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a b s t r a c t 
Synthetic trees mimic the transpiration cycle of natural trees by connecting a reservoir and conduits to 
wetted nanopores that exhibit a negative Laplace pressure during evaporation. Here, we develop a com- 
prehensive theoretical model of transpiration for synthetic trees comprised of a vertically-oriented tube 
array connected at the top to a nanoporous synthetic leaf. Our model illustrates that when the leaf is 
exposed to a convective gas flow, the diffusive boundary layer is negligible and the ambient humidity 
directly prescribes the negative Laplace pressure of water in the leaf. The resulting capillary-driven tran- 
spiration rate up the tree is then a function of both the Laplace pressure, which sets the hydraulic load, 
and the tree geometry, which sets the hydraulic resistance. Conversely, when the leaf is exposed to an at- 
mospheric environment, it is the evaporation rate and tree geometry that prescribe the necessary Laplace 
pressure to conserve mass. Matching the Laplace and Kelvin pressures at the menisci results in a local 
humidity that differs from the ambient, such that a diffusive boundary layer necessarily forms. Our model 
also accounts for the dynamic evolution of the menisci, in particular their ability to tune their contact 
angle and, when necessary, partially retreat into the nanopores to self-stabilize. Over a wide variety of 
tree geometries and ambient conditions, we identify when the transpiration rate is evaporation-limited 
versus pressure-limited (bottlenecked by the leaf’s maximum Laplace pressure). These findings should in- 
form the design and development of next-generation synthetic trees with applications in water extraction 
and solar steam generation. 

© 2021 Elsevier Ltd. All rights reserved. 
1. Introduction 

Trees spontaneously exert a hydraulic load to pump water into 
their roots, up xylem channels, and into their leaves to replace wa- 
ter lost by evaporation. This transpiration process is possible by 
holding the tree’s water in tension (i.e. negative pressure), which 
is the result of evaporation causing a discrepancy in water activ- 
ity between the leaf’s saturated liquid and the air’s subsaturated 
water vapor [1–7] . According to cohesion-tension theory, even an 
absolute negative water pressure is thermodynamically metastable 
(in the absence of vapor embryos), enabling a stable hydraulic load 
between the negative-pressure leaves and atmospheric water sup- 
ply [8–16] . 

Scientists have taken inspiration from the transpiration process 
in nature to construct synthetic trees. The earliest report of a syn- 
thetic tree was in 1895, where Dixon and Joly steadily pumped 
water up a tube connected to porous cups on either end [17] . 
In 1928, Thut showed that a synthetic tree pre-filled with water 
could lift a bath of mercury up the tube as the water evaporates 
[18] . The ability to sustain an absolute negative water pressure was 
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first demonstrated in 1970, where Hayward used a suction pump 
(rather than transpiration) to sustain a liquid column to a height 
of 17 m above its ambient reservoir [19] . While this report was 
not technically a synthetic tree, it nonetheless confirmed that the 
magnitude of the negative pressure can exceed that of the atmo- 
sphere. Using advanced nano/micro-fabrication to construct a tree- 
on-a-chip, Wheeler and Stroock showed in 2008 that a synthetic 
tree can sustain negative water pressures on the order of mega- 
pascals [20] . 

Recently, a series of reports by Noblin et al. and Stroock et al. 
exposed the synthetic leaf to a fixed partial pressure of water va- 
por using a convective air stream [3,20–23] . By passing the air 
stream through a flow meter and dew point generator, the de- 
sired partial pressure could be widely varied. The strong convec- 
tion of this subsaturated air stream effectively collapsed the dif- 
fusive boundary layer to a negligible thickness. As a result, the 
ambient humidity was approximately equivalent to the local hu- 
midity immediately above the water menisci. This was confirmed 
by directly measuring the negative Laplace pressure ( P L ) of the 
synthetic tree’s water with a microtensiometer, equating it to the 
Kelvin pressure ( P k ), and solving the Kelvin equation for the lo- 
cal humidity which was roughly equivalent to that of the ambient 
[24] . Remarkably, beneath the critical humidity where the resulting 
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Fig. 1. Schematic of a model synthetic tree system. The tree is comprised of a verti- 
cal array of conduits, where the top ends are interfaced with a nanoporous disk and 
the bottom ends with a bulk reservoir of water. Inset shows the concavity of the 
menisci within the nanopores during evaporation, from which a negative Laplace 
pressure is generated and transmitted across the tree as a hydraulic load. 
Kelvin stress exceeds the maximum possible negative Laplace pres- 
sure ( P L,max , where the menisci exhibit the receding contact angle, 
θR ), the menisci are able to self-stabilize by partially retreating into 
the nanopores to increase their local humidity [25] . In this special 
case, there is now a concentration boundary layer within the re- 
ceded nanopores, but still none above the leaf. 

Conversely, many other synthetic trees expose the synthetic leaf 
to an ambient environment of subsaturated air [26–30] . In this 
case, the concentration boundary layer across which diffusion oc- 
curs is now significant. The local humidity is now higher than that 
of the ambient, such that the Kelvin and Laplace pressures acting 
at the menisci are not known a priori. A recent report showed that 
the Kelvin and Laplace pressures, and by extension the local hu- 
midity, could be estimated by measuring the transpiration rate and 
invoking conservation of mass for a tree with a known hydraulic 
resistance [31] . 

In summary, it is now evident that synthetic trees are far from 
monolithic in terms of what governs their transpiration rate and 
negative water pressure. These parameters depend on whether 
convection is present above the leaf, the water activity of the air, 
the pore radius and thickness of the synthetic leaf, and the number 
and dimensions of the conduits that connect the leaf to the water 
supply. To the best of our knowledge, there has not been any com- 
prehensive work that rationalizes the flow rate and water pressure 
of synthetic trees for any possible combination of these parame- 
ters. Here, we clarify the order of operations for how to model 
the transpiration dynamics of a synthetic tree for any given am- 
bient condition and tree geometry. Our model captures the cross- 
over between an evaporation-limited regime, where the transpi- 
ration rate varies depending on the environmental/thermal condi- 
tions, and a pressure-limited regime, where the transpiration rate 
plateaus to a maximal value dependent upon the tree geometry. 
In particular, our model reveals that maximizing the Laplace suc- 
tion does not optimize the transpiration rate for most tree designs, 
as the small nanopores required cause a non-linear increase in the 
viscous pressure drop across the leaf. 
2. Model formulation 

The model tree considered in this report is comprised of a 
parallel array of vertical tubes, whose upper ends are embedded 
within a thin, horizontally-oriented nanoporous disk as depicted 
in Fig. 1 . The inner radius of each tube was fixed at r t = 1.59 mm 
and the number of tubes was fixed at N = 19, consistent with the 
tubes used in recent reports that experimentally validated the con- 

Fig. 2. Diagram that summarizes the four different modes of operation for synthetic 
trees. 
cept of a scalable synthetic tree [31,32] . The vertical height of the 
tube array, spanning from the free surface of the lower reservoir 
to the nanoporous leaf, was varied as either H = 10 m, 100 m, 
or 1,0 0 0 m. The cross-sectional area of the nanoporous disk (i.e. 
leaf) was fixed as A = 2 . 29 × 10 −3 m 2 , while the disk thickness 
was either t = 1 µm or 10 µm (aside from select graphs where 
t was varied continuously). The effective nanopore radius of the 
disk, when not varied continuously, was either r p = 1 nm, 10 nm, 
or 100 nm. The porosity and tortuosity of the nanopores were 
fixed to "= 0.32 and τ = 3.5, respectively, again in consonance 
with recent experimental reports [31,32] . This resulted in a per- 
meability of k = 1 . 28 × 10 −17 m 2 / Pa ·s, 1 . 28 × 10 −15 m 2 / Pa ·s, and 
1 . 28 × 10 −13 m 2 / Pa ·s, respectively, for the aforementioned three 
choices in r p . The receding contact angle of the water menisci 
within the nanoporous leaf was fixed to θR = 0 ◦ for some graphs, 
and varied continuously from 0 ◦ to 90 ◦ for others. 

This model tree system was analyzed for two different envi- 
ronmental conditions: a uniform humidity environment, where a 
convective gas flow collapses the diffusive boundary layer, and an 
ambient environment, where the far-field humidity is smaller than 
the local humidity directly above the menisci. For each environ- 
mental condition there are in turn two sub-regimes: either the 
menisci remain at the top of the nanoporous leaf, or they partially 
recede due to the required Laplace suction exceeding its maximum 
possible value. Therefore, four total cases are possible, as summa- 
rized in Fig. 2 . 
3. Results and Discussion 
Uniform Humidity Environment. 

