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Abstract—Uncertainty quantification under process variations
is an important topic in computational electromagnetics (EM)
and electronic design automation (EDA). The popular stochastic
methods become computationally inefficient when the number of
uncertain parameters grows. A promising technique to address
this challenge is tensor computation. This short paper reviews
some recent tensor methods for high-dimensional uncertainty
quantification in the field of EDA and computational EM.
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I. INTRODUCTION

Process variations, such as intrinsic randomness of material

properties, geometrical parameters and temperature, have been

a major concern in computational electromagnetics (EM)

and electronic design automation (EDA). It is essential to

accurately estimate and quantify the uncertainty caused by

process variations. The brute-force Monte Carlo (MC) method

require lots of simulation data, and each simulations if often

time-consuming. Therefore, the past decades have seen a great

success of applying advanced uncertainty quantification (UQ)

models (like stochastic spectral methods based on generalized

polynomial chaos [1]) to the EDA and computational electro-

magnetic problems [2, 3]. However, the efficiency of most UQ

models degrades while the number of uncertain parameters

increases since the required number of simulation samples

often grow very fast.

Tensor computation is a powerful tool to address the curse

of dimensionality in many engineering domains. Leveraging

low-rank models in a high dimension, tensor methods may

reduce the problem size from exponential function to a (nearly)

linear one on the number of uncertain parameter. Due to their

impressive performance, tensor methods have been widely

used in EM [4–6] and EDA [7–12]. This paper will briefly

summarize some recent progress of this topic, emphasizing

tensor methods for building high-dimensional generalized

polynomial chaos (gPC) models.

II. SHORT BACKGROUND

In most computational EM and EDA problems, random

parameters ξ ∈ R
d describe a set of process variations. The

stochastic spectral method approximates the interested metric

y(ξ) as the summation of a series of orthonormal polynomial

basis functions [1]:

y(ξ) ≈
∑

α∈Θ

cαΨα(ξ), (1)

where α is an index vector, Θ is the index set, and Ψα is a

polynomial basis function of degree |α| =
∑d

k=1 αk. In the

commonly used total degree scheme, |α| is bounded by order

p, leading to a total of
(d+p)!
d!p! terms of expansion.

A d-dim tensor X ∈ R
n1×···nd represents a d-dimensional

data array, and it becomes a matrix when d = 2. A d-dim

rank-R tensor can be written as the sum of R rank-1 tensors,

known as a CP decomposition:

X =
R
∑

r=1

u
(1)
r ◦ u(2)

r · · · ◦ u(d)
r . (2)

While many other tensor decomposition formats exist [13], we

mainly focus on CP-format-based UQ models in this survey.

III. SURVEY OF RECENT WORK

As summarized in Table I, recently three tensor meth-

ods have been developed to efficiently construct a high-

dimensional gPC-like surrogate model for device and circuit

simulation with uncertainties.

A. Pseudo Projection via Tensor Recovery [7, 8]

For a standard gPC expansion like Eq. (1), pseudo projection

is an accurate approach to compute its coefficients. Specifi-

cally, some quadrature points and weights corresponding to ξ

and their simulation values are needed to calculate a series of

numerical integration.

In [7, 8], the numerical integration is formulated as the

inner product of two tensors cα = 〈Y,Wα〉, where Y is

filled with (p+ 1)
d

sample simulations and Wα is a known

rank-one tensor constructed by a gPC basis function and all

quadrature weights. Given limited simulations to fill the entries

of Y , the key idea of tensor recovery is to predict the missing

elements based on the low-rankness of Y . Combining the low-

rank constraint via specifying a predefined rank and the sparse

constraint of coefficients cα, the sample simulation tensor Y
is approximated by a rank-R tensor X via solving:

min
{u

(k)
1 ,...,u

(k)
R

}d

k=1

1

2
‖PΩ(

R
∑

r=1

u
(1)
r · · · ◦ u(d)

r − Y)‖2F

+λ

p
∑

|α|=0

|〈
R
∑

r=1

u
(1)
r · · · ◦ u(d)

r ,Wα〉|,

(3)

where P is a projection operator and Ω is the sampling set. An

alternating direction method of multipliers (ADMM) algorithm
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TABLE I
SUMMARY OF THREE TENSOR METHODS FOR UNCERTAINTY QUANTIFICATION

Method Tensorized objective Rank determination Adaptive sampling Application

Tensor recovery [7, 8] Sample simulations Cross validation × MEMS, Electronics & Photonics IC
Functional approximation [9] Interested function Greedy X (application-specified) SRAM failure rate estimation

Tensor regression [10, 11] Coefficients Automatic determined X Electronics & Photonics IC

is proposed to solve (3). This method has been applied to

solve high-dimensional uncertainty quantification problems in

analog IC, photonic IC and MEMS design.

