounded width. We illustrate our results by considering a number
of convex penalties introduced in the literature, including separable penalties, convex con-
straints, SLOPE, and OWL norms. We show that, in each of these cases, the bounded width
condition holds.

Our work is consistent with Conjecture 1.1 in showing that no convex M-estimator of the
form (1.1) can surpass the postulated lower bound on polynomial-time algorithms. Further,
we believe that the characterization mentioned at the first point holds beyond strongly convex
penalties: since we are mostly interested in the lower bound, we do not attempt to prove such
general result.

The asymptotic characterization of Bayes-AMP is completely explicit and can be easily
evaluated; hence, it can provide concrete guidance in specific problems. We expect that uni-
versality arguments [9, 36, 42] can be used to show that the same asymptotics hold for i.i.d.
non-Gaussian features.

Finally, let us emphasize that we do not advocate the dismissal of convex penalization
method in favor of other approaches, such as message passing algorithms. Convex algorithms
present strong robustness properties that are practically important and not captured by our set-
ting. At the same time, our work points at directions for improving their statistical properties.
For instance, Section 5 shows that a suitable post-processing of a convex M-estimator can
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nearly bridge the gap to information-theoretically optimal performance in a large sample size
regime (namely, for n/p large but of order one).

1.4. Related literature. By far the best-studied estimator of the form (1.2) is the Lasso
[24, 59] which corresponds to the penalty ρ(β) = λ‖β‖1. An impressive body of theoreti-
cal work supports the conclusion that the Lasso achieves nearly optimal performances when
we know that the true vector β0 is sparse [15, 20, 21, 60]. Our main conclusion is that, if
we attempt to exploit richer information about the empirical distribution of the coefficients
(β0,j )j≤p , then not only the Lasso, but also any convex estimator (1.2) is substantially sub-
optimal, as compared to the Bayes error or other polynomial-time algorithms. On the other
hand, convex estimators are optimal if the coefficients distribution is log-concave.

Our work builds on a series of recent theoretical advances. First, we make use of the sharp
analysis of AMP algorithms, using state evolution, which was developed in [10, 17, 35].
In particular, the recent paper [14] proves that state evolution holds for certain classes of
nonseparable nonlinearities. This is particularly relevant for the present setting, since we are
interested in nonseparable penalties ρ(β).

The connection between M-estimation and AMP algorithms was first developed in [25]
and subsequently used in [11] to characterize the asymptotic mean square error of the Lasso
for standard Gaussian designs. The same approach was subsequently used in the context of
robust regression in [27]. AMP algorithms were developed and analyzed for a number of
statistical estimation problems, including generalized linear models [44], phase retrieval [38,
50], and logistic regression [54].

A different approach to sharp asymptotics in high-dimensional estimation problems makes
use of Gaussian comparison inequalities. This line of work was pioneered by Stojnic [52]
and then developed by a number of authors in the context of regularized regression [58], M-
estimation [57], generalized compressed sensing [23], binary compressed sensing [51], the
Lasso [41], and so on.

An independent approach to high-dimensional estimation, based on leave-one-out tech-
niques, was developed by El Karoui in the context of ridge-regularized robust regression
[28, 29]. Closely related to the present work is the paper [12] which considers convex M-
estimation and constructs separable convex losses that match the Bayes optimal error in
settings in which the noise distribution is log-concave and hence the gap between the two
vanishes. Our work extends this analysis to cases in which log-concavity assumptions are
violated so that the Bayes error cannot be achieved. In this paper we focus on the role of
regularization rather than the loss function, though we suspect similar analyses should be
possible for general convex losses. Optimal convex M-estimators were also studied, using
tools from statistical physics—in [1].

As mentioned above, we compare the performance of convex M-estimators to the optimal
Bayes error and conjectured computational lower bounds. The asymptotic value of the Bayes
error for random designs was recently determined in [6, 47]. Generalizations of this result
were also obtained in [7] for other regression problems.

Finally, the gap between polynomial-time algorithms and statistically optimal estimators
has been studied from other points of view as well. It was noted early on that constrained
least square methods (which exhaustively search over supports of given size) perform accu-
rate regression under weaker conditions than required by the Lasso [61]. Strong lower bounds
for compressed sensing reconstruction were proved in [3], using communication complexity
ideas. Gamarnik and Zadik [32] study the case of binary coefficients, namely, β0 ∈ {0,1}p ,
and standard Gaussian designs X. They prove existence of a gap between the maximum like-
lihood estimator (which requires exhaustive search over binary vectors) and the Lasso. They
argue that the failure of polynomial-time algorithms originates in a certain “overlap gap prop-
erty,” which they also characterize. Further implications of this point of view are investigated
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in [33]. After a preprint of this paper appeared online, further work studied the design of
optimal penalties and loss functions in classification models and analyzed the achievability
of Bayes optimal performance [40, 55, 56].

1.5. Notations. The Euclidean norm of a vector x ∈ R
p is denoted by ‖x‖ := ‖x‖2.

The operator and nuclear norms of a matrix X ∈ R
n×p are denoted by ‖X‖op and ‖X‖nuc,

respectively. We denote by Sk+ the set of k × k positive semidefinite matrices.
Subscripts under the expectation or probability sign, for example, Eβ0,z and Pβ0,z indicate

the variables which are random. We denote by Pk(R) the collection of Borel probability
measures on R with finite kth moment. For a distribution π ∈ Pk(R), we will denote by s�(π)

the �th moment of π . We will often extend a distribution π ∈ Pk(R) to a distribution on R
p by

taking β0 = (β0j )j≤p ∈ R
p with coordinates such that (

√
pβ0j )j≤p

iid∼ π . We will write this

succinctly as β0j
iid∼ π/

√
p. Under this normalization, Eβ0

[‖β0‖2] = s2(π) does not depend
on p. We reserve z and z to denote Gaussian random variables and vectors, respectively. We
will always take z ∼ N(0,1) and z ∼ N(0, Ip/p). Convolution of probability measures will
be denoted by ∗.

We define the Wasserstein distance between two probability measures π,π ′ ∈ P2(R) by

dW
(
π,π ′) = inf

X,X′
(
EX,X′

[(
X − X′)2])1/2

,

where the infimum is taken over joint distributions of random variables (X,X′) with marginal
distributions X ∼ π and X′ ∼ π ′. It is well known that this defines a metric on P2(R) [48].

Convergence in Wasserstein metric will be denoted
W→, and we use

p→,
as→,

d→ for other
standard notions of convergence. For any sequence of real-valued random variables {Xp},
not necessarily defined on the same probability space, we denote

p
lim inf
p→∞ Xp = sup

{
t ∈R

∣∣ lim
p→∞P(Xp < t) = 0

}
and lim supp

p→∞ Xp = − lim infp
p→∞(−Xp). For sequences {Xp} and {Yp} of real-valued

random variables such that, for each p, Xp and Yp are defined on the same probability space,

we use the notation Xp

p� Yp to denote |Xp − Yp| p→ 0.
We adopt the convention that when the minimizing set in (1.2) is empty, β̂cvx = ∞ and

‖∞ − x‖ = ∞ for any x ∈ R
p . Thus, the estimation error is infinite when no minimizer

exists.
Finally, a collection of functions {ϕ : (Rp)� →R

m}, where p and m but not � may vary, is
said to be uniformly pseudo-Lipschitz of order k if for all ϕ and xi ,yi ∈ R

p , i = 1, . . . , �, we
have∥∥ϕ(x1, . . . ,x�) − ϕ(y1, . . . ,y�)

∥∥ ≤ C

(
1 +

�∑
i=1

‖xi‖k−1 +
�∑

i=1

‖yi‖k−1

)
�∑

i=1

‖xi − yi‖

for some C which does not depend on p, m.

