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Abstract

Keywords

The Fragile Families Challenge is a scientific mass collaboration designed to measure and understand the predictability
of life trajectories. Participants in the Challenge created predictive models of six life outcomes using data from the
Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. This Special Collection includes |2 articles
describing participants’ approaches to predicting these six outcomes as well as 3 articles describing methodological and
procedural insights from running the Challenge. This introduction will help readers interpret the individual articles and
help researchers interested in running future projects similar to the Fragile Families Challenge.
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Introduction

Social scientists studying the life course have described
social patterns, theorized factors that shape outcomes, and
estimated the effects of specific interventions. However, it is
unclear how much the knowledge developed from this prior
research enables researchers and policymakers to accurately
predict life outcomes. Although social scientists have gener-
ally focused on questions about explanation rather than ques-
tions about prediction (Breiman 2001; Hofman, Sharma, and
Watts 2017; Shmueli 2010; Yarkoni and Westfall 2017),
questions about prediction are important for three reasons.
First, there is growing interest in using predictive models to
target assistance to children and families at risk (Kleinberg
et al. 2015). For example, policymakers in Allegheny County,
Pennsylvania, are currently using predictive models to assist
case workers in deciding whether a maltreatment referral about
a child is of sufficient concern to warrant an in-person investi-
gation (Chouldechova et al. 2018; Eubanks 2018). Although
using predictive models in policy settings raises important
questions about data collection (Barocas and Selbst 2016;
Lakkaraju et al. 2017), fairness (Courtland 2018), and causal
inference (Athey 2018), the use of predictive models in policy
settings is nevertheless likely to accelerate. Basic scientific
knowledge about the predictability of life outcomes can serve
as a guide for future policymaking around these models.
Second, the predictability of a person’s life outcomes is a
measure of social rigidity (Blau and Duncan 1967): the

degree to which future outcomes can be predicted by family
characteristics or past experience. Measures of rigidity, such
as the relationship between a father’s and son’s occupation,
have been the subject of extensive sociological research
(Torche 2015). Although this research has tended to focus on
statistical association, these questions can also be framed in
terms of prediction: Given certain background information
about a person, how well can we predict what will happen to
them at a later time?

Third, efforts to improve predictive performance can spark
developments in theory, methods, and data collection, even in
settings where prediction is not of direct scientific interest. The
finding that some important life outcomes are not very predict-
able from the kinds of data that social scientists normally collect
could lead to numerous improvements. For example,
researchers could theorize about social processes not currently
being considered and develop new methods to better utilize
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available data. Any of these developments should be welcomed,
even by researchers who have little interest in prediction.

To measure and understand the predictability of life tra-
jectories, we organized a scientific mass collaboration
called the Fragile Families Challenge. Our mass collabora-
tion used a research design from machine learning that is
ideally suited to measuring predictability: the common task
method (Donoho 2017). In projects using the common task
method, all participants use the same data to predict the
same outcomes. Further, these predictions are all evaluated
in the same way: predictive accuracy measured with held-
out data (data that were not available to participants when
they were making predictions). The standardization created
by the common task method ensures that many different
approaches can be compared fairly, and the use of held-out
data limits the amount that reported levels of predictive
accuracy can be inflated by overfitting. Because of these
attractive characteristics, the common task method is
widely used by research communities focused on predictive
accuracy, and Donoho (2017) called it the “secret sauce” of
machine learning.

The common task method is typically defined by three
elements: a common data set, a common task, and a common
evaluation metric. Each of these elements will be described
in detail later and are summarized here. In the Fragile
Families Challenge, the common data set was a specially
constructed version of the Fragile Families and Child
Wellbeing Study, a high-quality birth cohort study. This
ongoing study was designed to understand the dynamics of
families formed by unmarried parents and the lives of chil-
dren born into these families. It collects rich longitudinal
data about thousands of families who gave birth to a child in
large U.S. cities around the year 2000. These data—which
have been used in more than 750 published journal
articles'—were collected in six waves (child birth and ages
1,3,5,9,and 15 years) and include many factors that research-
ers think are important predictors of child well-being. The
common task was to use these data to predict six outcomes
variables measured at child age 15: (1) child grade point aver-
age (GPA), (2) child grit, (3) household eviction, (4) house-
hold material hardship, (5) caregiver layoff, and (6) caregiver
participation in job training. Finally, the common evaluation
metric was mean squared error (MSE) in held-out data.

We received applications from 457 researchers from a
variety of fields who wanted to participate in the Challenge,
and we shared data with 437 of them. These researchers
often worked in teams, and we received valid submissions
from 160 teams.

This Socius Special Collection—along with the Salganik
et al. (2020)—reports the results of the predictive modeling
stage of the Fragile Families Challenge. The Special
Collection includes 12 articles describing participants’
approaches to the Challenge as well as 3 articles describing

Thttps://ffpubs.princeton.edu/

what we learned from running the Challenge. There is also a
comment on one of the articles.

This introduction has three goals. First, it provides back-
ground about the Challenge, which will help readers under-
stand and interpret the individual articles. Second, it
highlights themes that run through the articles. Third, it
shares ideas that may be helpful to researchers who wish to
design or participate in a similar project. The remainder of
this introduction has three parts. First, we describe the Fragile
Families Challenge, focusing on the data, prediction task,
and evaluation metric. Next, we provide an overview of
approaches used in the Special Collection. Finally, we pro-
vide some performance benchmarks that can help readers
interpret the predictive performance values reported in the
papers. Supplemental Material includes the call for papers
for this Special Collection and information about the review
process. Some of the descriptions of the Fragile Families
Challenge also appear in Salganik et al. (2020) and are
repeated here for clarity.

The Fragile Families Challenge
Data

The data used in the Fragile Families Challenge came from
the Fragile Families and Child Wellbeing Study (FFCWS).
The FFCWS began with a multistage, stratified random sam-
ple of hospital births between 1998 and 2000 in large U.S.
cities (more than 200,000 residents), with a 3:1 oversample
of births to nonmarried parents (Reichman et al. 2001). Once
a family agreed to participate in the study, data were col-
lected when the child was born and then at approximately
child ages 1, 3, 5, 9, and 15 years. Data collection included
members of the biological family (e.g., mother, father, child)
as well as others (e.g., teachers; Figure 1). FFCWS collects
information about numerous factors that researchers think
are important predictors of child well-being, including demo-
graphic, family, and neighborhood characteristics; parents’
health and employment status; parenting behavior; children’s
cognitive test scores and behaviors; and the physical home
environment (Table 1). In addition to data collected directly
from respondents, the FFCWS data also include survey para-
data (e.g., sampling weights) and constructed variables
derived from the originally collected data. For example, dur-
ing the in-home visit when the child was three years old, the
child was given the Peabody Picture Vocabulary Test (PPVT),
a standardized test to measure the vocabulary of children
(Dunn and Dunn 2007). In addition to providing responses to
each question in the PPVT, the FFCWS data also include a
constructed PPVT score.

