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Abstract—This work studies the porting and optimization
of the tensor network simulator QTensor on GPUs, with the
ultimate goal of simulating quantum circuits efficiently at scale
on large GPU supercomputers. We implement NumPy, PyTorch,
and CuPy backends and benchmark the codes to find the optimal
allocation of tensor simulations to either a CPU or a GPU.
We also present a dynamic mixed backend to achieve optimal
performance. To demonstrate the performance, we simulate
QAOA circuits for computing the MaxCut energy expectation.
Our method achieves 176× speedup on a GPU over the NumPy
baseline on a CPU for the benchmarked QAOA circuits to solve
MaxCut problem on a 3-regular graph of size 30 with depth
p = 4.

I. INTRODUCTION

Quantum information science (QIS) has a great potential to

speed up certain computing problems such as combinatorial

optimization and quantum simulations [1]. The development

of fast and resource-efficient quantum simulators to classically

simulate quantum circuits is the key to the advancement of

the QIS field. For example, simulators allow researchers to

evaluate the complexity of new quantum algorithms and to

develop and validate the design of new quantum circuits. An-

other important application is to validate quantum supremacy

and advantage claims.

One can simulate quantum circuits on classical computers

in many ways. The major types of simulation approaches are

full amplitude-vector evolution [2]–[5], the Feynman paths

approach [6], linear algebra open system simulation [7], and

tensor network contractions [8]–[10]. These techniques have

advantages and disadvantages. Some are better suited for small

numbers of qubits and high-depth quantum circuits, while

others are better for circuits with a large number of qubits

but small depth. Some are also tailored toward the accuracy

of simulation of noise in quantum computers.

For shallow quantum circuits the state-of-the-art technique

to simulate quantum circuits is currently arguably the tensor

network contraction method because of the memory efficiency

for the method relative to state vector methods that scale by

2N , where N is the number of qubits. This effectively limits

the state vector methods to quantum circuits with less than

50 qubits. The challenge with the tensor network methods is

determining the optimal contraction order, which is known

to be an NP-complete problem [8]. We choose to focus on

the simulation of the Quantum Approximate Optimization

Algorithm (QAOA) [11] given its importance to machine

learning and its suitability for the current state of the art with

noisy intermediate state quantum computers that generally

work with circuits of short depth.

In this work we ported and optimized the tensor net-

work quantum simulator QTensor to run efficiently on GPUs,

with the eventual goal to simulate large quantum circuits on

the modern and upcoming supercomputers. In particular, we

benchmarked QTensor on a NVIDIA DGX-2 server with a

V100 accelerator using the CUDA version 11.0. The perfor-

mance is shown for the full expectation value simulation of

the QAOA MaxCut problem on a 3-regular graph of size 30

with depth p = 4.

II. METHODOLOGY

A. QAOA Overview

The Quantum Approximate Optimization Algorithm is a

variational quantum algorithm that combines a parameterized

ansatz state preparation with a classical outer-loop algorithm

that optimizes the ansatz parameters. QAOA is used for

approximate solution of binary optimization problems [12]. A

solution to the optimization problem is obtained by measuring

the ansatz state on a quantum device. The quality of the QAOA

solution depends on the depth of the quantum circuit that

generated the ansatz and the quality of parameters for the

ansatz state.

A binary combinatorial optimization problem is defined on

a space of binary strings of length N and has m clauses. Each

clause is a constraint satisfied by some assignment of the bit

string. QAOA maps the combinatorial optimization problem

onto a 2N -dimensional Hilbert space with computational basis

vectors |z〉 and encodes C(z) as a quantum operator Ĉ diag-

onal in the computational basis. One of the most widely used

benchmark combinatorial optimization problems is MaxCut,

which is defined on an undirected unweighted graph. The goal

of the MaxCut problem is to find a partition of the graph’s

vertices into two complementary sets such that the number of

edges between the sets is maximized. It has been shown in
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[12] that on a 3-regular graph, QAOA with p = 1 produces a

solution with an approximation ratio of at least 0.6924.

A graph G = (V,E) of N = |V | vertices and m = |E|
edges can be encoded into a MaxCut cost operator over N

qubits by using m two-qubit gates.

