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Abstract

Sustained attention is a critical cognitive function reflected in an individual’s whole-brain pattern of functional magnetic resonance
imaging functional connectivity. However, sustained attention is not a purely static trait. Rather, attention waxes and wanes over time.
Do functional brain networks that underlie individual differences in sustained attention also underlie changes in attentional state?
To investigate, we replicate the finding that a validated connectome-based model of individual differences in sustained attention
tracks pharmacologically induced changes in attentional state. Specifically, preregistered analyses revealed that participants exhibited
functional connectivity signatures of stronger attention when awake than when under deep sedation with the anesthetic agent
propofol. Furthermore, this effect was relatively selective to the predefined sustained attention networks: propofol administration
modulated strength of the sustained attention networks more than it modulated strength of canonical resting-state networks and a
network defined to predict fluid intelligence, and the functional connections most affected by propofol sedation overlapped with the
sustained attention networks. Thus, propofol modulates functional connectivity signatures of sustained attention within individuals.
More broadly, these findings underscore the utility of pharmacological intervention in testing both the generalizability and specificity
of network-based models of cognitive function.
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Introduction

Attention fluctuates within individuals not only due
to natural changes in arousal, such as dozing off
during a long lecture, but also due to pharmacological
intervention, such as in the use of methylphenidate in
the treatment of attention-deficit hyperactivity disorder
(ADHD). Pharmacologically induced differences in atten-
tional state have measurable real-world consequences;
children who are prescribed methylphenidate for ADHD
show significant improvement in academic performance
metrics such as math accuracy and reading speed
(Kortekaas-Rijlaarsdam et al. 2018).

Towhat extent are pharmacologically induced changes
in cognitive and attentional state reflected in patterns
of whole-brain functional connectivity? Work suggests
functional connectivity is dominated by stable individual
traits, with relatively little contribution of state-related
variance to an individual’s functional connectome. For
instance, Gratton et al. contrasted subject-dependent,
task-dependent, and session-dependent variation in the
functional connectome and found that the vast majority
of variation could be attributed to subject-dependent
effects (Gratton et al. 2018).

At the same time, other work has provided evidence
that functional connectivity does, in fact, vary mean-
ingfully with changes in mental states. For instance,
recent work found an increase in the network strength
of a functional connectivity-based model of mind-
wandering over the course of four runs of rest scans,
in tandem with a decrease in ratings of thoughts related
to the external world (Kucyi et al. 2021). The sustained
attention connectome-based predictive model (CPM), a
model of individual differences in sustained attention,
has also been shown to be sensitive to within-subject
attention changes (Rosenberg, Finn, et al. 2016). The
model consists of two functional networks, both defined
in a data-driven manner, which predict better and worse
attention, respectively. The model has been validated
in its prediction of individual differences in attention
function across multiple independent datasets and is
sensitive to the effects of methylphenidate administra-
tion such that individuals given a single dose before
functional magnetic resonance imaging (fMRI) show
functional connectivity signatures of better sustained
attention (Rosenberg, Zhang, et al. 2016). Furthermore,
individuals under deep sedation with propofol and light
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anesthesia with sevoflurane showed functional connec-
tivity signatures of worse sustained attention compared
to when they were resting while awake (Rosenberg et al.
2020).

Here, with a preregistered replication in an indepen-
dent fMRI dataset, we add to this growing body of evi-
dence by examining the effect of propofol on the sus-
tained attention CPM—as well as the selectivity of this
effect—during rest. Furthermore, we examine the effect
of propofol on the sustained attention networks in an
entirely new context: listening to a suspenseful movie
clip from an action-thriller film. We test the hypothesis
that connectome-based models do not always capture
equal state-like and trait-like variability in the behavior
they were defined to predict. Instead, networks defined
to predict more trait-like abilities, such as fluid intelli-
gence, may be less sensitive to within-subject cognitive
and attentional state changes. Finally, we investigate the
effect of propofol on functional connectome patterns
more broadly, characterizing the degree to which propo-
fol administration increases or decreases connectome
similarity between individuals and across task states.
Together, these results illuminate the effects of propofol
sedation on the strength of networks predicting cognitive
performance and on functional connectome similarity.
They also demonstrate the feasibility of testing the gener-
alizability and selectivity of brain-based predictive mod-
elsin independent datasets using preregistered hypothe-
ses.

Materials and methods
Dataset

We performed secondary analyses of data available
on Openneuro.org (https://openneuro.org/datasets/
ds003171) (Naci et al. 2018; Kandeepan et al. 2020). In
this dataset, fMRI data were acquired while participants
rested and listened to a 5:12-min audio clip from the
film “Taken” at four different levels of sedation with the
anesthetic agent propofol.

Participants

Seventeen healthy, right-handed, native English speakers
(4 women; mean age: 24 years, SD=5) participated in
the original study, which was approved by the Health
Sciences Research Ethics Board and Psychology Research
Ethics Board of Western University (REB #104755). All
participants completed a magnetic resonance imaging
(MRI) and propofol safety screening questionnaire pro-
vided by both the attending MR technician and anes-
thesiologist, provided informed consent and were paid
for their participation. Secondary analysis of these data
was approved by the University of Chicago Institutional
Review Board. Scans for which >50% of frames were cen-
sored for head motion (see “Functional MRI data prepro-
cessing”) were excluded from analyses. Of the 17 partic-
ipants, 10 had “awake” and “deep sedation” resting-state
scans that passed motion exclusion, and 10 partially

overlapping participants had “awake” and “deep seda-
tion” narrative-listening scans. All analyses were per-
formed on these 2 sets of 10 participants, with the excep-
tion of the “Functional connectivity similarity analyses”
(see below).

Task protocol

FMRI scans were acquired during four different levels
of sedation: “awake, mild, deep,” and “recovery.” During
each level of sedation, rest and narrative-listening scans
were acquired (8 and 5 min, respectively). During the
rest scan, participants were instructed to relax with their
eyes closed without falling asleep. During the narrative-
listening scan, participants listened to an audio excerpt
from the movie “Taken.” In this emotionally evocative
clip, listeners hear a teenage girl being kidnapped while
speaking to her father on the phone. During each of the
four sedation conditions, the narrative scan preceded the
rest scan.

