
https://doi.org/10.1177/2378023119871580

Socius: Sociological Research for  
a Dynamic World
Volume 5: 1–21
© The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/2378023119871580
srd.sagepub.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction 

and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages 
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

Special Collection: Fragile Families Challenge

Introduction

Social scientists studying the life course have described 
social patterns, theorized factors that shape outcomes, and 
estimated the effects of specific interventions. However, it is 
unclear how much the knowledge developed from this prior 
research enables researchers and policymakers to accurately 
predict life outcomes. Although social scientists have gener-
ally focused on questions about explanation rather than ques-
tions about prediction (Breiman 2001; Hofman, Sharma, and 
Watts 2017; Shmueli 2010; Yarkoni and Westfall 2017), 
questions about prediction are important for three reasons.

First, there is growing interest in using predictive models to 
target assistance to children and families at risk (Kleinberg 
et al. 2015). For example, policymakers in Allegheny County, 
Pennsylvania, are currently using predictive models to assist 
case workers in deciding whether a maltreatment referral about 
a child is of sufficient concern to warrant an in-person investi-
gation (Chouldechova et  al. 2018; Eubanks 2018). Although 
using predictive models in policy settings raises important 
questions about data collection (Barocas and Selbst 2016; 
Lakkaraju et al. 2017), fairness (Courtland 2018), and causal 
inference (Athey 2018), the use of predictive models in policy 
settings is nevertheless likely to accelerate. Basic scientific 
knowledge about the predictability of life outcomes can serve 
as a guide for future policymaking around these models.

Second, the predictability of a person’s life outcomes is a 
measure of social rigidity (Blau and Duncan 1967): the 

degree to which future outcomes can be predicted by family 
characteristics or past experience. Measures of rigidity, such 
as the relationship between a father’s and son’s occupation, 
have been the subject of extensive sociological research 
(Torche 2015). Although this research has tended to focus on 
statistical association, these questions can also be framed in 
terms of prediction: Given certain background information 
about a person, how well can we predict what will happen to 
them at a later time?

Third, efforts to improve predictive performance can spark 
developments in theory, methods, and data collection, even in 
settings where prediction is not of direct scientific interest. The 
finding that some important life outcomes are not very predict-
able from the kinds of data that social scientists normally collect 
could lead to numerous improvements. For example, 
researchers could theorize about social processes not currently 
being considered and develop new methods to better utilize 
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available data. Any of these developments should be welcomed, 
even by researchers who have little interest in prediction.

To measure and understand the predictability of life tra-
jectories, we organized a scientific mass collaboration 
called the Fragile Families Challenge. Our mass collabora-
tion used a research design from machine learning that is 
ideally suited to measuring predictability: the common task 
method (Donoho 2017). In projects using the common task 
method, all participants use the same data to predict the 
same outcomes. Further, these predictions are all evaluated 
in the same way: predictive accuracy measured with held-
out data (data that were not available to participants when 
they were making predictions). The standardization created 
by the common task method ensures that many different 
approaches can be compared fairly, and the use of held-out 
data limits the amount that reported levels of predictive 
accuracy can be inflated by overfitting. Because of these 
attractive characteristics, the common task method is 
widely used by research communities focused on predictive 
accuracy, and Donoho (2017) called it the “secret sauce” of 
machine learning.

The common task method is typically defined by three 
elements: a common data set, a common task, and a common 
evaluation metric. Each of these elements will be described 
in detail later and are summarized here. In the Fragile 
Families Challenge, the common data set was a specially 
constructed version of the Fragile Families and Child 
Wellbeing Study, a high-quality birth cohort study. This 
ongoing study was designed to understand the dynamics of 
families formed by unmarried parents and the lives of chil-
dren born into these families. It collects rich longitudinal 
data about thousands of families who gave birth to a child in 
large U.S. cities around the year 2000. These data—which 
have been used in more than 750 published journal  
articles1—were collected in six waves (child birth and ages 
1, 3, 5, 9, and 15 years) and include many factors that research-
ers think are important predictors of child well-being. The 
common task was to use these data to predict six outcomes 
variables measured at child age 15: (1) child grade point aver-
age (GPA), (2) child grit, (3) household eviction, (4) house-
hold material hardship, (5) caregiver layoff, and (6) caregiver 
participation in job training. Finally, the common evaluation 
metric was mean squared error (MSE) in held-out data.

We received applications from 457 researchers from a 
variety of fields who wanted to participate in the Challenge, 
and we shared data with 437 of them. These researchers 
often worked in teams, and we received valid submissions 
from 160 teams.

This Socius Special Collection—along with the Salganik 
et al. (2020)—reports the results of the predictive modeling 
stage of the Fragile Families Challenge. The Special 
Collection includes 12 articles describing participants’ 
approaches to the Challenge as well as 3 articles describing 

what we learned from running the Challenge. There is also a 
comment on one of the articles.

This introduction has three goals. First, it provides back-
ground about the Challenge, which will help readers under-
stand and interpret the individual articles. Second, it 
highlights themes that run through the articles. Third, it 
shares ideas that may be helpful to researchers who wish to 
design or participate in a similar project. The remainder of 
this introduction has three parts. First, we describe the Fragile 
Families Challenge, focusing on the data, prediction task, 
and evaluation metric. Next, we provide an overview of 
approaches used in the Special Collection. Finally, we pro-
vide some performance benchmarks that can help readers 
interpret the predictive performance values reported in the 
papers. Supplemental Material includes the call for papers 
for this Special Collection and information about the review 
process. Some of the descriptions of the Fragile Families 
Challenge also appear in Salganik et al. (2020) and are 
repeated here for clarity.

The Fragile Families Challenge

Data

The data used in the Fragile Families Challenge came from 
the Fragile Families and Child Wellbeing Study (FFCWS). 
The FFCWS began with a multistage, stratified random sam-
ple of hospital births between 1998 and 2000 in large U.S. 
cities (more than 200,000 residents), with a 3:1 oversample 
of births to nonmarried parents (Reichman et al. 2001). Once 
a family agreed to participate in the study, data were col-
lected when the child was born and then at approximately 
child ages 1, 3, 5, 9, and 15 years. Data collection included 
members of the biological family (e.g., mother, father, child) 
as well as others (e.g., teachers; Figure 1). FFCWS collects 
information about numerous factors that researchers think 
are important predictors of child well-being, including demo-
graphic, family, and neighborhood characteristics; parents’ 
health and employment status; parenting behavior; children’s 
cognitive test scores and behaviors; and the physical home 
environment (Table 1). In addition to data collected directly 
from respondents, the FFCWS data also include survey para-
data (e.g., sampling weights) and constructed variables 
derived from the originally collected data. For example, dur-
ing the in-home visit when the child was three years old, the 
child was given the Peabody Picture Vocabulary Test (PPVT), 
a standardized test to measure the vocabulary of children 
(Dunn and Dunn 2007). In addition to providing responses to 
each question in the PPVT, the FFCWS data also include a 
constructed PPVT score.