2. The convex lower bound, the risk of Bayes-AMP, and the Bayes risk. In this sec-
tion we present a rigorous lower bound on the �2 estimation error of convex M-estimators of
the form (1.2) under proportional asymptotics, Gaussian noise, and structural assumptions on
the unknown parameter β0. A primary focus will be comparing the convex lower bound to
two important benchmarks which have been studied elsewhere [6, 7, 47]:

• Risk of Bayes-AMP: The �2-estimation error of a certain message passing algorithm con-
jectured to be optimal among all polynomial-time algorithms (see Conjecture 2.5).
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• Bayes risk: The optimal risk over all (possibly computationally unbounded) estimators
under a certain Bayesian model for the signal.

Before defining these quantities precisely, we may summarize the comparison we will estab-
lish by

Convex
Lower Bound ≥ Risk of

Bayes AMP ≥ Bayes Risk.

While the second inequality holds by the statistical optimality of the Bayes risk, the first is
nontrivial. Previous work established exactly when the second inequality is strict [7]. We will
likewise specify exactly when the first inequality is strict. Previous work has only considered
optimal convex estimation in regimes in which strict inequality does not occur [1, 12].

Precisely, we study these three quantities under a certain high-dimensional proportional
asymptotics for model (1.1):

High-dimensional asymptotics (HDA) The design matrix satisfies the following assump-
tions:

• The sample size and number of parameters n,p → ∞ satisfy n/p → δ ∈ (0,∞), a fixed
asymptotic aspect ratio.

• The matrix X has entries Xij
iid∼ N(0,1).

Further, we introduce two sets of assumptions on the unknown parameter β0 and the the
noise w.

Deterministic signal and noise (DSN) For each p and n, we have deterministic parameter
vector β0 ∈ R

p and noise vector w ∈ R
n. For some π ∈ P2(R) and σ 2 ≥ 0, these satisfy

π̂β0
:= 1

p

p∑
j=1

δ√
pβ0j

W→ π and
1

n
‖w‖2 → σ 2.

Random signal and noise (RSN) assumption For each p and n, we have random parame-
ter vector β0 ∈R

p and noise vector w ∈ R
n satisfying

β0j
iid∼ π/

√
p, w ∼ N

(
0, σ 2In

)
,

where π ∈ P2(R) and σ 2 ≥ 0 do not depend on p.

When necessary to indicate where β0 w fall in the sequence of realizations with growing
dimensions, we include indices as β0(p) and w(p).

Under the DSN assumption we will establish a convex lower bound for symmetric convex
penalties, that is, penalties which are invariant to permutation of the coordinates of their ar-
gument. The DSN assumption specifies the limiting empirical distribution of the coordinates
of β0, which captures structural information, like sparsity, which is permutation invariant.
Nevertheless, the lower bound applies also to models in which additional information about
the order in which the coordinates appear is available: for example, the statistician may know
that the coordinates are monotone, have sparse first differences, or satisfy other smoothness
conditions. The lower bound, which applies only to symmetric convex penalties, describes a
limitation of convex procedures which fail to exploit such information.

In contrast, under the RSN assumption we will establish a convex lower bound for arbi-
trary convex penalties. Here, the statistician can exploit all available information. But because
she has no prior knowledge about the ordering of the coordinates of β0, she cannot benefit
from asymmetric procedures.
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The two sets of assumptions are complementary, differing in how they impose symmetry
on the problem—either through the method or through the model. It turns out that the lower
bound on the estimation error under the two sets assumptions is the same.

We only make comparisons to information theoretic lower bounds, that is, the Bayes risk,
under the RSN assumption. Indeed, the RSN assumption is needed for the Bayes risk to be
meaningful.

2.1. The convex lower bound. The convex lower bound is defined via a comparison of the
linear model (1.1) to a simpler Gaussian sequence model. In the sequence model we observe

(2.1) yseq = β0 + τz,

where β0j
iid∼ π/

√
p, z ∼ N(0, Ip/p) independent and τ 2 ≥ 0. Analogously to (1.2), we con-

sider convex M-estimators in the sequence model, also known as proximal operators,

(2.2) β̂seq := arg min
β

1

2
‖yseq − β‖2 + λρ(β) =: prox[λρ](yseq).

By strong convexity, when ρ is lower semicontinuous and proper, the minimizer exists and is
unique [43].

A large body of work exactly characterizes the estimation error of the estimators (1.2) in
the linear model in terms of the behavior of the estimators (2.2) in the sequence model [11,
27, 28, 30, 57, 58]. A typical characterization takes the following form. For a sequence of
penalties {ρp}, let (τ, λ) solve

δτ 2 − σ 2 = lim
p→∞Ez

[∥∥prox[λρp](β0 + τz) − β0
∥∥2]

,

2λ

(
1 − 1

δτ
lim

p→∞Ez
[〈
z,prox[λρp](β0 + τz)

〉]) = 1.

(2.3)

Then, under the HDA and DSN assumption,

‖β̂cvx − β0‖2 p→ δτ 2 − σ 2 = Ez
[∥∥prox[λρp](β0 + τz) − β0

∥∥2]
.

In words, the �2 estimation error in the linear model asymptotically agrees with the �2 risk in
the sequence model at noise variance τ 2 and regularization λ. Substantial effort is required to
make this rigorous, and many technical assumptions are required. For example, some work
requires strong-convexity assumptions on the cost function (1.2) [27, 28]; other work involves
analysis tailored to a specific penalty, like the LASSO or SLOPE [11, 19]. We instead provide
a lower bound on the estimation error of estimators (1.2) which holds simultaneously for
a large class of penalties. We rely on weak assumptions—weaker than what is needed for
exact characterizations using existing techniques. At a high level the lower bound follows
from controlling the possible solutions to equation (2.3) and applying exact characterization
results.

Denote by Cp ⊆ {ρ : Rp → R ∪ {∞}} any collection of lsc, proper, and convex functions
which is closed under scaling; that is, ρp ∈ Cp implies λρp ∈ Cp for all λ > 0. Denote by C
the collection of sequences {ρp}p such that ρp ∈ Cp for all p. We will mostly be interested
in two cases: either C consists of all the sequences of convex functions or it consists of all
convex symmetric functions.

The optimal risk of convex M-estimation using collection Cp in the sequence model is

Ropt
seq,cvx(τ ;π,p) := inf

ρ∈Cp

Eβ0,z

[∥∥prox[ρ](β0 + τz) − β0
∥∥2]

,(2.4)
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where β0, z are as in (2.1), and the optimal asymptotic risk using the sequences in C is

(2.5)

Ropt
seq,cvx(τ ;π) = lim inf

p→∞ Ropt
seq,cvx(τ ;π,p)

= inf{ρp}∈C lim inf
p→∞ Eβ0,z

[∥∥prox[ρp](β0 + τz) − β0
∥∥2]

.

We will study a quantity similar to (2.5) in the linear model (1.1), except that the infimum is
taken over a slightly more restrictive collection, which we now define.

DEFINITION 2.1. For π ∈ P2(R) and δ ∈ (0,∞), we say a sequence of lsc, proper,
convex functions {ρp} has δ-bounded width at prior π , if the following holds:

(2.6)

for all compact T ⊂ (0,∞), there exists λ̄ = λ̄(T ) < ∞ such that

lim sup
p→∞

sup
λ>λ̄,τ∈T

1

τ
Eβ0,z

[〈
z,prox[λρp](β0 + τz)

〉]
< δ.

For a collection of penalty sequences C, we denote by Cδ,π the subset of sequences that satisfy
this condition.

The terminology here is motivated by the resemblance of condition (2.6) with the Gaussian
width of convex cones [2, 23]; see Section 6.2. It is straightforward to show that, for δ > 1
and any π ∈ P2(R), all sequences of penalties have δ-bounded width at π (see Section O,
equation (O.11) of the Supplementary Material [22]). Thus,

Cδ,π = C if δ > 1.

The convex lower bound we establish in the next theorem applies to sequences of penalties
in Cδ,π .

THEOREM 1. Fix π ∈ P2(R), δ ∈ (0,∞), and σ ≥ 0. Define

(2.7) τ 2
reg,cvx = sup

{
τ 2 | δτ 2 − σ 2 < Ropt

seq,cvx(τ ;π)
}
.