In this first section, we will only consider a uniform humidity 
environment, where the diffusive boundary layer above the syn- 
thetic leaf is negligibly thin. This corresponds to Cases 1 and 2 
in Fig. 2 and is shown visually in Fig. 3 . The stress acting on 
the menisci within the leaf’s nanopores is due to the mismatch 
in chemical potential between the saturated water and subsatu- 
rated vapor. This stress is quantified by the Kelvin pressure equa- 
tion [20,33] : 
P K = RT 

ν
ln (a l ) , (1) 

where R is the universal gas constant, T is the temperature at the 
liquid-vapor interface, ν is the liquid molar volume, and a l is the 
local water activity directly above the meniscus. The water activity 
itself is defined as the ratio of the partial pressure of water va- 
por to the saturation pressure of water at the same temperature: 
a = p vap /p sat . For a uniform humidity environment, the local wa- 
ter activity is approximately equal to that of the ambient: a l ≈ a ∞ , 
where a ∞ is easily measured by a hygrometer. 
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Fig. 3. Schematic of a synthetic leaf in a pure vapor environment, where the con- 
centration field above the leaf is uniform (i.e. negligible boundary layer). (a) When 
the Kelvin pressure imposed on the menisci by the subsaturated ambient is less 
than the maximum possible Laplace pressure ( | P K | = | P L | < | P L,max | ), the menisci are 
stabilized along the outer face of the synthetic leaf (i.e. full hydration). (b) When 
the ambient Kelvin stress exceeds the maximum possible Laplace pressure ( | P K |> 
| P L,max | ), the menisci recede until achieving an increased local vapor concentration 
( c l ) where P K ≈P L,max . 

To achieve physical equilibrium (i.e. avoid dryout), the Kelvin 
pressure must be balanced by the Laplace pressure. The concave 
curvature of the menisci within the nanopores generates a negative 
Laplace pressure: [3] 
P L = −2 γ cos θ

r p , (2) 
where γ is the surface tension of water, θ is the contact angle of 
the meniscus with respect to the side walls of the nanopores, and 
r p is the average pore radius. The Kelvin-Laplace relation predicts 
the condition for meniscus stability as P K = P L , which for a given 
local humidity and pore size predicts the value of θ at equilibrium 
[20,23,25,34] . 

This Laplace pressure also represents the total pressure differ- 
ential across the synthetic tree, extending from the upper leaf 
to the lower reservoir of water of atmospheric pressure. In other 
words, the negative Laplace pressure ( P L ) is balanced by the posi- 
tive pressure drops across the tree ( &P ). The total pressure drop is 
the sum of the viscous pressure drop across the nanoporous leaf, 
the viscous pressure drop in the tubes, and the hydrostatic pres- 
sure in the tubes. The pressure drop across the leaf is evaluated 
using Darcy’s law: &P D = (Qt) / (kA ) , [25,35] with Q being the vol- 
umetric flow rate, t and A are the thickness and cross-sectional 
area of the leaf, and k = ("r 2 p ) / (8 µτ ) is the permeability of the 
nanopores, where " is the disk porosity, µ is the liquid water vis- 
cosity, and τ is the tortuosity [36,37] . The viscous pressure drop 
in the tubes is evaluated using Poiseuille’s equation, [20,38] &P P = 
(8 QHµ) / (πNr 4 t ) , with H being the height of the tubes, r t the ra- 
dius of tubes, and N the total number of tubes in the array. The 
hydrostatic pressure drop in the tubes is &P G = ρgH, where ρ is 
the density of liquid water. Balancing the Laplace pressure against 
the pressure drops: 
| P L | = &P = &P D + &P P + &P G . (3) 
For a synthetic leaf where r p is known and a ∞ ≈ a l is controlled, 
Eqs. 1 and 2 can be combined to solve for | P L | . In turn, plugging 
| P L | into Eq. 3 allows for the solution of the volumetric transpira- 
tion rate ( Q). It is trivial to then extract the liquid mass flow rate 
as ˙ m = ρQ . By conservation of mass, the liquid mass flow rate up 
the tree is equivalent to the evaporation mass flow rate from the 
leaf, ˙ m = ˙ m v , during steady-state operation. 

The maximum possible Laplace pressure, as defined earlier, cor- 
responds to when the contact angle of the menisci reaches its min- 
imum value: 
P L, max = −2 γ cos θR 

r p , (4) 

Fig. 4. Plots of the critical pore radius, above which crossover from the 
evaporation-limited regime to the pressure-limited regime occurs. (a) The criti- 
cal pore radius is graphed as a function of the ambient water activity, calculated 
from Eq. 1 and Eq. 4 for a range of water activities ( a ∞ = 0.1–1.0) and assum- 
ing room temperature conditions ( T = 25 ◦C). (b) The critical pore radius is now 
graphed against the receding contact angle, calculated from Eqs. 1 and 4 with 
| P K |= 190.3 MPa, 95.1 MPa, and 39.5 MPa corresponding to 25%, 50%, and 75% rel- 
ative humidities, respectively. 
where θR is the receding contact angle of the menisci. When P K = 
P L is satisfied for a contact angle exceeding the receding contact 
angle ( θ > θR ), the menisci are stable and the entire leaf remains 
wetted. In Fig. 2 , this case of a uniform humidity environment 
with fully hydrated nanopores is referred to as Case 1. However, 
when the imposed relative humidity results in | P K | > | P L, max | , equi- 
librium is not possible and the menisci retreat into the nanopores 
(Case 2). 

As the menisci retreat, the local humidity increases due to the 
choking of water vapor within the dried-out nanopores, i.e. now 
a l > a ∞ which decreases P K ( Fig. 3 b) [25,30] . The menisci therefore 
halt their retreat once the local humidification satisfies P K = P L, max . 
The critical retreat distance, δ, where equilibrium occurs can be 
estimated by: [25] 

δ
t − δ

= P L,max − P K 
−P L,max × β, (5) 

where β = g vap /g liq is the ratio of conductance of the vapor to that 
of the liquid. Similar to Case 1, Eq. 3 can be solved for the tran- 
spiration rate, but now P L, max is plugged into the left-hand side. 
Case 2 therefore corresponds to the maximum possible transpira- 
tion rate for a given tree geometry, as P L, max represents the maxi- 
mal hydraulic load across the tree. For this reason, the volumetric 
and mass flow rates for Case 2 will be referred to as Q max and 
˙ m max , respectively. Case 1 is an evaporation-limited regime, where 

the transpiration rate increases monotonically with decreasing a ∞ . 
Conversely, Case 2 is a pressure-limited regime, where the transpi- 
ration rate is fixed by the maximum Laplace pressure regardless of 
the value of a ∞ . 

Fig. 4 (a) shows the relationship between the critical pore ra- 
dius and the ambient water activity. This critical pore radius, r p,c , 
is the pore size for a given a ∞ where P K =P L, max and θ =θR for the 
first time. In other words, r p < r p,c corresponds to the evaporation- 
limited regime (Case 1), where the leaf is fully hydrated and θ > 
θR , whereas r p > r p,c corresponds to the pressure-limited regime 
(Case 2), where the menisci have partially retreated and the tran- 
spiration rate is maximal. The values of r p,c were obtained by plug- 
ging a given value of a ∞ ≈a l into Eq. 1 , equating with Eq. 4 , and 
solving for r p = r p,c with θR ≈ 0 ◦ (i.e. assuming superhydrophilic 
leaf pores). From the curve, it can be seen that the critical pore 
size increases as the ambient water activity is increased. This is 
because a higher water activity will impose a lower external ther- 
modynamic pressure against the meniscus, such that a smaller 
magnitude Laplace pressure (and by extension a larger pore size) 
is needed to maintain stability. For instance, an ultra-dry humid- 
ity of a ∞ ≈a l = 0.1 will impose an immense Kelvin pressure of 
| P K |= 316 MPa, requiring r p,c = 0.46 nm or less to maintain full 
leaf hydration (Case 1). In contrast, increasing the water activity 
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Fig. 5. Graphs of the transpiration mass flow rate versus ambient water activity. The transpiration rate is calculated from a ∞ and the given tree geometry using Eqs. 1,2 , and 
3 . The transition from the pressure-limited regime to the evaporation-limited regime occurs when the value for ˙ m is no longer constant with increasing a ∞ . Three choices 
for the effective radius of the leaf’s nanopores are used in all graphs, while the tube height and leaf thickness are varied as (a) H = 1 m and t = 1 µm, (b) H = 100 m and 
t = 1 µm, (c) is H = 10 m and t = 10 µm, and (d) H = 100 m and t = 10 µm. 
by a factor of four to a ∞ ≈a l = 0.4 imposes | P K |= 125.7 MPa on the 
meniscus, which increases the critical pore radius by a factor of 2.5 
( r p,c = 1.16 nm). Around a ∞ ≈a l = 0.9, the value of r p,c rapidly in- 
creases due to the asymptotic limit of an infinite critical pore size 
at 100% humidity. 