Ĉ =
1

2

∑

(ij)∈E

1− σ̂z
iσ̂z

j (1)

The QAOA ansatz state |�γ, �β〉 is prepared by applying

p layers of evolution unitaries that correspond to the cost

operator Ĉ and a mixing operator B̂ =
∑

i∈V σ̂x
i . The initial

state is the equally weighted superposition state and maximal

eigenstate of B̂.

|�γ, �β〉p =

p∏

k=1

e−iβkB̂e−iγkĈ |+〉 (2)

The parameterized quantum circuit (2) is called the QAOA

ansatz. We refer to the number of alternating operator pairs p

as the QAOA depth.

The solution to the combinatorial optimization problem is

obtained by measuring the QAOA ansatz. The expected quality

of this solution is an expectation value of the cost operator in

this state.

〈C〉p = 〈�γ, �β|p C |�γ, �β〉p

The expectation value can be minimized with respect to

parameters �γ, �β. The optimization of �γ, �β can be performed

by using classical computation or by varying the parameters

and sampling many bitstrings from a quantum computer to

estimate the expectation value. Acceleration of the optimal

parameters search for a given QAOA depth p is the focus of

many approaches aimed at demonstrating the quantum advan-

tage. Examples include such methods as warm- and multistart

optimization [13], [14], problem decomposition [15], instance

structure analysis [16], and parameter learning [17].

In this paper we focus on application of a classical quan-

tum circuit simulator QTensor to the problem of finding the

expectation value 〈C〉p.

B. Tensor Network Contractions

Calculation of an expectation value of some observable in

a given state generated by some quantum circuit can be done

efficiently by using a tensor network approach. In contrast to

state vector simulators, which store the full state vector of

size 2N , QTensor maps a quantum circuit to a tensor network.

Each quantum gate of the circuit is converted to a tensor. An

expectation value 〈φ|Ĉ|φ〉 = 〈ψ|Û†ĈÛ |ψ〉 is then simulated

by contracting the corresponding tensor network. For more

details on how a quantum circuit is converted to a tensor

network, see [18], [19].

A tensor network is a collection of tensors, which in turn

have a collection of indices, where tensors share some indices

with each other. To contract a tensor network, we create

an ordered list of tensor buckets. Each bucket (a collection

of tensors) corresponds to a tensor index, which is called

bucket index. Buckets are then contracted one by one. The

contraction of a bucket is performed by summing over the

bucket index, and the resulting tensor is then appended to the

appropriate bucket. The number of unique indices in aggregate

indices of all bucket tensors is called a bucket width. The

memory and computational resources of a bucket contraction

scale exponentially with the associated bucket width. For more

information on tensor network contraction, see [20]–[22]. If

some observable Σ̂ acts on a small subset of qubits, most of

the gates in the quantum circuit Û cancel out when evaluating

the expectation value. The cost QAOA operator Ĉ is a sum of

m such terms, each of which could be viewed as a separate

observable. Each term generates a lightcone—a subset of

the problem that generates a tensor network representing the

contribution to the cost expectation value.

The expectation value of the cost for the graph G and

MaxCut QAOA depth p is then

〈C〉p (�γ,
�β) = 〈�γ, �β|Ĉ|�γ, �β〉

= 〈�γ, �β|
∑

jk∈E

1

2
(1− σ̂z

j σ̂z
k)|�γ, �β〉

=
|E|

2
−

1

2

∑

jk∈E

〈�γ, �β|σ̂z
j σ̂z

k|�γ, �β〉

≡
|E|

2
−

1

2

∑

jk∈E

ejk(�γ, �β),

where ejk is an individual edge contribution to the total cost

function. Note that the observable in the definition of ejk is

local to only two qubits; therefore most of the gates in the

circuit that generates the state |�γ, �β〉 cancel out. The circuit

after the cancellation is equivalent to calculating σ̂z
j σ̂z

k on

a subgraph S of the original graph G. These subgraphs can

be obtained by taking only the edges that are incident from

vertices at a distance p − 1 from the vertices j and k. The

full calculation of EG(�γ, �β) requires evaluation of |E| tensor

networks, each representing the value ejk(�γ, �β) for jk ∈ E.

C. Merged Indices Contraction

Since the contraction in the bucket elimination algorithm

is executed one index at a time, the ratio of computational

operations to memory read/write operations is small. This ratio

is also called the operational intensity or arithmetic intensity.