Under the HDA and RSN assumptions,1

inf{ρp}∈Cδ,π

p
lim inf
p→∞ ‖β̂cvx − β0‖2 ≥ δτ 2

reg,cvx − σ 2.

If C contains only symmetric penalties, then the preceding display holds also under DSN
assumption. (Note that we may have τ 2

reg,cvx = ∞.)
In both cases, for δ > 1, the infimum can be taken over the full collection C (instead of

Cδ,π ), and the lower bound is tight.

The proof of Theorem 1 is provided in Section E of the Supplementary Material [22]. In
Section 6 we argue through examples that Cδ,π includes most, if not all, reasonable penalty
sequences. Section I of the Supplementary Material [22] discusses the role of the restriction
to Cδ,π . Because Ropt

seq,cvx(τ ;π) is continuous in τ whenever C is such that τ 2
reg,cvx is finite

(see Lemma C.2 of the Supplementary Material [22]), we will always have δτ 2
reg,cvx − σ 2 =

Ropt
seq,cvx(τreg,cvx;π) in this case. Thus, Theorem 1 should be interpreted as stating,

Optimal convex M-estimation in the linear model is no better than optimal convex M-
estimation in the sequence model at noise variance τ 2

reg,cvx.

1When the minimizing set has multiple elements, we make no assumption on the mechanism used to break ties.
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Importantly, the convex lower bound applies even when π is not log-concave.
Although Theorem 1 applies to any potentially restricted collection C of convex penalty

sequences, our main interest is to apply it to the largest possible collections. This is because
we are interested in studying fundamental barriers to regression with any convex estimators
of the form (1.2). Thus, for the remainder of the paper we will consider only two cases:
under the RSN assumption, we will consider C to contain all sequences of convex penalties.
In this case, {ρp} ∈ Cδ,π contains any sequence of penalties satisfying (2.6). Under the DSN
assumption we will consider C to contain all sequences of symmetric convex penalties. In this
case, {ρp} ∈ Cδ,π contains any sequence of symmetric penalties satisfying (2.6). The convex
lower bound in these two cases is the same.

PROPOSITION 2.2. The parameter τ 2
reg,cvx defined with C all sequences of convex penal-

ties or with C all sequences of symmetric convex penalties agree.

Although we consider two cases throughout the remainder of the paper, there is only one
fundamental convex lower bound, and it applies to both cases. In the first case—that described
by the RSN assumption—the statistician has no information about the order in which the co-
ordinates of the unknown parameter occur, and the convex lower bound applies to any convex
procedure. In the second case—that described by the DSN assumption—the statistician may
have information about the order in which the coordinates of the unknown parameter occur,
and the convex lower bound applies only to symmetric convex procedures. Thus, the convex
lower bound applies either to settings in which information about the order of the coordinates
is not available or to settings where such information is not exploited.

2.2. The risk of Bayes AMP. Bayes AMP, which we define below, is a fast iterative
scheme for performing estimation in model (1.1). Analogously to the convex lower bound, its
estimation error is defined via a comparison of the linear model (1.1) to the sequence model
(2.1). In particular, define

mmseπ

(
τ 2) = Eβ0,z

[(
Eβ0,z[β0 | β0 + τz] − β0

)2]
,

for random scalars β0 ∼ π , z ∼ N(0,1) independent. Because

(2.8) mmseπ

(
τ 2) = Eβ0,z

[∥∥Eβ0,z[β0 | √pβ0 + τz] − β0
∥∥2]

,

we see that mmseπ(τ 2) is analogous to (2.4), except that the infimum is taken over all esti-
mators, not just those in a restricted class. Finally, analogous to (2.7), define

(2.9) τ 2
reg,amp∗ := sup

{
τ 2 | δτ 2 − σ 2 ≤ mmseπ

(
τ 2)}

.

Note that because mmseπ(τ 2) is continuous in τ [34],

(2.10) δτ 2
reg,amp∗ − σ 2 = mmseπ

(
τ 2

reg,amp∗
)
.

As we will see, Bayes AMP asymptotically achieves estimation error arbitrarily close to
δτ 2

reg,amp∗ − σ 2 = mmseπ(τ 2
reg,amp∗) in time O(np). That is,

Bayes AMP in the linear model is exactly as good as Bayesian estimation in the sequence
model at noise variance τ 2

reg,amp∗.

Thus, a comparison of the convex lower bound and the risk of Bayes AMP reduces to a
comparison of the parameters τ 2

reg,cvx and τ 2
reg,amp∗. The following corollary of Theorem 1

establishes under generic conditions, the convex lower bound is no smaller than the esti-
mation error of Bayes AMP, consistent with conjectured optimality of Bayes AMP among
polynomial time algorithms.
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COROLLARY 2.3. For any π ∈ P2(R),

(2.11) τ 2
reg,cvx ≥ τ 2

reg,amp∗
holds for almost every value of δ, σ (w.r.t. Lebesgue measure). In fact, for any fixed σ , it holds
for almost all values of δ, and for any fixed δ, for almost all values of σ .

For such values δ, σ , under the HDA and RSN assumptions, then

(2.12) inf{ρp}∈Cδ,π

p
lim inf
p→∞ ‖β̂cvx − β0‖2 ≥ δτ 2

reg,amp∗ − σ 2.

If C contains only symmetric penalties, then the preceding display holds instead under DSN
assumption.

PROOF OF COROLLARY 2.3. Define

(2.13) τ 2
reg,amp = sup

{
τ 2 | δτ 2 − σ 2 < mmseπ

(
τ 2)}

.

In Section L of the Supplementary Material [22], we show that, for any π ∈ P2(R), the
equality τ 2

reg,amp = τ 2
reg,amp∗ holds for almost every value of δ, σ (w.r.t. Lebesgue measure).

In fact, for any fixed σ , it holds for almost all values of δ, and for any fixed δ, for almost all
values of σ . Thus, we only need to establish the result for τ 2

reg,amp in place of τ 2
reg,amp∗.

By (2.4) and (2.8), we have mmseπ(τ 2) ≤ Ropt
seq,cvx(τ ;π,p). By (2.5)), we obtain

mmseπ(τ 2) ≤ Ropt
seq,cvx(τ ;π). Thus, the set {τ 2 | δτ 2 −σ 2 < mmseπ(τ 2)} ⊆ {τ 2 | δτ 2 −σ 2 <

Ropt
seq,cvx(τ

2;π)}, and (2.11) follows from (2.7) and (2.13). Theorem 1 then gives (2.12). �

In the remainder of this section, we describe the Bayes AMP algorithm and formally char-
acterize its risk. Bayes AMP and its characterization via state evolution has been derived
elsewhere [7, 26]. Define the scalar iteration

τ 2
0 = 1

δ

(
σ 2 + s2(π)

)
,

τ 2
t+1 = 1

δ

(
σ 2 + mmseπ

(
τ 2
t

))
.

(2.14)

Moreover, let

ηt (y) = Eβ0,z[β0 | β0 + τtz = y],(2.15)

where β0 ∼ π , z ∼ N(0,1) are independent. Define

bt = 1

δ
Eβ0,z

[
η′

t−1(β0 + τt−1z)
]
,

where η′
t a weak derivative of ηt . For each p, define ηt : Rp →R

p by

ηt (x)j = 1√
p

ηt(
√

pxj ),

where, for convenience, we use the same notation ηt for the multivariate and scalar functions.
They are distinguished by the nature of their argument. The Bayes-AMP iteration is

(2.16)
r t = y − Xβ̂

t

n
+ btr

t−1,

β̂
t+1 = ηt

(
β̂

t + XTr t ),
with initialization β̂

0 = 0, r−1 = 0. For any fixed t , we may compute β̂
t

in O(np) time. The
following proposition characterizes the asymptotic loss of β̂

t
as an estimator of β0.
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PROPOSITION 2.4. Fix π ∈P2(R), δ ∈ (0,∞), and σ ≥ 0. Assume s2(π) > 0. Consider
τt as defined by (2.14) and β̂

t
as defined by (2.16). Under the HDA and either the DSN or

RSN assumptions, for any fixed t we have
p

lim
p→∞

∥∥β̂ t − β0
∥∥2 = mmseπ

(
τ 2
t

)
.