Fig. 4 (b) shows how the critical nanopore radius varies with 
changing receding contact angle for three ambient water activity 
values: a ∞ = 0.25, 0.5, or 0.75. The curve shows that increasing the 
water activity from 0.25 to 0.5 roughly doubles r p,c , but a subse- 
quent increase of the water activity to 0.75 causes a much larger 
(non-linear) increase in r p,c . It can also be observed that increas- 
ing θR , which in turn decreases | P L, max | , requires increasingly small 
values of r p,c . This is because for a higher receding angle, the con- 
cave meniscus cannot achieve as small of a radius of curvature for 
a given pore size, effectively decreasing the maximum achievable 
Laplace pressure prior to meniscus retreat. For all three imposed 
water activities, increasing the receding contact angle by a factor 
of four, from 15 ◦ to 60 ◦, roughly halves the critical pore size. 

Fig. 5 depicts how the transpiration rate changes with the im- 
posed water activity for 12 different tree geometries. For Case 1, 
the values of ˙ m were calculated by combining Eqs. 1–3 , whereas 
Eqs. 3 –4 were used to calculate the plateau value of ˙ m max for Case 
2. As expected, the transpiration rate decreases with increasing a ∞ , 
as an increasingly lower Kelvin pressure is exerted at the meniscus 
which by extension reduces the required suction pressure ( | P L | ). 
The crossover between Case 1 and Case 2, i.e. the onset of ˙ m max , 
occurs at much lower values of a ∞ for smaller nanopore sizes. Con- 
versely, although leaves with larger nanopores plateau to a maxi- 
mum transpiration rate much sooner with decreasing humidity, re- 
sulting in a lower | P L, max | , counter-intuitively the resulting ˙ m max 
is larger by 1–2 orders of magnitude. This is because the influ- 
ence of r p on the Darcy pressure drop across the nanoporous leaf 
( &P D ∝ r −2 

p ) out-competes the corresponding change in the suction 
pressure ( | &P L | ∝ r −1 

p ). 
Taking the H = 10 m tall tree with a leaf thickness of t = 1 µm 

as an example ( Fig. 5 a), the smallest pore radius of r p = 1 nm can 
remain in the evaporation-limited regime (Case 1) until dropping 
to a water activity of a ∞ ≈ 0.35. In contrast, a moderate pore size 
of r p = 10 nm can only sustain Case 1 down to a ∞ ≈ 0.9, while the 

largest nanopores, r p = 100 nm, reach an extremely early plateau 
at a ∞ ≈ 0.99. This illustrates how synthetic trees with sufficiently 
small nanopores can result in a wide variety of possible transpira- 
tion rates, depending on the external humidity, whereas trees with 
large nanopores can exhibit an essentially fixed flow rate regard- 
less of the environmental conditions. The immense hydraulic re- 
sistance of the leaf with r p = 1 nm results in a maximum transpi- 
ration rate of only ˙ m max ∼ 1 g/s, compared to ˙ m max ∼ 10 g/s for 
r p = 10 nm and ˙ m max ∼ 100 g/s for r p = 100 nm. 

In Fig. 5 b, the tree height is increased an order of magnitude to 
H = 100 m. This increases the hydrostatic pressure drop by an or- 
der of magnitude, which reduces the portion of | P L | which can be 
devoted to overcoming the Darcy pressure in the leaf. As a conse- 
quence, the transpiration rate decreases for any given value of a ∞ . 
The magnitude of the decrease in ˙ m is dramatic for the largest pore 
size, because the maximum suction of | P L,max |= 1.46 MPa is almost 
entirely consumed by gravity ( P G ≈ 1 MPa), leaving little left for 
viscous flow. As a consequence, the maximum transpiration rate 
drops by nearly an order of magnitude. In contrast, for the small- 
est pore size | P L,max |= 146 MPa, such that the viscous flow rate is 
barely affected by the comparatively minute increase in the hydro- 
static load. 

Comparing the graphs in Fig. 5 (a,c) or Fig. 5 (b,d), the leaf thick- 
ness is now increased by an order of magnitude to t = 10 µm. 
Given the aforementioned predominance of the Darcy pressure 
drop in most cases, this increase in t results in a dramatic de- 
crease in ˙ m . For cases where the hydrostatic pressure drop is min- 
imal compared to | P L,max | (ex: r p = 10 nm), the decrease in ˙ m is 
by almost exactly an order of magnitude, corresponding to the in- 
crease in P D by one order. Conversely, when the hydrostatic load is 
dominant, as with r p = 100 nm and H = 100 m, the decrease in ˙ m 
is only by about half an order of magnitude. 

Fig. 6 shows how varying the nanopore radius can affect both 
the maximum transpiration rate (left y-axis) and the maximum 
Laplace pressure (right y-axis). Increasing the pore size results in a 
non-linear increase in leaf permeability, such that ˙ m max increases 
due to the dramatic decrease in P D relative to the weaker increase 
in suction. The shape of the curve of ˙ m max versus r p is the same 
shape for all three choices of leaf thickness, with the magnitude 
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Fig. 6. Graphs of the maximum possible transpiration rate (left y-axis) and Laplace pressure (right y-axis), as functions of the nanopore radius. The maximum Laplace 
pressure was calculated using Eq. 4 with θR = 0 ◦ , while ˙ m max was then calculated from Eq. 3 . Both graphs have three choices for the leaf thickness and the height of the tree 
was either (a) H = 10 m or (b) H = 100 m. 

Fig. 7. Plots of the maximum possible transpiration rate versus the receding contact angle of the nanoporous leaf. First, P L,max was calculated from Eq. 4 for each value of θR , 
and subsequently ˙ m max was found using Eq. 3 . All three graphs employ the same four combinations of tree height ( H = 10 or 100 m) and leaf thickness ( t = 1 or 10 µm), 
while the nanopore size is fixed as (a) r p = 1 nm, (b) r p = 10 nm, or (c) r p = 100 nm. 
increasing with decreasing t . The relationship of | P L,max | versus r p 
is the exact opposite (i.e. decreasing with increasing pore size), as 
shown in Eq. 4 . 

When increasing the tree height to H = 100 m ( Fig. 6 b), the 
˙ m max curves are initially the same for small values of r p . This is be- 

cause the Darcy pressure dominates over the hydrostatic pressure 
for very small nanopores, as previously discussed. For instance, 
at a pore radius of r p = 2 nm, the Darcy pressure is at least six 
orders of magnitude larger than the hydrostatic pressure for any 
given leaf thickness. For larger pores, the Darcy pressure drop be- 
comes smaller relative to the hydrostatic pressure. Above a critical 
nanopore radius where | P L,max | = P G , the water columns in the syn- 
thetic tree can no longer be sustained against gravity. For the tree 
height of 100 m, this occurs for all three leaf thicknesses at a crit- 
ical pore radius of about r p,c ≈ 150 nm. 

Fig. 7 depicts how the maximum transpiration rate can be 
tuned by changing the receding contact angle for different tree ge- 
ometries. Smaller values of θR increase the maximum Laplace pres- 
sures ( Eq. 4 ), because the menisci can achieve a smaller radius of 
curvature before retreating into the nanopores. This larger possi- 
ble suction pressure translates to a higher maximum transpiration 
rate, by increasing the value of Q that satisfies Eq. 3 . 

Fig. 7 (a) shows that for very small nanopores ( r p = 1 nm), 
the maximal transpiration rate increases by about two orders of 
magnitude when decreasing θR from 89 ◦ down to 0 ◦. For any 
given value of θR , increasing the leaf thickness from t = 1 µm 
to t = 10 µm serves to decrease ˙ m max by an order of magnitude. 
This is due to the viscous losses in the leaf (i.e. Darcy pressure) 
being the dominant pressure drop in the tree when using small 
nanopores. In contrast, varying the tree height between H = 10 m 
and 100 m did not appreciably change the curves for ˙ m max versus 
θR . 

Fig. 7 (b) shows that for medium sized nanopores ( r p = 10 nm), 
the tree height begins to affect ˙ m max but only at larger receding 
angles ( θR > 70 ◦). This is because, at these large angles, the corre- 
sponding value of P L,max is approaching the magnitude of the hy- 
drostatic pressure in the tubes. As a consequence, there is very 
little suction available to overcome the viscous losses in the leaf, 
resulting in the plummeting values of ˙ m max for the case of a tall 

tree ( H = 100 m). For lower values of θR , the curves look quali- 
tatively similar to those in Fig. 7 (a), but shifted an order of mag- 
nitude higher due to the larger nanopore size reducing the Darcy 
pressure. 

In the extreme case of having very large nanopores 
( r p = 100 nm), both the tree height and leaf thickness modify 
the ˙ m max curves even for small values of θR . This is because of 
the dramatic reduction in the Darcy pressure drop for such large 
nanopores, such that the Darcy and hydrostatic pressure drops are 
of comparable magnitude. For example, increasing the tree height 
by an order of magnitude causes a three-fold reduction in ˙ m max , 
while increasing the leaf thickness by an order of magnitude 
causes ˙ m max to decrease by nearly an order of magnitude. As the 
receding contact angle is increased beyond a critical value, the 
hydrostatic pressure consumes all of the Laplace pressure and the 
flow rate vanishes. This occurs around θR = 87 ◦ for the H = 10 m 
tree and around θR = 48 ◦ for the H = 100 m tree. 