Having small arithmetic intensity hurts the performance in

terms of FLOPs: for each floating-point operation calculated

there are relatively many I/O operations, which are usually

slower. For example, to calculate one element of the resulting

matrix in a matrix multiplication problem, one needs to read

2N elements and perform 4N operations. The size of the

resulting matrix is similar to the input matrices. In contrast,

when calculating an outer product of two vectors, the size of

the resulting matrix is much larger than the combined size of

the input vectors; each element requires two reads and only

one floating-point operation.

To mitigate this limitation, we develop an approach for

increasing the arithmetic intensity, which we call merged
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indices. The essence of the approach is to combine several

buckets and contract their corresponding indices at once, thus

having smaller output size and larger arithmetic intensity. We

have a group of circuit contraction backends that all use this

approach.

For the merged backend group, we order the buckets first

and then find the mergeable indices before performing the

contraction. We list the set of indices of tensors in each bucket

and then merge the buckets if the set of indices of one bucket

is a subset of the other. We benchmark the sum of the total

time needed for the merged indices contraction and compare

it with the unmerged baseline results. We call this group the

“merged” group and the baseline the “unmerged” group.

D. CPU-GPU Hybrid Backend

The initial tensor network contains only very small tensors

of at most 16 elements (4 dimensions of size 2). We observe

that the contraction sequence obtained by our ordering al-

gorithm results in buckets of small width for first 80% of

contraction steps. Only after all small buckets are contracted,

sequence we start to contract large buckets. The GPUs usually

perform much better when processing large amount of data.

We observe this behaviour in our benchmarks on Figure 1.

We therefore implement a mix backend which uses both CPU

and GPU. It combines a CPU backend and a GPU backend by

dispatching the contraction procedure to appropriate backend.

The mix or the hybrid backend uses the bucket width, which

is determined by the number of unique indices in a bucket, to

allocate the correct device for such a bucket to be computed.

The threshold between the CPU backend and the GPU backend

is determined by a trial program. This program runs a small

circuit, which is used for all backends for testing, separately

on a GPU backend and a CPU backend. After the testing

is complete, it iterates through all bucket widths and checks

whether at this bucket width the GPU takes less time or not.

If it finds the bucket width at which the GPU is faster, it

will output that bucket width, and the user can use this width

when creating the hybrid backend in the actual simulation. In

the actual simulation, if the bucket width is smaller than the

threshold, the hybrid backend will allocate this bucket to the

CPU and will allocate it to the GPU if the width is greater.

Since we don’t contract buckets of large width on CPU,

the resulting tensors are rather small, on the order of 1,000s

of bytes. The time for data transfer in this case is considered

negligible and is not measured in our code. The large tensors

start to appear from contractions that combine these small

tensors after all the data is moved to GPU.

E. Datasets for Synthetic Benchmarks

Tensor network contraction is a complex procedure that

involves many inhomogeneous operations. Since we are in-

terested in achieving the maximum performance of the sim-

ulations, it is beneficial to compare the FLOPs performance

to several more relevant benchmarking problems. We select

several problems for this task:

1) Square matrix multiplication, the simplest benchmark

problem which serves as an upper bound for our FLOP

performance;

2) Pairwise tensor contractions with a small number of

large dimensions and fixed contraction structure;

3) Pairwise tensor contractions with a large number of

dimensions of size 2 and permuted indices;

4) Bucket contraction of buckets that are produced by

actual expectation value calculation;

5) Full circuit contraction which takes into account buckets

of large and small width.

By gradually adding complexity levels to the benchmark

problems and evaluating the performance on each level, we

look for the largest reduction in FLOPs. The corresponding

level of complexity will be at the focus of our future efforts for

optimisation of performance. The results for these benchmarks

are shown in Section III-E and Figures 6 and 7.

1) Matrix Multiplication: We perform the matrix multipli-

cations for the square matrices of the same size and record

the time for the operation for the CPU backend Numpy and

the GPU backends PyTorch and CuPy. We use the built-in

random() function of each backend to randomly generate

two square matrices of equal size as our input, and we use the

built-in matmul() function to produce the output matrix. The

size of the input matrices ranges from 10×10 to 8192×8192,

and the test is done repeatedly on four different data types:

float, double, complex64, and complex128. For the

multiplication of two n × n matrices, we define the number

of complex operations to be n3, and we calculate the number

of FLOPs for complex numbers as 8× number of operations

operation time
.