The common data in the Fragile Families Challenge was
a specially constructed version of the FFCWS data that was
split into four data sets: background, training, leaderboard,
and holdout (Figure 2). The background data included thou-
sands of variables that were collected about the family in the


https://ffpubs.princeton.edu/

Salganik et al.

Birth  Agel

Core

mother . .

survey

Primary
caregiver
survey

Core

father ‘ .

survey

In-home
assessment

Child care
provider
survey

Teacher
survey

Age3 Age5 Age9IAge15
1
o o o I
o o o'l o
i
e o o |
1
[ @) o O
i
/—\} I ®
i
e i
i
o o
|

Figure |. Data collection modules in the Fragile Families and Child Wellbeing Study that were used in the Fragile Families Challenge.
The background data set used in the Fragile Families Challenge used data collected at birth and years 1, 3, 5, and 9. The six outcome
variables were chosen from all the variables that were collected at child age 15.

first nine years of the child’s life. The training, leaderboard,
and holdout data included the six outcome variables col-
lected at child age 15.

To construct the background data set, we began with the
basic FFCWS files, which are available to researchers
through an application process. Then we took three steps.
First, we combined many data files containing information
on the focal child into a single file. Second, we dropped
observations that were obtained in 2 out of the 20 cities of
birth because these were pilot cities where some questions
were asked differently or not at all. Third, we made changes
to the data to promote the privacy of respondents and reduce
the risk of harm in the event of reidentification: We redacted
some variables, edited some variables, and added noise to
other variables (Lundberg 2019). For example, because of
our privacy and ethics audit, we decided that the background
data set would not contain genetic and geographic informa-
tion even though this information has been collected in the
FFCWS (Lundberg et al. 2019). Ultimately, the background
data set had information about 4,242 families and 12,942
variables plus an ID number for each family.

The background data set contained approximately 55 mil-
lion possible entries (4,242 x 12,942). However, about 73 per-
cent of possible entries did not have a value (Figure 3a). Many
of the papers in the Special Collection spend time addressing
these missing values. There are several different reasons that a
possible data entry might not have a value (Figure 3b), not all
of which map cleanly onto how many social scientists think
about missing data. We highlight four main reasons. First,

some entries were missing because participants did not partici-
pate in one of the follow-up interviews (about 17 percent of
entries). Second, some entries were missing because respon-
dents refused or were unable to answer a specific question
(less than 1 percent of entries). Third, some entries were miss-
ing because our privacy and ethics audit redacted certain vari-
ables (Lundberg et al. 2019; about 6 percent of entries).
Finally, some entries were missing because of skip patterns in
the survey (25 percent of entries). For example, when the child
was nine years old, the father was asked to describe his current
living situation (Figure 4). There were 10 possible responses
(e.g., rent a home, own a home, homeless), and the subsequent
questions depended on the response given. These skip patterns
were an intentional part of the questionnaire design. Two
papers in the Special Collection make a special effort to deal
with these intentional skips (Carnegiec and Wu 2019; Goode,
Datta, and Ramakrishnan 2019).

The other three data sets—training, leaderboard, and
holdout—consisted of the six outcome variables that were
collected when the child was 15 years old. During the
Challenge, participants had full access to the training data,
partial access to the leaderboard data, and no access to the
holdout data. Participants used the background data and
training data to learn (estimate) a statistical or machine learn-
ing model (e.g., the coefficients of ordinary least squares
regression). Participants then used these models to make pre-
dictions for all observations. During the Challenge, partici-
pants could upload their submissions—which included their
predictions, their code, and a narrative explanation of their
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Table I. Information Collected in the Fragile Families and Child Wellbeing Study between Child Birth and Age Nine.

Data Module Child Age Domains
Mother Birth (A) Child health and development, (B) father-mother relationships, (C) fatherhood, (D)
marriage attitudes, (E) relationship with extended kin, (F) environmental factors and
government programs, (G) health and health behavior, (H) demographic characteristics, (1)
education and employment, (J) income
Father Birth (A) Child health and development, (B) father-mother relationships, (C) fatherhood, (D)
marriage attitudes, (E) relationship with extended kin, (F) environmental factors and
government programs, (G) health and health behavior, (H) demographic characteristics, (I)
education and employment, (J) work activities, (K) income
Mother | (A) Family characteristics, (B) child well-being and mothering, (C) father-child relationship,
(D) mother’s relationship with father, (E) current partner, (F) demographics, (G) mother’s
family background and support, (H) environment and programs, (J) health and health
behavior, (K) education and employment, (L) income
Father | (A) Family characteristics, (B) child well-being and fathering, (C) mother-child relationship,
(D) father’s relationship with mother, (E) current partner, (F) demographics, (G) father’s
family background and support, (H) environment and programs, (J) health and health
behavior, (K) education and employment, (L) income
Mother 3 (A) Family characteristics, (B) child well-being and mothering, (C) father-child relationship,
(D) mother’s relationship with father, (E) current partner, (F) demographics, (H) mother’s
family background and support, (I) environment and programs, (J) health and health
behavior, (R) religion, (K) education and employment, (L) income
Father 3 (A) Family characteristics, (B) child well-being and fathering, (C) mother-child relationship,
(D) father’s relationship with mother, (E) current partner, (F) demographics, (H) father’s
family background and support, (I) environment and programs, (J) health and health
behavior, (R) religion, (K) education and employment, (L) income
Primary caregiver and 3 (A) Health and accidents, (B) family routines, (C) home toy and activity items, (D) nutrition,
in-home observation (E) food expenditures, (F) housing/building characteristics, (G) parental stress, (H)
parental mastery, (J) discipline, (K) informal social control and social cohesion and trust,
(L) exposure to violence, (M) child’s behavior problems, (P) observation checklist, (Q)
common areas, (R) interior of house or apartment, (S) child’s appearance, (T) home scale,
(U) child emotion and cooperation, (V) ending
In-home activities with 3 (A) Height and weight, (B) Child’s Peabody Picture Vocabulary Test or TVIP, (C) Walk-A-
child and mother Line, (D) Q-Sort, (E) Mothers Peabody Picture Vocabulary Test or TVIP, (F) child care/
employment history calendar
Child care provider 3 (A) Care provided at the center, (B) care provided for focus child, (C) care provided for
survey (for center- focus child, (E) teacher-parent relationship, (F) teacher beliefs,
based care) (G) about the child care teacher
Child care center 3 No clear section headings but contents include: space and furnishings, personal care routines,
observations language-reasoning, activities, interaction, program structure, parents and staff
Family care provider 3 (A) Care provided, (B) child care routine and program, (D) provider-parent relationship, (E)
survey (for family- child care provider beliefs, (F) about the child care provider
based care)
Family care provider 3 No clear section headings but contents include: space and furnishings for care and learning,
observations basic care, language and reasoning, learning activities, social development
Child care study 3 (A) Observation checklist, (B) common areas, (C) interior of building, (D) home scale, (E)
postobservation form postvisit rating by interviewer
Mother 5 (A) Family characteristics, (B) child well-being and mothering, (C) father-child relationship,
(D) mother’s relationship with father (for mothers who are or were in a relationship)
(E) current partner, (F) demographics, (H) mother’s family background and support, (1)
environment and programs, (J) health and health behavior, (R) religion, (K) education and
employment, (L) income
Father 5 (A) Family characteristics, (B) child well-being and fathering, (C) mother-child relationship,