Further,

lim
t→∞ τ 2

t = τ 2
reg,amp∗.

In particular, for all ε > 0, there exists t fixed such that
p

lim
p→∞

∥∥β̂ t − β0
∥∥2 ≤ δτ 2

reg,amp∗ − σ 2 + ε.

Proposition 2.4 states that the state evolution (2.14) characterizes the large n, p behavior
of Bayes AMP. It follows from standard results in the AMP literature [10]. A minor technical
difficulty is that the main theorem of [10] requires Lipschitz nonlinearities in the AMP iter-
ation. The Bayes estimator ηt need not be Lipschitz. Thus, to apply the results of [10], we
must use a truncation trick. Though this is a routine proof, we are unaware of a result that im-
mediately implies Proposition 2.4. For completeness, we provide this argument in Section L
of the Supplementary Material [22].

Proposition 2.4 shows that a polynomial-time (in fact, linear time) algorithm exists which
achieves asymptotic loss arbitrarily close to δτ 2

reg,amp∗ − σ 2. As discussed in the Introduc-
tion, we do not know of any polynomial-time algorithm that achieves asymptotic risk below
δτ 2

reg,amp∗ − σ 2. Below is a more precise restatement of Conjecture 1.1.

CONJECTURE 2.5. Fix π ∈ P2(R), δ ∈ (0,∞), and σ > 0. Under the HDA and RSN
assumptions at π , δ, σ , no polynomial-time algorithm achieves asymptotic risk smaller than
δτ 2

reg,amp∗ − σ 2.

2.3. The Bayes risk. The information theoretic lower bound under the RSN assumption
is the Bayes risk

Eβ0,w,X

[∥∥Eβ0,w,X[β0 | y,X] − β0
∥∥2]

,

which cannot be outperformed, even in finite samples. In this section we recall recent results
on the asymptotic value of the Bayes risk on the HDA and RSN assumptions.

Define the potential

(2.17) φ
(
τ 2;π, δ, σ

) = σ 2

2τ 2 − δ

2
log

(
σ 2

τ 2

)
+ i

(
τ 2)

,

where i(τ 2) is the base-e mutual information between β0 and y in the univariate model y =
β0 + τz when β0 ∼ π , z ∼ N(0,1) independent. That is,

i
(
τ 2) = Eβ0,z

[
log

p(y | β0)

p(y)

]
= −1

2
−Eβ0,z log

{∫
e− 1

2 (y−β/τ)2
π(dβ)

}
.

Also, define

(2.18) τreg,stat(π; δ, σ ) = arg min
τ≥0

φ
(
τ 2;π, δ, σ

)
,

whenever π , δ, and σ are such that the minimizer is unique. The derivative of φ will be useful
in what follows. It is

(2.19)
d

dτ−2 φ
(
τ 2;π, δ, σ

) = 1

2

(
σ 2 − δτ 2 + mmseπ

(
τ 2))

,
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where we have used that d
dτ−2 i(τ 2) = 1

2mmseπ(τ 2) by [34], Corollary 1. We see that if
τreg,stat > 0, then

(2.20) δτ 2
reg,stat − σ 2 = mmseπ

(
τ 2

reg,stat

)
.

Equation (2.20) is closely related to (2.13). The next result relates the effective noise param-
eter τreg,stat to the asymptotic Bayes risk in model (1.1) under the RSN assumption.

PROPOSITION 2.6 (Theorem 2 of [7]). Fix π ∈ P∞(R), δ ∈ (0,∞), and σ > 0. Under
the HDA and RSN assumptions,

(2.21) lim
p→∞Eβ0,w,X

[∥∥Eβ0,w,X[β0 | y,X] − β0
∥∥2] = mmseπ

(
τ 2

reg,stat

) = δτ 2
reg,stat − σ 2,

whenever the minimizer in (2.18) is unique. This occurs for almost every (δ, σ ) (w.r.t.
Lebesgue measure).

This is a specific case of Theorem 2 of [7]. We carry out the conversion from their notation
to ours in Section L of the Supplementary Material [22]. This result was previously estab-
lished under slightly less general conditions in [8, 57]. In particular, Proposition 2.6 states
that,

Bayesian estimation in the linear model is exactly as good as Bayesian estimation in the
sequence model at noise variance τ 2

reg,stat.

Thus, a comparison of the convex lower bound, the risk of Bayes AMP, and the Bayes risk
reduces to a comparison of the noise variances τ 2

reg,cvx, τ 2
reg,amp∗, and τ 2

reg,stat. Because it is
simply a lower bound, the convex lower bound could plausibly sometimes be smaller than
the Bayes risk. Fortunately, this does not occur.

COROLLARY 2.7. For all π , δ, σ , we have

(2.22) τ 2
reg,cvx ≥ τ 2

reg,stat.

PROOF. The inequality τ 2
reg,cvx ≥ τ 2

reg,amp holds because the supremum in (2.13) is taken
over a subset of the supremum in (2.7). Thus, it suffices to show τ 2

reg,amp ≥ τ 2
reg,stat. For

τ ′ < τreg,stat,

φ(τreg,stat;π, δ, σ ) < φ
(
τ ′;π, δ, σ

)
= φ(τreg,stat;π, δ, σ ) + 1

2

∫ τ ′−2

τ−2
reg,stat

(
σ 2 − δτ 2 + mmseπ

(
τ 2))

dτ−2.

Thus, the integral in the previous display must be positive for all τ ′ < τreg,stat which implies
there exists τ ′ < τreg,stat arbitrarily close to τreg,stat for which δτ ′2 − σ 2 < mmseπ(τ ′2). By
(2.13), we have τreg,amp ≥ τreg,stat, as desired. �

3. Log-concavity and convex-algorithmic-statistical gaps. The results in the preced-
ing section establish that: (i) if τ 2

reg,cvx > τ 2
reg,amp∗, there is a gap between the asymp-

totic estimation error achieved by convex M-estimators (1.2) and that achieved by Bayes
AMP, and (ii) for generic (δ, σ ) (i.e., those for which the minimizer in (2.18) is unique), if
τ 2

reg,cvx > τ 2
reg,stat, there is a gap between the asymptotic estimation error achieved by convex

M-estimators (1.2) and that achieved by information theoretically optimal estimation. Two
important questions remain:
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1. Is the converse true? Namely, if τ 2
reg,cvx = τ 2

reg,amp∗ or τ 2
reg,cvx = τ 2

reg,stat, is convex M-
estimation as good as Bayes AMP or Bayesian estimation?

2. Can we provide more interpretable conditions which determine whether the strict in-
equalities τ 2

reg,cvx > τ 2
reg,amp∗ and τ 2

reg,cvx > τ 2
reg,stat occur?

It turns out that the condition we provide to answer the second question will provide an
affirmative answer to the first question. In particular, we will show that τ 2

reg,cvx = τ 2
reg,amp∗

(resp., τ 2
reg,cvx = τ 2

reg,stat) if and only if π ∗ N(0, τ 2
reg,amp∗) (resp., π ∗ N(0, τ 2

reg,stat)) is log-
concave. Moreover, while when δ ≤ 1 we do not guarantee the tightness of the convex lower
bound generally, we will guarantee its tightness in the case that π ∗ N(0, τ 2

reg,cvx) is log-
concave. Because τ 2

reg,cvx = τ 2
reg,amp∗ implies π ∗ N(0, τ 2

reg,amp∗) and hence π ∗ N(0, τ 2
reg,cvx),

is log-concave, it also implies that convex M-estimation is as good as Bayes AMP. A similar
line of reasoning follows when τ 2

reg,cvx = τ 2
reg,stat. Thus, the converse described in the first

question indeed holds.
Before describing this argument in detail, we remark that when π itself is log-concave,

π ∗ N(0, τ 2) is log-concave for all τ 2. In this case the convex lower bound, the risk of Bayes
AMP, and the Bayes risk agree for all values of σ , δ. Moreover, in this case the convex
lower bound is always tight so that convex M-estimators (1.2) always achieve information
theoretically optimal performance. In contrast, we will show that when π is not log-concave,
there exist values of σ , δ for which the convex lower bound is strictly larger than the the
risk of Bayes AMP and the Bayes risk. Thus, nontrivial performance of convex M-estimation
relative to computational and information-theoretic benchmarks occurs exactly when π is not
log-concave.

