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Abstract—Uncertainty quantification under process variations
is an important topic in computational electromagnetics (EM)
and electronic design automation (EDA). The popular stochastic
methods become computationally inefficient when the number of
uncertain parameters grows. A promising technique to address
this challenge is tensor computation. This short paper reviews
some recent tensor methods for high-dimensional uncertainty
quantification in the field of EDA and computational EM.
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I. INTRODUCTION

Process variations, such as intrinsic randomness of material
properties, geometrical parameters and temperature, have been
a major concern in computational electromagnetics (EM)
and electronic design automation (EDA). It is essential to
accurately estimate and quantify the uncertainty caused by
process variations. The brute-force Monte Carlo (MC) method
require lots of simulation data, and each simulations if often
time-consuming. Therefore, the past decades have seen a great
success of applying advanced uncertainty quantification (UQ)
models (like stochastic spectral methods based on generalized
polynomial chaos [1]) to the EDA and computational electro-
magnetic problems [2, 3]. However, the efficiency of most UQ
models degrades while the number of uncertain parameters
increases since the required number of simulation samples
often grow very fast.

Tensor computation is a powerful tool to address the curse
of dimensionality in many engineering domains. Leveraging
low-rank models in a high dimension, tensor methods may
reduce the problem size from exponential function to a (nearly)
linear one on the number of uncertain parameter. Due to their
impressive performance, tensor methods have been widely
used in EM [4-6] and EDA [7-12]. This paper will briefly
summarize some recent progress of this topic, emphasizing
tensor methods for building high-dimensional generalized
polynomial chaos (gPC) models.

II. SHORT BACKGROUND

In most computational EM and EDA problems, random
parameters & € R describe a set of process variations. The
stochastic spectral method approximates the interested metric
y(&) as the summation of a series of orthonormal polynomial
basis functions [1]:

y(&) = Y ca¥alé), )

acO

where « is an index vector, © is the index set, and ¥, is a
polynomial basis function of degree |a| = 22:1 ay. In the
commonly used total degree scheme, || is bounded by order
p, leading to a total of ((ZJ!?!)I terms of expansion.

A d-dim tensor X' € R™ X" represents a d-dimensional
data array, and it becomes a matrix when d = 2. A d-dim
rank-R tensor can be written as the sum of R rank-1 tensors,
known as a CP decomposition:

R
X=> uPoul®.  .oul®. 2)
r=1

While many other tensor decomposition formats exist [13], we
mainly focus on CP-format-based UQ models in this survey.

III. SURVEY OF RECENT WORK

As summarized in Table I, recently three tensor meth-
ods have been developed to efficiently construct a high-
dimensional gPC-like surrogate model for device and circuit
simulation with uncertainties.

A. Pseudo Projection via Tensor Recovery [7, 8]

For a standard gPC expansion like Eq. (1), pseudo projection
is an accurate approach to compute its coefficients. Specifi-
cally, some quadrature points and weights corresponding to &
and their simulation values are needed to calculate a series of
numerical integration.

In [7, 8], the numerical integration is formulated as the
inner product of two tensors ¢ = (Y, W,), where ) is
filled with (p+ 1)* sample simulations and W, is a known
rank-one tensor constructed by a gPC basis function and all
quadrature weights. Given limited simulations to fill the entries
of ), the key idea of tensor recovery is to predict the missing
elements based on the low-rankness of ). Combining the low-
rank constraint via specifying a predefined rank and the sparse
constraint of coefficients co, the sample simulation tensor )
is approximated by a rank-R tensor X via solving:

R
1
SIPa(} u - oul® — V)|

min
(k) (k)vd
fui™ug b
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where PP is a projection operator and 2 is the sampling set. An
alternating direction method of multipliers (ADMM) algorithm
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TABLE I
SUMMARY OF THREE TENSOR METHODS FOR UNCERTAINTY QUANTIFICATION

Method Tensorized objective

Rank determination

Adaptive sampling Application

Tensor recovery [7, 8]
Functional approximation [9]
Tensor regression [10, 11]

Sample simulations
Interested function
Coefficients

Greedy

Cross validation X

Automatic determined

MEMS, Electronics & Photonics IC
SRAM failure rate estimation

V' (application-specified)
v Electronics & Photonics IC

is proposed to solve (3). This method has been applied to
solve high-dimensional uncertainty quantification problems in
analog IC, photonic IC and MEMS design.