(D) father’s relationship with mother (for fathers who are or were in a relationship),

(E) current partner, (F) demographics, (H) father’s family background and support, (1)
environment and programs, (J) health and health behavior, (R) religion, (K) education and
employment, (L) income

(continued)
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Table I. (continued)

Data Module

Child Age

Domains

Primary caregiver and
in-home observation

In-home activities with
child and mother

Teacher

Mother

Father

Primary caregiver

Interviewer observation

In-home activities with
child and primary
caregiver

Teacher

5

(A) Health and accidents, (B) family routines, (C) home toy and activity items, (D) nutrition,
(E) housing/building characteristics, (F) parental stress and mastery, (G) discipline, (H)
exposure to violence, (J) Child Protective Services contact, (K) food expenditures, (L)
child’s behavior, (N) activities, (P) observation checklist, (Q) common areas, (R) interior
of house or apartment, (S) child’s appearance, (T) home scale, (U) child emotion and
cooperation, (V) ending

(A) Weight/height, (B) Peabody Picture Vocabulary Test with child, (C) Woodcock-Johnson
Letter-Word activity with child, (D) attention sustained task, (E) child care employment
history calendar, (F) five-minute speech sample, (G) Peabody Picture Vocabulary Test with
mother

(A) Information specific to the participating child, (B) academic skills specific to the
participating child, (C) classroom behavior and social skills specific to the participating child,
(D) classroom characteristics, (E) class resources and activities, (F) school climate and
environment, (G) general information about teacher

(A) Core mother interview: family characteristics, household roster, marital, and fertility
history; (B) bio father contributions and resources; (C) mother’s relationship with father;
(D) current partner; (E) mother’s family background and support; (F) environment and
programs; (G) health and health behavior; (H) religion; (I) education and employment; (J)
income; (K) secondary caregiver

(A) Core father interview: family characteristics, household roster, marital, and fertility
history; (B) bio mother and bio father contributions and resources; (C) father’s relationship
with mother; (D) current partner; (E) father’s family background and support; (F)
environment and programs; (G) health and health behavior; (H) religion; (I) education and
employment; (J) income; (K) secondary caregiver

(A) Introduction to nonparental caregiver survey; (B) mother-child relationship; (C) father-
child relationship; (D) demographics; (E) income, education, and employment; (F) health
and well-being; (G) environment; (H) health and accidents; (I) family routines and home life;
(J)) nutrition; (K) parental stress and mastery; (L) child’s education; (M) child’s neighborhood

(A) Observation checklist, (B) common areas, (C) interior of house or apartment, (D) child’s
appearance, (E) home scale, (F) child emotion and cooperation, (G) ending

(A) Parental supervision and relationship, (B) parental discipline, (C) sibling relationships, (D)
routines, (E) school, (F) early delinquency, (G) task completion and behavior, (H) health
and safety, (I) closing

No clear section headings but activities include: consent, child assessment (PPVT, Digit Span,
Woodcock-Johnson Tests 9 and 10), primary caregiver self-administered questionnaire,
health measures, saliva sample, biological mother weight, child weigh/height, primary
caregiver open-ended responses

(A) General information, (B) classroom behavior and social skills specific to the participating
child, (C) information specific to the participating child, (D) parent/guardian involvement,
(E) classroom characteristics, (F) school climate and environment, (G) general information
about teacher

Note: Section letters are not always consecutive in the questionnaires. Full questionnaires are available at https:/fragilefamilies.princeton.edu/data-and-
documentation/public-data-documentation.

approach—to our submission platform.? Our platform then
calculated the mean squared prediction error in the leader-
board data and showed this score on a leaderboard that was
visible to all participants. Finally, at the end of the Challenge,
we calculated the mean squared error of the predictions in
the holdout data.

When deciding the relative sizes of the training, leader-
board, and holdout data sets, we balanced a tension between

2Qur submission platform was a modified version of CodaLab
(https://github.com/codalab).

having the largest possible training data set (to enable more
accurate predictions) and the largest possible holdout data set
(to enable more accurate estimates of the predictive perfor-
mance). Ultimately, we allocated four of eight of observations
to the training data set, one of eight to the leaderboard data
set, and three of eight to the holdout data set. This allocation
was somewhat arbitrary but similar to that used in other proj-
ects using the common task method. Given these relative
sizes, we allocated data by systematic sampling to make them
as similar as possible (Sérndal, Swensson, and Wretman
2003). We first sorted all observations by city of birth,
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Figure 2. Data sets in the Fragile Families Challenge. The background data were collected between child birth and child age nine. The
six outcome variables, which were collected at child age |5, were split into three sets: training (four of eight observations), leaderboard
(one of eight observations), and holdout (three of eight observations). Participants in the Challenge used the background and training
data to predict outcomes. The accuracy of predictions in the leaderboard data set was available during the Challenge, and the accuracy
of predictions in the holdout data set was available only at the end of the Challenge.
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Not missing
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Figure 3. Missing entries in the Fragile Families Challenge background data set. The background data set had 4,242 rows and 12,942
columns (plus an ID number). Of the approximately 55 million distinct data entries, about 73 percent were missing. There were many

types of missing values.

parents’ relationship status at the birth, mother’s race, whether
at least one outcome was nonmissing, and then the outcomes
in the following order: eviction, layoff, job training, GPA,
grit, and material hardship. In the sorted data, we grouped
observations into sets of eight sequential observations. Then,
we randomly assigned four, one, and three of the observations
to the training, leaderboard, and holdout data sets.