2) Tensor Network Contraction: We have two experiment

groups in benchmarking the tensor contraction performance:

tensor contractions with a fixed contraction expression and

tensor contractions with many indices where each index has a

small size. We call the former group “tncontract fixed” because

we fix the contraction expression as “abcd,bcdf−→acf,” and we

call the latter one “tncontract random” because we randomly

generate the contraction expression. In a general contraction

expression, we sum over the indices not contained in the

result indices. In this fixed contraction expression, we sum

over the common index “b” and “d” and keep the rest in our

result indices. We generate two square input tensors of shape

n×n×n×n and output a tensor of shape n×n×n, where n

is a size ranging from 10 to 100. For the “tncontract random”

group, we randomly generate the number of contracted indices

and the number of indices in the results first and then fill in the

shape array with size 2. For example, a contraction formula

“dacb,ad−→bcd” (index “a” is contracted) needs two input

tensors: the first one with shape 2×2×2×2 and the second one

with shape 2 × 2. We use the formula 2number of different indices

to calculate the number of operations, and we record the

contraction time and compute the FLOPs value based on the

formula used in matrix multiplication. Following the same

procedure in matrix multiplication, we use the backends’ built-

in functions to randomly generate the input tensors based on

the required size and the four data types.
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Fig. 1: Breakdown of mean time to contract a single bucket

by bucket width. The test is performed for expectation value

as described in III-A. CPU backends are faster for buckets of

width ≤ 13−16, and GPU faster are better for larger buckets.

This picture also demonstrates that every contraction operation

spends some time on overhead which doesn’t depend on

bucket width, and actual calculation that scales exponentially

with bucket width.

Fig. 2: Distribution of bucket width in the contraction of

QAOA full circuit simulation. The y-axis is log scale; 82% of

buckets have width ≤ 6, which have relatively large overhead

time.

3) Circuit Simulation: For numerical evaluations, we

benchmark the full expectation value simulation of the QAOA

MaxCut problem for a 3-regular graph of size 30 and QAOA

depth p = 4. We have two properties for evaluating the circuit

simulation performance: unmerged vs. merged backend and

single vs. mixed backend.

III. RESULTS

The experiment is performed on an NVIDIA DGX-2 server

(provided by NVIDIA corporation) with a V100 accelerator

using the CUDA version 11.0. The baseline NumPy backend

is executed only on a CPU and labeled “einsum” in our

Fig. 3: Breakdown of total time spent on bucket of each size

in full QAOA expectation value simulation. The y-value on

this plot is effectively one in Figure 1 multiplied by one

in Figure 2. This figure is very useful for analyzing the

bottlenecks of the simulation. It shows that most of the time for

CPU backend is spent on large buckets, but for GPU backends

the large number of small buckets results in a slowdown.

experiment since we use numpy.einsum() for the tensor

computation. We also benchmark the GPU library CuPy (on

the GPU only) and PyTorch (on both the CPU and GPU).

A. Single CPU-GPU Backends

We benchmark the performance of the full expectation value

simulation of the QAOA MaxCut problem on a 3-regular graph

of size 30 with depth p = 4, as shown in in Figures 1, 2, and

3. This corresponds to contraction of 20 tensor networks, one

network per each lightcone. Our GPU implementation of the

simulator using PyTorch (labeled “torch gpu”) achieves 70.3×
speedup over the CPU baseline and 1.92× speedup over CuPy.

Figure 1 shows the mean contraction time of various bucket

widths in different backends. In comparison with ”cupy”

backend, the ”einsum” backend spends less total time for

bucket width less than 16, and the threshold value changes to

around 13 when being compared to ”torch gpu” backend. Both

GPU backends have similar and better performance for larger

bucket widths. However, this threshold value can fluctuate

when comparing the same pair of CPU and GPU backends.

This is likely due to the fact that the benchmarking platform

are under different usage loads.

Figure 3 provides a breakdown of the contraction times of

buckets by bucket width. This distribution is multimodal: A

large portion of time is spent on buckets of width 4. For

CPU backends the bulk of the simulation time is spent on

contracting large buckets. Figure 2 shows the distribution of

bucket widths, where 82% of buckets have width less than 7.

This signifies that simulation has an overhead from contracting

a large number of small buckets.

This situation is particularly noticeable when looking at

the total contraction time of different bucket widths. Figure

3 shows that the distribution of time vs bucket width has two
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Fig. 4: Breakdown of total contraction time by bucket width

in full expectation value simulation of problem size 30. Lines

with the same color use the same type of backends. The solid

lines represent the merged version of backends, and the dashed

lines denote the baseline backends. The merged GPU backends

are better for buckets of width ≥ 20.