The common data in the Fragile Families Challenge was 
a specially constructed version of the FFCWS data that was 
split into four data sets: background, training, leaderboard, 
and holdout (Figure 2). The background data included thou-
sands of variables that were collected about the family in the 1https://ffpubs.princeton.edu/

https://ffpubs.princeton.edu/
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first nine years of the child’s life. The training, leaderboard, 
and holdout data included the six outcome variables col-
lected at child age 15.

To construct the background data set, we began with the 
basic FFCWS files, which are available to researchers 
through an application process. Then we took three steps. 
First, we combined many data files containing information 
on the focal child into a single file. Second, we dropped 
observations that were obtained in 2 out of the 20 cities of 
birth because these were pilot cities where some questions 
were asked differently or not at all. Third, we made changes 
to the data to promote the privacy of respondents and reduce 
the risk of harm in the event of reidentification: We redacted 
some variables, edited some variables, and added noise to 
other variables (Lundberg 2019). For example, because of 
our privacy and ethics audit, we decided that the background 
data set would not contain genetic and geographic informa-
tion even though this information has been collected in the 
FFCWS (Lundberg et al. 2019). Ultimately, the background 
data set had information about 4,242 families and 12,942 
variables plus an ID number for each family.

The background data set contained approximately 55 mil-
lion possible entries (4,242 × 12,942). However, about 73 per-
cent of possible entries did not have a value (Figure 3a). Many 
of the papers in the Special Collection spend time addressing 
these missing values. There are several different reasons that a 
possible data entry might not have a value (Figure 3b), not all 
of which map cleanly onto how many social scientists think 
about missing data. We highlight four main reasons. First, 

some entries were missing because participants did not partici-
pate in one of the follow-up interviews (about 17 percent of 
entries). Second, some entries were missing because respon-
dents refused or were unable to answer a specific question 
(less than 1 percent of entries). Third, some entries were miss-
ing because our privacy and ethics audit redacted certain vari-
ables (Lundberg et  al. 2019; about 6 percent of entries). 
Finally, some entries were missing because of skip patterns in 
the survey (25 percent of entries). For example, when the child 
was nine years old, the father was asked to describe his current 
living situation (Figure 4). There were 10 possible responses 
(e.g., rent a home, own a home, homeless), and the subsequent 
questions depended on the response given. These skip patterns 
were an intentional part of the questionnaire design. Two 
papers in the Special Collection make a special effort to deal 
with these intentional skips (Carnegie and Wu 2019; Goode, 
Datta, and Ramakrishnan 2019).

The other three data sets—training, leaderboard, and 
holdout—consisted of the six outcome variables that were 
collected when the child was 15 years old. During the 
Challenge, participants had full access to the training data, 
partial access to the leaderboard data, and no access to the 
holdout data. Participants used the background data and 
training data to learn (estimate) a statistical or machine learn-
ing model (e.g., the coefficients of ordinary least squares 
regression). Participants then used these models to make pre-
dictions for all observations. During the Challenge, partici-
pants could upload their submissions—which included their 
predictions, their code, and a narrative explanation of their 

Figure 1.  Data collection modules in the Fragile Families and Child Wellbeing Study that were used in the Fragile Families Challenge. 
The background data set used in the Fragile Families Challenge used data collected at birth and years 1, 3, 5, and 9. The six outcome 
variables were chosen from all the variables that were collected at child age 15.
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Table 1.  Information Collected in the Fragile Families and Child Wellbeing Study between Child Birth and Age Nine.

Data Module Child Age Domains

Mother Birth (A) Child health and development, (B) father-mother relationships, (C) fatherhood, (D) 
marriage attitudes, (E) relationship with extended kin, (F) environmental factors and 
government programs, (G) health and health behavior, (H) demographic characteristics, (I) 
education and employment, (J) income

Father Birth (A) Child health and development, (B) father-mother relationships, (C) fatherhood, (D) 
marriage attitudes, (E) relationship with extended kin, (F) environmental factors and 
government programs, (G) health and health behavior, (H) demographic characteristics, (I) 
education and employment, (J) work activities, (K) income

Mother 1 (A) Family characteristics, (B) child well-being and mothering, (C) father-child relationship, 
(D) mother’s relationship with father, (E) current partner, (F) demographics, (G) mother’s 
family background and support, (H) environment and programs, (J) health and health 
behavior, (K) education and employment, (L) income

Father 1 (A) Family characteristics, (B) child well-being and fathering, (C) mother-child relationship, 
(D) father’s relationship with mother, (E) current partner, (F) demographics, (G) father’s 
family background and support, (H) environment and programs, (J) health and health 
behavior, (K) education and employment, (L) income

Mother 3 (A) Family characteristics, (B) child well-being and mothering, (C) father-child relationship, 
(D) mother’s relationship with father, (E) current partner, (F) demographics, (H) mother’s 
family background and support, (I) environment and programs, (J) health and health 
behavior, (R) religion, (K) education and employment, (L) income

Father 3 (A) Family characteristics, (B) child well-being and fathering, (C) mother-child relationship, 
(D) father’s relationship with mother, (E) current partner, (F) demographics, (H) father’s 
family background and support, (I) environment and programs, (J) health and health 
behavior, (R) religion, (K) education and employment, (L) income

Primary caregiver and 
in-home observation

3 (A) Health and accidents, (B) family routines, (C) home toy and activity items, (D) nutrition, 
(E) food expenditures, (F) housing/building characteristics, (G) parental stress, (H) 
parental mastery, (J) discipline, (K) informal social control and social cohesion and trust, 
(L) exposure to violence, (M) child’s behavior problems, (P) observation checklist, (Q) 
common areas, (R) interior of house or apartment, (S) child’s appearance, (T) home scale, 
(U) child emotion and cooperation, (V) ending

In-home activities with 
child and mother

3 (A) Height and weight, (B) Child’s Peabody Picture Vocabulary Test or TVIP, (C) Walk-A-
Line, (D) Q-Sort, (E) Mothers Peabody Picture Vocabulary Test or TVIP, (F) child care/
employment history calendar