Table 2 summarizes the number of nonmissing outcome
cases in each of the training, leaderboard, and holdout data
sets. Cases with missing outcomes were not used when mea-
suring the mean squared prediction error in the holdout data.
In the leaderboard data set only, we imputed missing values
on the outcome variables by taking a random sample (with
replacement) from the distribution of observed outcomes.
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F2.  What is your current housing situation? Please stop me when | read the statement
that describes your situation. Do you . . .

DON'T KNOW

CODE ONE
Rent your own apartment or house, ..........ccceuce.. 1=» GO TO F4
Live with family or friends who rent and you contribute
part of the rent,......oceeeeeveiviiie s 2» GO TOF4
Live with family or friends who rent but you do
NOL PAY reNt, ... 3»GOTOF5
Own your OWN hOME, ......cevrveeeeceiernerneseeeseeee s 4w GO TO F3
Live in a house or condo owned by another
family member, ......ccooveeiciinr e 5=» GO TO F3
Live in temporary housing or a group
£ 1= (=T o | N 6= GO TO F7
Do you live in some other housing
arrangement? (SPECIFY) .....oooiiiiiiiiieeeeeeee 91=» GO TO F3
HALFWAY HOUSE/TREATMENT
FACILITY ........... ....8% GO TO F7
JAIL/PRISON ..ottt 9= GO TO F7
ON THE STREET, HOMELESS.........cccovieirienn 10=» GO TO F7
REFUSED.....cccci ittt ettt -1» GO TO F4

-2=» GO TO F4

Figure 4. Example skip pattern in the Fragile Families and Child Wellbeing Study. Depending on the answers to this question, which
was asked to the father when the child was nine years old, the respondent would be asked different follow-up questions. These skip
patterns caused some of the missing entries in the background data set.

Table 2. Number of Nonmissing Cases for Each Outcome in the
Training, Leaderboard, and Holdout Data Sets.

Outcome Training Leaderboard Holdout
Grade point average 1,165 304 886
Grit 1,418 362 1,075
Material hardship 1,459 375 1,099
Eviction 1,459 376 1,103
Layoff 1,277 327 994
Job training 1,461 376 1,104
Total possible 2,121 530 1,591

Because these random draws are unpredictable by construc-
tion, this gave us a tool to assess whether respondents were
overfitting to the leaderboard set by submitting numerous
queries and updating their models accordingly.

Prediction Task

The common task in the Challenge was to use the background
and training data to predict six outcome variables measured at
child age 15: (1) child GPA, (2) child grit, (3) household evic-
tion, (4) household material hardship, (5) caregiver layoff,
and (6) caregiver participation in job training. At the time of

3For more on creating a reliable leaderboard score, see Blum and
Hardt (2015)

the Challenge, these data were available only to survey
administrators and a very small set of researchers who were
not allowed to participate in the Challenge. Participants in the
Challenge could focus on predicting as many of these out-
comes as they wished. Table 3 summarizes the outcomes vari-
ables of interest in each paper in the Special Collection.

The choice of the six outcome variables from the approxi-
mately 1,500 variables measured at age 15 was a key design
decision. We chose outcome variables for which good predic-
tions would be useful for subsequent substantive research. For
the continuous outcomes, we planned to study families that
were doing much better than predicted and much worse than
predicted, so we wanted outcome variables that were important
to social scientists and policy makers, poorly understood, and
measured well. For the binary outcomes, we planned to con-
sider these variables as treatments and measure their effects on
a new set of outcomes later in the life course (e.g., college
enrollment), so we wanted variables that were important to
social scientist and policymakers, common enough to be mean-
ingful, and conducive to clean causal claims.* Methodologically,
we wanted a variety of variable types—such as continuous and
binary or about the child, household, or primary caregiver—so

4When selecting the binary outcomes, we were guided by the advice
of Rosenbaum (2002:356): “In research design, given the choice,
one would prefer a single, abrupt, unexpected, short-lived treatment
of dramatic proportions.”
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Table 3. Outcomes That Are the Focus of the Authors’
Attention.

Paper Outcome(s)
Ahearn and Brand Layoff
Altschul All
Carnegie and Wu All
Compton All
Davidson GPA
Filippova et al. All
Goode, Datta, and Ramakrishnan All
McKay All
Raes GPA
Rigobon et al. All
Roberts GPA
Stanescu, Wang, and Yamauchi All

Note: “All” indicates that the authors focused on all six outcomes: grade
point average (GPA), grit, material hardship, eviction, layoff, and job
training.

that we could study the relationship between the type of out-
come, its overall predictability, and the best methods for pre-
dicting it. The appropriate number and type of outcome
variable(s) for future mass collaborations is an open question.
The exact operationalization of these six outcome vari-
ables differs across the scientific literature. Table 4 describes
our approach. For two outcomes in particular—eviction and
grit—we emphasize differences between how the FFCWS
measured these outcomes and how they are measured in
other research. The measure of eviction in the FFCWS
includes eviction for nonpayment of rent or mortgage,
regardless of whether a court ordered the eviction or a land-
lord carried it out informally (Desmond and Kimbro 2015;
Lundberg and Donnelly 2019). Other research focuses on
formal court-ordered evictions for any reason (Desmond
et al. 2018). The FFCWS measurement of grit is different
from the measure proposed in Duckworth et al. (2007),
whose original grit scale consists of six items related to con-
sistency of interest and six items related to perseverance of
effort. The FFCWS scale is shorter (four items) and was
designed with adolescent school outcomes in mind. Two
items (“I finish whatever I begin”; “I am a hard worker”) are
exactly as in the original scale for perseverance of effort.
One item on the FFCWS scale (“Once I make a plan to get
something done, I stick to it”) is a simplified version of one
of the original items about consistency of interests (“I have
difficulty maintaining my focus on projects that take more
than a few months to complete”). Likewise, the FFCWS
scale includes an item focused on schoolwork (“I keep at my
schoolwork until I am done with it”), which is a more tar-
geted version of an item from the original perseverance scale
(“I am diligent”). A final difference is that Duckworth et al.
(2007) proposed a scale with five answer choices (not at all
like me to very much like me), whereas the FFCWS scale
involves four choices (strongly disagree to strongly agree).

