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Abstract

We formulate general conditions which imply that £(X, Y), the space of operators from a Banach
space X to a Banach space Y, has 2° closed ideals where ¢ is the cardinality of the continuum.
These results are applied to classical sequence spaces and Tsirelson type spaces. In particular, we
prove that the cardinality of the set of closed ideals in £(£,®¢,) is exactly 2 forall 1 < p < g < co.
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1. Introduction

Given Banach spaces X and Y, we call a subspace 7 of the space L(X,Y) of
bounded operators an ideal if ATB € J forall A € L(Y), T € 9 and B € L(X).
In the case that X = Y, this coincides with the standard algebraic definition of
J being an ideal in the algebra of bounded operators £(X). In this paper we
will only be considering closed ideals. For example, if X and Y are any Banach
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spaces, then the space of compact operators from X to Y and the space of strictly
singular operators from X to Y are both closed ideals in £(X, Y). In the case of
X =Y = ¢,, the compact and strictly singular operates coincide and they are
the only closed ideal in £(¢,) other than the trivial cases of {0} and the entire
space L({,). For p # 2, the situation for L, is very different from ¢,. If X
contains a complemented subspace Z such that Z is isomorphic to Z® Z, then the
closure of the set of operators in £(X) which factor through Z is a closed ideal,
and moreover the map that associates this closed ideal with the isomorphism
class of Z is injective. In the case 1 < p < oo with p # 2, there are infinitely
many (even uncountably many) distinct complemented subspaces of L, which
are isomorphic to their square [3], and thus there are infinitely many distinct
closed ideals in .L(L,).

Obviously, constructing infinitely many closed ideals for £(£, ® ¢,) or
L(£,®cp) with 1 < p < g < oo requires different techniques than just considering
complemented subspaces, and it was a long outstanding question from Pietsch’s
book [21] whether these spaces have infinitely many distinct closed ideals. For
the cases 1 < p < g < oo, the closures of the set of operators which factor
through ¢, and the operators which factor through £, are distinct closed ideals
(indeed, the only maximal ideals) in £(£,®¢,), and all other proper closed ideals
in L(£, ® {,) correspond to closed ideals in L(,, £,). Progress on constructing
new ideals in L(£,,{,) proceeded through building finitely many ideals at a
time (see [23] and [25]) until it was shown using finite-dimensional versions
of Rosenthal’s X,,,, spaces that there is chain of a continuum of distinct closed
ideals in L({,,{,) forall 1 < p < g < 00 [27]. For1 < p < oo, p # 2,
{p @ t, is isomorphic to a complemented subspace of L,, and thus there are
at least a continuum of closed ideals in .£(L,). Other new constructions for
building infinitely many closed ideals soon followed. Wallis observed [31] that
the techniques of [27] extend to prove the existence of a chain of a continuum
of closed ideals for £(£,,co) in the range 1 < p < 2, and for L(£;,{,) in the
range 2 < g < oo. Then, using ordinal indices, Sirotkin and Wallis proved
that there is an w;-chain of closed ideals in L(¢;,¢,) for 1 < g < oo as well
as in L(¢1,¢o) and in L({,,{s) for 1 < p < oo [28]. Using matrices with the
Restricted Isometry Property (RIP), both chains and anti-chains of a continuum
of distinct closed ideals were constructed in L(£,, co), L(€), {x), and L(€1,£p)
forall 1 < p < oo [6].

Recently, using the infinite-dimensional X, ,, spaces of Rosenthal and almost
disjoint sequences of integers, Johnson and Schechtman proved that there are 2°
distinct closed ideals in £(L,) for 1 < p < co with p # 2 [12]. In particular, the
cardinality of the set of closed ideals in £(L,,) is exactly 2°.