PROPOSITION 3.1. Consider π ∈ P∞(R), δ ∈ (0,∞), and σ ≥ 0. If C consists of all
sequences of convex penalties, the following statements hold under the HDA and RSN as-
sumptions; if C consists of all sequences of symmetric convex penalties, we may replace the
RSN by the DSN assumption:

(i) If τ ≥ 0 is such that π ∗ N(0, τ 2) has log-concave density (w.r.t. Lebesgue measure)
and δτ 2 − σ 2 > mmseπ(τ 2), then

(3.1) inf{ρp}∈Cδ,π

p
lim

p→∞‖β̂cvx − β0‖2 ≤ δτ 2 − σ 2.

We may replace the limit in probability with limp→∞Eβ0,w,X[‖β̂cvx − β0‖2] under the RSN
assumption. (We set these limits to ∞ when they do not exist.)

(ii) If τ ≥ 0 is such that π ∗ N(0, τ 2) does not have log-concave density (w.r.t. Lebesgue
measure) and δτ 2 − σ 2 ≤ mmseπ(τ 2), then τ 2

reg,cvx > τ 2 whence

inf{ρp}∈Cδ,π

p
lim inf
p→∞ ‖β̂cvx − β0‖2 > δτ 2 − σ 2.

(iii) We have τ 2
reg,cvx = τ 2

reg,stat if and only if π ∗ N(0, τ 2
reg,stat) is log-concave. In the

(generic) case that τ 2
reg,amp = τ 2

reg,amp∗, we have τ 2
reg,cvx = τ 2

reg,amp∗ if and only if π ∗
N(0, τ 2

reg,amp∗).

The proof of Proposition 3.1 is provided in Section J of the Supplementary Material [22].
While the relevance of the log-concavity of the convolutional density π ∗ N(0, τ 2) may

seem surprising, it is related to the following fact: in the Gaussian sequence model (2.1), the
Bayes estimator is the proximal operator of some convex function if and only if π ∗ N(0, τ 2)

is log-concave. This is a remarkable consequence of Tweedie’s formula. Our construction
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of penalties achieving (3.1) involves identifying the penalty whose proximal operator is the
Bayes estimator at noise variance τ 2 in the sequence model. This is related to the construction
of [12]; see Section J of the Supplementary Material [22] for details of this fact and its use in
proving Proposition 3.1.

3.1. Gaps between convex M-estimators and Bayes AMP. Under generic conditions, con-
vex M-estimators achieve the risk of Bayes AMP if and only if π ∗ N(0, τ 2

reg,amp∗) has log-
concave density.

THEOREM 2. Consider π ∈ P2(R), δ ∈ (0,∞), σ ≥ 0. Assume τreg,amp = τreg,amp∗
(which holds generically, see the proof of Corollary 2.3 as well as Section L of the Supplemen-
tary Material [22]). If C contains all sequences of convex penalties, then, under the HDA and
RSN assumptions, inequality (2.12) holds with equality if and only if π ∗ N(0, τ 2

reg,amp∗) has

log-concave density (w.r.t. Lebesgue measure) which occurs if and only if τ 2
reg,cvx = τ 2

reg,amp∗.
The same holds if we replace the limits in probability with the limits of expectations in (2.12).

If C contains all sequences of symmetric convex penalties, the preceding statements hold
also under the DSN assumption.

When equality occurs in Theorem 3, the penalty achieving the convex lower bound is
(up to a small strong convexity term added for technical reasons) given by the convex func-
tion whose proximal operator is the Bayes estimator in the sequence model (2.1) at noise
variance τ 2

reg,amp∗. The existence of such a penalty is a consequence of the log-concavity of
π ∗ N(0, τ 2

reg,amp); see the remark following Proposition 3.1 and the proof of that proposition
in Section J of the Supplementary Material [22] for further details.

PROOF OF THEOREM 2. The equivalence of π ∗ N(0, τ 2
reg,amp∗), having log-concave

density and τ 2
reg,cvx = τ 2

reg,amp∗, holds by Proposition 3.1.(iii). We now focus on the remaining
parts of the theorem.

We first prove the “if” direction. By (2.9) we have, for τ > τreg,amp∗, that δτ 2 − σ 2 >

mmseπ(τ 2). Further, because π ∗ N(0, τ 2
reg,amp∗) has log-concave density, so too does π ∗

N(0, τ 2) ([49], Proposition 3.5). By Proposition 3.1.(i) we have that (3.1) holds with this
choice of τ . Taking τ ↓ τreg,amp∗ = τreg,amp, we conclude that (2.12) holds with the inequality
reversed, so, in fact, holds with equality.

We now prove the “only if” direction. By (2.9) and the continuity of mmseπ(τ 2) in τ 2

([34], Proposition 7), we have

δτ 2
reg,amp∗ − σ 2 = mmseπ

(
τ 2

reg,amp∗
)
.

If π ∗ N(0, τ 2
reg,amp∗) does not have log-concave density, by Proposition 3.1.(ii) equation

(2.12) holds with strict inequality. By Lemma K.1 of the Supplementary Material [22], the
same holds when replace limits in probability with limits of expectations. �

A corollary of Theorem 1 is that, when π has log-concave density, gaps between convex
M-estimation and the risk of Bayes AMP do not occur, whereas when π does not have log-
concave density, they do occur at large enough signal-to-noise ratios.

COROLLARY 3.2. Consider π ∈ P2(R) and σ ≥ 0. Let B ⊆ R be the set of δ > 0
for which τreg,amp < τreg,amp∗ holds (recall that, by the proof of Corollary 2.3, B has zero
Lebesgue measure). We have the following:
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(a) If π has log-concave density, then for all δ ∈ R>0 \ B, inequality (2.12) holds with
equality.

(b) If σ > 0 and π do not have log-concave density, then there exist 0 ≤ δalg < ∞ such
that inequality (2.12) holds with equality for δ ∈ (0, δalg) \B and with strict inequality for all
δ ∈ (δalg,∞) \B.

Part (b) states that, if π is not log-concave, then either: (i) there is always a gap between
convex M-estimation and the best algorithm we know of, or (ii) for small δ, the algorithmic
lower bound is achieved by a convex procedure, while for large δ there is a gap between
convex M-estimation and the best algorithm we know of. This might seem counterintuitive,
because large δ corresponds to larger sample size and, therefore, easier estimation. An intu-
itive explanation of this result is that, for large δ, we can exploit more of the structure of the
prior π , and this requires nonconvex methods.

PROOF OF COROLLARY 3.2. Part (a): By [49], Proposition 3.5, π ∗ N(0, τ 2
reg,amp) has

log-concave density. The result follows by Theorem 2.
Part (b): Define δalg = inf{δ | π ∗ N(0, τ 2

reg,amp) does not have log-concave density}. By
[49], Proposition 3.5, if τ < τ ′ and π ∗ N(0, τ 2) has log-concave density, then so too does
π ∗N(0, τ ′2). By (2.13), τreg,amp is nonincreasing in δ. Combining these two facts, for δ > δalg

we have N(0, τ 2
reg,amp), which does not have log-concave density, and for δ < δalg we have

N(0, τ 2
reg,amp) which does have log-concave density. Then, by Theorem 2, inequality (2.12)

holds with equality for B � δ < δalg and with strict inequality when B � δ > δalg. We need
only check that δalg < ∞. By (2.10), τ 2

reg,amp = 1
δ
(σ 2 + mmseπ(τ 2

reg,amp)) ≤ 1
δ
(σ 2 + s2(π)).