Evaluation Metric

There are many potential metrics by which to evaluate pre-
dictive performance, and these different metrics can lead to
different conclusions (Hofman et al. 2017). When choosing
the evaluation metric for the Fragile Families Challenge, we
wanted one that was: (1) familiar to participants, (2) appli-
cable to both binary and continuous outcomes, and (3)
aligned with the scientific objectives of the next stage of the
Fragile Families Challenge.
We decided that MSE was best suited to this task:

MSE, ., = —— > (yi—%)zﬁ (1)

Holdout jeHoldout

where y; is the outcome for person i (e.g., GPA), )A/l. is the
predicted outcome for person i, and 7,4, 1S the number of
people in the holdout set, excluding missing cases.

We selected MSE for three reasons. First, MSE is a well-
known metric that those working with predictive models
would have encountered previously. Second, mean squared
error is a very common metric regardless of whether the out-
come is binary (Brier 1950) or continuous (e.g., ordinary least
squared regression minimizes squared error). Third, one goal
of the predictive modeling stage of the Fragile Families
Challenge was to identify families with outcomes very far
from their expected values given the predictors. The optimal
submission to minimize MSE would predict the expected val-
ues for all observations if this quantity were known. Mean
squared error therefore aligned with our substantive goals.

To increase interpretability and increase comparability
across outcomes, some papers present results in terms of
Ry o 1dout» Which compares the accuracy of a set of predictions
to the accuracy of prediction of the mean of the training data,
which could be considered an extremely simple baseline
prediction.

~ \2
ZieHoldout(yi yl)
2 2
z ieHoldout (yz - yTraining )

where Vruining is the mean of the training data.’

2)

2 =1-
Holdout —

Overview of Approaches

Although the papers in this Special Collection may appear
different, they share a similar structure. Most of them
describe approaches to the Challenge that involved four
steps: data preparation, variable selection, statistical learn-
ing, and model interpretation. Data preparation encompasses

SIf one of the papers reports an MSE 14ou a0d you would like to
convert it into an Rf jgou here are the values that you can divide
by: material hardship .025, GPA .425, grit .253, eviction .056,
layoff .167, and job training .185.
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the procedures by which the authors converted the data and
survey documentation into a format suitable for analysis
(Table 5). Variable selection captures how authors chose a
subset of variables to use when predicting the outcome
(Table 6). Statistical learning includes all steps by which the
authors learn (estimate) a function linking those variables to
the outcome. We choose the term statistical learning because
we include approaches common in statistics (e.g., general-
ized linear model) as well as approaches common in machine
learning (e.g., random forest; Table 7). Finally, model inter-
pretation—a step not required for the Challenge but carried
out by many authors nonetheless—is our term for authors’
efforts to summarize the resulting model (Table 8). By plac-
ing the authors’ contributions within the framework of these
four steps, we are able to highlight the general themes that
emerge in varying forms across papers. To bound this sec-
tion, we only describe approaches that appear in more than
one paper of this Special Collection, and we do not describe
each approach in detail. Friedman, Hastic, and Tibishirani
(2001) and Efron and Hastie (2016) provide more detailed
introductions to many of the approaches used in the
Challenge, and Mullainathan and Spiess (2017), Athey
(2018), and Molina and Garip (2019) provide more detailed
introductions to how these methods are used in the social
sciences.

Data Preparation

The first step in the four-step structure is data preparation.
The data provided to participants were not immediately suit-
able for analysis. For example, many values were missing,
and many unordered categorical variables (e.g., race/ethnic-
ity) were stored with numeric values. Some participants in
the Challenge spent large amounts of time converting the
data into a format more suitable for analysis (Kindel et al.
2019). The papers in the Special Collection often describe
data preparation—sometimes called data cleaning or data
wrangling—in great detail. Most papers describe how the
authors dealt with two main problems: missing values and
categorical variables. Some papers describe how authors cre-
ated new variables that they thought would improve predic-
tive performance. Certain approaches to data preparation
tended to be used in conjunction with certain approaches to
variable selection: Some authors built up their models one
variable at time based on theory and prior research (e.g.,
Ahearn and Brand 2019; McKay 2019), whereas other
authors began with many variables (e.g., Compton 2019;
Rigobon et al. 2019). Both of these styles required data prep-
aration, but the approach to data preparation often differed
based on the number of variables involved.

Many papers address missing data. As described earlier,
the data set provided to participants had missing entries for a
variety of reasons. Some authors addressed missingness
using univariate strategies, such as imputing the mean,
median, or mode of all observed values for any case that was

missing. These strategies were sometimes paired with the
addition of new columns for each imputed variable indicat-
ing which values were imputed (McKay, 2019; Rigobon
et al., 2019). These strategies were univariate because they
addressed missingness on each variable individually. Authors
who incorporated thousands of variables into their statistical
learning procedure tended to use univariate approaches to
address missing data (but see also Stanescu, Wang, and
Yamauchi 2019). One reason for this pattern may be that
multivariate strategies are computationally difficult to apply
and conceptually difficult to reason through when missing-
ness occurs in thousands of variables. Multivariate strategies
fall roughly into two classes. First, two papers describe how
the authors used the structure of the survey to fill in missing
values that could be logically inferred from surrounding
questions (i.e., for mothers who reported not smoking in the
past month, the number of packs usually smoked per day was
zero) (Carnegie and Wu 2019; Goode et al. 2019). Second,
many authors used model-based approaches to predict the
values of missing variables as a function of the observed val-
ues of other variables. Anecdotally, we heard that many par-
ticipants spent a lot of time addressing missing data, and
some authors compared the predictive performance achieved
under different approaches to missing data. Somewhat sur-
prisingly, these authors did not find large improvements in
predictive performance arising from more complex
approaches to missing data (Ahearn and Brand 2019;
Filippova et al. 2019; Stanescu et al. 2019).