However, there are two unsolved fundamental questions [7].

Firstly, the tensor rank R needs to be tuned, e.g. via cross

validation. Secondly, how to select the sample set Ω is

unknown.

B. Tensorized Functional Approximation for Analog IC [9]

Assume the interested metric y(ξ) is in a tensor space S =
S1 ⊗S2 ⊗Sd, with ⊗ denotes tensor product. Let T1 ∈ S be

a rank-one tensor subset. The tensor space has the property

that S = span(T1), such that each element y(ξ) in S can be

expressed as a linear combination of rank-one tensors. In [9],

the interested metric is approximated by R rank-one tensors:

y(ξ) ≈
R
∑

r=1

brηr(ξ), ηr ∈ T1, br ∈ R, (4)

where br denotes the corresponding r-th normalization con-

stant, and ηr is a rank-one function represented as the expan-

sion of polynomial basis functions. Since the optimal rank R?

is not known as a-priori, a greedy scheme is used to search for

the optimal rank via increasing rank iteratively until conver-

gence. An adaptive algorithm with sparsity constraint is used

to solve each rank-one update. The low-rank functional ap-

proximation model is validated in estimating high-dimensional

SRAM circuit failure rate, showing significantly faster than

MC method. A domain-specified adaptive sampling method is

also proposed to accelerate the failure rate estimation.

C. Tensor-Regression-based Coefficient Estimation [10, 11]

The two unsolved challenges of [7, 8] are investigated in

[10, 11]. In [10, 11] the index set of Eq. (1) is chosen as

the full tensor product, leading to (p+ 1)d basis functions.

The interested metric is approximated as the inner product

of two tensors y(ξ) ≈ 〈X ,B(ξ)〉, where X is the coefficient

tensor, and B(ξ) is a rank-one tensor constructed by the tensor

product of univariate basis functions. To reduce the number of

unknown variables, the coefficient tensor X is approximated

by a rank-R tensor. To estimate the optimal tensor rank,

a group `q/`2-norm regularization function g(X ) is used

to shrink the rank. Given N sample pairs {ξn, y(ξn)}
N

n=1,

the coefficients X can be estimated via solving a regression

problem:

min
{u

(k)
1 ,...,u

(k)
R

}d

k=1

h(X ) + λg(X ) with

h(X ) = 1
2

N
∑

n=1

(

y(ξn)− 〈
∑R

r=1 u
(1)
r · · · ◦ u

(d)
r ,B(ξn)〉

)2

,

g(X ) = ‖v‖q, vr =

(

d
∑

k=1

‖u
(k)
r ‖22

)

1
2

∀r = [1, R], q ∈ (0, 1] .

(5)

To make (5) tractable, a variational equality is employed to

reformulate the problem. An efficient alternating minimization

solver with analytical solutions in each sub-step is proposed

to solve the optimization problem. The initial rank is set

as its upper bound, and the algorithm can reduce it auto-

matically. To further reduce the simulation cost, an adaptive

sampling method combining a Voronoi-cell-based exploration

and nonlinearity-based exploitation is adopted. The tensor

regression method has been verified by high dimensional

synthetic and realistic circuit benchmarks for both surrogate

building and sensitivity analysis.

IV. REMARKS

The paper has briefly surveyed some recent tensor methods

for high-dimensional uncertainty quantification of process

variations in EDA and computaitonal EM. There exist some

open questions that are worth further investigations. Firstly,

it is desired to discover application-specific optimal tensor

network structure. Secondly, although some heuristic sampling

methods for tensor-based models have been proposed in some

literature [10, 11], the statistical and theoretical guarantees still

need further investigation. Finally, it is worth extending the

tensor-based uncertainty quantification models to fit multiple

interested metrics y(ξ) simultaneously.

We would also like to remark that tensor methods have

attracted growing interest in the broader community of compu-

tational EM [4–6]. In the community of scientific computing,

there have also been increasing interesting works of applying

tensor methods to solve function approximation [14, 15],

stochastic PDE [16], stochastic optimal control [17] problems

and so forth.
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