Child care provider 
survey (for center-
based care)

3 (A) Care provided at the center, (B) care provided for focus child, (C) care provided for 
focus child, (E) teacher-parent relationship, (F) teacher beliefs,  
(G) about the child care teacher

Child care center 
observations

3 No clear section headings but contents include: space and furnishings, personal care routines, 
language-reasoning, activities, interaction, program structure, parents and staff

Family care provider 
survey (for family-
based care)

3 (A) Care provided, (B) child care routine and program, (D) provider-parent relationship, (E) 
child care provider beliefs, (F) about the child care provider

Family care provider 
observations

3 No clear section headings but contents include: space and furnishings for care and learning, 
basic care, language and reasoning, learning activities, social development

Child care study 
postobservation form

3 (A) Observation checklist, (B) common areas, (C) interior of building, (D) home scale, (E) 
postvisit rating by interviewer

Mother 5 (A) Family characteristics, (B) child well-being and mothering, (C) father-child relationship, 
(D) mother’s relationship with father (for mothers who are or were in a relationship) 
(E) current partner, (F) demographics, (H) mother’s family background and support, (I) 
environment and programs, (J) health and health behavior, (R) religion, (K) education and 
employment, (L) income

Father 5 (A) Family characteristics, (B) child well-being and fathering, (C) mother-child relationship, 
(D) father’s relationship with mother (for fathers who are or were in a relationship), 
(E) current partner, (F) demographics, (H) father’s family background and support, (I) 
environment and programs, (J) health and health behavior, (R) religion, (K) education and 
employment, (L) income

(continued)
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approach—to our submission platform.2 Our platform then 
calculated the mean squared prediction error in the leader-
board data and showed this score on a leaderboard that was 
visible to all participants. Finally, at the end of the Challenge, 
we calculated the mean squared error of the predictions in 
the holdout data.

When deciding the relative sizes of the training, leader-
board, and holdout data sets, we balanced a tension between 

having the largest possible training data set (to enable more 
accurate predictions) and the largest possible holdout data set 
(to enable more accurate estimates of the predictive perfor-
mance). Ultimately, we allocated four of eight of observations 
to the training data set, one of eight to the leaderboard data 
set, and three of eight to the holdout data set. This allocation 
was somewhat arbitrary but similar to that used in other proj-
ects using the common task method. Given these relative 
sizes, we allocated data by systematic sampling to make them 
as similar as possible (Särndal, Swensson, and Wretman 
2003). We first sorted all observations by city of birth, 

2Our submission platform was a modified version of CodaLab 
(https://github.com/codalab).

Data Module Child Age Domains

Primary caregiver and 
in-home observation

5 (A) Health and accidents, (B) family routines, (C) home toy and activity items, (D) nutrition, 
(E) housing/building characteristics, (F) parental stress and mastery, (G) discipline, (H) 
exposure to violence, (J) Child Protective Services contact, (K) food expenditures, (L) 
child’s behavior, (N) activities, (P) observation checklist, (Q) common areas, (R) interior 
of house or apartment, (S) child’s appearance, (T) home scale, (U) child emotion and 
cooperation, (V) ending

In-home activities with 
child and mother

5 (A) Weight/height, (B) Peabody Picture Vocabulary Test with child, (C) Woodcock-Johnson 
Letter-Word activity with child, (D) attention sustained task, (E) child care employment 
history calendar, (F) five-minute speech sample, (G) Peabody Picture Vocabulary Test with 
mother

Teacher 5 (A) Information specific to the participating child, (B) academic skills specific to the 
participating child, (C) classroom behavior and social skills specific to the participating child, 
(D) classroom characteristics, (E) class resources and activities, (F) school climate and 
environment, (G) general information about teacher

Mother 9 (A) Core mother interview: family characteristics, household roster, marital, and fertility 
history; (B) bio father contributions and resources; (C) mother’s relationship with father; 
(D) current partner; (E) mother’s family background and support; (F) environment and 
programs; (G) health and health behavior; (H) religion; (I) education and employment; (J) 
income; (K) secondary caregiver

Father 9 (A) Core father interview: family characteristics, household roster, marital, and fertility 
history; (B) bio mother and bio father contributions and resources; (C) father’s relationship 
with mother; (D) current partner; (E) father’s family background and support; (F) 
environment and programs; (G) health and health behavior; (H) religion; (I) education and 
employment; (J) income; (K) secondary caregiver

Primary caregiver 9 (A) Introduction to nonparental caregiver survey; (B) mother-child relationship; (C) father-
child relationship; (D) demographics; (E) income, education, and employment; (F) health 
and well-being; (G) environment; (H) health and accidents; (I) family routines and home life; 
(J) nutrition; (K) parental stress and mastery; (L) child’s education; (M) child’s neighborhood

Interviewer observation 9 (A) Observation checklist, (B) common areas, (C) interior of house or apartment, (D) child’s 
appearance, (E) home scale, (F) child emotion and cooperation, (G) ending

  (A) Parental supervision and relationship, (B) parental discipline, (C) sibling relationships, (D) 
routines, (E) school, (F) early delinquency, (G) task completion and behavior, (H) health 
and safety, (I) closing

In-home activities with 
child and primary 
caregiver

9 No clear section headings but activities include: consent, child assessment (PPVT, Digit Span, 
Woodcock-Johnson Tests 9 and 10), primary caregiver self-administered questionnaire, 
health measures, saliva sample, biological mother weight, child weigh/height, primary 
caregiver open-ended responses

Teacher 9 (A) General information, (B) classroom behavior and social skills specific to the participating 
child, (C) information specific to the participating child, (D) parent/guardian involvement, 
(E) classroom characteristics, (F) school climate and environment, (G) general information 
about teacher

Note: Section letters are not always consecutive in the questionnaires. Full questionnaires are available at https://fragilefamilies.princeton.edu/data-and-
documentation/public-data-documentation.

Table 1. (continued)
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parents’ relationship status at the birth, mother’s race, whether 
at least one outcome was nonmissing, and then the outcomes 
in the following order: eviction, layoff, job training, GPA, 
grit, and material hardship. In the sorted data, we grouped 
observations into sets of eight sequential observations. Then, 
we randomly assigned four, one, and three of the observations 
to the training, leaderboard, and holdout data sets.