Propofol administration and sedation
assessment

Before fMRI data acquisition for each of the 4 levels
of sedation, 2 anesthesiologists and 1 anesthesia nurse
evaluated volunteers’ Ramsay level, which classifies a
person’s level of sedation on a scale from 1 (severe agita-
tion) to 6 (deep coma). Scanning for each session began
once the 3 anesthesia assessors agreed on the partic-
ipant’s sedation level. During the “awake” session, no
propofol was administered. Propofol infusion began prior
to the “mild” session, and the “mild” session commenced
once participants reached Ramsay 3 level of sedation
in which participants’ response to verbal communica-
tion slowed. Prior to the “deep” session, propofol tar-
get effect-site concentration was increased until partic-
ipants reached a Ramsay 5 level of sedation in which
participants stopped responding to verbal commands.
Following the “deep” sedation scan, propofol infusion was
discontinued, and once a Ramsay 2 level of sedation was
achieved, the “recovery” session commenced. At Ramsay
level 2, participants exhibited quick responses to verbal
commands. For detailed descriptions of propofol admin-
istration protocol, see Naci et al. (2018).

fMRI data acquisition

Participants wore noise-canceling headphones, and
volume was adjusted to each participant’s level of
comfort (Naci et al. 2018). MRI data were acquired with
a 3-Tesla Siemens Tim Trio scanner (32-channel coil).
Functional images were collected with the following
parameters: voxel size=3x 3 x 3 mm?, inter-slice gap
of 25%, time repetition (TR)=2,000 ms, time echo
(TE)=30 ms, matrix size=64 x 64, FA=75°. Narrative
scans and resting-state scans had 155 and 256 volumes,
respectively. Anatomical images were acquired as well
with a T1-weighted 3D MPRAGE sequence (32-channel
coil, voxel size: 1x1x1 mm? TE=4.25 ms, matrix
size =240 x 256 x 192, FA=9°).
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Preregistration

Primary hypotheses, planned tests, and fMRI prepro-
cessing steps were preregistered on the Open Science
Framework prior to data analysis (https://osf.io/5jpgc
last accessed: Jan 27th 2022). Hypotheses and tests
described in the Network strength calculation and
Network strength as a function of sedation level sections
of the Materials and methods were preregistered. Follow-
up analyses described in the Selectivity of propofol
effects, Propofol network identification, and Functional
connectivity similarity analyses sections were not
preregistered.

fMRI data preprocessing

FMRI preprocessing steps (with two minor changes,
detailed below) were preregistered prior to data analysis.
AFNI was used to preprocess fMRI data. First, three
volumes were removed from each run, followed by
despiking and head motion correction. Then, functional
images were aligned to the skull-stripped anatomical
image with a linear transformation and then to the
Montreal Neurological Institute atlas via nonlinear
warping. Covariates of no interest were regressed from
the data, including a 24-parameter head motion model
(6 motion parameters, 6 temporal derivatives, and
their squares) and mean signal from subject-specific
eroded white matter and ventricle masks and the
whole brain. Because head motion in this sample was
relatively high (mean frame-to-frame displacement
before participant, run, or frame exclusion=0.153 mm;
Supplementary Fig. 1), the final preprocessing pipeline
deviated from the preregistered pipeline in 2 ways:
the addition of censoring of high-motion volumes and
the removal of band-pass filtering. Volumes in which
>10% of voxels were outliers and volumes for which
the Euclidean norm of the head motion parameter
derivatives exceeded 0.25 were censored from the time-
series. Voxel-wise blood oxygen level-dependent (BOLD)
signal time courses were averaged within regions of
interest using a 268-node whole-brain parcellation (Shen
et al. 2013).

Network strength calculation

Functional network nodes were defined with the 268-
node functionally defined whole-brain Shen atlas (Shen
et al. 2013). We conducted our primary replication anal-
ysis in 2 ways: first, including all 268 nodes, and second,
including 238 nodes, dropping any node (30 in total) that
was missingin any scan (see Supplementary Fig. 2 for the
latter analysis). Functional connectivity, defined as the
Fisher z-transformed Pearson correlation between the
fMRI signal time courses of pairs of atlas parcels, was
calculated for each fMRI run separately.

Network strength as a function of sedation level
To characterize the degree to which volunteers
expressed functional connectivity signatures of sus-
tained attention defined in previous work, sustained
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attention network strength was measured in each
functional connectivity matrix. This was performed with
the high- and low-attention network masks available
at  https://github.com/monicadrosenberg/Rosenberg
PNAS2020, which comprise the predefined sustained
attention CPM. These masks consist of 268 x 268 binary
matrices, where a value of 1 indicates a functional
connection, or edge, in the mask. We applied each mask
to the functional connectivity matrix, then averaged the
values in each network for each functional connectome
separately, yielding high- and low-attention strength val-
ues. Prior work has demonstrated that attention network
strength tracks both interindividual and intraindividual
differences in sustained attention, where higher high-
attention network and lower low-attention network
scores are associated with better sustained attention
function (Rosenberg, Finn, et al. 2016; Rosenberg et al.
2020). This analysis resulted in our main variables of
interest: eight separate high-attention and low-attention
network strength values for each participant with
complete data (two tasks [rest, narrative listening] x four
sedation conditions [‘awake”, “mild”, “sedation”, “deep
sedation”, “recovery”]).

To directly replicate previous work showing that
propofol sedation significantly modulates sustained
network strength (Rosenberg et al. 2020), we per-
formed paired t-tests comparing high-attention network
strength in the awake and deep sedation conditions and
low-attention network strength in the awake and deep
sedation conditions during rest. To test if this effect
generalized to a different task state, we repeated both
tests with narrative-listening data.

Although the t-tests directly replicate the analysis
of Rosenberg et al. (2020), they have the disadvan-
tage of excluding two of the four levels of sedation
(“mild” and “recovery”) and fail to test for possible
interactions between the effect of task and sedation.
To examine the effect of all four levels of sedation
and task manipulations simultaneously, we assessed
the main effects of sedation level and task and their
interaction with two mixed-effects models using the
Ime4 package in R (Bates et al. 2015), one for normalized
high-attention network strength and one for normalized
low-attention network strength. Sedation level and task
were included as fixed effects, and participants were
included as random effects. Including random slopes
for participants with respect to the effect of sedation
prevented model convergence and including random
slopes for participants with respect to the effect of task
did not improve (i.e., decrease) the model’s AIC. Thus,
random slopes were not included in the models.