A second common problem addressed by authors was
recoding categorical variables. Categorical variables group
responses into categories, and they come in two main types:
ordered categorical variables, which have a natural order
(e.g., level of education with categories such as less than
high school, high school graduate, some college, etc.), and
unordered categorical variables (e.g., race/ethnicity catego-
ries). Many authors converted all categorical variables or all
unordered categorical variables into a series of binary col-
umns such that only one of the columns was coded one and
all others were coded zero for any one respondent. Some
authors referred to this as one-hot encoding because one
variable was “hot.” Other authors referred to this approach as
creating dummy variables. Metadata indicating which vari-
ables were categorical were not available to participants
(although it is now; Kindel et al. 2019), so participants clas-
sified variables manually if they used a small number of vari-
ables or automatically if they used a large number of
variables. For instance, several authors identified categorical
variables as those with fewer than n unique values (7 = 50 in
Davidson 2019; n =5 in Raes 2019). Others used some com-
bination of survey metadata (question wording or value
labels) and manual review to identify categorical variables
(Filippova et al. 2019; Rigobon et al. 2019). Authors using a
small number of variables sometimes recoded categorical
variables based on domain expertise. For example, Ahearn
and Brand (2019) considered one model in which the
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Table 8. Model Interpretation Approaches.

MSE Regression  Groups/Clusters of Variable
Performance  Coefficients Features Hyperparameters Importance Other
Ahearn and Brand X X
Altschul X X X X
Carnegie and Wu X X
Compton X Fl score
Davidson X LIME
Filippova et al. X
Goode, Datta, and Ramakrishnan X
McKay X X X
Raes X X
Rigobon et al. X X X
Roberts X X X
Stanescu, Wang, and Yamauchi X X X

Note: MSE = mean squared error; LIME = local interpretable model-agnostic explanations.

primary caregiver’s education was coded as a binary indica-
tor of at least some college and another model in which edu-
cation was coded in four levels.

Finally, some authors made use of created variables that
were a combination of raw variables in the data set. Some
created variables were made by the FFCWS study team, and
many authors referred to these variables as constructed vari-
ables, adopting a term used in the FFCWS documentation.
For example, the Challenge data contain a constructed vari-
able for mother’s education that draws on many different
pieces of information. While many authors made no distinc-
tion between constructed and raw variables, others made
special use of constructed variables (Filippova et al. 2019;
McKay 2019). In addition to many variables created by the
FFCWS study team, authors created their own variables as
well. Many authors standardized predictors to mean zero and
variance one (Compton 2019; Davidson 2019; Rigobon et al.
2019; Roberts 2019). Others applied functional form trans-
formations, for example by top-coding, squaring, or logging
variables (McKay 2019; Rigobon et al. 2019). Furthermore,
some authors attempted to create a single new variable that
combined the information in many variables. Sometimes this
incorporated specific understanding of the questions involved
(e.g., McKay 2019), and sometimes this was done in a data-
driven way without regard to the underlying questions (e.g.,
the principal component analysis performed in Compton
2019 and Raes 2019).

Variable Selection

The second step in the four-step structure is variable selection.
In this step, authors selected which variables to include in the
statistical learning procedure (Table 6). Our presentation of this
step after data preparation is arbitrary; some authors conducted
variable selection before data preparation, and others con-
ducted variable selection as part of statistical learning. A key

distinguishing feature of variable selection approaches was
whether the authors proceeded manually or automatically.

Manual variable selection. Authors who took a manual
approach tended to start with none of the variables and grow
the list, appealing to prior literature, prior expertise, or survey
documentation as evidence that a given variable was likely to
be predictive. As a result, these authors were able to select a
set of variables in advance and then converted only those
variables into a usable format (e.g., Ahearn and Brand 2019).

Automated variable selection. Authors who took an automated
approach often started with all the variables and then reduced
the list by using the data available to find variables that were
not measurably useful for prediction. Stanescu et al. (2019),
for instance, began with all variables (12,942), dropped those
that were often missing or had little variation (4,187 remain-
ing variables), and then used least absolute shrinkage and
selection operator (LASSO) regression (introduced in “Sta-
tistical Learning” section) to select 339 variables that
appeared to be predictive. Beyond LASSO and other model-
based approaches, other authors automated variable selec-
tion as part of their statistical learning procedure through
strategies such as F tests (Roberts 2019). Another common
strategy was to use mutual information, a tool to detect sta-
tistical dependence of one variable on another (Rigobon
et al. 2019; Roberts 2019).

Hybrid approaches. In addition to these extreme approaches,
many authors employed a hybrid strategy, which selected
variables in ways that were partly manual and partly auto-
mated. Roberts (2019) designed an algorithm to propose a
set of relevant variables, among which she selected those
that she believed would be predictive of future academic per-
formance. Filippova et al. (2019) surveyed substantive
experts and combined this information with inputs from
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algorithmic measures. Both yielded evidence of minimal
predictive gains from the inclusion of a manual component
in the variable selection process.

Finally, several authors were uncertain about the optimal
set of variables to include and addressed this uncertainty by
constructing multiple data sets with different sets of predic-
tors and comparing manually on the basis of predictive per-
formance (Ahearn and Brand 2019; Filippova et al. 2019;
Raes 2019; Roberts 2019).

Statistical Learning

The third step in the four-step structure is statistical learning.
One theme that unites all approaches in this Special Collection
(Table 7) is that they are all tools for regression. While some
researchers use regression and ordinary least squares (OLS)
interchangeably, we use regression in the more general sense
of any model that takes as an input a set of predictors X and
returns a prediction f| X | for an outcome y. Because OLS is
a tool for regression that is familiar to both social scientists
and data scientists, we introduce the language of statistical
learning approaches to regression using OLS as an example.
Statistical learning models can often be fully defined
by two things: the functional form and the loss
function. OLS, for instance, assumes the form
F(X1, X)) =B +BX, + By X, +...=X'B (using vector
products to simplify notation). After assuming this functional
form, OLS then uses data to learn (estimate) the parameters

{BI,BZ,...} that minimize a loss function: mean squared

prediction error in the training sample. Logistic regression
changes the functional form to be an inverse logit,
f ()}' ) =logit™ (}? TB) . This functional form ensures that all
predictions f (X ) are between 0 and 1, regardless of the
value of X. The loss function of logistic regression is the

. g ~ - Lo\ A~ =\
negative likelihood: L(f,y) = —Hf(Xi) [l—f(Xi)J .
We use these two components—ifunctional form and loss
function—to introduce the two main families of approaches

used in the Special Collection: regularized regression and
tree-based methods.