Table 2 summarizes the number of nonmissing outcome 
cases in each of the training, leaderboard, and holdout data 
sets. Cases with missing outcomes were not used when mea-
suring the mean squared prediction error in the holdout data. 
In the leaderboard data set only, we imputed missing values 
on the outcome variables by taking a random sample (with 
replacement) from the distribution of observed outcomes. 

Figure 3.  Missing entries in the Fragile Families Challenge background data set. The background data set had 4,242 rows and 12,942 
columns (plus an ID number). Of the approximately 55 million distinct data entries, about 73 percent were missing. There were many 
types of missing values.

Figure 2.  Data sets in the Fragile Families Challenge. The background data were collected between child birth and child age nine. The 
six outcome variables, which were collected at child age 15, were split into three sets: training (four of eight observations), leaderboard 
(one of eight observations), and holdout (three of eight observations). Participants in the Challenge used the background and training 
data to predict outcomes. The accuracy of predictions in the leaderboard data set was available during the Challenge, and the accuracy 
of predictions in the holdout data set was available only at the end of the Challenge.



Salganik et al.	 7

Figure 4.  Example skip pattern in the Fragile Families and Child Wellbeing Study. Depending on the answers to this question, which 
was asked to the father when the child was nine years old, the respondent would be asked different follow-up questions. These skip 
patterns caused some of the missing entries in the background data set.

3For more on creating a reliable leaderboard score, see Blum and 
Hardt (2015)

Because these random draws are unpredictable by construc-
tion, this gave us a tool to assess whether respondents were 
overfitting to the leaderboard set by submitting numerous 
queries and updating their models accordingly.3

Prediction Task

The common task in the Challenge was to use the background 
and training data to predict six outcome variables measured at 
child age 15: (1) child GPA, (2) child grit, (3) household evic-
tion, (4) household material hardship, (5) caregiver layoff, 
and (6) caregiver participation in job training. At the time of 

the Challenge, these data were available only to survey 
administrators and a very small set of researchers who were 
not allowed to participate in the Challenge. Participants in the 
Challenge could focus on predicting as many of these out-
comes as they wished. Table 3 summarizes the outcomes vari-
ables of interest in each paper in the Special Collection.

The choice of the six outcome variables from the approxi-
mately 1,500 variables measured at age 15 was a key design 
decision. We chose outcome variables for which good predic-
tions would be useful for subsequent substantive research. For 
the continuous outcomes, we planned to study families that 
were doing much better than predicted and much worse than 
predicted, so we wanted outcome variables that were important 
to social scientists and policy makers, poorly understood, and 
measured well. For the binary outcomes, we planned to con-
sider these variables as treatments and measure their effects on 
a new set of outcomes later in the life course (e.g., college 
enrollment), so we wanted variables that were important to 
social scientist and policymakers, common enough to be mean-
ingful, and conducive to clean causal claims.4 Methodologically, 
we wanted a variety of variable types—such as continuous and 
binary or about the child, household, or primary caregiver—so 

Table 2.  Number of Nonmissing Cases for Each Outcome in the 
Training, Leaderboard, and Holdout Data Sets.

Outcome Training Leaderboard Holdout

Grade point average 1,165 304 886
Grit 1,418 362 1,075
Material hardship 1,459 375 1,099
Eviction 1,459 376 1,103
Layoff 1,277 327 994
Job training 1,461 376 1,104
Total possible 2,121 530 1,591

4When selecting the binary outcomes, we were guided by the advice 
of Rosenbaum (2002:356): “In research design, given the choice, 
one would prefer a single, abrupt, unexpected, short-lived treatment 
of dramatic proportions.”
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that we could study the relationship between the type of out-
come, its overall predictability, and the best methods for pre-
dicting it. The appropriate number and type of outcome 
variable(s) for future mass collaborations is an open question.

The exact operationalization of these six outcome vari-
ables differs across the scientific literature. Table 4 describes 
our approach. For two outcomes in particular—eviction and 
grit—we emphasize differences between how the FFCWS 
measured these outcomes and how they are measured in 
other research. The measure of eviction in the FFCWS 
includes eviction for nonpayment of rent or mortgage, 
regardless of whether a court ordered the eviction or a land-
lord carried it out informally (Desmond and Kimbro 2015; 
Lundberg and Donnelly 2019). Other research focuses on 
formal court-ordered evictions for any reason (Desmond 
et  al. 2018). The FFCWS measurement of grit is different 
from the measure proposed in Duckworth et  al. (2007), 
whose original grit scale consists of six items related to con-
sistency of interest and six items related to perseverance of 
effort. The FFCWS scale is shorter (four items) and was 
designed with adolescent school outcomes in mind. Two 
items (“I finish whatever I begin”; “I am a hard worker”) are 
exactly as in the original scale for perseverance of effort. 
One item on the FFCWS scale (“Once I make a plan to get 
something done, I stick to it”) is a simplified version of one 
of the original items about consistency of interests (“I have 
difficulty maintaining my focus on projects that take more 
than a few months to complete”). Likewise, the FFCWS 
scale includes an item focused on schoolwork (“I keep at my 
schoolwork until I am done with it”), which is a more tar-
geted version of an item from the original perseverance scale 
(“I am diligent”). A final difference is that Duckworth et al. 
(2007) proposed a scale with five answer choices (not at all 
like me to very much like me), whereas the FFCWS scale 
involves four choices (strongly disagree to strongly agree).

Table 3.  Outcomes That Are the Focus of the Authors’ 
Attention.

Paper Outcome(s)

Ahearn and Brand Layoff
Altschul All
Carnegie and Wu All
Compton All
Davidson GPA
Filippova et al. All
Goode, Datta, and Ramakrishnan All
McKay All
Raes GPA
Rigobon et al. All
Roberts GPA
Stanescu, Wang, and Yamauchi All

Note: “All” indicates that the authors focused on all six outcomes: grade 
point average (GPA), grit, material hardship, eviction, layoff, and job 
training.

5If one of the papers reports an MSEHoldout  and you would like to 
convert it into an RHoldout

2 , here are the values that you can divide 
by: material hardship .025, GPA .425, grit .253, eviction .056, 
layoff .167, and job training .185.

Evaluation Metric

There are many potential metrics by which to evaluate pre-
dictive performance, and these different metrics can lead to 
different conclusions (Hofman et al. 2017). When choosing 
the evaluation metric for the Fragile Families Challenge, we 
wanted one that was: (1) familiar to participants, (2) appli-
cable to both binary and continuous outcomes, and (3) 
aligned with the scientific objectives of the next stage of the 
Fragile Families Challenge.