Selectivity of propofol effects

We tested whether any effects of propofol administration
were selective to networks that predict sustained atten-
tion. We consider the effects of propofol to be selective
to the sustained attention networks if they are greater in
magnitude than effects on other functional networks. We
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examined selectivity in three ways. First, we examined
the effect of sedation on a connectome-based model
defined to predict another central cognitive measure,
fluid intelligence (Greene et al. 2018). This fluid intelli-
gence CPM was defined using fMRI data from the Human
Connectome Project sample (collected while participants
performed an n-back working memory task) to predict
individual differences in performance on a 24-item ver-
sion of the Penn Progressive Matrices test. Fluid intelli-
gence has been shown to be relatively stable across the
lifespan and is not thought to vary from one moment to
the next (Kazlauskaite and Lynn 2002; Schaie et al. 2004).
Consequently, networks that predict fluid intelligence
may not vary with short-term state changes, akin to
the kind induced by propofol, to the same degree as do
networks defined to predict attention. Thus, we predicted
that strength in the fluid intelligence networks would be
less affected by the sedation manipulation than strength
in the sustained attention networks. To test this hypothe-
sis, we repeated the analysis described above to generate
high- and low-fluid intelligence network strength values
for every fMRI run and compared these values between
sedation conditions.

Second, replicating previous work (Rosenberg et al.
2020), we calculated strength in canonical resting-state
networks, defined in (Finn et al. 2015), such as the default
mode network (DMN) and frontoparietal network, to
compare the relative effect of sedation on these networks
with the sustained attention network.

Third, we identified sets of functional connections that
significantly differed between individuals’ “awake” and
“deep” sedation scans and asked whether these networks
overlapped with the predefined sustained attention net-
works (see “Propofol network identification” and “Net-
work overlap” sections below). We predicted that a net-
work whose strength decreased with propofol adminis-
tration would overlap with the network predicting better-
sustained attention, whereas a network whose strength
increased with propofol administration would overlap
with the network predicting worse sustained attention.

Propofol network identification

Using the Network Based Statistic Toolbox (RRID:SCR_
002454; sites.google.com/site/bctnet/comparison/nbs),
we identified functional networks that differed between
the awake and deep sedation conditions. This procedure
aids network detection by controlling for the large
number of multiple comparisons necessary to test for
differences in every edge in a functional connectome by
comparing the size of the fully connected networks that
differ between two conditions of interest (here, “awake”
and “deep sedation”) to the size of fully connected net-
works that differ between randomly assigned conditions
(Zalesky et al. 2010).

First, we identified edges that were greater in the
“deep sedation” or “awake” condition by performing
paired, one-tailed t-tests, and retaining edges that fell
above a predetermined significance threshold. Then, we
selected the largest fully connected network of edges

from this group. Next permutation testing was performed
by shuffling condition labels 5,000 times and running a t-
test at every permutation to generate 5,000 sets of edges
that differed between the random groups. The p-value
of the sedation network was calculated by computing
(n_fully_connected_random + 1)/(n_permutations + 1),
where n_fully_connected_random is the number of fully
connected random network components of the same
size, or larger than the observed fully connected network
component, and n_permutations is 5,000, which is the
number of permutations. We classified the resulting
networks as significant at P <0.05.

We repeated this process for each task condition (rest
and narrative listening) and for three different signif-
icance thresholds at the edge-selection step (P <0.001,
P<0.01, and P <0.05), resulting in three “Awake” and
three “Deep Sedation” networks for each task.

Network overlap

Considering the marked impacts of sedation on cogni-
tive and attentional states, we predicted significant over-
lap between the high-attention network and the Awake
propofol network and significant overlap between the
low-attention network and the Deep Sedation propofol
network. Furthermore, we expected less overlap between
the propofol networks and the fluid intelligence net-
works since the fluid intelligence networks may be more
reflective of trait-like differences in functional connec-
tomes rather than the temporary state changes in the
connectome caused by propofol sedation.

To test these hypotheses, we examined the overlap
between the propofol networks and the sustained atten-
tion and fluid intelligence networks. For each pair of net-
works, we counted the number of edges shared between
the networks. The significance of the overlap was deter-
mined with the hypergeometric cumulative density func-
tion, which provides the probability of drawing up to x
of K possible items in n drawings without replacement
from a population with M items. This was implemented
in MATLAB as P=1 — hygecdf(x, M, K, n), where x is
the number of overlapping edges, K is the number of
connections in the given CPM network, n is the number
of connections in the given propofol network, and M is
the total possible number of edges in the matrix (35,778;
all possible functional connections, given 268 nodes). We
repeated this process for all three versions of the propofol
networks (thresholded at P <0.05, P <0.01, and P < 0.001,
respectively) and both tasks (rest and narrative). To deter-
mine which CPM (sustained attention or fluid intelli-
gence) had greater overlap with the propofol networks,
permutation testing was performed. We compared the
difference in percent overlap between the networks by
shuffling the propofol network 1,000 times, creating a
network of equal size from edges randomly selected from
the whole connectome. The amount of overlap with the
randomly generated networks was then used as a null
distribution. Again, this was repeated for all propofol
networks and both task conditions.
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Functional connectivity similarity analyses

In addition to examining the effects of task state and
sedation level on functional connectivity signatures of
sustained attention, we were interested in understand-
ing the effects of the drug and task manipulations on
functional connectivity patterns more broadly. That is,
how does sedation and task state affect the similarity
of functional connectivity patterns across individuals?
Do individuals show more similar connectivity patterns
when awake or when under sedation? One possibility is
that sedation increases similarity across individuals by
reducing ongoing cognitive, attentional, and perceptual
processes that may otherwise differ between people and
drive unique patterns of functional brain organization.
Another is that sedation decreases similarity between
individuals by muting these processes, revealing idiosyn-
cratic underlying patterns of functional brain organiza-
tion. In the same vein, do individuals show more similar
connectivity patterns when listening to the same story
or resting? We might expect that participants listening
to the same story would exhibit more similar patterns
of functional connectivity because they are engaged in
similar auditory and cognitive processing.