Thus, limδ→∞ τ 2
reg,amp = 0. Because log-concavity is preserved under convergence in distri-

bution ([49], Proposition 3.6) and π ∗ N(0, τ 2)
d−−−→

τ→0
π , we conclude that, for δ sufficiently

large, π ∗ N(0, τ 2
reg,amp) does not have log-concave density, as desired. �

3.2. Gaps between convex M-estimators and the Bayes risk. Under generic conditions,
convex M-estimators achieve the Bayes risk exactly when the convex lower bound is equal to
the Bayes risk which, in turn, occurs exactly when π ∗ N(0, τ 2

reg,stat) has log-concave density.

THEOREM 3. Consider π ∈ P∞(R), δ ∈ (0,∞), and σ > 0. Assume the potential φ,
defined in equation (2.17). has a unique minimizer. If C cosists of all sequences of convex
penalties, then, under the HDA and RSN assumptions, τ 2

reg,cvx = τ 2
reg,stat if and only if

(3.2) inf{ρp}p∈Cδ,π

lim inf
p→∞ Eβ0,w,X

[‖β̂cvx − β0‖2] = lim
p→∞Eβ0,w,X

[∥∥Eβ0,w,X[β0 | y] − β0
∥∥2]

which, in turn, occurs if and only if π ∗ N(0, τ 2
reg,stat) has log-concave density with respect to

Lebesgue measure on R.

Analogously to Theorem 2, when equality occurs in Theorem 3, the penalty achieving the
convex lower bound is (up to a small strong convexity term added for technical reasons) given
by the convex function whose proximal operator is the Bayes estimator in the sequence model
(2.1) at noise variance τ 2

reg,stat; see the remark following Proposition 3.1 and the proof of that
proposition in Section J of the Supplementary Material [22] for further details. The condition
that the minimizer of φ is unique holds—by analyticity considerations—for all (δ, σ ), except
a set of Lebesgue measure zero.
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PROOF OF THEOREM 3. The equivalence of π ∗ N(0, τ 2
reg,stat), having log-concave den-

sity and τ 2
reg,cvx = τ 2

reg,stat, holds by Proposition 3.1(iii). We now focus on the remaining parts
of the Theorem.

The right-hand side of (3.2) is δτ 2
reg,stat − σ 2 by Proposition 2.6 (this is where we use

σ > 0). By (2.22), if τ 2
reg,cvx �= τ 2

reg,stat, then τ 2
reg,cvx > τ 2

reg,stat. Then, by Theorem 1 as well
as Lemma K.1 of the Supplementary Material [22], we have under the RSN assumption that
(3.2) holds with equality replace by strict inequality.

Now, consider that τ 2
reg,cvx = τ 2

reg,stat or, equivalently, that π ∗ N(0, τ 2
reg,stat) has log-

concave density. Assume N(0, τ 2
reg,stat) has log-concave density, σ > 0, and φ has unique

minimizer. For τ ′ > τreg,stat we have

φ(τreg,stat;π, δ, σ ) = φ
(
τ ′;π, δ, σ

) + 1

2

∫ τ−2
reg,stat

τ ′−2

(
σ 2 − δτ 2 + mmseπ

(
τ 2))

dτ−2

> φ(τreg,stat;π, δ, σ ) + 1

2

∫ τ−2
reg,stat

τ ′−2

(
σ 2 − δτ 2 + mmseπ

(
τ 2))

dτ−2,

where in the inequality we use that the minimizer of φ is unique. Thus, the integral is negative
for all τ ′ > τreg,stat, so there exists τ ′ > τreg,stat arbitrarily close to τreg,stat for which δτ ′2 −
σ 2 > mmseπ(τ ′2). By [49], Proposition 3.5, we have, for all such τ ′, that π ∗ N(0, τ ′2) has
log-concave density. Taking τ ′ ↓ τreg,stat along τ ′ for which δτ ′2 − σ 2 > mmseπ(τ ′2) and
applying Proposition 3.1.(i), we have under the RSN assumption that

inf{ρp}p∈Cδ,π

lim
p→∞Eβ0,w,X

[‖β̂cvx − β0‖2] ≤ δτ 2
reg,stat − σ 2.

By (2.21) we have δτ 2
reg,stat − σ 2 equals the right-hand side of (3.2). The reverse inequality

holds by the optimality of the Bayes risk, whence we conclude (3.2). �

A corollary of Theorem 1 is that, when π has log-concave density, gaps between con-
vex M-estimation and the Bayes risk do not occur, whereas when π does have log-concave
density, they do occur at large enough signal-to-noise ratios.

COROLLARY 3.3. Consider π ∈ P∞(R) and σ > 0. We have the following:

(a) If π has log-concave density with respect to Lebesgue measure, then, for all δ > 0 for
which φ has unique minimizer, equality (3.2) holds.

(b) If π does not have log-concave density with respect to Lebesgue measure, then there
exist 0 ≤ δstat < ∞ such that equality (3.2) holds for all δ < δstat for which φ has unique
minimizer, and (3.2) holds with strict inequality replacing equality for all δ > δstat for which
φ has unique minimizer. Moreover, δstat ≤ δalg.

PROOF OF COROLLARY 3.3. Part (a): By [49], Proposition 3.5, we have π ∗ N(0,

τ 2
reg,stat) has log-concave density with respect to Lebesgue measure. The result follws by

Theorem 3.
Part (b): Define δstat = inf{δ | π ∗ N(0, τ 2

reg,stat) does not have log-concave density}. Be-
cause the derivative (2.19) of φ with respect to τ−2 is strictly decreasing in δ, we have by
(2.17) that τreg,stat is strictly decreasing in δ. As in the proof of Corollary 3.2, this implies
that for δ > δstat we have N(0, τ 2

reg,stat) which does not have log-concave density and for
δ < δstat we have N(0, τ 2

reg,stat) which does have log-concave density. Then, by Theorem 3, if
φ has unique minimizer and δ > δstat, then the left-hand side of (3.2) is strictly larger than the
right-hand side, and if φ has unique minimizer and δ < δstat, equality holds. We need only
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check that δstat < ∞. By (2.18) and (2.19), we have τ 2
reg,stat = 1

δ
(σ 2 + mmseπ(τ 2

reg,stat)) ≤
1
δ
(σ 2 + s2(π)), where s2(π) is the second moment of π . Thus, limδ→∞ τ 2

reg,stat = 0. Be-
cause log-concavity is preserved under convergence in distribution ([49], Proposition 3.6)

and π ∗ N(0, τ 2)
d−−−→

τ→0
π , we conclude that, for sufficiently large δ, π ∗ N(0, τ 2

reg,stat) is not

log-concave, as desired. �

4. Quantifying the gap: High and low signal-to-noise ratio (SNR) regimes. We now
provide quantitative estimates of the gap between convex M-estimation and the Bayes risk
when such gaps occur. Consider π ∈ P∞(R), δ ∈ (0,∞), σ > 0, and let C contain all se-
quences of convex penalties. Define the asymptotic gap between convex M-estimation and
Bayes error

�(π, δ, σ )

≡
(

inf{ρp}p∈Cδ,π

lim inf
p→∞ Eβ0,w,X

[‖β̂cvx − β0‖2])
−

(
lim

p→∞Eβ0,w,X

[∥∥Eβ0,w,X[β0 | y,X] − β0
∥∥2])

,

where the limits are taken under the HDA and RSN assumptions. The results of Section 3.2
characterize whether �(π, δ, σ ) = 0 or �(π, δ, σ ) > 0. Here, we provide a more quantitative
estimate of its size for large δ (high SNR) and for large σ (low SNR).