The goal for this paper is to present a general method for proving when
L(X, Y) contains 2° distinct closed ideals for some Banach spaces X and Y with
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unconditional finite-dimensional decompositions (UFDD). Given a collection of
operators (Ty)nen~ from X to Y indexed by the set of all infinite subsets of the
natural numbers, we give sufficient conditions for there to exist an infinite subset
L of N so that if S c [L]“ is a set of pairwise almost disjoint subsets of L, then
forall A,B c S, if M € A\ B, the operator T, is not contained in the smallest
closed ideal containing {Ty : N € B}. Thus, L(X,Y) contains 2° closed ideals.
We are able to apply this method to prove in particular that the cardinality of
the set of closed ideals in L(£, ® {,) is exactly 2° forall 1 < p < g < oco. It
follows at once that .£(L,) contains exactly 2° closed ideals for 1 < p # 2 < oo,
and thus we have another proof of the aforementioned result of Johnson and
Schechtman [12]. It is worth pointing out that they construct closed ideals using
operators that are not even strictly singular (and on the other hand, their ideals
do not contain projections onto non-Hilbertian subspaces). By contrast, our 2°
closed ideals are small in the sense that they consist of finitely strictly sigular
operators.

In [7] it was shown that there are 2° distinct closed ideals in .L(£,,co),
L(tp,ls) and L(€,€,) for all 1 < p < oco. In this article, we will show that
this result can also be obtained by our general construction.

Although our initial goals were to construct closed ideals between classical
Banach spaces, the generality of our approach allows us to construct 2° closed
ideals in £(X, Y) when X and Y are exotic Banach spaces such as for example p-
convexified Tsirelson spaces. In [2] it was shown that the projection operators in
Tsirelson and Schreier spaces generate a continuum of distinct closed ideals. So
again, an interesting distinction between these two methods is that the operators
we use to generate ideals are finitely strictly singular whereas the projections
used in [2] are clearly not even strictly singular.

The paper is organised as follows. In the next section we give general
conditions on Banach spaces X and Y that ensure that £(X, Y) contains 2° closed
ideals. We also prove two further results giving criteria that help with verifying
those general conditions. Each one of these two results have applications that we
present in the following two sections. In the final section we give further remarks
and state some open problems.

2. General Conditions for having 2° closed ideals in £(X, Y)

Let X and Y be Banach spaces and let 7~ be a subset of £(X, Y), the space of
all bounded linear operators from X to Y. The closed ideal generated by T is the
smallest closed ideal in £(X, Y) containing 7~ and is denoted by J” (X, Y). That
is, 77 (X, Y) is the closure in £(X, Y) of the set

{ZAjTij L nelN, (AL, € L), (T, € T, (B, L(X)}
j=1
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consisting of finite sums of operators factoring through members of 7. When
7 consists of a single operator T € £(X,Y), then we write J7 (X, Y) instead of
JIX,Y).

In [6], foreach 1 < p < oo, a collection (Tn)ncy € L(£p, co) of operators was
constructed such that J7 (¢ p.C0) =T Tnee »»Co) Whenever M A N is infinite. For
a non-empty family A of subsets of N, let J# be the closed ideal of L(£),,cp)
generated by {Ty : N € A}. There are at most a continuum of closed ideals
in £L(£,,cp) that are generated by a single operator. However, it was observed
in [7] that if S is an almost disjoint family of cardinality ¢ consisting of infinite
subsets of N, then {J# : A C S, A # 0} is a lattice of 2° distinct closed ideals
in £(¢p, co).

In this section, we will present a general condition which implies that £(X, Y)
has 2° closed ideals in the following framework in which the above example also
sits.

We are given two Banach spaces X and Y which are assumed to have uncon-
ditional finite-dimensional decompositions (UFDDs) (E,) and (F},), respectively.
By this we mean that E, is a finite-dimensional subspace of X for each n € N
and that each element of x can be written in a unique way as x = ),y X, With
x, € E, for each n € N and that ),y x, converges unconditionally. We can
therefore think of the elements x € X being sequences (x,) with x,, € E,, which
we call the n-component of x, for each n € N.

As in the case of unconditional bases, this implies that for N ¢ N, the map

PX:X > X, (Xen = (Xnen

((xy)nen 1s identified with the element in X whose m-component vanishes for
m € N\N) is well-defined and uniformly bounded. It follows that for some C > 0
we have H S e o-,,xn” < C|| SneN an for all (x,) € X and all (o,) € {+1}". In
this case we say that (E,) is a C-unconditional finite-dimensional decomposition
(or C-unconditional FDD) of X. After renorming X, we can (and will) assume
that ||P1’f,|| = 1 for a non-empty N C N and that moreover

| 25 = 2w
neN neN

for all (x,) € X and all (¢7,) € {+1}. We denote for N c N the image of X
under PX by Xy. Thus Xy = PX(X) = span,ey E, is 1-complemented in X
and (E, : n € N)is a l-unconditional FDD of Xy. Similarly, for the space Y
with UFDD (F,,) we define P}\’, and Yy for every N c N. We further assume that
||PX,|| = 1 for every non-empty N C N and that () is a 1-unconditional FDD of
Y.