To investigate how propofol sedation affects between-
subject connectome similarity, participants’ fMRI time
series were limited to 73 TRs per run to match the
number of TRs per condition. All nodes missing in any
scan were excluded from analysis (30 in total). Next,
for both task conditions, we excluded participants who
did not pass our motion threshold (<50% of frames
censored for motion) for the “awake” and “deep sedation”
conditions, resulting in 10 (rest) and 10 (narrative listen-
ing) participants, respectively (7 participants included
in both conditions). We then calculated the Spearman
correlation of each participant’s functional connectivity
pattern for the “awake” resting-state scan with that
of all other participants. We averaged the Fisher z-
transforms of these values to get a single similarity
value per participant. We repeated this process for the
“deep” condition and for the narrative-listening task,
yielding four lists of subject-level similarity values.
Finally, similarity while participants were “awake” was
compared to similarity under “deep sedation” using two
paired t-tests, one for each task condition.

To investigate how the task manipulation affects
between-subject similarity, we again limited partic-
ipants’ time series to 73 TRs, excluding all nodes
missing in any scan. Next, for each of the 4 sedation
conditions, we excluded participants who did not
pass our motion threshold for both task conditions,
resulting in 16 (‘awake”), 13 (“‘mild”), 8 (“deep”), and 15
(“recovery”) participants, respectively (6 participants in
all conditions). We calculated the Spearman correlation
of each participant’s functional connectivity pattern
during the “awake” resting-state scan with that of all
other participants. We averaged the Fisher z-transforms
of these values to get a single similarity value per
participant. We repeated this process for all 4 sedation
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conditions and for the narrative-listening task, resulting
in 8 lists of subject-level similarity values. Finally,
similarity during resting-state scans was compared to
similarity during narrative listening using four paired
t-tests, one for each sedation level.

Results

Propofol decreases functional connectivity
signatures of sustained attention

As predicted, during rest, high-attention network strength
was higher (tg =3.22, P=0.010) and low-attention network
strength was lower (tg=-—4.09, P=0.003) in the “awake”
than in the “deep sedation” condition. This pattern
of results replicated during narrative listening (high-
attention: tg=2.50, P=0.034; low-attention: tg=—3.83,
P=0.004).

Also as predicted, mixed effect models of propofol’s
effect on sustained attention network strength revealed
a main effect of sedation condition wherein less sedation
was associated with functional connectivity signatures
of stronger attention (high-attention: b=-0.75, SE=0.16,
F[3,93.5]=8.01, P=8.26 x 107>; low-attention: b=0.84,
SE=0.15, F[3,92.4]=13.24, P=2.91x 1077; Fig. 1). There
was no main effect of task (i.e. rest vs. narrative listening)
or interaction of sedation condition and task on high-
attention or low-attention network strength.

To account for potential effects of head motion
on functional network strength, we performed two
control analyses. First, we regressed mean framewise
displacement and fraction of censored frames from
high- and low-attention network strength scores. We
then repeated the analysis described above with the
residuals of this regression, performing paired t-tests
comparing residualized attention network strength while
individuals were awake and under deep sedation during
rest and narrative listening. Demonstrating that effects
of propofol on attention network strength are robust
to effects of head motion, residualized high-attention
network strength during rest was higher during the
“awake” than the “deep sedation” condition (rest: to =3.56,
P=0.006; narrative: tg=2.73, P=0.023). We observed the
opposite pattern of results for residualized low-attention
network strength (rest: to=-2.34, P=0.044; narrative:
to=—3.59, P=0.006).

As a second motion control, we replicated the mixed
effects analysis, including mean framewise displacement
and fraction of censored frames in each run as predictors.
Results were consistent with those described above: Mod-
els revealed a main effect of sedation condition wherein
less sedation was associated with functional connec-
tivity signatures of stronger attention (high-attention:
b=-0.82, SE=0.16, F[3,93.7]=9.87, P=1.02 x 107>; low-
attention: b=0.68,SE=0.15,F[3,92.9] =8.5,P=4.73 x 107).
There was no main effect of task or interaction of
sedation condition and task on high-attention network
strength. For low-attention network strength, there was
a main effect of task (b=-0.15, SE=0.07, F[1,92.3]=4.1,
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Rest

Narrative Listening

-2

awake  recovery mild

deep
sedation sedation

awake  recovery mild deep

sedation sedation

Fig. 1. High-attention and low-attention network strengths during two tasks (rest and narrative listening) and four sedation conditions (‘awake,”
“recovery,” “mild sedation,” and “deep sedation”). Network strength values were z-scored within graph for visualization. Semi-transparent lines represent
individual participants and bold lines represent average across participants, with the shaded region indicating the 95% confidence interval. Some semi-
transparent lines do not extend the full length of the plot as not all participants had complete data for all sedation and task conditions.

P=0.045) such that low-attention network strength was
higher during rest than narrative-listening scans.

Propofol selectively modulates functional
connectivity signatures of sustained attention
Propofol modulates sustained attention networks more
than fluid intelligence networks