Backend Name Device Time (second) Speedup

Torch CPU CPU 347 0.71×
NumPy (baseline) CPU 246 1.00×
CuPy GPU 6.7 36.7×
Torch GPU GPU 3.5 70.3×
Torch CPU + Torch GPU Mixed 2.6 94.8×
NumPy + CuPy Mixed 2.1 117×

TABLE I: Time for full QAOA expectation value simulation using
backend that utilize GPUs or CPUs. The expectation value is MaxCut
on a 3-regular graph of size 30 and QAOA depth p = 4. Speedup
shows the overall runtime improvement compared with the baseline
CPU backend “NumPy”. “Mixed” device means the backend uses
both CPU and GPU devices.

modes: for large buckets that dominate the contraction time

for CPU backends and for small buckets where most of the

time is spent on I/O and other code overhead.

B. Merged Backend Results

The “merged” groups merge the indices before performing

contractions. In Fig. 4, the three unmerged (baseline) backends

are denoted by dashed lines, while the merged backends

are shown by solid lines. For the GPU backends CuPy and

PyTorch, the merged group performs significantly better for

buckets of width ≥ 20. The CuPy merged backend always

has a similar or better performance compared with the CuPy

unmerged group and has much better performance for buckets

of larger width. For buckets of width 28, the total operation

time of the unmerged GPU backends is about 0.28 seconds,

compared with 32 ms (8.75× speedup) for the CuPy merged

group and 8.8 ms (31.82× speedup) for the PyTorch backend.

But we do not observe much improvement for the merged

CPU backend.

Backend Name Device Time (seconds) Speedup

NumPy Merged CPU 383 0.64×
NumPy (baseline) CPU 246 1.00×
CuPy GPU 6.7 36.7×
CuPy Merged GPU 5.6 43.9×
NumPy + CuPy Mixed 2.1 117×
NumPy Merged + CuPy Merged Mixed 1.4 176×

TABLE II: Time for full QAOA expectation value simulation using
different Merged backends, as described in Section II-C. The expecta-
tion value is MaxCut on a 3-regular graph of size 30 and QAOA depth
p = 4. Speedup shows the overall runtime improvement compared
with the baseline CPU backend “NumPy”.

C. Mix CPU-GPU Backend Results

From Figure 1 one can see that GPU backends perform

much better for buckets of large width, while CPU backends

are better for smaller buckets. We thus implemented a mixed

backend approach, which dynamically selects a device (CPU

or GPU) on which the bucket should be contracted. We select

a threshold value of 15 for the bucket width; any bucket that

has a width larger than 15 will be contracted on the GPU.

Figure 3 shows that for GPU backends small buckets occupy

approximately 90% of the total simulation time. The results

for this approach are shown in Table I under backend names

“Torch CPU + Torch GPU” and “NumPy + CuPy.” Using a

CPU backend in combination with Torch GPU improves the

performance by 1.2×, and for CuPy the improvement is 3×.

These results suggest that using a combination of NumPy +

Torch GPU has the potential to give the best results.

We have evaluated the GPU performance of tensor network

contraction for the energy calculation of QAOA. The problem

is largely inhomogeneous with a lot of small buckets and

a few very large buckets. Most of the improvement comes

from using GPUs on large buckets, with up to 300× speed

improvement. On the other hand, the contraction of smaller

tensors is faster on CPUs. In general, if the maximum bucket

width of a lightcone is less than ∼ 17, the improvement from

using GPUs is marginal. In addition, large buckets require a

lot of memory. For example, a bucket of width 27 produces

a tensor with 27 dimensions of size 2, and the memory

requirement for complex128 data type is 2 GB. In practice,

these calculations are feasible up to width ∼ 29.

D. Mixed Merged Backend Results

Since the performance of the NumPy-CuPy hybrid backend

is the best among all implemented hybrid backends, cross-

testing between merged backends and hybrid backends focuses

on the combination of the NumPy backend and CuPy backend.

Because of the API constraint, the hybrid of a regular NumPy

backend and a merged CuPy backend was not implemented.

In Table II, merging buckets provide a performance boost

for the CuPy backend and Numpy + CuPy hybrid backend but

not the NumPy backend. CuPy Merged is 20% faster than

CuPy, and NumPy Merged + CuPy Merged is 50% faster

than its regular counterpart. However, NumPy Merged has

an significant slowdown compared with the baseline NumPy,

suggesting that combining the regular NumPy backend with
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Fig. 5: Breakdown of sum contraction time by bucket width

for merged backends. CPU backends are better for buckets of

width ≤ 15, and GPU backends are better for larger buckets.