However, there are two unsolved fundamental questions [7].
Firstly, the tensor rank R needs to be tuned, e.g. via cross
validation. Secondly, how to select the sample set (2 is
unknown.

B. Tensorized Functional Approximation for Analog IC [9]

Assume the interested metric y(€) is in a tensor space S =
S ® 82 ® S?, with ® denotes tensor product. Let 71 € S be
a rank-one tensor subset. The tensor space has the property
that S = span(77), such that each element y(£) in S can be
expressed as a linear combination of rank-one tensors. In [9],
the interested metric is approximated by R rank-one tensors:

R
y(g) ~ Zbrnr(é)v nr € T1,br €R, (€]
r=1

where b, denotes the corresponding r-th normalization con-
stant, and 7, is a rank-one function represented as the expan-
sion of polynomial basis functions. Since the optimal rank R*
is not known as a-priori, a greedy scheme is used to search for
the optimal rank via increasing rank iteratively until conver-
gence. An adaptive algorithm with sparsity constraint is used
to solve each rank-one update. The low-rank functional ap-
proximation model is validated in estimating high-dimensional
SRAM circuit failure rate, showing significantly faster than
MC method. A domain-specified adaptive sampling method is
also proposed to accelerate the failure rate estimation.

C. Tensor-Regression-based Coefficient Estimation [10, 11]

The two unsolved challenges of [7, 8] are investigated in
[10, 11]. In [10, 11] the index set of Eq. (1) is chosen as
the full tensor product, leading to (p + 1)? basis functions.
The interested metric is approximated as the inner product
of two tensors y(&) =~ (X, B(£)), where X is the coefficient
tensor, and B(&) is a rank-one tensor constructed by the tensor
product of univariate basis functions. To reduce the number of
unknown variables, the coefficient tensor X is approximated
by a rank-R tensor. To estimate the optimal tensor rank,
a group {,/¢y-norm regularization function g(X) is used
to shrink the rank. Given N sample pairs {£,,,y(£,)}".

n=1°

the coefficients X can be estimated via solving a regression
problem:

min h(X) + Ag(X) with
(Rl

N
WX)=3 %

n=1

(w(g) — (S0l oul® B,

1

d 2
o) = vl = (3 1018) " vr = LR o < 0.1,
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To make (5) tractable, a variational equality is employed to
reformulate the problem. An efficient alternating minimization
solver with analytical solutions in each sub-step is proposed
to solve the optimization problem. The initial rank is set
as its upper bound, and the algorithm can reduce it auto-
matically. To further reduce the simulation cost, an adaptive
sampling method combining a Voronoi-cell-based exploration
and nonlinearity-based exploitation is adopted. The tensor
regression method has been verified by high dimensional
synthetic and realistic circuit benchmarks for both surrogate
building and sensitivity analysis.

IV. REMARKS

The paper has briefly surveyed some recent tensor methods
for high-dimensional uncertainty quantification of process
variations in EDA and computaitonal EM. There exist some
open questions that are worth further investigations. Firstly,
it is desired to discover application-specific optimal tensor
network structure. Secondly, although some heuristic sampling
methods for tensor-based models have been proposed in some
literature [10, 11], the statistical and theoretical guarantees still
need further investigation. Finally, it is worth extending the
tensor-based uncertainty quantification models to fit multiple
interested metrics y (&) simultaneously.

We would also like to remark that tensor methods have
attracted growing interest in the broader community of compu-
tational EM [4—6]. In the community of scientific computing,
there have also been increasing interesting works of applying
tensor methods to solve function approximation [14, 15],
stochastic PDE [16], stochastic optimal control [17] problems
and so forth.

ACKNOWLEDGMENT

Authors acknowledge support from NSF grants #1763699
and #1846476.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 17,2022 at 06:25:49 UTC from IEEE Xplore. Restrictions apply.



REFERENCES 377, 2018.

[1] D. Xiu, Numerical Methods for Stochastic Computations: A
Spectral Method Approach. Princeton University Press, 2010.