Fig. 8 shows how the maximum transpiration rate and menis- 
cus retreat distance changes as the leaf thickness is changed, given 
a fixed ambient humidity of 50%. Under such dry conditions, the 
Kelvin stress corresponding to the ambient humidity always ex- 
ceeds the maximum possible Laplace pressure for the cases of 
r p = 10 nm ( Fig. 8 a) and r p = 100 nm ( Fig. 8 b). Therefore, the 
menisci are forced to retreat within the nanopores until achiev- 
ing a local humidity within the dried-out nanopores that reduces 
P K to match P L,max , enabling stable transpiration at the maximum 
possible flow rate ( ˙ m max ). 

The maximum transpiration rate (left y-axis) decreases expo- 
nentially with increasing disk thickness, due to the increase in the 
Darcy pressure drop. Fig. 8 (a) shows that for smaller nanopores, 
increasing the height of the tree from H = 10 m to 100 m only 
decreases ˙ m max by about 7%. This indicates that the viscous pres- 
sure drop across the leaf dominates the hydrostatic pressure drop 
across the tubes. For the larger nanopores in Fig. 8 (b), however, the 
same increase in height substantively lowered ˙ m max by a factor of 
2.5–4.2 (depending on the value of t). This is due to the smaller 
Darcy pressure becoming comparable to the hydrostatic pressure. 

From the relationship given in Eq. 5 , the critical retreat distance 
into the nanopores (right y-axis) increases linearly with t . The con- 
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Fig. 8. The maximum transpiration rate (left y-axis), as well as the retreat distance required to stabilize the menisci (right y-axis), can be tuned by changing the leaf 
thickness. Values for ˙ m max were calculated with Eq. 4 (using θR = 0 ◦C) combined with Eq. 3 . Curves for δ were generated using Eq. 1 for a fixed ambient humidity of 50%, 
resulting in | P K |= 95.1 MPa, combined with Eq. 5 . (a) When r p = 10 nm, | P L,max |= 14.5 MPa the leaf permeability is k= 1.28 × 10 −15 m 2 /Pa ·s, and the linear conductance 
ratio is β = 1.49 × 10 −5 . (b) When r p = 100 nm, | P L,max |= 1.45 MPa, k= 1.28 × 10 −13 m 2 /Pa ·s, and β = 1.49 × 10 −6 . 

Fig. 9. The retreat distance as a function of the ambient water activity. Values for δ are calculated using Eqs. 1, 4 and 5 . (a) The linear conductance ratio, β , was chosen 
to be independent of the changes in the external vapor pressure. It was calculated using Eq. 6 with a representative mean ambient vapor pressure of p vap = 1 kPa to yield 
β = 1 . 49 × 10 −4 , 10 −5 , or 10 −6 for r p = 1, 10, or 100 nm, respectively. (b) The linear conductance ratio was varied with a ∞ . Specifically, p vap =a ∞ p sat was plugged into Eq. 6 to 
obtain β . 
ductance ratio is calculated from: [25] 
β ≈ 32 

3 
(

2 
π

)1 / 2 ( RT 
νρ

)−3 / 2 µp vap 
r p ρ2 . (6) 

Comparing r p = 10 nm ( Fig. 8 a) with r p = 100 nm ( Fig. 8 b), the 
magnitude of the retreat is larger for the latter by roughly 20%. 
This is due to the much smaller maximum Laplace pressure of 
the larger nanopores: | P L,max | = 1 . 45 Mpa compared to | P L,max | = 
14 . 5 Mpa for the smaller nanopores. In turn, this means the 
larger nanopores also require a smaller local Kelvin stress above 
the menisci, such that a greater local humidity is required to 
achieve equilibrium. Quantitatively, the menisci retreat within the 
r p = 10 nm leaf until reaching a local humidity of 89.97%, com- 
pared to the r p = 100 nm leaf which must retreat to a 98.95% hu- 
midity. Considering the dramatic difference in local humidities, it 
is initially surprising that the retreat distance is only slightly in- 
creased for the r p = 100 nm case. However, this is readily explained 
by the simultaneous change in the ratio of vapor conductance to 
liquid conductance, which is smaller for r p = 100 nm. Overall, the 
retreat distances for a pure vapor environment are nanometric, 
such that very thin synthetic leaves can achieve equilibrium before 
drying out. 

Fig. 9 shows how the retreat distance varies with the ambient 
humidity. In Fig. 9 (a), the linear conductance ratio ( β from Eq. 5 ) 
is approximated as being constant for a given value of r p . This was 
done by calculating β at a mean external vapor pressure of 1 kPa, 
consistent with the approach used by Vincent et al. [25] . For all 
three pore sizes considered, the retreat distance decays exponen- 
tially with increasing ambient water activity. This is physically in- 
tuitive, as when β and the leaf geometry is fixed, the retreat dis- 
tance solely depends on the Kelvin stress corresponding to the am- 
bient humidity. A smaller value of a ∞ demands a longer retreat to 
achieve the local humidity where equilibrium is achieved. The re- 
treat distance was by far the smallest for the smallest nanopores 

( r p = 1 nm), whereas δ was only slightly smaller for r p = 10 nm 
compared to r p = 100 nm. Especially for the smaller pore sizes, 
above a critical value of a ∞ there is no longer any retreat, as the 
menisci are able to balance the Kelvin stress at a Laplace pressure 
less than the maximum value. In other words, when δ= 0, the tree 
is operating in the evaporation-limited regime where the transpi- 
ration rate depends on a ∞ , whereas when δ> 0, the tree is in the 
pressure-limited regime at a fixed ˙ m max . 

Considering the full range of values considered here for a ∞ , it 
may be more physical to allow the linear conductance ratio to vary 
with the external vapor pressure. As seen in Fig. 9 (b), this now 
results in a non-monotonic relationship, where counter-intuitively 
δ can now increase with increasing a ∞ for cases where the hu- 
midity is low. This is because a non-fixed β increases with a ∞ , 
making it more difficult to choke the vapor within the dried-out 
nanopores to achieve local humidification. Over the low range of 
a ∞ values, this effect is actually out-competing the importance of 
the decrease in Kelvin stress that occurs with increasing a ∞ , such 
that a larger retreat is required with increasing ambient humid- 
ity. At the peak of each curve, the change in Kelvin stress now 
becomes predominant over the variation in β , such that δ now 
lowers with increasing a ∞ . This cross-over occurs at a relative hu- 
midity of 13% for r p = 1 nm, 32% for r p = 10 nm, and 36% for 
r p = 100 nm. A second cross-over, from the evaporation-limited 
regime to the pressure-limited regime, occurs when δ reaches zero 
at an ambient humidity of 34% for r p = 1 nm, 89% for r p = 10 nm, 
and 98% for r p = 100 nm. 

The local water activity (i.e. local humidity) above the menisci 
are plotted in Fig. 10 as a function of the nanopore radius (left y- 
axis). For sufficiently small nanopore radii, the local water activity 
matches that of the ambient ( a l =a ∞ ), as the maximum Laplace 
pressure exceeds the ambient Kelvin stress. Therefore, the menisci 
do not need to retreat, resulting in δ= 0 (right y-axis). For this no- 
retreat condition, the equilibrium contact angle of the menisci can 
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Fig. 10. The local water activity (left y-axis) and retreat distance (right y-axis) as functions of the nanopore radius. Values for a l and δ are calculated using Eqs. 1, 4, 5 , and 
6 . Tree properties include θR = 0 ◦C and t = 100 µm. The ambient humidity was either (a) 50% ( | P K |= 95.1 MPa) or (b) 75% ( | P K |= 39.5 MPa). 

Fig. 11. The local water activity (left y-axis) and retreat distance (right y-axis) as functions of the receding contact angle. Values are calculated from Eqs. 1, 2, 4, 5 , and 
6 with t = 100 µm. (a–c) The ambient humidity was 50% with nanopore sizes of r p = 1, 10, and 100 nm, respectively, resulting in β = 2.36 × 10 −4 , × 10 −5 , or × 10 −6 . (d–f) 
The ambient humidity was 75% with nanopore sizes of r p = 1, 10, and 100 nm, respectively, resulting in β = 3.54 × 10 −4 , × 10 −5 , or × 10 −6 . 
be solved if desired by equating Eq. 1 and Eq. 2, setting a l =a ∞ , 
and solving for θ . 