THEOREM 4. Fix π ∈ P∞(R), and let C contain all sequences of convex penalties:

(i) Restricting ourselves to δ, σ > 0 for which the minimizer of (2.18) is unique, we have

(4.1) �(π, δ, σ ) ≥ Ropt
seq,cvx(σ/

√
δ;π) − mmseπ

(
σ 2/δ

) + O(1/
√

δ),

where O hides constants depending only on the moments of π .
(ii) Let snr = s2(π)

σ 2 denote the signal-to-noise ratio for the sequence model. For any fixed

δ, we have �(π, δ, σ ) = O(snr2) as snr → 0. More precisely,

lim sup
snr→0

�(π, δ, σ )

snr2
≤ s2(π)δ2 s2

3(π)

2s3
2(π)

,

where the lim sup is taken over σ at which (2.17) has unique minimizer.

The proof of this theorem is given in Section M of the Supplementary Material [22]. We
believe its results provide some useful insight:

• Because it ensures high-dimensional consistency, the large δ regime of point (i) is most
commonly analyzed in the statistics literature. In this regime, Theorem 4 establishes that
the gap between convex M-estimation and Bayes error is essentially determined by the
analogous gap in the sequence model for noise level σ/

√
δ. As will be discussed in the

next section, in this regime it makes sense to refine the M-estimate by post-processing.
• In the low SNR regime (large σ ), the structure of the signal β0 (and, in particular, the

distribution of the coefficients β0j ) is blurred by the Gaussian noise, and the gap vanishes.
This should be compared with the results of Corollary 3.3, which state that gaps, when
they occur, occur for small values of δ, which also corresponds to a low SNR regime.
Both of these results can be traced to the fact that the measure π ∗ N(0, τ 2

reg,stat) will in
some sense be “more log-concave” when τ 2

reg,stat is larger. Because τ 2
reg,stat quantifies, in

a certain sense, the intrinsic noisiness of the problem, we see that convex M-estimation
comes closer to achieving (or exactly achieves) information theoretic limits at low SNR.
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5. Beyond mean square error. A natural concern with the optimality theory we have
presented is that it only addresses �2 loss. With a certain type of efficient post-processing, the
optimality theory for general continuous losses is essentially unchanged. In particular, if we
consider two-step procedures in which we first compute a penalized least squares estimator
β̂cvx and second implement simple post-processing detailed below, the optimal choice of
penalty in the first step should not depend on the loss �. The main reason for this is captured by
the following result. (This proposition relies on the notion of strong stationarity introduced in
Section B which formalizes the notion of solving the fixed point equations (2.3) and includes
a few more technical conditions. It also uses the collection of penalty sequences C∗, which are
uniformly strongly convex, defined below in Definition 6.1. This is a subset of the collection
of convex penalty sequences.)

PROPOSITION 5.1. Consider π ∈ P∞(R), δ ∈ (0,∞), and σ ≥ 0. Let {ρp}, {ρ̃p} be
sequences of lsc, proper, convex penalties. Let T = (π, {ρp}) and T̃ = (π, {ρ̃p}), and assume
τ , λ, τ̃ , λ̃ are such that τ , λ, δ, T and τ̃ , λ̃, δ, T̃ are strongly stationary. Without loss
of generality, consider τ̃ ≤ τ . Assume either δ > 1 or {ρp}, {ρ̃p} ∈ C∗ (see Definition 6.1

below). Let β̂cvx and ̂̃
βcvx be defined by (1.2) with penalties ρp and ρ̃p , respectively. For such

sufficiently large p, let

β̂cvx+ = prox[λρp]
(̂̃
βcvx + 2λ

n
XT(y − X

̂̃
βcvx) +

√
τ 2 − τ̃ 2z

)
,

where, for each p, z ∼ N(0, Ip/p) is independent of X.
Under the HDA and RSN assumptions, for any sequence of symmetric, uniformly pseudo-

Lipschitz sequence of losses �p : (Rp)2 →R of order k for some k, we have

�p(β0, β̂cvx+)
p� �p(β0, β̂cvx).

If the penalties ρp , ρ̃p are symmetric, then the preceding display holds also under the DSN
assumption.

We prove Proposition 5.1 in Section H of the Supplementary Material [22]. Proposition 5.1

establishes that, when τ̃ ≤ τ , we can always post-process ̂̃
βcvx to construct an estimator β̂cvx+

whose performance matches that of β̂cvx with respect to loss �. Proposition 5.1 suggests that,
for any loss, the optimal choice of penalty in the M-estimation step in this two-step procedure
is that which minimizes the effective noise parameter τ . It turns out this is equivalent to
choosing a penalty which minimizes �2 loss.

A formalization of this discussion is provided in the next theorem.

THEOREM 5. Assume η : R → R is the Bayes estimator of β0 in the scalar model y =
β0 + τreg,cvxz with respect to loss �. If C contains all sequences of convex penalties, then,
under the HDA and RSN assumption,

(5.1) inf{ρp}∈C∗

p
lim inf
p→∞

1

p

p∑
j=1

�(
√

pβ0j ,
√

pβ̂cvx,j ) ≥ Eβ0,z

[
�(β0, η(β0 + τreg,cvxz)

]
.

When η is not the proximal operator of a convex function, inequality (5.1) is strict.
Further, when δ > 1,

inf{ρp}∈C∗
η′ Lipschitz

p
lim

p→∞
1

p

p∑
j=1

�

(√
pβ0j , η

′
(√

pβ̂cvx,j + 2λ
[XT(y − Xβ̂cvx)]j

n

))

= Eβ0,z

[
�(β0, η(β0 + τreg,cvxz)

]
.

(5.2)
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The sequences {ρp}, which minimize the �2 loss of β̂cvx, also achieve the infimum in (5.2).
(Note that the infimum over η′ is taken after the limit p → ∞ and, in particular, η′ does not
depend on p.)

If C contains all sequences of symmetric convex penalties, the preceding statements hold
also under the DSN assumption.

We prove Theorem 5 in Section H of the Supplementary Material [22]. We expect inequal-
ity (5.1) to hold also when the infimum is taken over Cδ,π , but we are not aware how to
control the estimation error with respect to arbitrary pseudo-Lipschitz losses for {ρp} ∈ Cδ,π .
We expect equality (5.2) to hold also when δ ≤ 1, but this requires establishing the tightness
of the convex lower bound when δ ≤ 1, which we are unable to do (see discussion following
Theorem 1). We believe these extensions may be possible using currently available tools but
leave it for future work.

For large δ, post-processing nearly closes the gap between convex M-estimation and Bayes
AMP. Indeed, as is shown in Section M of the Supplementary Material [22], when δ is large
(high SNR)—so that (4.1) provides a good approximation of the gap �(π, δ, σ )—we have
τreg,cvx ≈ τreg,amp∗ ≈ σ/

√
δ. Thus, the gap between the convex lower bound and the Bayes

risk in this case is driven not by the difference between τreg,cvx and τreg,amp∗ but rather by the
difference between estimation at that noise level using the optimal proximal operator (as done
in (2.4)) and the Bayes estimator (as done in (2.8)). Theorem 5 states that, by post-processing,
we may effectively replace the proximal operator in equation (H.1) of the Supplementary
Material [22] by a nonproximal denoiser, which we may take to be the Bayes estimator (or a
Lipschitz approximation of it) with respect to �2 loss. This is an important insight because we
suspect that the behavior of M-estimation with one step of post-processing is more robust to
model misspecification than is the behavior of Bayes AMP, whose finite sample convergence
has been observed to be highly sensitive to distributional assumptions on the design matrix
X (see, e.g., [45, 46]).

6. Examples. Recall that, for δ > 1, the assumption that ρ has δ-bounded width does
not pose any restriction. For δ ≤ 1, our proof requires ρ ∈ Cδ,π for technical reasons which
are discussed in Section I of the Supplementary Material [22]. We believe the conclusion of
Theorem 1 should hold more generally. Nevertheless, as illustrated in the present section, the
assumption ρ ∈ Cδ,π is quite weak and is satisfied by broad classes of penalties.

Most proofs are omitted from this section and can be found in Section N of the Supple-
mentary Material [22]. Through this section we take C to contain all sequences of convex
penalties so that Cδ,π contains all sequences with δ-bounded width.