Is propofol’s effect on the connectome selective to
networks predicting sustained attention? We tested this
question in three ways. First, we investigated propofol’s
effect on a functional connectivity network defined in
previous work to predict fluid intelligence (Greene et al.
2018). Attention function varies across individuals but
also varies within a single individual over time, and the
sustained attention CPM is sensitive to both these indi-
vidual differences and intraindividual variability (Rosen-
berg et al. 2020). Fluid intelligence, by comparison, may
reflect a more trait-like aspect of behavior, as evidence
suggests it is relatively stable within an individual over

time (Kazlauskaite and Lynn 2002; Schaie et al. 2004).
Consequently, drug-induced changes in cognitive state
may modulate the fluid intelligence networks to a lesser
degree than they do the sustained attention networks.
In both the resting-state and narrative-listening con-
ditions, high-fluid intelligence network strength did not
significantly differ between “awake” and “deep sedation”
scans (rest: tg=0.32, P=0.76, narrative listening: ty=0.62,
P=0.55) (Fig. 2). Low-fluid intelligence network strength
was significantly greater in the “deep sedation” scans
for the narrative-listening condition only (rest: to = —1.89,
P=0.09, narrative listening: to =—2.63, P= 0.03). A mixed
effect models of propofol’s effect on fluid intelligence
network strength did not show a main effect of sedation
condition for high-fluid intelligence network strength
but did show a main effect of sedation for low-fluid
intelligence network strength wherein greater seda-
tion was associated with higher low-fluid intelligence
network strength scores (high-fluid intelligence: b=—0.20,
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Fig. 2. Effects of propofol on functional network strength. Differences in within-network and between-network strengths (averaged functional
connectivity) during the “awake” and “deep-sedation” conditions. Propofol’s effect on the sustained attention networks was greater than the effect
on both the fluid intelligence networks and the majority of canonical network pairs.

SE=0.18, F[3, 94.5]=0.47, P=0.70; low-fluid intelligence:
b=0.56, SE=0.18, F[3, 92.5]=4.53, P=0.005). There was
no main effect of task or interaction of sedation
condition and task on high-fluid intelligence or low-fluid
intelligence network strength.

We performed paired t-tests comparing the percent
change in overall sustained attention and fluid intelli-
gence network strength from “awake” to “deep sedation”
during both task conditions. Overall network strength
was calculated as the difference between strength in
the network predicting higher behavioral scores and
the network predicting lower behavioral scores. Results
revealed greater percent change in sustained attention
than fluid intelligence network strength during both
rest and narrative listening (rest: tg=2.75, P= 0.022,
narrative listening: to=2.87, P= 0.018). Thus, propofol
has a greater effect on the sustained attention networks
than networks predicting fluid intelligence. We did
not test for a 3-way interaction between functional
network, task, and sedation condition with mixed effects
models as only 9 participants were included in this
analysis.

Propofol modulates sustained attention networks more
than canonical resting-state networks

Although networks defined to predict fluid intelligence
were not as sensitive to sedation as the sustained

attention networks, this does not preclude the possibility
that other functional networks are affected by propofol
sedation—perhaps even more so than the sustained
attention networks. To test this possibility, we assessed
the effect of sedation on functional connectivity in 8
canonical resting-state networks as well as the pairwise
connections between these networks (36 network pairs
in total) (Fig.2). Providing further evidence for the
selectivity of the effect on the sustained attention
CPM, propofol’s effect on the high-attention network
was numerically greater than the positive effects
for any of the 36 pairs of canonical resting-state
networks during both tasks. The effect of propofol
on the low-attention network was greater than any
negative effect for all pairs of canonical resting-state
networks during rest and all but one network during
narrative listening (connections within primary visual
network).

Finally, we compared differences in sustained atten-
tion network strength between the “awake” and “deep
sedation” conditions (assessed with a paired t-test) to
differences in the strength of in 10,000 same-size random
networks. During rest, the effect in the high-attention
network was >96.71% of same-sized random networks,
and the effect in the low-attention network was >98.79%
of same-sized random networks. During narrative listen-
ing, the effectin the high-attention network was >99.79%
of same-sized random networks, and the effect in the
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low-attention network was >100% of same-sized ran-
dom networks. In sum, this replication demonstrates the
robustness of the finding that the sustained attention
CPM is uniquely sensitive to propofol sedation.

Beyond the sustained attention networks, effects
of propofol on functional connectivity on canonical
networks are consistent with those reported previously
(Rosenberg et al. 2020). This prior work, performed in an
independent dataset, found that 7 of the 36 canonical
network pairs were significantly modulated by propofol
administration. Of those 7 pairs, 6 overlap with the 7
network pairs showing the greatest effect in the present
study during rest (P<0.07, 1. frontoparietal-visual
association, 2. motor-visual association, 3. frontoparietal-
medial frontal, 4. default-visual association, 5. motor-
default, 6. default-default, and 7. visual I-visual associ-
ation). None of the effects in the canonical networks in
the present study survived Bonferroni correction for 36
tests (Fig. 2).

Propofol sedation networks overlap with the sustained
attention networks

The sustained attention networks are modulated by
propofol sedation, but to what extent do the functional
connections that change most with propofol sedation
overlap with the connections in the sustained attention
networks? To investigate, we examined the overlap
between both the “Awake” networks (i.e., the networks
stronger during wakefulness) and the “Deep Sedation”
networks (i.e. the networks stronger during deep seda-
tion) and the high- and low-attention networks. We
predicted that the high-attention network would share
significant overlap with the Awake networks, while the
low-attention network would share significant overlap
with the Deep Sedation networks.

To this end, we used the network-based statistic to
identify functional networks most affected by propofol
sedation. We did this at three different edge-selection
thresholds, retaining edges that significantly differed
between “Awake” and “Deep Sedation” scans at P=0.05,
0.01, 0.001, respectively. We detected significant “Awake”
networks (network significance defined as P < 0.05) for all
3 edge-selection threshold levels for the rest condition,
and 1 out of 3 (0.01) edge-selection threshold levels
for the narrative-listening condition (Figs 3 and 4). We
detected significant “Deep Sedation” networks for all
three edge-selection threshold levels tested and for both
task conditions. In general, “Awake” networks consisted
of nodes in the occipital, prefrontal, and temporal lobes,
while “Deep Sedation” networks were dominated by
nodes in the prefrontal, limbic, and temporal lobes.

As expected, there was significant overlap between
“Awake” networks and the high-attention network but
not the low-attention network (Fig. 4). Furthermore, there
was significant overlap between “Deep Sedation” net-
works and the low-attention network but not the high-
attention network.