We decided that MSE was best suited to this task:

	 MSEHoldout
Holdout Holdout

= −( )
∈
∑1 2

n
y y

i

i i
 , 	 (1)

where yi  is the outcome for person i  (e.g., GPA), yi  is the 
predicted outcome for person i , and nHoldout  is the number of 
people in the holdout set, excluding missing cases.

We selected MSE for three reasons. First, MSE is a well-
known metric that those working with predictive models 
would have encountered previously. Second, mean squared 
error is a very common metric regardless of whether the out-
come is binary (Brier 1950) or continuous (e.g., ordinary least 
squared regression minimizes squared error). Third, one goal 
of the predictive modeling stage of the Fragile Families 
Challenge was to identify families with outcomes very far 
from their expected values given the predictors. The optimal 
submission to minimize MSE would predict the expected val-
ues for all observations if this quantity were known. Mean 
squared error therefore aligned with our substantive goals.

To increase interpretability and increase comparability 
across outcomes, some papers present results in terms of 
RHoldout

2 , which compares the accuracy of a set of predictions 
to the accuracy of prediction of the mean of the training data, 
which could be considered an extremely simple baseline 
prediction.

	 R
y y

y y

i i i

i i

Holdout
Holdout

Holdout Training

2

2

2
1= −

−( )
−( )

∈

∈

∑
∑



, 	 (2)

where yTraining  is the mean of the training data.5

Overview of Approaches

Although the papers in this Special Collection may appear 
different, they share a similar structure. Most of them 
describe approaches to the Challenge that involved four 
steps: data preparation, variable selection, statistical learn-
ing, and model interpretation. Data preparation encompasses 
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the procedures by which the authors converted the data and 
survey documentation into a format suitable for analysis 
(Table 5). Variable selection captures how authors chose a 
subset of variables to use when predicting the outcome 
(Table 6). Statistical learning includes all steps by which the 
authors learn (estimate) a function linking those variables to 
the outcome. We choose the term statistical learning because 
we include approaches common in statistics (e.g., general-
ized linear model) as well as approaches common in machine 
learning (e.g., random forest; Table 7). Finally, model inter-
pretation—a step not required for the Challenge but carried 
out by many authors nonetheless—is our term for authors’ 
efforts to summarize the resulting model (Table 8). By plac-
ing the authors’ contributions within the framework of these 
four steps, we are able to highlight the general themes that 
emerge in varying forms across papers. To bound this sec-
tion, we only describe approaches that appear in more than 
one paper of this Special Collection, and we do not describe 
each approach in detail. Friedman, Hastic, and Tibishirani 
(2001) and Efron and Hastie (2016) provide more detailed 
introductions to many of the approaches used in the 
Challenge, and Mullainathan and Spiess (2017), Athey 
(2018), and Molina and Garip (2019) provide more detailed 
introductions to how these methods are used in the social 
sciences.

Data Preparation

The first step in the four-step structure is data preparation. 
The data provided to participants were not immediately suit-
able for analysis. For example, many values were missing, 
and many unordered categorical variables (e.g., race/ethnic-
ity) were stored with numeric values. Some participants in 
the Challenge spent large amounts of time converting the 
data into a format more suitable for analysis (Kindel et al. 
2019). The papers in the Special Collection often describe 
data preparation—sometimes called data cleaning or data 
wrangling—in great detail. Most papers describe how the 
authors dealt with two main problems: missing values and 
categorical variables. Some papers describe how authors cre-
ated new variables that they thought would improve predic-
tive performance. Certain approaches to data preparation 
tended to be used in conjunction with certain approaches to 
variable selection: Some authors built up their models one 
variable at time based on theory and prior research (e.g., 
Ahearn and Brand 2019; McKay 2019), whereas other 
authors began with many variables (e.g., Compton 2019; 
Rigobon et al. 2019). Both of these styles required data prep-
aration, but the approach to data preparation often differed 
based on the number of variables involved.

Many papers address missing data. As described earlier, 
the data set provided to participants had missing entries for a 
variety of reasons. Some authors addressed missingness 
using univariate strategies, such as imputing the mean, 
median, or mode of all observed values for any case that was 

missing. These strategies were sometimes paired with the 
addition of new columns for each imputed variable indicat-
ing which values were imputed (McKay, 2019; Rigobon 
et al., 2019). These strategies were univariate because they 
addressed missingness on each variable individually. Authors 
who incorporated thousands of variables into their statistical 
learning procedure tended to use univariate approaches to 
address missing data (but see also Stanescu, Wang, and 
Yamauchi 2019). One reason for this pattern may be that 
multivariate strategies are computationally difficult to apply 
and conceptually difficult to reason through when missing-
ness occurs in thousands of variables. Multivariate strategies 
fall roughly into two classes. First, two papers describe how 
the authors used the structure of the survey to fill in missing 
values that could be logically inferred from surrounding 
questions (i.e., for mothers who reported not smoking in the 
past month, the number of packs usually smoked per day was 
zero) (Carnegie and Wu 2019; Goode et al. 2019). Second, 
many authors used model-based approaches to predict the 
values of missing variables as a function of the observed val-
ues of other variables. Anecdotally, we heard that many par-
ticipants spent a lot of time addressing missing data, and 
some authors compared the predictive performance achieved 
under different approaches to missing data. Somewhat sur-
prisingly, these authors did not find large improvements in 
predictive performance arising from more complex 
approaches to missing data (Ahearn and Brand 2019; 
Filippova et al. 2019; Stanescu et al. 2019).

A second common problem addressed by authors was 
recoding categorical variables. Categorical variables group 
responses into categories, and they come in two main types: 
ordered categorical variables, which have a natural order 
(e.g., level of education with categories such as less than 
high school, high school graduate, some college, etc.), and 
unordered categorical variables (e.g., race/ethnicity catego-
ries). Many authors converted all categorical variables or all 
unordered categorical variables into a series of binary col-
umns such that only one of the columns was coded one and 
all others were coded zero for any one respondent. Some 
authors referred to this as one-hot encoding because one 
variable was “hot.” Other authors referred to this approach as 
creating dummy variables. Metadata indicating which vari-
ables were categorical were not available to participants 
(although it is now; Kindel et al. 2019), so participants clas-
sified variables manually if they used a small number of vari-
ables or automatically if they used a large number of 
variables. For instance, several authors identified categorical 
variables as those with fewer than n unique values (n = 50 in 
Davidson 2019; n = 5 in Raes 2019). Others used some com-
bination of survey metadata (question wording or value 
labels) and manual review to identify categorical variables 
(Filippova et al. 2019; Rigobon et al. 2019). Authors using a 
small number of variables sometimes recoded categorical 
variables based on domain expertise. For example, Ahearn 
and Brand (2019) considered one model in which the 
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primary caregiver’s education was coded as a binary indica-
tor of at least some college and another model in which edu-
cation was coded in four levels.