(D
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For each n € N we are given a linear operator T,,: E, — F, and we assume
that the linear operator

T2 span Uyen En = span Uyen Fr, - (Xn) 5 (Th(xa))

extends to a bounded operator 7: X — Y. We then define for N c N, the
diagonal operator Ty: Xy — Yy by Ty = T o PX = PY o T. Note that
TNl < 1T

Our goal is to formulate conditions which imply that the following holds for
some A > 0.

VM,N € [N]® if M\ N € [N]” then dist(Ty;, J') > A. 2)

Using an observation in [12], we can conclude that L(X, Y) has 2° closed ideals
assuming that (2) holds.

ProrosiTioN 1. Let X, Y and (T,,) be as above, and assume that condition (2)
holds for some A > 0. Let S C [N]” be an almost disjoint family of cardinality
«. For AC S, let 94 be the closed ideal of L(X,Y) generated by {Ty : N € A}.
Then if A,B Cc S with A + B, then Ja + Jg. In particular, the cardinality of
the set of closed ideals of L(X,Y) is 2°.

Proor. Let A and B be two different subsets of S. Without loss of generality,
we assume that there is an M € A\ B. We claim that Ty, ¢ I, and that actually

dist(T, J8) > A.
Indeed, let n € N, (A))7_; < L), By}, ¢ LX) and (N))}_, C B. Put
N = U’ Nj. It follows that

n n
ZAJOTN/OBJZZAJ'OPI)\/’/'OTNOBJEjTN'
j=1 J=1

Since M \ N is infinite, it follows from (2) that
HZAjOTNjij—TMH >A.
j=1

Since Jg is the closure of the set of operators of the form }_; Ajo Ty; o B; with
neN, (Aj)’j?:1 c L(Y), (Bj)’;.:1 c L(X) and (Nj);?zl C B, we deduce our claim.O

In order to separate Ty, from J 7V if M \ N is infinite, the following condition
is sufficient.
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For each n € N there exist [, € N and vectors (x,, j)ljf’:1 CSEg,,

l"
. j)j=1 C S : so that

y,’;‘j(T,,(x,,,j)) >1 forneNandj=1,2,...,1, (3a)
1 In

JYim = ) [T o Blinp|| =0 (3b)
meM\N =1

whenever M, N € [N]? satisfy M \ N € [N]“, and B € L(X).
Indeed, for n € N we define the following functional ¥,, € L(X, Y)* by

1 IN
¥iS) = 7 D 3 (S (). forS € LIX.Y).
n J:l

Given M, N € [N]* with M \ N € [N]*, we let ¥ be a w*-accumulation point of
(W,, : me M\ N). It follows from (3a) that

Y(Ty) = liminf ¥, (Ty) > 1
meM\N

and for any A € £(Y) and B € L(X) it follows from (3b) that

N R
[P(ATVB)| < 1:;2 Ms\%) ’l— ; ym,i(ATNB(xm,i))|

I

= lim sup - ZA ym’i(TNB(xm,i))|
meM\N '‘m i=1

!
B IR
< llAlltim sup — > IITx BCen Il = 0.

meM\N lm i1

Since ||¥,|| < 1 for all n € N, it follows that ||¥|| < 1, which in turn implies
condition (2) with A = 1.