Looking at the rest condition and the 0.01-threshold
“Awake” network, 37 edges overlapped with the high-
attention network, making up 4.9% of the high-attention
network (P=1.25x 1077). The reverse pattern held true
for the “Deep Sedation” network, with 36 edges in
common between the 0.01-threshold “Deep Sedation”
network and the low-attention network, making up 5.7%
of the low-attention network (P =6.45 x 107°). This result
replicated in the narrative-listening condition (high-
attention “Awake” overlap: 34 edges, 4.5% of network,
P=1.11 x 107?; low-attention “Deep Sedation” overlap: 57
edges, 9.0% of network, P=9.44 x 10~'°). Consequently,
the functional networks that differ between sedation
and wakefulness overlap with those that differ between
states of better and worse sustained attention.

We expected the propofol networks to show less
overlap with the fluid intelligence networks than the
sustained attention networks, in line with the hypoth-
esis that the sustained attention networks are more
sensitive to cognitive and attentional state changes. We
observed significant overlap between “Awake” networks
and the high-fluid intelligence network but not the
low-fluid intelligence network. For the 0.01-threshold
“Awake” rest network, there were 23 edges overlapping
with the high-fluid intelligence network, making up
3.4% of the high-fluid intelligence network (P=0.007).
The “Deep Sedation” network presented the opposite
pattern, showing significant overlap with the low-
fluid intelligence but not the high-fluid intelligence
network. For the 0.01-threshold “Deep Sedation” rest
network, there were 27 edges shared with the low-
fluid intelligence network, making up 4.2% of the low-
fluid intelligence network (P=9.4 x 107°). These patterns
replicated in the narrative-listening condition (high-fluid
intelligence “Awake” overlap: 21 edges, 3.1% of network,
P=2.37 x107%, low-fluid intelligence “Deep Sedation”
overlap: 31 edges, 4.8% of network, P=9.44 x 107).

Supporting our prediction, comparisons of network
overlap revealed that the sustained attention network
showed significantly greater overlap with the propofol
networks in eight of the 10 comparisons (2 propofol
networks [“Awake,” “Deep Sedation”] x 3 edge selection
thresholds [P < 0.05, 0.01, 0.001] x 2 task conditions [rest,
narrative listening] minus 2 instances where no signifi-
cant propofol network was found =10 comparisons) and
numerically greater overlap for all comparisons except
overlap with the 0.001-threshold “Awake” rest network.
This difference is not merely driven by a difference in
the overall size of the sustained attention and fluid
intelligence networks: The networks are of comparable
sizes (sustained attention networks=1,387 edges, fluid
intelligence networks =1,333 edges), and this difference
persists when comparing overlap as a percentage of net-
work size. These results suggest that the functional net-
works most strongly modulated by propofol share a more
similar architecture to the functional networks underly-
ing sustained attention function than to those associated
with fluid intelligence.
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Fig. 3. The “Awake” network shows significant overlap with the high-attention and high-fluid intelligence networks, whereas the “Deep Sedation” network
shows significant overlap with the low-attention and low-fluid intelligence networks. The propofol networks illustrated (top row) were created with an
edge-selection threshold of p <.001. For the Overlap illustrations (bottom two rows), propofol networks were created with an edge-selection threshold

of p <.01 were utilized.

Propofol and task condition modulate

within- and between-subject functional
connectome similarity

In addition to gauging propofol’s effect on neural
signatures of sustained attention, we assessed how
sedation affects functional connectivity patterns more
broadly. To this end, we examined the between-subject
connectome similarity while participants were awake
vs. sedated. A paired t-test comparing similarity values
during “awake” resting-state scans to those of “deep
sedation” resting-state scans demonstrated that partici-
pants are more similar to one another when awake then
when under sedation (t9=6.73, P=8.52 x 107°). Further-
more, this result replicated in the narrative-listening
condition (tg=5.20, P=5.65x 107%). Interestingly, this
result suggests that propofol sedation does not simply
mute individual differences in functional connectivity
patterns and causes all participants to show a connec-
tivity pattern common across the population. Instead,
participants’ functional connectivity patterns look more
similar to each other when they are awake.

In addition to assessing the effect of sedation on
similarity, we also examined the effect of task. Paired
t-test revealed, surprisingly, greater similarity during
resting-state scans than during narrative-listening
scans, and this result replicated in 3 of the 4 seda-
tion conditions (awake: t15=9.92, P=5.57 x 10~%; mild:
t1p=1.15, P=0.27; deep: t;=6.64, P=0.001; recovery:
t14=5.50, P=7.82x107°). This finding is somewhat
counterintuitive, given extensive work showing that
individuals shown the same movie or played the same
audio narrative in the scanner demonstrate higher levels
of intersubject correlation compared to rest (Hasson
et al. 2004; Kandeepan et al. 2020). In these data,
Kandeepan et al. (2020) observed significant intersubject
correlation at all levels of sedation but not during rest.
Furthermore, it has been demonstrated previously in
a separate dataset that functional connectome simi-
larity is increased both within and across participants
during movie-watching compared to rest (Vanderwal
et al. 2017). This analysis suggests that greater BOLD
time course similarity may not necessarily translate
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Fig. 4. The sustained attention networks show significantly greater overlap with the propofol networks than do the fluid intelligence networks. P-values
in the x-axis indicate the threshold at which edges were selected when defining the propofol networks. Stars indicate the significance of the percent
overlap (P <0.05, Bonferroni-corrected for 4 comparisons, P-values computed using hypergeometric cumulative density function). Stars above black
lines indicate a significant difference in percent overlap between networks (P < 0.05, P-values computed using permutation testing).

to greater functional connectome similarity between
individuals.

To further explore the influence of individual, task,
and sedation level on functional connectome similarity,
we limited our sample to only those with acceptable
motion in all eight conditions (2 task x 4 sedation
conditions). This resulted in n= 6 participants, and
for each scan for each of these participants, we cal-
culated pairwise connectome similarity (defined as
the Spearman correlation) to that of every other scan
(Fig. 5). Our sample in this analysis was limited by
our relatively conservative motion exclusion threshold
(excluding scans with >050% of frames censored for
head motion; see Supplementary Fig. 1). To see the same
figure with all 17 participants, see Supplementary Fig. 3.
Our results conceptually replicate those of Gratton
et al. (2018), which found a relatively high contribution
of subject-related variation on overall variation in
network boundaries (compared to task- and session-level
variations), although, here, we examine functional con-
nectivity similarity between group-defined nodes rather
than investigating network boundaries. Specifically,
subject-dependent effects are readily apparent, with
higher similarity between different runs from the same
individual (mean r=0.436) and lower similarity across
individuals (mean r=0.214). Furthermore, consistent
with the paired t-tests described above, visual inspection
reveals greater connectome similarity during rest than

narrative listening both within and between individuals
and greater similarity between individuals at lower than
higher levels of sedation.