Finally, some authors made use of created variables that 
were a combination of raw variables in the data set. Some 
created variables were made by the FFCWS study team, and 
many authors referred to these variables as constructed vari-
ables, adopting a term used in the FFCWS documentation. 
For example, the Challenge data contain a constructed vari-
able for mother’s education that draws on many different 
pieces of information. While many authors made no distinc-
tion between constructed and raw variables, others made 
special use of constructed variables (Filippova et al. 2019; 
McKay 2019). In addition to many variables created by the 
FFCWS study team, authors created their own variables as 
well. Many authors standardized predictors to mean zero and 
variance one (Compton 2019; Davidson 2019; Rigobon et al. 
2019; Roberts 2019). Others applied functional form trans-
formations, for example by top-coding, squaring, or logging 
variables (McKay 2019; Rigobon et al. 2019). Furthermore, 
some authors attempted to create a single new variable that 
combined the information in many variables. Sometimes this 
incorporated specific understanding of the questions involved 
(e.g., McKay 2019), and sometimes this was done in a data-
driven way without regard to the underlying questions (e.g., 
the principal component analysis performed in Compton 
2019 and Raes 2019).

Variable Selection

The second step in the four-step structure is variable selection. 
In this step, authors selected which variables to include in the 
statistical learning procedure (Table 6). Our presentation of this 
step after data preparation is arbitrary; some authors conducted 
variable selection before data preparation, and others con-
ducted variable selection as part of statistical learning. A key 

distinguishing feature of variable selection approaches was 
whether the authors proceeded manually or automatically.

Manual variable selection.  Authors who took a manual 
approach tended to start with none of the variables and grow 
the list, appealing to prior literature, prior expertise, or survey 
documentation as evidence that a given variable was likely to 
be predictive. As a result, these authors were able to select a 
set of variables in advance and then converted only those 
variables into a usable format (e.g., Ahearn and Brand 2019).

Automated variable selection.  Authors who took an automated 
approach often started with all the variables and then reduced 
the list by using the data available to find variables that were 
not measurably useful for prediction. Stanescu et al. (2019), 
for instance, began with all variables (12,942), dropped those 
that were often missing or had little variation (4,187 remain-
ing variables), and then used least absolute shrinkage and 
selection operator (LASSO) regression (introduced in “Sta-
tistical Learning” section) to select 339 variables that 
appeared to be predictive. Beyond LASSO and other model-
based approaches, other authors automated variable selec-
tion as part of their statistical learning procedure through 
strategies such as F tests (Roberts 2019). Another common 
strategy was to use mutual information, a tool to detect sta-
tistical dependence of one variable on another (Rigobon 
et al. 2019; Roberts 2019).

Hybrid approaches.  In addition to these extreme approaches, 
many authors employed a hybrid strategy, which selected 
variables in ways that were partly manual and partly auto-
mated. Roberts (2019) designed an algorithm to propose a 
set of relevant variables, among which she selected those 
that she believed would be predictive of future academic per-
formance. Filippova et  al. (2019) surveyed substantive 
experts and combined this information with inputs from 

Table 8.  Model Interpretation Approaches.

MSE 
Performance

Regression 
Coefficients

Groups/Clusters of 
Features Hyperparameters

Variable 
Importance Other

Ahearn and Brand x x  
Altschul x x x x  
Carnegie and Wu x x  
Compton x F1 score
Davidson x LIME
Filippova et al. x  
Goode, Datta, and Ramakrishnan x  
McKay x x x  
Raes x x  
Rigobon et al. x x x  
Roberts x x x  
Stanescu, Wang, and Yamauchi x x x  

Note: MSE = mean squared error; LIME = local interpretable model-agnostic explanations.
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algorithmic measures. Both yielded evidence of minimal 
predictive gains from the inclusion of a manual component 
in the variable selection process.

Finally, several authors were uncertain about the optimal 
set of variables to include and addressed this uncertainty by 
constructing multiple data sets with different sets of predic-
tors and comparing manually on the basis of predictive per-
formance (Ahearn and Brand 2019; Filippova et  al. 2019; 
Raes 2019; Roberts 2019).

Statistical Learning

The third step in the four-step structure is statistical learning. 
One theme that unites all approaches in this Special Collection 
(Table 7) is that they are all tools for regression. While some 
researchers use regression and ordinary least squares (OLS) 
interchangeably, we use regression in the more general sense 
of any model that takes as an input a set of predictors 



X  and 
returns a prediction f X

( )  for an outcome y. Because OLS is 
a tool for regression that is familiar to both social scientists 
and data scientists, we introduce the language of statistical 
learning approaches to regression using OLS as an example.

Statistical learning models can often be fully defined  
by two things: the functional form and the loss  
function. OLS, for instance, assumes the form 
f X X X X X T

1 2 0 1 1 2 2, ,…( ) = + + +…=β β β β
 

 (using vector 
products to simplify notation). After assuming this functional 
form, OLS then uses data to learn (estimate) the parameters 
β β 1 2, ,…{ }  that minimize a loss function: mean squared  

prediction error in the training sample. Logistic regression 

changes the functional form to be an inverse logit, 

f X X T
  ( ) = ( )−logit 1 β . This functional form ensures that all 

predictions f X
( )  are between 0 and 1, regardless of the 

value of 


X . The loss function of logistic regression is the 

negative likelihood: L f y f X f X
i

i

y

i

y
i i� � �� � �

,( ) = − ( ) − ( )



∏

−
1

1
. 

We use these two components—functional form and loss 

function—to introduce the two main families of approaches 

used in the Special Collection: regularized regression and 
tree-based methods.

Regularized regression.  Some authors maintained the func-
tional form of OLS (a linear, additive model) but used 
machine learning methods that adapted the loss function to 
regularize estimates toward some value that the authors 
believed in advance to be more likely. Because models often 
regularize toward the mean of the training data, authors 
sometimes describe these estimators as “shrinking” esti-
mates toward a fixed value (Altschul 2019; Raes 2019).