When the ambient humidity is 50% ( Fig. 10 a), retreat occurs 
for r p > 1.53 nm, indicating that menisci retreat is required for all 
but the smallest nanopores. For a higher ambient humidity of 75% 
( Fig. 10 b), retreat occurs above a larger critical nanopore size of 
r p > 3.69 nm. When retreat occurs, the local humidity was solved 
by equating Eq. 1 and Eq. 4 (setting θR = 0 ◦). The retreat dis- 
tance was then solved using Eq. 5 and assuming a constant va- 
por pressure for β . The retreat distance increases linearly with the 
nanopore radius, which is due to a combination of the non-linear 
increase in required local humidity and the dependence of β on r p . 
The slope of δ versus r p is about 2.4 times higher for the ambient 
humidity of 50% compared to 75%. 

Fig. 11 depicts the same dependent variables of a l and δ, but 
now plotted as a function of the nanopores’ receding contact angle 
for three fixed nanopore radii of r p = 1, 10, and 100 nm. For the 
smallest pore radius considered and sufficiently small values of θR , 
a l =a ∞ and δ= 0. As with the previous figure, this is because over 

this parameter space the maximum Laplace pressure exceeds the 
ambient Kelvin stress, precluding the need for partial retreat. Re- 
treat and local humidification begin above a critical receding con- 
tact angle of θR > 50 ◦ for a 50% ambient humidity ( Fig. 11 a) and 
for θR > 75 ◦ for a 75% ambient humidity ( Fig. 11 d). This exact nu- 
merical match of the critical θR and ambient humidity is coinci- 
dental, only occurring for this arbitrary choice of r p = 1 nm. In- 
creasing the pore radius to r p = 10 nm ( Fig. 11 b,e) or r p = 100 nm 
( Fig. 11 c,f) requires the menisci to retreat over the entire range of 
θR values. This is because the maximum Laplace pressure that the 
pores can support is greatly reduced for larger nanopores, such 
that it is always less that the Kelvin stress corresponding to 50% 
or 75% humidity. As the 75% ambient humidity imposes a smaller 
Kelvin stress on the menisci, the magnitude of retreat is smaller 
compared to 50% humidity. 

The local water activity, plotted as the second y-axis in Fig. 11 , 
equals the ambient value when δ= 0 and then increases with δ
as the menisci retreat. This local water activity can be determined 
by equating Eq. 2 to Eq. 1 and plugging in the receding contact 
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Fig. 12. Fig. 13 Graphs plotting the retreat distance (left y-axis) and transpiration rate (right y-axis) as functions of nanopore radius. These variables were calculated from 
Eqs. 1, 2, 3, 4, 5 , and 6 , where θR = 0 ◦ and the ambient humidity was either 50% ( | P K |= 95.1 MPa) or 75% ( | P K |= 39.5 MPa). The tube height and leaf thickness were: (a) 
10 m and 1 µm, (b) 100 m and 1 µm, (c) 10 m and 10 µm, or (d) 100 m and 10 µm. 

Fig. 13. Schematic of a synthetic leaf in a non-uniform humidity environment, where a diffusive concentration boundary layer exists above the leaf. (a) When the Laplace 
suction required to replenish water evaporating from the leaf is less than the maximum possible Laplace pressure ( | P K | = | P L | < | P L,max | ), the menisci are stabilized along 
the outer face of the synthetic leaf. (b) When the evaporation rate exceeds a critical value, conservation of mass requires a Laplace pressure that exceeds what is possible 
( | P K | > | P L,max | ). In this case, the menisci recede until achieving a reduced evaporation rate and increased local vapor concentration ( c l ) where mass is conserved and P K ≈P L,max . 
angle and nanopore radius. For the 1 nm pore size, where there is 
a regime of zero retreat, the ambient water activity sets the lower 
limit for the local water activity. For the 10 and 100 nm pore radii, 
where the menisci are always in the retreat regime, the local water 
activity varies continuously and is always higher than the ambient 
water activity. The local water activity approaches unity (regardless 
of the ambient humidity) as the receding contact angle increases 
to 89 ◦, as the maximum Laplace suction approaches zero. 

Fig. 12 shows how varying the tree geometry affects the re- 
treat distance (left y-axis) and maximum possible transpiration 
rate (right y-axis). As shown earlier, the menisci will retreat into 
the nanopores when the ambient humidity results in a Kelvin 
stress that is greater than the maximum possible Laplace pressure 
the pores can sustain. The extent of retreat, calculated from Eq. 5 , 
initially increases rapidly with increasing pore radius and then ap- 
proaches a plateau value around r p ≈ 10 nm. The retreat distance is 
always smaller for the 75% relative humidity compared to 50% for 
an equivalent tree geometry. Comparing Fig. 12 (a) to (b) and (c) 
to (d), increasing the tree height by a factor of ten doesn’t change 
the extent of retreat, as the Kelvin pressure and maximum possible 
Laplace pressure are not dependent on the hydrostatic pressure. On 

the other hand, when comparing Fig. 12 (a) to (c) and (b) to (d), 
increasing the thickness by a factor of ten causes an equivalent in- 
crease in retreat distance, as evident algebraically in Eq. 5 . 

Fig. 12 shows that the transpiration rate increases by an or- 
der of magnitude when the pore size is increased by an order of 
magnitude. For H = 10 m trees, the Darcy pressure drop always 
dominates over the hydrostatic pressure, such that ˙ m max increases 
monotonically with increasing r p over the considered parameter 
space. For taller H = 100 m trees, ˙ m max reaches a maximal value 
at a critical r p ≈ 60 nm, beyond which the hydrostatic penalty ex- 
ceeds the benefit of increased leaf permeability. The magnitude of 
the ˙ m max curves are smaller for H = 100 m compared to 10 m, due 
to the hydrostatic pressure removing a substantive portion of the 
suction that could be otherwise devoted to viscous flow. The ˙ m 
curves are identical for the 50% and 75% ambient humidities over 
the pressure-limited regime (i.e. when δ> 0), which is the vast 
majority of the parameter space. However, beneath a critical value 
of r p , the transpiration switches to the evaporation-limited regime. 
This cross-over happens at r p,c ≈ 3 nm for the 75% ambient humid- 
ity and r p,c ≈ 1 nm for the 50% ambient humidity, such that ˙ m is 
about twice as large for the 50% humidity case at r p,c ≈ 1 nm. 
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3.2. Non-uniform humidity environment 

Up to this point, we assumed that water vapor emanating from 
the leaf was removed via a convective gas flow. Here, we now 
switch to the opposite case, where evaporation from the leaf is 
diffusive across a concentration boundary layer. In other words, 
even when the leaf is fully hydrated ( δ= 0), the local water activ- 
ity will be higher than that in the far ambient ( a l > a ∞ ). The most 
important consequence of the non-uniform humidity condition is 
that the Kelvin stress acting on the menisci, and by extension the 
matching Laplace pressure, are no longer directly prescribed by the 
ambient humidity. This also means that the transpiration rate is no 
longer prescribed by the ambient humidity either. Therefore, a new 
order of operations is required to be able to theoretically charac- 
terize the transpiration rate and negative pressure of the synthetic 
tree. 

The water vapor concentration gradient immediately above the 
menisci ( ∂ c/∂ z) results in a diffusive flux governed by Fick’s first 
law: 
J v = −D ∂c 

∂z , (7) 
where J v is the evaporative flux and D is the diffusivity of water 
vapor in air. The exact value of ∂ c/∂ z is non-trivial to determine, 
as the overall concentration field between the meniscus and the 
far-field humidity is non-linear. If the temperature field, leaf ge- 
ometry, and menisci shape are all known, one approach could be 
to numerically solve for the concentration field and the resulting 
evaporative flux. 

The above approach, besides being complex to solve, is only 
valid at low heat fluxes where the flow is purely diffusive in na- 
ture. At higher heat fluxes, the bulk gas flow is additionally convec- 
tive and Fick’s law is no longer prescriptive [39] . In such cases, we 
can instead think of the problem in terms of heat transfer. Specif- 
ically, we estimate the evaporation mass flow rate by relating the 
amount of heat being captured by the synthetic leaf ( ˙ Q ) to the la- 
tent heat of vaporization ( L ): 
˙ m v = ˙ Q 

L . (8) 
The source of ˙ Q could be solar, waste heat, or active heating el- 
ements; for the context of this theoretical study the exact heat 
source is irrelevant. The value of L varies weakly with tempera- 
ture, here we arbitrarily assume a leaf temperature of 50 ◦C (rem- 
iniscent of existing solar steam generators under 1 sun irradiation 
[40] ) such that L≈ 2,382 kJ/kg. 

By conservation of mass, at equilibrium the corresponding 
evaporation mass flow rate is equivalent to the liquid mass flow 
rate up the tree, such that: 
˙ m v = ˙ m = ρQ . (9) 

Conservation of mass is assured for the following reasons. The al- 
ternative scenario of ˙ m v < ˙ m is non-physical, as it would require 
the incompressible liquid water within the tree to become increas- 
ingly compressed. The opposite scenario of ˙ m v > ˙ m is also impossi- 
ble to maintain, as the menisci contact angle would keep decreas- 
ing to increase the magnitude of the Laplace pressure until either 
˙ m v = ˙ m is achieved or dryout occurs. 