Regularized regression. Some authors maintained the func-
tional form of OLS (a linear, additive model) but used
machine learning methods that adapted the loss function to
regularize estimates toward some value that the authors
believed in advance to be more likely. Because models often
regularize toward the mean of the training data, authors
sometimes describe these estimators as “shrinking” esti-
mates toward a fixed value (Altschul 2019; Raes 2019).
One way to motivate regularization is with a simple
example using three observations. Suppose we observe a
training sample of one boy and one girl, for whom GPA is
known, and we seek to predict the GPA of a holdout sample
of one boy. Suppose sex is coded in a variable called female

with boys coded —1 and girls coded 1. In an OLS model, we
might write

E(Y | Female) = o+ B x (Female). 3)

Ifwe observe one boy with GPA of 2.0 and one girl with GPA of
4.0, an OLS model would estimate & =3 and =1, thereby fit-
ting E(Y|Female=1)=4.0 and E(Y|Female=—-1)=2.0.
This model would perfectly fit the training data. However, we
might have a strong prior belief that boys and girls have similar
GPAs. Thus, we might operationalize this principle by regular-
izing (shrinking) the estimates toward the sample mean. This
approach would push B toward 0 unless the data strongly sug-
gest otherwise. The benefit of regularization is that a few unex-
pected observations in the training sample (i.e., one boy with a
2.0 GPA) cannot greatly pull our predictions away from the gen-
eral range where we expect them to fall (near the sample mean).

We could achieve regularization by adding a penalty term
to the OLS loss function, using 3 to denote one candidate set
of coefficients at which the loss function is evaluated:

L(ﬁ,?):Z(Y; —)"(fﬁ)z + xzk’ﬁi .

“)

(S E————
Sum of squared error Penalty term

The estimator [§ would be the argument B that minimizes
this loss function. In other words, instead of just minimizing the
sum of the squared errors (first term), we would minimize the
sum of the squared errors plus a penalty term that captures the
complexity of the model (models with larger f& s are considered
more complex). This model allows B to move away from 0
only if doing so reduces the squared error term more than it
increases the penalty term. This particular model (used by
Roberts 2019) is called ridge regression and heavily penalizes
coefficients that are very large. The penalty for moving 3, from
0 to 1 is A, but the penalty for moving it from 1 to 2 is
(22 -1? )7» = 3. Ridge regression, therefore, regularizes away
from very large parameter values. A similar approach—LASSO
regression—uses a slightly different penalty term: the sum of
the absolute values of the coefficients (7\2|B k| ). For LASSO,

the penalty for moving from 0 to 1 is the same as the penalty for
moving from 1 to 2. The LASSO penalty can push some coef-
ficients to exactly zero, thereby making it useful for variable
selection. For instance, Stanescu et al. (2019) feed hundreds of
variables to the LASSO algorithm and arrived at a prediction
rule for material hardship that weighted only a handful of these
variables, zeroing out those for which the contribution to predic-
tion was insufficient to outweigh the addition to the penalty
term. A third approach—elastic net regression—involves both a
LASSO and a ridge penalty term and was used by many authors
(e.g., Altscul 2019; Raes 2019; Rigobon et al. 2019; Roberts
2019). R
By penalizing complex models (those with large B s),
regularization reduces in-sample predictive performance but
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A) Tree structure
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Figure 5. Example decision tree. Random forests, Bayesian additive regression trees, and gradient boosted trees are all extensions that

combine many trees together.

may improve out-of-sample predictive performance by pre-
venting overfitting to the training data. A regularized
approach, such as ridge regression, produces weights that are
less likely to yield extreme predictions simply because of
random variation in the training sample. Because it often
helps improve out-of-sample predictive performance, regu-
larization is widely used in applied machine learning and in
this Special Collection.

In Equation 4, the parameter A controls the degree of
regularization; A is often called a hyperparameter. Several
authors in this Special Collection used models involving
hyperparameters. Often, these authors learned the best hyper-
parameter by cross-validation (Table 7). They partitioned the
data randomly into & folds so that each observation was
assigned to one fold. Then, they fit the model on all but one
of these folds, assessed predictive performance on the
remaining fold, and repeated with each fold left out in turn.
By averaging across folds, this procedure yields an estimate
of the out-of-sample predictive performance of the model
with a given hyperparameter. This procedure makes it pos-
sible to learn a good hyperparameter value: the one that min-
imizes cross-validated MSE.

Tree-based methods. In addition to statistical learning
approaches that used regularized regression, a second com-
mon family of approaches in the Special Collection was tree-
based methods (Carnegie and Wu 2019; Compton 2019;
McKay 2019; Raes 2019; Rigobon et al. 2019; Roberts 2019).
Rather than assuming a particular function form for the rela-
tionship between predictors and outcomes, tree-based meth-
ods seek to learn the right functional form from the data.
More concretely, tree-based methods place observations into

groups and then produce the same prediction for everyone in
the same group. The decision for how to split the observations
into groups is data-driven and may use MSE as the loss func-
tion. While LASSO, ridge, and elastic net can only learn
interactions and nonlinearities if the researcher explicitly
includes them in the assumed function form, tree-based meth-
ods are able to discover nonlinearities and interactions from
data without requiring the author to specify them in advance.

A hypothetical decision tree is shown in Figure 5. The first
branch splits respondents into two groups: those whose mother
completed college and those whose mother did not. Then, of
those whose mother had completed college, the second branch
separates respondents into two groups: whether the mother
was younger than 23 or 23 and older when the child was born.
This tree splits the population into three “leaves” and produces
the same prediction for everyone in a given leaf, as depicted
by the flat regions of the response surface plot.

Many algorithms have been proposed to create decision
trees from data, and they generally involve efficient trial-
and-error approaches for finding good splits for a given data
set and outcome. Trees can capture complex interactions
because the decisions along a branch may involve several
different variables (e.g., mother’s education and mother’s
age at birth). They can also flexibly approximate nonlinear
associations; the ultimate response surface is locally flat with
jumps where the covariates become part of a new leaf, like
stair steps. For these reasons, trees are popular, flexible mod-
els. Raes (2019) and Roberts (2019) reported results from
trees applied in this simplest form.