[2] A. Kaintura, T. Dhaene, and D. Spina, “Review of polynomial
chaos-based methods for uncertainty quantification in modern
integrated circuits,” Electronics, vol. 7, no. 3, p. 30, 2018.

[3] J. Zhang, C. Zhang, F. Feng, W. Zhang, J. Ma, and Q.-J.
Zhang, “Polynomial chaos-based approach to yield-driven EM
optimization,” IEEE Trans. Microw. Theory Techn., vol. 66,
no. 7, pp. 3186-3199, 2018.

[4] A. C. Yiicel, L. J. Gomez, and E. Michielssen, “Compression
of translation operator tensors in FMM-FFT-accelerated SIE
solvers via Tucker decomposition,” IEEE Antennas Wireless
Propag. Lett., vol. 16, pp. 2667-2670, 2017.

[S] Z. Chen, L. J. Gomez, S. Zheng, A. C. Yucel, Z. Zhang, and
V. 1. Okhmatovski, “Sparsity-aware precorrected tensor train
algorithm for fast solution of 2-D scattering problems and
current flow modeling on unstructured meshes,” IEEE Trans.
Microw. Theory Techn., vol. 67, no. 12, pp. 4833-4847, 2019.

[6] C. Qian and A. C. Yucel, “On the compression of translation
operator tensors in FMM-FFT-accelerated SIE simulators via
tensor decompositions,” IEEE Trans. Antennas Propag., pp. 1-
1, 2020.

[7] Z.Zhang, T.-W. Weng, and L. Daniel, “Big-data tensor recovery
for high-dimensional uncertainty quantification of process vari-
ations,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 7,
no. 5, pp. 687-697, 2016.

[8] Z.Zhang, K. Batselier, H. Liu, L. Daniel, and N. Wong, “Tensor
computation: A new framework for high-dimensional problems
in EDA,’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 36, no. 4, pp. 521-536, 2016.

[9] X. Shi, H. Yan, Q. Huang, J. Zhang, L. Shi, and L. He, “Meta-
model based high-dimensional yield analysis using low-rank
tensor approximation,” in Proc. Design Autom. Conf, 2019, pp.
1-6.

[10] Z. He and Z. Zhang, “High-dimensional uncertainty quantifi-
cation via active and rank-adaptive tensor regression,” in Proc.
Electr. Perform. Electron. Packag. Syst., 2020, pp. 1-3.

[11] ——, “High-dimensional uncertainty quantification via tensor
regression with rank determination and adaptive sampling,”
accepted by IEEE Trans. Compon. Packag. Manuf. Technol.,
doi: 10.1109/TCPMT.2021.3093432, arXiv:2103.17236.

[12] Z. Zhang, X. Yang, I. V. Oseledets, G. E. Karniadakis,
and L. Daniel, “Enabling high-dimensional hierarchical uncer-
tainty quantification by ANOVA and tensor-train decomposi-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 1, pp. 63-76, 2014.

[13] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for signal
processing and machine learning,” IEEE Trans. Signal Process.,
vol. 65, no. 13, pp. 3551-3582, 2017.

[14] A. A. Gorodetsky and J. D. Jakeman, “Gradient-based opti-
mization for regression in the functional tensor-train format,” J.
Comput. Phys., vol. 374, pp. 1219-1238, 2018.

[15] C. Cui and Z. Zhang, “Uncertainty quantification of electronic
and photonic ICs with non-Gaussian correlated process varia-
tions,” in Proc. Intl. Conf. Computer Aided Design, 2018, pp.
1-8.

[16] S. Dolgov, B. N. Khoromskij, A. Litvinenko, and H. G.
Matthies, “Polynomial chaos expansion of random coefficients
and the solution of stochastic partial differential equations in the
tensor train format,” SIAM/ASA J. Uncertain. Quantif., vol. 3,
no. 1, pp. 1109-1135, 2015.

[17] A. Gorodetsky, S. Karaman, and Y. Marzouk, “High-
dimensional stochastic optimal control using continuous tensor
decompositions,” Int. J. Robot. Res., vol. 37, no. 2-3, pp. 340—

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 17,2022 at 06:25:49 UTC from IEEE Xplore. Restrictions apply.