For a non-uniform humidity environment, conservation of mass 
is the only way to determine the magnitude of the Kelvin 
and Laplace pressures. Now that ˙ m is estimated by combining 
Eqs. 8 and 9 , Q = ˙ m /ρ can be plugged into Eq. 3 to solve for P L . 
If the solution yields | P L | < | P L,max | , the menisci do not need to re- 
treat and will exhibit a contact angle determined by Eq. 2 . The 
local water activity at the menisci can be calculated by equating 
Eqs. 1 and 2 and solving for a l . Conversely, if | P L | > | P L,max | , the 

menisci are unstable and are forced to retreat until an equilibrium 
is achieved (i.e. P L = P L,max ). The length of the retreat is still solved 
using Eq. 5 , except now the value for P K corresponds to the (unsta- 
ble) local Laplace pressure ( | P L | > | P L,max | ) and is not linked to the 
ambient conditions. 

In summary, theoretically characterizing transpiration for a 
non-uniform ambient necessitated an inversion in the order of op- 
erations. For the uniform humidity condition, the ambient imposed 
the local water activity, which was used to solve for the Laplace 
pressure and finally the transpiration rate. For the non-uniform 
ambient, on the other hand, we began with an evaporation rate 
imposed by the heat input, which was used to solve for the Laplace 
pressure and then finally the local humidity. 

In Fig. 14 (a), the relationship between the critical nanopore 
radius and the transpiration rate is shown. Each mass flow rate 
was plugged into Eq. 9 to solve for Q , which was then plugged 
into Eq. 3 to solve for the Laplace pressure that sustains the flow. 
The critical pore radius, corresponding to the maximum possible 
Laplace pressure, was obtained by equating Eq. 3 and Eq. 4 and 
numerically solving the resulting quadratic expression to give two 
roots of r p,c for the case of θR = 0 ◦. Finally, the root that obeys 
the physics of the hydraulics was chosen as the value of r p,c . The 
multiple curves account for different choices in the tree height 
( H = 10 m, 10 0 m, or 1,0 0 0 m) and leaf thickness ( t = 1 µm or 
10 µm). 

The curves illustrate that the critical pore size decreases as the 
transpiration rate increases, because the corresponding increase in 
the Darcy and Poiseuille pressures requires a larger suction (i.e. 
Laplace) pressure. For a given transpiration rate and leaf thickness, 
increasing the tree height causes an almost-linear decrease in the 
critical pore radius. This is because the hydrostatic pressure, and 
to a lesser extent the viscous Poiseuille losses in the tubes, are in- 
creasing while the Darcy pressure drop stays the same. The change 
in tree height has a dramatic effect on r p,c for both thin and thick 
leaves, where the hydrostatic pressure can overwhelm the Darcy 
pressure. For example, for a t = 1 µm leaf, r p,c decreases by an 
order of magnitude when changing H = 10 m ( r p , c ≈ 1,455 nm) 
to H = 100 m ( r p , c ≈ 145 nm), and r p,c decreases by two or- 
ders of magnitude when changing H = 10 m ( r p , c ≈ 1,455 nm) 
to H = 1,0 0 0 m ( r p , c ≈ 14 nm). Similarly, for a t = 10 µm leaf, 
r p,c decreases by an order of magnitude when changing H = 10 m 
( r p , c ≈ 1,446 nm) to H = 100 m ( r p , c ≈ 135 nm), and here we no- 
ticed that the whole transpiration rate range considered cannot be 
sustained when changing to H = 1,0 0 0 m. In this special case of 
t = 10 µm and H = 1,0 0 0 m, the product of an increase in both 
the viscous and hydrostatic pressures drops results in an unsus- 
tainable suction pressure. In contrast, changing the leaf thickness 
for a fixed height does not dramatically change the critical pore 
size at very small flow rates, but as the transpiration rate is in- 
creased the thicker leaf is observed to exhibit a faster cut off point 
where flow can no longer be sustained due to the increase in 
the associated Darcy pressure drop. This is seen for a H = 10 m, 
where the t = 1 µm leaf can sustain flow for the whole transpi- 
ration rate range considered, while the t = 10 µm leaf has a flow 
cut off point of ˙ m = 0.25 kg/s. Similarly, for the H = 100 m tall 
tree, the t = 1 µm sustains an increasing transpiration rate up 
to ˙ m = 0.25 kg/s but a thicker leaf of t = 10 µm could only sus- 
tain an increased flow rate until ˙ m = 0.034 kg/s. The H = 1,0 0 0 m 
tall and t = 1 µm thick leaf tree could sustain a flow rate up to 
˙ m = 0.034 kg/s but as explained above the H = 1,0 0 0 m tall and 

t = 10 µm thick leaf combines to form a suction pressure too much 
for the tree to sustain. The area beneath each curve corresponds 
to the evaporation-limited regime, where the Laplace pressure is 
less than the maximum value. The curves themselves represent the 
largest possible pore size to sustain a given flow rate, where the 
maximum Laplace pressure is required. In other words, the curves 

9 



N.L. Eyegheleme, K. Peng and J.B. Boreyko International Journal of Heat and Mass Transfer 183 (2022) 122121 

Fig. 14. (a) Graph of the critical nanopore size as a function of the transpiration rate, for six different tree geometries. Curves were obtained by combining Eqs. 3 and 4 and 
solving for the second of two roots from the resulting quadratic expression. Curves extend across the evaporation-limited regime, coming to a halt at the pressure-limited 
regime where ˙ m = ˙ m max . (b) The critical pore radius is graphed as a function of the nanopore’s receding contact angle, for three fixed choices of transpiration rate. The tube 
height was H = 10 m and the leaf thickness was t = 1 µm). 
themselves represent the pressure-limited regime, while the phase 
space above the curves is not obtainable. 

No longer assuming a fixed θR = 0 ◦, in Fig. 14 (b) r p,c is plot- 
ted against θR for three different transpiration rates. The numeri- 
cal scheme to solve for r p,c is the same as that already discussed 
for Fig. 14 (a). Increasing θR decreases the maximum Laplace pres- 
sure possible for a given nanopore radius, which explains the cor- 
responding non-linear decrease in r p,c required to sustain a given 
transpiration rate. For example, increasing the receding contact an- 
gle by a factor of four from 15 ◦ to 60 ◦ reduces the critical pore size 
by about a factor of at least 1.9. The curves also reveal that increas- 
ing ˙ m results in a disproportionate decrease in r p,c for any given 
θR , for example r p,c increases from 1,223 nm to 1,454 nm for an 
order of magnitude decrease in ˙ m and increases from 1,223 nm to 
1,484 nm for five orders of magnitude decrease in ˙ m , and in both 
cases θR = 0 ◦. 

Fig. 15 illustrates how the suction pressure requirement can 
vary widely as the transpiration rate is continuously varied from 
˙ m = 0–20 g/s. In each graph, the required Laplace pressure is plot- 

ted against the transpiration rate, with each curve coming to an 
abrupt halt if reaching ˙ m max (and the corresponding P L,max ). Each of 
the six graphs depicts a different combination of tree heights and 
leaf thicknesses, with the three data series in turn representing dif- 
ferent choices in nanopore radius. The general trend is that, as ˙ m 
increases, the hydrostatic pressure remains fixed while the Darcy 
and Poiseuille pressure drops increase. This increases the suction 
requirement, hence the increase in P L . For example, increasing r p,c 
by a factor of 10 for any given transpiration rate causes a reduction 
of the Darcy pressure drop by a factor of 100. 

Fig. 15 (a) shows that for a 10 m tall tree with a leaf thickness 
of t = 1 µm, transpiration is possible over the full range of ˙ m = 0–
20 g/s flow rates for the moderate ( r p = 10 nm) and large (100 nm) 
nanopores. For the r p = 1 nm case, on the other hand, the massive 
Darcy pressure drop resulted in a maximal transpiration rate of 
only ˙ m max = 4.3 g/s. The r p = 1 nm tree exhibited the largest max- 
imum suction pressure of | P L,max |= 145.6 MPa, which may seem 
counter-intuitive considering it exhibits the smallest range of tran- 
spiration rates. However, as discussed in the previous section, the 
proportionate increase in P L with decreasing r p is always more than 
offset by the non-linear increase in Darcy pressure. 