Discussion

To what extent does an individual’s functional connec-
tome reflect stable individual traits vs. varying mental
states? Work demonstrates that individual differences
can be discerned from functional connectivity patterns,
with successful prediction of between-subject variation
in personality (Hsu et al. 2018; Cai et al. 2020), working
memory performance (Galeano Weber et al. 2017,
Yamashita et al. 2018; Avery et al. 2019), and reading
recall (Jangraw et al. 2018), among other behaviors. But
what about intra-individual differences? Here, we add
support for the existence of state-selective variation
in functional connectome by testing if a predefined
network predicting sustained attention is sensitive to
pharmacological intervention with propofol. Using an
independent dataset, we replicate the effect of propofol
on the sustained attention CPM. We find that, as pre-
dicted in our preregistration, greater propofol sedation is
associated with neural signatures of worse-sustained
attention function, suggesting that behaviorally rele-
vant aspects of the functional connectome vary with
short-term, pharmacologically induced changes in
cognitive and attentional states. Further demonstrating
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Fig. 5. A) Model functional connectome similarity matrices. Model matrices represent hypothetical effects of individual, sedation level, and task on
connectome similarity. Comparing the observed connectome similarity matrix B) to the “Individual” model, higher similarity along the diagonal suggests
a strong effect of individual variation on similarity. Comparing the connectome similarity matrix to the “Sedation” model, we see evidence of higher
similarity values for lower sedation levels. Finally, the grid-like pattern visible in connectome similarity matrix confirms an effect of task as predicted
by the “Task” model. However, this pattern is in the opposite direction than predicted, with higher similarity for rest than the narrative-listening task.
B) Functional connectome similarity matrix. Pairwise functional connectivity similarity for all eight conditions (2 task x 4 sedation) for 6 participants
with usable data in all 8 conditions. Each cell represents the Spearman correlation between two functional connectomes.

robustness, this finding replicated in a novel narrative-
listening condition. This work illustrates the feasibility
of assessing the external validity of brain-based predic-
tive models using fully preregistered hypotheses and
analyses.

The utility of a connectome-based model of cognitive
function relies on it being both generalizable and selec-
tive. Generalizing across datasets, for instance, provides
evidence that a model characterizes the measure of inter-
est rather than merely picking up on idiosyncrasies in
a given participant sample from a single fMRI scanner.

In the present study, we demonstrate cross-dataset gen-
eralizability by replicating the effects of propofol on the
sustained attention networks in data from a novel set of
participants collected at an independent scanning site.
Just as cross-dataset generalizability is important, cross-
measure generalizability is also key. A model is less use-
ful if it only predicts a specific behavioral measure (such
as psychological task performance) rather than other
measures of the same underlying cognitive or attentional
function (such as ADHD symptomatology for models of
sustained attention) (Rosenberg, Finn, et al. 2016). An
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emphasis on generalizability both across datasets and
related measures, among other practices such as prereg-
istration, is crucial for tackling the reproducibility crisis
in psychology and neuroscience.

Though perhaps less frequently discussed, the selec-
tivity of a model is as important as its generalizabil-
ity. If a model generalizes in a way such that it can-
not be distinguished from other models (here, prede-
fined predictive networks), it is also less useful if one
aims to disentangle various cognitive functions from one
another. For instance, suppose one wishes to characterize
the functional networks associated with mathematical
ability. If a predictive model performs equally well in
predicting individual’s math and reading scores, it is hard
to argue that this model informs our understanding of
the neural underpinnings of mathematical aptitude per
se. Critically, in the current work, we also add evidence
to the “selectivity” criteria, as we demonstrate that not
all behaviorally predictive brain networks are equally
sensitive to propofol-induced state changes. Rather, our
results suggest that canonical resting-state networks as
well as a previously defined model of fluid intelligence
are less sensitive than the sustained attention network
to the effects of propofol sedation. This suggests that per-
haps the model of fluid intelligence captures less state-
like variability and more trait-like variability compared
to the sustained attention CPM, which is in line with
research demonstrating that fluid intelligence is rela-
tively stable within individuals’ over time (Kazlauskaite
and Lynn 2002; Schaie et al. 2004). Furthermore, after
defining “propofol” networks, based on the networks dif-
fering most between deep and awake conditions, we
found that the propofol network had greater overlap,
on average, with the sustained attention networks than
the fluid intelligence networks. These results suggest
that the functional networks underlying attention func-
tion, compared to those associated with fluid intelli-
gence, may share a more similar architecture to the func-
tional networks most strongly modulated by sedation
with propofol.

Future work will reveal the extent to which net-
works defined to predict individual differences in other
processes are sensitive to within-subject state change.
Although a growing body of work has found evidence that
the connectome-based model of individual differences in
sustained attention function also successfully differen-
tiates between within-subject state change, this may not
be the case for all behavioral traits. For instance, 3,4-
methyl enedioxy methamphetamine (MDMA) influences
social function, increasing subjective sociability and
feelings of closeness with others (Bedi et al. 2009). Would
a functional network defined to predict trait extraversion
(Hsu et al. 2018) be sensitive to within subject state
change induced by administration of MDMA? Perhaps
the neural basis of individual differences in social
function is orthogonal to the neural basis of change
in social behavior within one person. More broadly,
pharmacological studies provide unique opportunity

to test the generalizability and selectivity of predictive
models.