However, predictions that rely on a single tree can perform
poorly because the tree learned can be very sensitive to the
training sample (i.e., the tree would be very different if the
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training sample were slightly different). Three papers in this
Special Collection used a generalization of trees called random
forests to reduce this concern (Compton 2019; McKay 2019;
Rigobon et al. 2019). By averaging over many trees, random
forests produce an estimator with lower variance. To grow a
tree, a random forest (1) samples rows of the data with replace-
ment (also called a bootstrap sample) and (2) samples a subset
of columns (variables) of the data without replacement. On this
modified data set, the algorithm learns a decision tree. Then, it
repeats the process hundreds or thousands of times, producing
hundreds or thousands of decision trees. The sampling within
each step ensures that the trees are all different from each other,
thereby producing gains when these different trees are aver-
aged together. For a new observation, each tree makes a predic-
tion, and the forest averages all the predictions.

Raes (2019) and Rigobon et al. (2019) employed an
approach adapted from random forests that often yields
improved predictive performance: gradient boosted trees.
Random forests train all trees in parallel: The decision rule
learned by each tree is independent of all the other trees,
given the data. Gradient boosted trees instead train each tree
with the goal of correcting the prediction errors of prior trees.
This procedure is often more computationally intensive but
can yield improved predictive performance. In the context of
the Challenge, Rigobon et al. (2019) achieved unusually
strong predictive performance with gradient boosted trees.

Carnegie and Wu (2019) used a Bayesian adaptation of ran-
dom forests: Bayesian additive regression trees (BART). The
primary advantage of BART over other tree-based methods is
that it enables Bayesian posterior inference (i.e., producing mar-
ginal effect point estimates and 95 percent credible intervals).

This section has introduced numerous approaches to sta-
tistical learning with a range of properties. Although distinct,
all the approaches described previously follow the general
framework of regression by accepting an input of predictors
and returning a predicted value.

Model Interpretation

The fourth and final step in the four-step structure is model
interpretation. For many papers in the Special Collection,
understanding and describing the results of the statistical
learning procedure is quite difficult. Researchers familiar
with OLS may expect to fully describe a model by a small set
of coefficients that capture how the predicted value of Y
changes with a unit change in each given predictor, fixing all
other predictors at constant values. When an OLS model
includes squared terms or interactions, interpretation becomes
more difficult because the conditional association between
one variable and the outcome depends on either the initial
value of that variable or the values of other variables. This is
also true of generalized linear models, such as logistic regres-
sion, with or without interactions. This difficulty becomes
more pronounced in statistical learning models that include
many variables, complex nonlinearities, and high-level

interactions. The number of parameters involved is often far
too large to summarize the model parameters in a table.

Authors in this Special Collection were not required to
interpret their models (see call for papers in the Supplemental
Material), yet several offered interpretations. A few teams
interpreted the model in terms of regression coefficients,
thereby summarizing which variables had strong conditional
associations with the outcome, given all the other variables
in the model (Ahearn and Brand 2019; McKay 2019; Roberts
2019; Stanescu et al. 2019). Some teams also interpreted
groups or clusters of variables, such as the contribution to
predictive performance made by variables reported by the
mother when the focal child was nine years old (Altschul
2019; Rigobon et al. 2019; Stanescu et al. 2019). Others
interpreted how some hyperparameter (e.g., A in Equation 4)
played a central role in their prediction algorithm (Altschul
2019; Carnegie and Wu 2019).

Some manuscripts use algorithms that estimated variable
importance (Altschul 2019; McKay 2019; Raes 2019; Rigobon
et al. 2019; Roberts 2019). Although the definition of variable
importance differed across algorithms, the general idea was to
produce a single-number summary, analogous to a regression
coefficient, to capture the contribution of a given predictor to
the overall performance in a model in a way that might incor-
porate nonlinear and interactive relationships.

Benchmarks

Although the articles in the Special Collection used a variety
of methods, they all shared the goal of predictive perfor-
mance. Therefore, they frequently reported MSE or R? of
their predictions. These predictions are assessed on one of
four data sets: training, leaderboard with missing values
imputed by random draws, leaderboard without missing val-
ues, and holdout. To contextualize the estimates reported in
the Special Collection within the overall Challenge, Figure 6
shows the distribution of scores for each outcome for each
data set.

In addition to interpreting performance metrics in the con-
text of the distribution observed in the Challenge, readers of
this Special Collection should be aware of the important dif-
ference between training and holdout scores. During the
Challenge, some submissions achieved R%raining scores near
1, which suggests that these models made perfectly accurate
predictions. However, when evaluated on the holdout set, the
accuracy of these models typically dropped to close to 0
(Figure 7). Overall, the correlation between R%mining and
Rioigon Was modest (ranging from .48 for material hardship
to .05 for layoff), which emphasizes the importance of hold-
out data for fairly assessing model performance.

Conclusion

In addition to improving our understanding of the life course
for children born in large U.S. cities, we hope that the Fragile
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Figure 6. Empirical cumulative distribution function (CDF) of R* for all submissions with R ... > 0. At each R? value (bottom

axis), submissions with at most this R? value are represented as (left axis) a proportion and (right axis)a count. Top axis gives the
corresponding mean squared error (MSE). To use this figure, find an R? or MSE value reported in a paper along the x-axis. Move
vertically to the intersection with the line on the y-axis. Move left or right from this intersection to see the proportion or count of
submissions with predictions worse than your reference point. The denominator of each R* calculation for a given evaluation set is the
MSE of predicting the mean of training observations for all observations in that set. Empirical CDFs are truncated at R> =0.

Families Challenge and this Special Collection highlight the research. In the natural sciences, large-scale collaborations
value of mass collaboration to advance social science  already have led to important advances: Hundreds of
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Figure 7. Among submissions with R} 400

> 0, training performance R

2
Train

varied widely from 0 to | and was only modestly related to

holdout performance. These results highlight the important distinction between predictive performance on data used to learn the model
(R%_..) and new data not used to learn the model (R,,,. ). The denominator of each R* calculation for a given evaluation set is the
mean squared error of predicting the mean of training observations for all observations in that set.

biologists worked together to complete the first sequencing
of the human genome (International Human Genome
Sequencing Consortium 2001), and thousands of physicists
worked together to find evidence of the Higgs boson (Aad
et al. 2015). Although large-scale collaborations are becom-
ing more common in psychology (Klein et al. 2018; Moshontz
etal. 2018; Open Science Collaboration 2015), most research
in the social sciences still happens individually or in small
teams. There may, however, be some research problems in
the social science where mass collaboration would create
exciting, new possibilities.
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