In Fig. 15 (b), the tree was made taller ( H = 100 m) while re- 
taining a leaf thickness of t = 1 µm. The resulting increase in 
the hydrostatic and Poiseuille pressure drops has a noticeable ef- 
fect on the required suction pressure for the r p = 10 nm and 
100 nm leaves. Specifically, the pressure curves are shifted upward 
by about an order of magnitude, while the slope of the curves be- 
comes weaker especially for the r p = 100 nm case where the curve 
is virtually flat. This is because the hydrostatic pressure becomes 
entirely dominant for r p = 100 nm and appreciable for r p = 10 nm, 

relative to the Darcy pressure. However, in both cases, transpira- 
tion was still possible over the entire range of considered flow 
rates ( ˙ m = 0–20 g/s). The curve for the r p = 1 nm leaf is essen- 
tially unchanged from Fig. 15 (a). This is because the Darcy pres- 
sure ranges from P D ∼ 10–100 MPa at appreciable flow rates, which 
overwhelms even the increased hydrostatic pressure of 0.98 MPa. 

When increasing the tree height still further to H = 1,0 0 0 m 
in Fig. 15 (c), even the maximal Laplace pressure ( - 1.45 MPa) 
of the r p = 100 nm leaf can no longer hold the water columns 
against gravity (9.8 MPa). For the r p = 10 nm leaf, the pressure 
curve is shifted upward by another order of magnitude with its 
slope flattened even more. The full range of transpiration rates can 
no longer be sustained, with a maximum flow rate of 13.3 g/s. This 
is still superior to the r p = 1 nm leaf, which reaches its maximum 
Laplace pressure at a flow rate of only 4.0 g/s. These findings indi- 
cate that the optimal choice for nanopore size tends to correspond 
to the largest possible value, as long as it still readily overcomes 
the hydrostatic pressure requirement. 

Comparing Fig. 15 (a) and (d), we see the effect of making the 
leaf thicker while keeping the height constant for the three pore 
radii considered. A thicker leaf increases the contribution of the 
Darcy pressure drop to the suction pressure at any given transpi- 
ration rate, such that increasing the leaf thickness by a factor of 10 
causes the maximum sustainable Laplace pressure to be reached 
at a transpiration rate of only 0.5 g/s for the 1 nm pore radius, as 
opposed to 4.3 g/s in Fig. 15 (a). The increase in the viscous pres- 
sure drop causes the maximum Laplace pressure to be reached at 
a transpiration rate of 4.3 g/s for the 10 nm pore radius, whereas 
for the thinner leaf in Fig. 15 (a) the flow was sustained through the 
range plotted. For r p = 100 nm, the large permeability mitigates the 
increased viscous effect and transpiration was still possible across 
the considered range of ˙ m = 0–20 g/s. Figs. 15 (e) and (f) similarly 
increase the leaf thickness to t = 10 µm while exhibiting the same 
tree height as Figs. 15 (b) and (c), respectively. An analogous trend 
is observed, where the pressure curves shift upward and therefore 
terminate at an earlier ˙ m max , especially for the smaller pore sizes 
which are most sensitive to the Darcy pressure. 

Fig. 16 plots the transpiration rate and menisci retreat distance 
(if any), as a function of the heat being absorbed by the syn- 
thetic leaf. The four graphs vary the tree height ( H = 10 m and 
100 m) and leaf thickness ( t = 1 µ m and 10 µ m) while fixing 
the nanopore radius at r p = 1 nm. The transpiration rate was cal- 
culated using Eq. 8 and increases linearly with ˙ Q , until reaching a 
plateau value of ˙ m max that corresponds to the maximum possible 
suction pressure ( P L,max ). Any further increase in ˙ Q cannot increase 
the flow rate, as the tree has crossed over from the evaporation- 
limited (i.e. heat-limited) regime to the pressure-limited regime. 

For Fig. 16 a ( H = 10 m and t = 1 µ m), the maximum transpi- 
ration rate of ˙ m = 4 . 28 g/s is reached at a critical heater power of 
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Fig. 15. (a–f) Laplace pressure versus the transpiration rate for 18 different tree geometries. This suction pressure is calculated from summing up the pressure drops across 
the synthetic tree ( Eq. 3 ) to achieve any given flow rate. The transition from the evaporation-limited to pressure-limited regimes occurs at the end of each curve, where the 
value of ˙ m max depended on the tree geometry. 
˙ Q c = 10 . 20 kW. These numbers are approximately the same when 

the tree height is increased from H = 10 m to H = 100 m ( Fig. 16 
b), due to the overwhelming dominance of the Darcy pressure 
drop when r p = 1 nm, as explained earlier. In Figs. 16 (c) and (d), 
increasing the leaf thickness (and Darcy pressure) by a factor of 
10 results in a 10-fold decrease in the maximal transpiration rate 
( ˙ m = 0.428 g/s). The heater power at which this crossover occurs is 
also reduced by an order of magnitude, to ˙ Q c = 1 . 02 kW. 

For all four curves, the retreat distance is initially zero be- 
cause maximum Laplace pressure has not yet been reached. For 
heater powers that exceed the critical value ( ˙ Q > ˙ Q c ), the evapora- 
tion mass flow rate can no longer be matched by even the maxi- 
mal liquid mass flow rate. Therefore, the menisci must retreat until 
reaching equilibrium. The retreat distance is calculated by solving 
for the (unattainable) suction pressure value that would conserve 
mass Eqs. 3 and (8) and plugging it into Eq. 5 as P K , i.e. the equiv- 
alent local Kelvin pressure acting on the menisci. Finally, Eq. 5 is 
solved for the retreat distance δ where equilibrium is achieved at 
a flow rate corresponding to P L,max . Intuitively, the retreat distance 
increases (non-linearly) with increasing values of ˙ Q > ˙ Q c . The ex- 
tent of retreat is nearly independent of the tree height but greatly 
affected by the thickness of the leaves. For example, for ˙ Q = 12 kW 
the retreat is δ∼ 27 pm when t = 1 µ m, compared to δ∼ 16 nm 
when t = 10 µ m. Note that this approach assumes that, as the 
menisci retreat, an increasing portion of the heat input to the leaf 
will no longer be used for pure evaporation. In cases where this 
assumption is not valid (i.e. all heat must be used for evaporation), 
the leaf would simply dry out for heat values exceeding ˙ Q c instead 
of maintaining ˙ m max . 

Fig. 17 is equivalent to Fig. 16 , but with a larger fixed nanopore 
radius of r p = 10 nm. For Fig. 17 a ( H = 10 m and t = 1 µ m), the 

maximum transpiration rate was never reached for the considered 
range of ˙ Q c = 1 − 12 kW, such that the leaf always remained fully 
hydrated. This was also observed when increasing the tree height 
from H = 10 m to H = 100 m ( Fig. 17 b). In other words, the Darcy 
pressure drop is still dominant over gravity, but at the same time 
is reduced substantively relative to the r p = 1 nm tree to avoid the 
pressure-limited regime. In Figs. 17 (c) and (d), the increased leaf 
thickness (and Darcy pressure) resulted in a maximum transpira- 
tion rate of ˙ m = 4 . 26 g/s at ˙ Q c = 10 . 12 kW for the H = 10 m tall 
tree, and ˙ m = 4 . 0 g/s reached at ˙ Q c = 9 . 52 kW for the H = 100 m 
tall tree. The taller tree switched to the pressure-limited regime at 
a slightly smaller critical heat input, due to its more appreciable 
hydrostatic pressure drop reducing the pressure available for vis- 
cous flow. As in Fig. 16 , the retreat distance increased non-linearly 
with ˙ Q > ˙ Q c , with δ∼10 pm for the r p = 10 nm and t = 10 µm tree 
being comparable to the prior case of r p = 1 nm and t = 1 µ m. 

Fig. 18 continuously varies the nanopore radius to show how 
it affects the local water activity (left y-axis) that corresponds to 
the maximum possible transpiration rate (right y-axis). For a non- 
uniform humidity environment, the water activity at the menisci 
is not initially known and differs from the far ambient value. Each 
value of r p is plugged into Eq. 4 , setting θR = 0 ◦ to get the corre- 
sponding maximum pressure, equating this to 1 , and finally solv- 
ing for a l . Increasing the pore size resulted in increased water ac- 
tivities, which is intuitive because the smaller magnitude of the 
Laplace and Kelvin pressures necessitates a higher local humidity. 
The four curves of a l versus r p in Figs. 18 (a)–(d) are identical, as 
a l is independent of the tube height and leaf thickness. 

Conversely, the maximum transpiration rate is strongly depen- 
dent on these variables, as they affect the hydrostatic and vis- 
cous pressure drops that determine the flow rate ( Eq. 3 ). For the 
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Fig. 16. (a–d) The transpiration rate (left y-axis) and retreat distance (right y-axis) as functions of applied heater power for various H and t and fixed r p = 1 nm. Values 
for ˙ m were obtained by solving Eqs. 3, 8 , and 9 , where the curves plateaued when the associated Laplace pressure became maximal (i.e. pressure-limited regime). Menisci 
retreat, exclusive to the pressure-limited regime, was determined from Eq. 5 using an average linear conductance ratio of β = 1.49 × 10 −4 corresponding to r p = 1 nm. 