One way to motivate regularization is with a simple 
example using three observations. Suppose we observe a 
training sample of one boy and one girl, for whom GPA is 
known, and we seek to predict the GPA of a holdout sample 
of one boy. Suppose sex is coded in a variable called female 

with boys coded −1 and girls coded 1. In an OLS model, we 
might write

	 E Female FemaleY |( ) = + ×( )α β . 	 (3)

If we observe one boy with GPA of 2.0 and one girl with GPA of 

4.0, an OLS model would estimate α = 3  and β =1 , thereby fit-
ting E FemaleY | =( ) =1 4 0.  and E FemaleY | = −( ) =1 2 0. . 
This model would perfectly fit the training data. However, we 
might have a strong prior belief that boys and girls have similar 
GPAs. Thus, we might operationalize this principle by regular-
izing (shrinking) the estimates toward the sample mean. This 
approach would push β  toward 0 unless the data strongly sug-
gest otherwise. The benefit of regularization is that a few unex-
pected observations in the training sample (i.e., one boy with a 
2.0 GPA) cannot greatly pull our predictions away from the gen-
eral range where we expect them to fall (near the sample mean).

We could achieve regularization by adding a penalty term 
to the OLS loss function, using 

��β  to denote one candidate set 
of coefficients at which the loss function is evaluated:

	
L Y Y X

i

i i
T

k

k

�� � � �� �

� ��� ���
β β λ β,( ) = −( ) +∑ ∑

2
2

Sum of squared error PPenalty term
���

.
	 (4)

The estimator 
��β  would be the argument 

��β  that minimizes 
this loss function. In other words, instead of just minimizing the 
sum of the squared errors (first term), we would minimize the 
sum of the squared errors plus a penalty term that captures the 

complexity of the model (models with larger β s are considered 

more complex). This model allows 
��β  to move away from 0 

only if doing so reduces the squared error term more than it 
increases the penalty term. This particular model (used by 
Roberts 2019) is called ridge regression and heavily penalizes 
coefficients that are very large. The penalty for moving β1  from 
0 to 1 is λ , but the penalty for moving it from 1 to 2 is 
2 1 32 2−( ) =λ λ . Ridge regression, therefore, regularizes away 

from very large parameter values. A similar approach—LASSO 
regression—uses a slightly different penalty term: the sum of 

the absolute values of the coefficients (λ β
k

k∑ ). For LASSO, 

the penalty for moving from 0 to 1 is the same as the penalty for 
moving from 1 to 2. The LASSO penalty can push some coef-
ficients to exactly zero, thereby making it useful for variable 
selection. For instance, Stanescu et al. (2019) feed hundreds of 
variables to the LASSO algorithm and arrived at a prediction 
rule for material hardship that weighted only a handful of these 
variables, zeroing out those for which the contribution to predic-
tion was insufficient to outweigh the addition to the penalty 
term. A third approach—elastic net regression—involves both a 
LASSO and a ridge penalty term and was used by many authors 
(e.g., Altscul 2019; Raes 2019; Rigobon et  al. 2019; Roberts 
2019).

By penalizing complex models (those with large β s), 
regularization reduces in-sample predictive performance but 
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may improve out-of-sample predictive performance by pre-
venting overfitting to the training data. A regularized 
approach, such as ridge regression, produces weights that are 
less likely to yield extreme predictions simply because of 
random variation in the training sample. Because it often 
helps improve out-of-sample predictive performance, regu-
larization is widely used in applied machine learning and in 
this Special Collection.

In Equation 4, the parameter λ  controls the degree of 
regularization; λ  is often called a hyperparameter. Several 
authors in this Special Collection used models involving 
hyperparameters. Often, these authors learned the best hyper-
parameter by cross-validation (Table 7). They partitioned the 
data randomly into k  folds so that each observation was 
assigned to one fold. Then, they fit the model on all but one 
of these folds, assessed predictive performance on the 
remaining fold, and repeated with each fold left out in turn. 
By averaging across folds, this procedure yields an estimate 
of the out-of-sample predictive performance of the model 
with a given hyperparameter. This procedure makes it pos-
sible to learn a good hyperparameter value: the one that min-
imizes cross-validated MSE.

Tree-based methods.  In addition to statistical learning 
approaches that used regularized regression, a second com-
mon family of approaches in the Special Collection was tree-
based methods (Carnegie and Wu 2019; Compton 2019; 
McKay 2019; Raes 2019; Rigobon et al. 2019; Roberts 2019). 
Rather than assuming a particular function form for the rela-
tionship between predictors and outcomes, tree-based meth-
ods seek to learn the right functional form from the data. 
More concretely, tree-based methods place observations into 

groups and then produce the same prediction for everyone in 
the same group. The decision for how to split the observations 
into groups is data-driven and may use MSE as the loss func-
tion. While LASSO, ridge, and elastic net can only learn 
interactions and nonlinearities if the researcher explicitly 
includes them in the assumed function form, tree-based meth-
ods are able to discover nonlinearities and interactions from 
data without requiring the author to specify them in advance.

A hypothetical decision tree is shown in Figure 5. The first 
branch splits respondents into two groups: those whose mother 
completed college and those whose mother did not. Then, of 
those whose mother had completed college, the second branch 
separates respondents into two groups: whether the mother 
was younger than 23 or 23 and older when the child was born. 
This tree splits the population into three “leaves” and produces 
the same prediction for everyone in a given leaf, as depicted 
by the flat regions of the response surface plot.

Many algorithms have been proposed to create decision 
trees from data, and they generally involve efficient trial-
and-error approaches for finding good splits for a given data 
set and outcome. Trees can capture complex interactions 
because the decisions along a branch may involve several 
different variables (e.g., mother’s education and mother’s 
age at birth). They can also flexibly approximate nonlinear 
associations; the ultimate response surface is locally flat with 
jumps where the covariates become part of a new leaf, like 
stair steps. For these reasons, trees are popular, flexible mod-
els. Raes (2019) and Roberts (2019) reported results from 
trees applied in this simplest form.

However, predictions that rely on a single tree can perform 
poorly because the tree learned can be very sensitive to the 
training sample (i.e., the tree would be very different if the 

Figure 5.  Example decision tree. Random forests, Bayesian additive regression trees, and gradient boosted trees are all extensions that 
combine many trees together.
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training sample were slightly different). Three papers in this 
Special Collection used a generalization of trees called random 
forests to reduce this concern (Compton 2019; McKay 2019; 
Rigobon et al. 2019). By averaging over many trees, random 
forests produce an estimator with lower variance. To grow a 
tree, a random forest (1) samples rows of the data with replace-
ment (also called a bootstrap sample) and (2) samples a subset 
of columns (variables) of the data without replacement. On this 
modified data set, the algorithm learns a decision tree. Then, it 
repeats the process hundreds or thousands of times, producing 
hundreds or thousands of decision trees. The sampling within 
each step ensures that the trees are all different from each other, 
thereby producing gains when these different trees are aver-
aged together. For a new observation, each tree makes a predic-
tion, and the forest averages all the predictions.