ReMARK. Some extension of the above result is possible. Assume for example
that (3) holds and that U is an isomorphism of Y into another Banach space
Z. Then L(X,Z) also has at least 2¢ distinct closed ideals. Indeed, by Hahn—
Banach, there are functionals z, ; € Z* such that U*(z;, ;) = y, ;foralln € N
and j = 1,2,...,[,, and moreover, C = supn’j||z2’.|| < oo, If we now define
¥, € L(X,Z)" as above but replacing y, ; with 7, ., then the above argument will
show that condition (2) holds with A = 1/C if we replace Ty with U o Ty for
every N C N.
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We now want to formulate conditions on the spaces X and Y and the
operators T,,: E, — F,, n € N, which imply that condition (3) is satisfied.
From now on we assume that for each n € N, the spaces E, and F), have
1-unconditional, normalized bases (e,, j)ffl’(E”) and (f,. j)flznl’(F " with coordinate
functional§ (efl’j)?i:"f(E”) and ( f,ij)gi:”f(p"), respectively.

We write for n € N the operator 7,,: E,, — F, as

dim(F,,)

Ty: En = Fu Tax)= D %0 (0fus
J=1

where xfl’j e E; forn e Nand 1 < j < dim(F,). In applications, we will define
the T, by choosing the x;j so that

the operator 7: X —» Y, (x,) — (T(x,)), is well defined and bounded. (4)

We secondly demand that dim(F,) = [, and that yj;j = fn*J for n € N and
j=1,2,...,1,. Thus, in order to obtain (3a), we require

xf,’j(x,,,j)} 1 forallneNand j=1,2,...,1,. (5)

Finally, in order to satisfy (3b) we will ensure that for m € N and any operator
B € L(E,,, Xn\(m) With ||B]| < 1, it follows that

1w
r D Twim B < & » ©
moi-1

where (g,,) is a sequence in (0, 1) decreasing to 0 not depending on B. Now B

B® € L(Ey, Xo\12,..m)-

To force that (6) holds for B" with &,,/2 instead of &,, is not very hard: it
will be enough to ensure that /,, is very large compared to dim(Xy; 2, ,,-1;) and
that (see the proof of Proposition 2 below) t sup, ” Zfz | ixm,i” decreases to 0
for increasing m. To also ensure the necessary estimates for B, we will assume
the following slightly stronger condition.

m(l

lim [, =c0 and lim sup LO = 0, where @)
m—oo [—o0 meN, 1,>1

on(h =sup{[| 3 x| - A U1, ) AT S L (@iea © (1),

icA

To ensure that (6) holds for B® is more complicated and will be done in
two steps. The second one of these two steps is more straighforward: it will
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be enough to assume that Tw\(1 2, maps vectors with small coordinates into
vectors with small norm (see condition (a) in Proposition 2 for the precise
statement). The first step is then to assume (see condition (b) in Proposition 2)
that the following set

{on ) n>m 1< <y, |, (BPx0)| > 6 for some 1 < i < )

has small cardinality compared to /,,. In many situations, guaranteeing that this
set has small cardinality relative to [, is the trickiest part, as B® is an arbitrary
norm-one operator. However, in Lemmas 3 and 4 we present conditions which
imply this result and are stated in terms of only basic properties of the sequences
(x,,7) and (x:’j) as well as the Banach spaces X and Y.

Of course, since for any N € [N]“, Xy and Yy are complemented subspaces
of X and Y, respectively, we can pass to subsequences (Ey, ), (Fy,) and (T%,) for
which we are able to verify (2), in order to conclude that the lattice of closed
ideals of L(X,Y) is of cardinality 2°. This follows from the following obser-
vation whose verification is routine. Suppose that V and W are complemented
subspaces of X and Y, respectively. For a closed ideal 7 in L(V, W), let j be the
closure in L(X, Y) of the set of operators of the form Z;’.:l A;S Bj, where n € N,

(Aj);f:1 c L(W,Y), (Sj)?:1 Cc 9 and (Bj)'].:1 c L(X,V). Then jis a closed ideal
in £(X, Y) and the map J +— i is injective.

ProposiTiON 2. Assume that the spaces X and Y, their 1-unconditional FDDs
(E,) and (F,) and the operators T,,: E, — F,, n € N, satisfy conditions (4), (5)
and (7). Assume, moreover, that the following conditions hold.