The hybrid backend’s GPU backend spends outperforms the

regular GPU backend for buckets of width ≥ 15.

the merged CuPy backend can provide more speedup for the

future.

In Fig. 5, CPU performance is better than GPU performance

when the bucket width is approximately less than 15. After 15,

GPU performance scales with width much better than that of

CPU performance, providing a significant speed boost over

the CPU in the end. GPU performance of the hybrid backend

is better than that of pure GPU backend for buckets of width

≥ 15. This speedup of the hybrid backend is likely caused by

less garbage handling for the GPU since most buckets aren’t

stored on GPU memory.

E. Synthetic Benchmarks

We also benchmark the time required for the basic opera-

tions: matrix multiplication, tensor network contraction with

fixed contraction indices, and tensor network contraction with

random indices, as well as circuit contractions.

The summary of the results is shown in Table III, which

compares FLOPs count for similar-sized problems of different

types. Figures 6 and 7 show dependence of FLOPs vs problem

size for different problems. We observe 80% of theoretical

peak performance on GPU for matrix multiplication. Switch-

ing to pairwise tensor network contraction shows similar

FLOPs for GPU, while for CPU, it results in 10× FLOPs

decrease. A significant reduction in performance comes from

switching from pairwise tensor network contractions of a

tensor with few dimensions of large size to tensors with

many permuted dimensions and small size. This reduction in

performance is about 10× for both CPU and GPU. This obser-

vation suggests that further improvement can be achieved by

reformulating the tensor network operations in a smaller tensor

by transposing and merging the dimensions of participating

tensors. It is partially addressed in using the merged indices

approach, where the contraction dimension is increased. The

“Bucket Contraction Merged” task shows 45% of theoretical

Task CPU FLOPs GPU FLOPs

Matrix Multiplication 50.1G 2.38T

Tensor Network Fixed Contraction 5.53G 1.36T

Tensor Network Random Contraction 640M 97.5G

Bucket Contraction Unmerged 241M 61.9G

Bucket Contraction Merged 542M 1.14T

Lightcone Contraction Unmerged 326M 4.92G

Lightcone Contraction Merged 177M 3.1G

Circuit Contraction Mixed 30.7G

TABLE III: Summary of GPU and CPU FLOPs for different tasks
at around 100 million operations. Matrix Multiplication and Tensor
Contraction tasks are described in Section III-E. “Bucket Contrac-
tion” groups record the maximum number of FLOPs for a single
bucket. “Lightcone Contraction” groups contain the FLOPs data on
a single lightcone where the sum of operations is approximately 100
millions, small and large buckets combined.

peak performance, which significantly improves compared to

the unmerged counterpart.

The significant reduction of performance comes when we

compare bucket contraction and full circuit contraction. It was

explained in detail in Section III-A and is caused by overhead

from small buckets. It is evident from Figure 3 that most of

the time in GPU simulation is spent on overhead from small

bucket contraction. This issue is addressed by implementing

the mixed backend approach.

It is also notable that the merged approach does not improve

the performance for CPU backends which is probably due to

an inefficient implementation of original numpy.einsum().

1) Matrix Multiplication: The multiplication of square ma-

trices of size 465 needs approximately 100 million complex

operations according to our calculation of operations value.

The average operation time for the multiplication of two

randomly generated complex128 square matrices of size

465 is 0.3 ms on the GPU, which achieves 50× speedup

compared with the operation time of 16 ms on the CPU;

NumPy produces 50G FLOPs on CPU, and the GPU backend

CuPy reaches 2.38T FLOPs for this operation. We observe

that the CPU backend has an advantage in performing small

operations: for matrices of size 10 × 10, the CPU backend

NumPy spends only 5.8 µs for the multiplication, while the

best GPU backend PyTorch spends 27 µs on the operation.

When the matrix size is less than 2000 × 2000 for the GPU

backends, PyTorch outperforms CuPy, and CuPy is slightly

better for much larger operations. Moreover, the operation time

for both CPU and GPU backends decreases slightly when the

size of matrices increases from 1000 to 1024 and from 4090

to 4096.