6.1. Strongly convex penalties. We introduce the notion of uniform strong convexity.

DEFINITION 6.1 (Uniform strong convexity). A sequence ρp : Rp → R ∪ {∞} of lsc,
proper, convex functions has uniform strong-convexity parameter γ ≥ 0 if x �→ ρp(x) −
γ
2 ‖x‖2 is convex for all p. We say that {ρp} is uniformly strongly convex if this holds for
some γ > 0.

We define

C∗ = {{ρp} ∈ C | {ρp} is uniformly strongly convex
}
.

When the penalties are uniformly strongly convex, the situation is particularly nice.

PROPOSITION 6.2. For all π ∈ P2(R) and δ ∈ (0,∞), we have C∗ ⊂ Cδ,π .
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6.2. Convex constraints. Consider

ρp(x) = ICp(x) :=
{

0 x ∈ Cp,

∞ otherwise,

where Cp is a closed convex set. Convex M-estimation, using this penalty, is equivalent to
defining β̂cvx via the constrained optimization problem

β̂cvx = arg min
β

{
1

n
‖y − Xβ‖2 : β ∈ Cp

}
.(6.1)

In this context, the condition (2.6) is closely related to bounding the Gaussian width of convex
cones [2, 23]. We briefly recall the relevant notions.

Given a closed convex set K , we denote by �K the orthogonal projector onto K . Namely,
�K(y) := arg minx∈K ‖y −x‖2. Recall that K is a convex cone if K is convex and, for every
α > 0, K = {αx | x ∈ K}. For any set A ⊆ R

p , we define the closed, conic hull of A centered
at b ∈R

p by

TA(b) := cone
({x − b | x ∈ A}) := conv

({
α(x − b) | x ∈ A,α ≥ 0

})
,

where the overline denotes closure and conv denotes the convex hull. There are several equiv-
alent definitions of the Gaussian width of a closed, convex cone K . The following translates
most readily into our setup (recall that z ∼ N(0, Ip/p):

w(K) := Ez
[∥∥�K(z)

∥∥2]
.

The Gaussian width is closely related to the geometry of high-dimensional linear inverse
problems. In particular, under the HDA and DSN assumptions, exact recovery β̂cvx = β0 in
the noiseless setting (i.e., w = 0) is achieved with high probability by (6.1) if and only if
lim supp→∞ w(TCp(β0)) < δ [2, 23]. The same condition which guarantees stable recovery
under noisy measurements, namely, that the error ‖β̂cvx − β0‖ is bounded, up to a constant,
by the norm of the noise ‖w‖. Thus, when w(TCp(β0)) > δ, we expect the estimation error
of β̂cvx to be uncontrolled. It is, therefore, reasonable to focus on the case w(TCp(β0)) < δ.

In the case of convex constraints, the δ-bounded width assumption reduces to a slightly
weaker condition than w(TCp(β0)) < δ. This is perhaps not surprising in light of the fact
that, for ρp = ICp(x), the proximal operator prox[λρp](β0 + τz) = �Cp(β0 + τz) and
limτ→0

1
τ
Ez[〈z,prox[λρp](β0 + τz) = �Cp(β0 + τz)〉] = Ez[‖�TCp(β0)

(z)‖2]. The follow-
ing proposition makes the relationship between Gaussian widths and the δ-bounded width
assumption precise.

PROPOSITION 6.3. Consider Cp closed, symmetric, convex sets, π ∈ P2(R), and δ ∈
(0,∞). Assume that

lim
p→∞Eβ0

[
d(β0,Cp)

] = 0.

Further assume that

(6.2) lim
ε→0

lim sup
p→∞

Eβ0

[
w

(
TCp∩Bc(β0,ε)

(β0)
)]

< δ,

where Bc(β0, ε) denotes the complement of the ball of radius ε centered at β0. Then, {ICp} ∈
Cδ,π .
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The quantity limε→0 w(TCp∩Bc(β0,ε)
(β0)) agrees with w(TCp(β)) when β0 ∈ ∂Cp .

Thus, when β0 ∈ ∂Cp almost surely, assumption (6.2) of Proposition 6.3 is exactly that
lim supp→∞ w(TCp(β0)) < δ. This condition guarantees exact and stable recovery for the
convex program (6.1). Thus, Proposition 6.3 implies that if constraint sets {Cp} guarantee
exact and stable recovery, then {ICp} ∈ Cδ,π .

In the definition of the δ-bounded width assumption (or under the RSN assumption),
β0 is random. Thus, it will, in general, be close to but not exactly on the boundary of
Cp . For β0 in an ε-neighborhood of the boundary but not on the boundary, the quantity
w(TCp∩Bc(β0,ε)

(β0)) describes the behavior of the convex program (6.1) and the quantity
w(TCp(β)) does not. Indeed, w(TCp(β)) is highly sensitive to small perturbations of β0: it
jumps to 1 when β0 is in the interior of Cp . In contrast, the behavior of the convex program
(6.1) is not sensitive to such small perturbations. When β0 is asymptotically arbitrarily close
to but not necessarily exactly on the boundary of Cp , the condition of Proposition 6.3 is the
correct extension of the condition lim supp→∞ w(TCp(β0)) < δ. It guarantees recovery with
asymptotically vanishing error ‖β̂cvx − β0‖2 → 0 when d(β0, ∂Cp) → 0. For such β0, this
is the natural replacement of the more stringent notion of exact recovery which will not occur
if β0 /∈ ∂Cp .

6.3. Separable penalties. A common class of penalties considered in high-dimensional
regression are the separable penalties

(6.3) ρp(x) = 1

p

p∑
j=1

ρ(
√

pxj ),

for an lsc, proper, convex function ρ : R → R ∪ {∞} which does not depend on p. Much
previous work has analyzed the asymptotic properties of M-estimators, which use separable
penalties [12, 27, 30], and a few works have broken the separability assumption [57]. While
Theorem 1 is more general, it applies to separable penalties under a mild condition.

PROPOSITION 6.4. Consider ρp , as in (6.3), for some lsc, proper, convex ρ : R → R ∪
{∞}. Let C ⊆ R be the set of minimizers of ρ (which is necessarily a closed interval). If C is
nonempty, we have

sup
τ>ε

Pβ0,z(β0 + τz ∈ C) < δ for all ε > 0,

if and only if {ρp} ∈ Cδ,π .

REMARK 6.1. Proposition 6.4 applies whenever C is a singleton set because in this case
P(β0 + τz ∈ C) = 0 for all τ > 0. Thus, Proposition 6.4 covers most, if not all, separable
penalties commonly considered in practice (and many more).

6.4. SLOPE and OWL norms. Here, we consider the ordered weighted �1 (OWL) norms,
defined by

(6.4) ρp(x) = 1√
p

p∑
j=1

κ
(p)
j |x|(j),

where κ
(p)
1 ≥ κ

(p)
2 ≥ · · · ≥ κ

(p)
p ≥ 0 are the coordinates of κ (p) ∈ R

p and |x|(j) are the

decreasing order statistics of the absolute values of the coordinates of x. When κ
(p)
j =

�−1(1 − jq/(2p)) for some q ∈ (0,1) and �−1 the standard normal cdf, the estimator (1.2)
is referred to as SLOPE. Penalties of the form (6.4) have been used for a few purposes.
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SLOPE has recently been proposed for sparse regression because it automatically adapts to
sparsity level [13, 16, 53]. More generally, the use of OWL norms has been argued to produce
estimators which are more stable than LASSO under correlated designs [18, 31].

PROPOSITION 6.5. Consider ρp , as in (6.4). If for all ε > 0 there exists ξ > 0 such that

j ≤ (1 − ε)p implies κ
(p)
j > ξ , then {ρp} ∈ Cδ,π .

Funding. The first author was supported in part by NSF Grants DGE – 1656518, CCF –
1714305, IIS – 1741162, and ONR N00014-18-1-2729.

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to ‘Fundamental barriers to high-dimensional regression
with convex penalties’ (DOI: 10.1214/21-AOS2100SUPP; .pdf). The supplement contains
proofs and technical details that were omitted from the main text. It further provide discussion
on the role the δ-bounded width assumption plays in the theory.
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