(a) Foralle>0andall M € [N]® thereisa 6 > 0 and N € [M]“ so that

Vx € Bx, if  sup |, (0| <6, then [Tyl < &.
neN1<j<l,

(b) Forall 6, > 0and all M € [N]” there are m € M and N € [M]* so that for
every B € L(E,, Xy) with ||B|| < 1 we have that

‘{(n, D neN, 1< < b W (Bl > 6 for some 1 < i < I}| < el

Then there is a subsequence (k,) of N so that for E,, = Ey, fn =Fy, Tn =T,

7 ~ l} -~ ~% ' - ln =\ ..
I, =1, ()c,,,j)lj”=1 = (kaj)ji1 C E, and (yn’j)lj=1 = (fkmj)jk=1 c (F,)", condition (3)
is satisfied. Hence, L(X,Y) contains 2° closed ideals.
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Proor. Let (&,);2, C (0, 1) be a sequence which decreases to 0. Put ko = 0 and
My =N. We w111 inductively choose k, € N and M, € [N]“ so that for all » € N

min(M,) > k,, 3)
kr—l < kra M, Cc M, and kr EM, 4, (9)

Iy

1 &
— ZIIB(Xk N < & forall Be L(E,, Xk ky...k11)s 1Bl <1, (10)

ki i=1

| &
— Z”TM B(x, )l < &, forall B € L(E,, Xu,), |I1BIl < (11)

kr i=1

Assume that for some r € N, we have already chosen suitable k; < k, < --- <
ky—yand N = My > My D> --- > M,_,. Put C = ||T||. By using (a), we choose
0>0and M € [M,_]” so that

Ty ()] < —r for all x € Bx,, with sup  |x ()] <6, (12)
2 meMA<i<l,

Note that (12) still holds if we replace M by any infinite subset of M.
We now let p € N be large enough so that there exists a sequence (z*)

S Xy, 4, x,_,) Which normalizes the elements of X, «,,..k, ,) up to the factor 2 i e
[lxl] < < max 2|30l forall x € Xy, sy, k- (13)
<Js<p

We now apply (7) and choose [ € N and m; > k,_; large enough so that for all
m > m; wehavel, > landif A c{l1,2,...,1,} has |A| > [, then

H<m1n(g : )|A| (14)

For any m > m, and any B € L(E,,, Xi, k,...k._,}) With ||B|| < 1 it follows that

!

1 I o) P
= D lIBGdl| < = >0 > B (15)
m i=1 i=1

m j=1

3

N

m

2 p
= l_ Z:; Z O'i,jxm,,')

i=1

(with oy j = 51gn(z-B(xm,~)) forl <i<lyand1<j<p)

P

l

”\ r'



Daniel Freeman, Thomas Schlumprecht and Andrds Zsdk 10

Thus (10) will hold for any k, > m;. We now apply assumption (b) and choose
k, € M and an infinite subset M, of M with m; < k, < min(M,) so that for every
B € L(Ey,, Xy,) with ||B|| < 1 we have that

&l
B < 5= "l’ where
JB) ={(n,j): n€ My, 1 < j <y, |, (Bxi,)| > 6 for some 1 <i < Iy}

(16)

We now verify (11) and complete the inductive construction. Let B € L(Ey,, Xu,)
with ||B|| < 1 and set J = J(B). For each (n, j) € J we denote

Lj=lie(L2.....0) : X, (Bxi.0)l > 6} .

We now have for each (n, j) € J that

Csup ” Z +Xx, ,” sup ” Z +Ty, Bxy, i

i€l n.j i€l n.j
* IEI,,/

2 |In,j|5

where we used the fact that f oTy, =x, On the other hand, we have by (14)
that if |7, ;| > [ then

£y, H <ol l/C.

i€l ;
Thus, |1, ;| < Ifor all (n, j) € J. We now set I = |, jies In.; and calculate

I,

ZHTM BCxi ) < ) 1w, BOxi D+ I T, B, I

iel i¢l
< D ITw, B, DIl + &:0, /2 by (12),
iel

< 0 DT B )l + &, /2
(n,j)el i€l ;
CllJ + &li, /2 as |I, ;| <l forall (n,j) € J,

<
<&l by(16).

Thus we have proven (11) and our induction is complete.
We now prove that condition (3) holds. Assumption (5) and the definition
of T,, imply that (3a) holds with y:‘l,j = f: i To verify (3b), we consider infinite
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subsets M and N of {k, : r € N} with M \ N € [N]“. Let B € £(X) and
leem € M\ N. Definerbym = k.. Let N,, = {n € N : n < m} and
N>, = {n € N : n> m}. We then have the following.

m

I} I .