2) Fixed Tensor Network Contraction: We use the fixed

contraction formula “abcd,bcdf−→acf” and control the size of

the tensor indices from 10 to 100. Even for the smallest case

when the number of operations is 100,000 with indices of

size 10, the slowest GPU backend is faster than the CPU

backend Numpy, which spends 0.3 ms on the contraction. For

the GPU backends, we achieve 1.36T FLOPs for this fixed

contraction, which is 57% of the recorded peak performance.

In accordance with the matrix multiplication results, the CuPy
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Fig. 6: FLOPs vs. the number of operations for all tasks on

the CuPy backend. “circuit unmerged” and “circuit merged”

are results of expectation value of the full circuit simulation

of QAOA MaxCut problem on a 3-regular graph of size 30

with depth p = 4. “tncontract random” tests on tensors of

many indices where each index has a small size. “tncontract

fixed” uses the contraction sequence “abcd,bcdf−→acf” for

all contractions. “matmul” performs matrix multiplication on

square matrices. All groups use complex128 tensors in the

operation. We use the triangles to denote the data at ∼ 100
million operations, which is shown in Table III.

backend performs better than the PyTorch backend in the

fixed tensor network contractions only when the number of

operations is greater than 1G.

3) Random Tensor Network Contraction: We let the num-

ber of indices be any number between 4 and 25, and we

set the size of each mode to be 2. For example, we have

5 indices in total, and we randomly generate a contraction

sequence “caedb,eab−→cde,” so the sizes of the input tensors

are 25 and 23, resulting in an output tensor of size 23. We

reach 97.5 G FLOPs for the GPU backends and 640 M for the

CPU backend only when performing this random contraction.

As shown in Fig. 6, the mean FLOPs drop significantly

when we use random contraction (in green) instead of fixed

contraction (in red) on the CuPy backend. On the CPU,

the gap increases with the increasing number of operations

according to Fig. 7. Therefore, contractions on tensors with

small numbers of indices of large size have better performance

than contractions on tensors with many indices of small size.

The ”tncontract random” group is designed to break down

the circuit simulation to tensor contraction operations, so it

overlaps with the results from the ”bucket unmerged” group

in Fig. 6. From the difference in performance of the random

and the fixed tensor contraction group, we design the merged

bucket group to improve the performance of contractions. Our

goal is to make the bucket simulation curve close to the tensor

contraction fixed group (the red curve).

Fig. 7: FLOPs vs. the number of operations for all tasks on

NumPy backend. Same problem setting as Fig. 6. “tncontract

random” outperforms “tncontract fixed” as the ops value

increases. Merged backend does not have an advantage on

CPU compared to the unmerged backend. We use the triangles

to denote the data at ∼ 100 million operations, which is shown

in Table III.

IV. CONCLUSIONS

This work has demonstrated that GPUs can significantly

speed up quantum circuit simulations using tensor network

contractions. We demonstrate that GPUs are best for contract-

ing large tensors, while CPUs are slightly better for small

tensors. Moving the computation onto GPUs can dramatically

speed up the computation. We propose to use a contraction

backend that dynamically assigns the CPU or GPU device

to tensors based on their size. This mixed backend approach

demonstrated a 176× improvement in time to solution.

We observe up to 300× speedup on GPU compared to

CPU for individual large buckets. In general, if the maximum

bucketwidth of a lightcone is less than ∼ 17, the improvement

from using GPUs is marginal. It underlines the importance of

using a mixed CPU/GPU backend for tensor contraction and

using device selection for the tensor at runtime to achieve the

maximum performance. On NVIDIA DGX-2 server we found

out that the threshold is ∼ 15, but it may change for other

computing systems.

We also demonstrated the performance of the merged

indices approach, which improves the arithmetic intensity

and provides a significant FLOP improvement. Our synthetic

benchmarks for various tensor contraction tasks suggest that

additional improvement can be obtained by transposing and

reshaping tensors in pairwise contractions.

The main conclusion of this paper is that we found that

GPUs can dramatically increase the speed of tensor con-

tractions for large tensors. The smaller tensors need to be

computed on a CPU only because of overhead to move on

and off data to a GPU. We show that the approach of merged

indices allows to speed up large tensors contraction, but it

does not solve the problem completely. Where to compute
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tensors leads to the problem of optimal load balancing between

CPU and GPU. This potential issue will be the subject of

our future work, as well as testing of the performance of the

code on new NVidia DGX systems and GPU supercomputers

using cuTensor and cuQuantum software packages developed

by NVidia.
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