Raes (2019) and Rigobon et  al. (2019) employed an 
approach adapted from random forests that often yields 
improved predictive performance: gradient boosted trees. 
Random forests train all trees in parallel: The decision rule 
learned by each tree is independent of all the other trees, 
given the data. Gradient boosted trees instead train each tree 
with the goal of correcting the prediction errors of prior trees. 
This procedure is often more computationally intensive but 
can yield improved predictive performance. In the context of 
the Challenge, Rigobon et  al. (2019) achieved unusually 
strong predictive performance with gradient boosted trees.

Carnegie and Wu (2019) used a Bayesian adaptation of ran-
dom forests: Bayesian additive regression trees (BART). The 
primary advantage of BART over other tree-based methods is 
that it enables Bayesian posterior inference (i.e., producing mar-
ginal effect point estimates and 95 percent credible intervals).

This section has introduced numerous approaches to sta-
tistical learning with a range of properties. Although distinct, 
all the approaches described previously follow the general 
framework of regression by accepting an input of predictors 
and returning a predicted value.

Model Interpretation

The fourth and final step in the four-step structure is model 
interpretation. For many papers in the Special Collection, 
understanding and describing the results of the statistical 
learning procedure is quite difficult. Researchers familiar 
with OLS may expect to fully describe a model by a small set 
of coefficients that capture how the predicted value of Y 
changes with a unit change in each given predictor, fixing all 
other predictors at constant values. When an OLS model 
includes squared terms or interactions, interpretation becomes 
more difficult because the conditional association between 
one variable and the outcome depends on either the initial 
value of that variable or the values of other variables. This is 
also true of generalized linear models, such as logistic regres-
sion, with or without interactions. This difficulty becomes 
more pronounced in statistical learning models that include 
many variables, complex nonlinearities, and high-level 

interactions. The number of parameters involved is often far 
too large to summarize the model parameters in a table.

Authors in this Special Collection were not required to 
interpret their models (see call for papers in the Supplemental 
Material), yet several offered interpretations. A few teams 
interpreted the model in terms of regression coefficients, 
thereby summarizing which variables had strong conditional 
associations with the outcome, given all the other variables 
in the model (Ahearn and Brand 2019; McKay 2019; Roberts 
2019; Stanescu et  al. 2019). Some teams also interpreted 
groups or clusters of variables, such as the contribution to 
predictive performance made by variables reported by the 
mother when the focal child was nine years old (Altschul 
2019; Rigobon et  al. 2019; Stanescu et  al. 2019). Others 
interpreted how some hyperparameter (e.g., λ in Equation 4) 
played a central role in their prediction algorithm (Altschul 
2019; Carnegie and Wu 2019).

Some manuscripts use algorithms that estimated variable 
importance (Altschul 2019; McKay 2019; Raes 2019; Rigobon 
et al. 2019; Roberts 2019). Although the definition of variable 
importance differed across algorithms, the general idea was to 
produce a single-number summary, analogous to a regression 
coefficient, to capture the contribution of a given predictor to 
the overall performance in a model in a way that might incor-
porate nonlinear and interactive relationships.

Benchmarks

Although the articles in the Special Collection used a variety 
of methods, they all shared the goal of predictive perfor-
mance. Therefore, they frequently reported MSE or R2 of 
their predictions. These predictions are assessed on one of 
four data sets: training, leaderboard with missing values 
imputed by random draws, leaderboard without missing val-
ues, and holdout. To contextualize the estimates reported in 
the Special Collection within the overall Challenge, Figure 6 
shows the distribution of scores for each outcome for each 
data set.

In addition to interpreting performance metrics in the con-
text of the distribution observed in the Challenge, readers of 
this Special Collection should be aware of the important dif-
ference between training and holdout scores. During the 
Challenge, some submissions achieved RTraining

2  scores near 
1, which suggests that these models made perfectly accurate 
predictions. However, when evaluated on the holdout set, the 
accuracy of these models typically dropped to close to 0 
(Figure 7). Overall, the correlation between RTraining

2  and 
RHoldout

2  was modest (ranging from .48 for material hardship 
to .05 for layoff), which emphasizes the importance of hold-
out data for fairly assessing model performance.

Conclusion

In addition to improving our understanding of the life course 
for children born in large U.S. cities, we hope that the Fragile 
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Families Challenge and this Special Collection highlight the 
value of mass collaboration to advance social science 

research. In the natural sciences, large-scale collaborations 
already have led to important advances: Hundreds of 
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Figure 6.  Empirical cumulative distribution function (CDF) of R2  for all submissions with RHoldout
2 0> . At each R2  value (bottom 

axis), submissions with at most this R2  value are represented as (left axis) a proportion and (right axis)a count. Top axis gives the 
corresponding mean squared error (MSE). To use this figure, find an R2 or MSE value reported in a paper along the x -axis. Move 
vertically to the intersection with the line on the y-axis. Move left or right from this intersection to see the proportion or count of 
submissions with predictions worse than your reference point. The denominator of each R2 calculation for a given evaluation set is the 
MSE of predicting the mean of training observations for all observations in that set. Empirical CDFs are truncated at R2 0= .
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Figure 7.  Among submissions with RHoldout 02 > , training performance RTrain
2  varied widely from 0 to 1 and was only modestly related to 

holdout performance. These results highlight the important distinction between predictive performance on data used to learn the model 
( RTrain

2 ) and new data not used to learn the model ( RHoldout
2 ). The denominator of each R2  calculation for a given evaluation set is the 

mean squared error of predicting the mean of training observations for all observations in that set.

biologists worked together to complete the first sequencing 
of the human genome (International Human Genome 
Sequencing Consortium 2001), and thousands of physicists 
worked together to find evidence of the Higgs boson (Aad 
et al. 2015). Although large-scale collaborations are becom-
ing more common in psychology (Klein et al. 2018; Moshontz 
et al. 2018; Open Science Collaboration 2015), most research 
in the social sciences still happens individually or in small 
teams. There may, however, be some research problems in 
the social science where mass collaboration would create 
exciting, new possibilities.
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