The current study differs somewhat with respect to
prior findings regarding sedation’s effect on functional
connectivity patterns. For instance, past work found
a decrease in within-DMN connectivity with propofol
sedation (Boveroux et al. 2010; Tang and Ramani 2016;
Guldenmund et al. 2017; Qiu et al. 2017). However,
results here suggest that DMN connectivity with other
networks is differentially affected by propofol sedation.
Specifically, within-DMN connectivity decreased during
rest but not during narrative-listening scans, whereas
DMN-visual association network connectivity increased
during both tasks. This difference in findings can perhaps
be attributed to the fact that lower levels of sedation have
been associated with no change in DMN connectivity
(Stamatakis et al. 2010). The present study defines “deep”
sedation as a lower level of sedation (Ramsay level 5)
compared to the sedation condition in some prior work
(Ramsay levels 5-6 in Boveroux et al., for instance, or
“deep sedation” as defined by the American Society of
Anesthesiologists in Qiu et al. 2017) reporting decreases
in DMN connectivity. Results in the present study
also contrast with prior work showing that sedation
decreases frontoparietal connectivity (Boveroux et al.
2010; Amico et al. 2014). Data here suggest increased
frontoparietal connectivity during sedation, specifically
frontoparietal-medial frontal connectivity, as well as
frontoparietal-visual association connectivity. Observed
changes in functional connectivity in visual regions,
however, are consistent with past work, where sedation
was associated either with no change, or an increase
in connectivity (Martuzzi et al. 2010; Qiu et al. 2017).
Here, we report significant increases in within-network
connectivity in V1, V2, and visual association networks
in the narrative-listening condition and no significant
changes in visual network connectivity during rest.
Additional work may resolve how parameters, such as
sedation level, scan length, preprocessing approach,
and task, mediate the effect of propofol sedation on
functional connectivity. While the present findings are
not wholly consistent with all prior work, propofol’s
effect on functional connectivity patterns is consistent
across tasks within the current dataset (rest and
narrative listening) and with the findings reported
in an independent dataset analyzed with a similar
preprocessing pipeline and data exclusion criteria (see
“Propofol modulates sustained attention networks more
than canonical resting-state networks”) (Rosenberg et al.
2020).

In addition to investigating the effect of propofol on
connectome-based models of behavior and canonical
resting-state networks, we characterized how seda-
tion and task manipulation affected the similarity of
individuals’ overall functional connectivity patterns.
With regard to the effect of sedation on similarity, we
began with two plausible competing hypotheses: (i)
Sedation decreases ongoing thoughts, feelings, etc., that
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may differ across individuals and drive differences in
functional connectivity patterns, thereby resulting in
more similar connectivity patterns across individuals.
(ii) Any kind of cognitive processing (even if the content
differs to across individuals) acts as a constraint
on functional connectivity, resulting in connectome
patterns that are more similar in the absence of
sedation. We found evidence for the latter hypothesis,
observing greater similarity when participants were
awake compared to when they were sedated. In addition
to examining the effect of task on between-subject
similarity, our analyses explored the extent to which
task condition affects between-subject similarity. We
found that rest was associated with greater across-
subject connectome similarity compared to narrative
listening. This finding is surprising, given past work that
demonstrates that, in development, movie-watching
raises between-subject connectome similarity relative
to rest (Vanderwal et al. 2017). Lack of visual input in
the present study may help explain this difference in
results. In Vanderwal et al. (2017), participants watched
and listened to a film, whereas here, participants
only listened to audio for the “narrative” condition.
Synchronous visual input may drive between-subject
similarity higher in the “narrative” condition relative
to rest. Furthermore, in Vanderwal et al. (2017), the
resting-state scan was collected while participants
stared at a fixation cross, while in the present study,
participants were instructed to keep their eyes closed.
Past work has found significant differences between
functional connectivity for eyes open vs. eyes closed
resting-state scans and perhaps this helps explains
the divergence of the present findings from prior work
(Costumero et al. 2020). The current work furthers
our understanding of how disparate factors modulate
connectome similarity within and across individuals
by simultaneously examining the impact of individual,
sedation level, and task.

One limitation of the present study is a relatively
small sample size (total n=17; n=6 with usable data
from all scan conditions). However, our use of pre-
registration to detail predicted effects in advance as
well as the use of an independent dataset to replicate
a previous finding are intended to act as safeguards
against false-positive results that may arise with small
samples. Second, although an effort was made to
titrate the level of propofol administration such that
individuals were equally sedated (Naci et al. 2018;
Kandeepan et al. 2020), there were likely remaining
individual differences in level of sedation achieved,
which could ultimately impact connectome similarity
across sedation levels. Thus, additional work can help
determine the ways in which tasks and pharmacological
interventions modulate connectome similarity between
participants. Finally, additional work may benefit from
defining functional connectivity in a more fine-grained
manner, as opposed to the coarser region-by-region
approach used here (Guntupalli et al. 2018). In the
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current study, we use a whole-brain atlas with rela-
tively large nodes (a 268-node parcellation, Shen et al.
2013). However, recent advances have revealed greater
power for predicting fluid intelligence when using a
fine-grained approach, specifically using voxel-wise
functional connectivity after performing hyperalignment
(Feilong et al. 2021). These results motivate the use
of fine-grained functional connectivity in future work
employing predictive models of fluid intelligence and
other cognitive traits, particularly in the context of
pharmacological intervention, as the effects of phar-
macological intervention on hyperaligned fine-grained
functional connectivity have not yet been examined.
Additionally, while here we use a single group-level
atlas to examine network strength across conditions,
recent work demonstrates that functional networks
reconfigure substantially across task states (Salehi
et al. 2020) and vary significantly person to person
(Bijsterbosch et al. 2018; Kong et al. 2019). Future work
may benefit from considering variation not only in
network strength defined with a group-level atlas, but
variation in node boundaries across individuals and
sedation conditions.

Conlusion

In sum, we replicate the effect of propofol on the sus-
tained attention CPM. In addition to this replication, we
provide novel evidence that the magnitude of this effect
is selective to the sustained attention network. Finally,
we demonstrate that task and sedation manipulations
in this dataset have significant and unexpected effects
on connectome similarity. Ultimately, we add greater
support for the idea that within-subject attentional state
changes are encoded in within-subject differences in
functional connectivity and offer grounds for further
exploration of the way functional connectivity models
of different cognitive functions may differ in their
sensitivity to state- vs. trait-like differences.
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propofol. The data underlying this article are avail-
able on OpenNeuro at https://openneuro.org/datasets/

ds003171/, and can be accessed with identifier
ds003171.
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