Fig. 17. Equivalent graphs to Fig. 16 , but with r p = 10 nm (and β = 1.49 × 10 −5 ) instead of r p = 1 nm. In this case, only (c) and (d) exhibit the pressure-limited regime and 
menisci retreat over the range of heat inputs considered. 
short trees, Fig. 18 (a) and (c), the maximum transpiration rate in- 
creases monotonically with r p due to the decrease in the domi- 
nant Darcy pressure drop. For the taller trees, Fig. 18 (b) and (d), 
the ˙ m max curves reach a maximum at r p,c ≈ 62 nm for t = 1 µ m 
and r p,c ≈ 72 nm for t = 10 µ m. Beyond these peaks, the benefit 
of decreasing the Darcy pressure with increasing r p is no longer 
worth the decrease in | P L,max | . Beyond the range of values shown 
here, these curves will eventually drop to ˙ m max → 0, once the en- 
tire maximum Laplace pressure is consumed by the hydrostatic 
pressure in the tubes. Considering that water at the menisci must 
be evaporating to sustain transpiration, an important constraint 
is a l > a ∞ for the concentration boundary layer above the leaf. 
This breaks down beneath r p = 1 nm for a ∞ = 0.5 and beneath 
r p = 3 nm for a ∞ = 0.75, such that ˙ m max → 0. In other words, at 
a sufficiently small nanopore radius, the maximum Laplace pres- 
sure is not achievable because its corresponding Kelvin pressure 
would preclude the possibility of evaporation. Of course, smaller 

flow rates where | P L | < | P L,max | are still possible, as these occur at 
larger local water activities. 

Fig. 19 similarly plots the local water activity and maximum 
transpiration rate, but now for varying receding contact angles and 
a fixed r p = 1 nm. Increasing θR increases the minimum possible 
radius of curvature, which decreases the magnitude of the max- 
imum possible Laplace and Kelvin pressures. This results in the 
trend of an increased a l (corresponding to the maximum tran- 
spiration rate) with increasing θR . Changing the tube height from 
H = 10 m to 100 m did not change the shape of the ˙ m max curves, 
due to the preeminence of the Darcy pressure. Changing the leaf 
thickness decreased the ˙ m max curves by about an order of mag- 
nitude. Analogous with the previous figure, these curves abruptly 
terminated beneath a critical receding contact angle where the 
menisci became saturated with respect to the ambient humidity. 
This crossover from evaporation to condensation for menisci at the 
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Fig. 18. Graphs plotting the local water activity (left y-axis) and maximum transpiration rate (right y-axis) as functions of nanopore radius. These variables are calculated 
from Eqs. 1, 3, 4 , and 9 for θR = 0 ◦ , varying β ( Eq. 6 ), and ambient humidities of either 50% or 75%. The tree geometry was varied as: (a) H = 10 m and t = 1 µm, (b) 
H = 100 m and t = 1 µm, (c) H = 10 m and t = 10 µm, and (d) H = 100 m and t = 10 µm. Note that ˙ m max corresponding to the maximum Laplace pressure is not possible 
beneath a critical r p where the local humidity matches the ambient one. 

Fig. 19. Plots of the local water activity (left y-axis) and maximum transpiration rate (right y-axis) as functions of the receding contact angle. Curves are calculated from 
a combination of Eqs. 2, Eq. 3, Eq. 9 and Eq. 1 for r p = 1 nm and an ambient humidity of either 50% or 70%. The different graphs correspond to tree geometries of: (a) 
H = 10 m and t = 1 µm, (b) H = 100 m and t = 1 µm, (c) H = 10 m and t = 10 µm, and (d) H = 100 m and t = 10 µm. 
maximum Laplace pressure occurred at θR < 50 ◦ for a ∞ = 0.5 and 
θR < 75 ◦ for a ∞ = 0.75. 
4. Conclusions 

We analytically modeled the stability and transpiration rate of 
synthetic trees across a wide variety of tree geometries and en- 
vironmental conditions. Our model tree system was comprised 
of an upper nanoporous film that was connected to an array of 
vertically-oriented tubes of millimetric diameter. In particular, we 
found that whether or not a diffusive diffusive boundary layer ex- 
ists above the synthetic leaf dramatically affects the physics of the 
transpiration process as summarized visually in Fig. 20 . Applying 
our model over a wide parameter space, the following advances 

were made regarding our understanding of transpiration in syn- 
thetic trees: 

(i) Experimental reports of synthetic trees have alternately used 
a dry gas flow to result in a negligible boundary layer over the 
leaf [3,20–23] , or a natural ambient with a diffusive boundary layer 
[26–29,31] . In hindsight, these two approaches result in fundamen- 
tally distinct physics for the resulting transpiration, which was not 
properly appreciated and contextualized until the present work. 

(ii) The stresses acting on the evaporating water menisci within 
a synthetic leaf vary depending on the environmental conditions. 
In the absence of an appreciable diffusive boundary layer, the con- 
trolled ambient humidity is equivalent to the local humidity just 
above a fully hydrated leaf. For this reason, the ambient humidity 
directly prescribes the Kelvin and Laplace pressures acting on the 
menisci. In contrast, in the presence of a diffusive boundary layer, 
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Fig. 20. Order of operations for modeling a synthetic tree’s hydraulics for a: (a) Uniform humidity environment, or (b) Non-uniform humidity environment. 
the local humidity is higher than that of the ambient and is not 
known a priori . Therefore, the Kelvin and Laplace pressures at the 
menisci must instead be determined by measuring and/or control- 
ling the liquid flow rate across the tree and back calculating the 
associated suction pressure. 

(iii) The steady-state transpiration rate is a dual function of 
the Laplace pressure generated within the leaf, which defines the 
sum of the pressure drops across the tree, and the tree’s geom- 
etry, which tunes the water’s flow rate for a given pressure drop. 
For relatively short synthetic trees ( H ! 10 m), the viscous pressure 
drop across the leaf is dominant over the hydrostatic and Poiseuille 
pressure drops across the vertical tubes. Therefore, the transpira- 
tion rate can be increased monotonically by increasing the radius 
(i.e. permeability) of the leaf’s nanopores. To date, reports on syn- 
thetic trees have tended to emphasize minimizing the nanopore 
size to maximize the Laplace suction [20,25] , but our finding in- 
dicates that for short trees it is actually the larger nanopores 
with weaker suction that result in the most effective transpiration. 
This is because the Darcy pressure is inverse to the square of the 
nanopore radius, whereas the Laplace suction is merely inverse to 
the nanopore radius. In contrast, for tall synthetic trees of order 
H ∼ 10 0–1,0 0 0 m, the hydrostatic pressure can dominate over the 
Darcy pressure under most flow conditions. In this case, decreasing 
the nanopore radius results in a higher transpiration rate, as the 
increased Laplace suction better overcomes the fixed hydrostatic 
load. 

(iv) When the Laplace pressure is beneath its maximal possible 
value, the transpiration rate is evaporation-limited. In this regime, 
the Laplace pressure and transpiration rate can be tuned over a 
wide range of values by varying the ambient humidity (for a uni- 
form humidity environment) or by varying the heat input to the 
leaf (for a non-uniform humidity environment). When the max- 
imum Laplace pressure is reached, the transpiration rate is now 
maximal and fixed, which we call the pressure-limited regime. The 
cross-over between the evaporation-limited and pressure-limited 
regimes depends purely upon the ambient humidity and nanopore 
radius for a pure vapor environment. For a non-uniform humidity 
environment, the cross-over instead depends on the evaporation 

rate (i.e. heat input to the leaf) and the geometry of the entire 
tree, which defines what suction is required for the liquid mass 
flow rate to balance the evaporative mass flow rate. 

(v) In a uniform humidity environment, the leaf is fully hy- 
drated when the ambient humidity is above a critical value that 
depends on the nanopore radius. Beneath this critical value, the 
Kelvin pressure imposed on the menisci exceeds the maximum 
possible Laplace suction that can be sustained, such that the 
menisci retreat within the leaf. Due to the evaporative vapor get- 
ting choked within the dried-out nanopores, the local humidity in- 
creases until reaching a retreat distance where the Kelvin stress 
now matches the maximum Laplace pressure. Conversely, in a non- 
uniform humidity environment, the menisci are shielded by a dif- 
fusive boundary layer such that the ambient environment does not 
dictate the local Kelvin stress or when the menisci retreat. In- 
stead, retreat would only occur when the heat input to the leaf 
corresponds to an evaporation rate that exceeds a critical value. 
Beyond this critical evaporation rate, even the maximum possi- 
ble Laplace pressure cannot preserve leaf hydration, such that the 
menisci must retreat until the evaporation rate is decreased. 

We hope that this model and discussions will help the future 
development of sophisticated and stable synthetic trees, whose 
capillary-induced hydraulics show much promise for various appli- 
cations in water harvesting, energy harvesting, and phase-change 
heat transfer systems. 
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