1 9 1 1 n

—_ TnBx |l < — T BGen Dl + — Tv Blx. .

z,,,;” VBRI < - D T B z,,,;” N BOG I
by I,

1 1
< — C||P B ll + — Ty B i
I ;:1 I1Pk....ck, -y Bk, )] I glll ', BOx, )

< &.C|B|| + &/|BI| by (10) and (11).
Hence we have that

!

1Y

lim — " Ty Bl = 0
i=1

m— oo lm
and (3b) is satisfied. O

As mentioned before, the key assumption in Proposition 2 is assumption (b).
We will now present conditions (Lemmas 3 and 4 below) which imply this
assumption. We will later give applications in Sections 3 and 4.

For a Banach space Z with an unconditional basis (f;), we define the lower
Sfundamental function Az: N — R of Z by

Loy =inf{[ Y g AN U0 mewm.

JEA

Lemma 3. We are given 6,€ € (0, 1), I € N with €l > 1, Banach spaces G and Z

and a 1-unconditional basis (fj);"1 or Z with biorthogonal functionals (f;‘);‘;l.

Assume that for some sequence (xi)f=1 C S¢g we have

e(D/Az(Lel]) <6 a7

where o(l) = sup{||[Xie;oixill : T {1,2,...,1}, (0)ier C {x1}}. Then for any
B: G — Z with ||B|| < 1 we have

|{j€ N: If;(Bx,-)| > 6 for some 1 < i< l}| <é&l.
Proor. Fix an operator B: G — Z with ||B|| < 1 and set

I={ie{l,2,....0}: |f;(Bx;)| > ¢ for some j € N},
J={jeN: If;(Bx,-)|>6forsomel<i<l}.
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We next fix independent Rademacher random variables (r;);c; and establish the
estimate

Z rif; (B(x)
i€l

To see this, fix j € J and set y; = f *(B(x;)) for i € I. By the definition of J, there
is an iy € I such that |y; | > . Thus, by Jensen’s inequality we have

E‘ Z riyi Z rigriyi| = Elyi, + Z Tiglii

i€l i€l i€l, i#iy

E

>0 forall jeJ. (18)

E

Z it Z E(rigri)yil = |yil > 0.
i€l, i#i
We then calculate
¢) > E|| > rBx)||  as|BI<1
iel z

= Z T fjf"(B(x,-)) fi as (f;) is 1-unconditional,

el z
> H E rif T (Bx))| f by Jensen’s inequality,

= Z f, using (18) and the 1-unconditionality of (f;) ,
jeJ
= 64z(J)) .
Since the lower fundamental function Az is clearly increasing, it follows from
assumption (17) that |J| < &l O

We now state and prove a very different condition that also implies assump-
tion (b) in Proposition 2. Here we use the notation and framework established
on page 7.

LemmA 4. Let 1 < 5,t < oo and suppose the following holds.

(a) There is a constant ¢y > 0 so that (e, )dlm(E”’)

vector basis of £ for each m € N. That is,

dim(E, ) 1/s
“ [ Z |ai|s] for all scalars (a; )d’m(Em) i
=1

is c¢i-dominated by the unit

dim(Ey,)

i=1
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(b) There is a constant ¢, > 0 so that for all m,n € N with m < n and all
Ac{l,2,...,1,} with |A| < I, the sequence (x:’j)jeA is co-weak €. That is,

/s
(Z|XZJ(X)|S) <allxll  forallx€E,.

JEA

(c) There is a constant c3 > 0 so that if z, € Sg, for all n € N then (z,),,
c3-dominates the unit vector basis for {;. In other words,

1/t
(anffxnf) <ol forallxeX.

neN

(d) Timy e (dim(E,,))" 11 = 0.

Then for all 6, & > 0 there exists m € Nso thatforallN e [[ne N: n > m+ 1}]¢
and for all B € L(E,,, Xy) with ||B|| < 1, the set

J={0.j): neN, 1< j <l |x, j(Bxn)| > 6 for some 1 < i < Iy
has |J| < &l

Proor. Let0 <8, e<1l,meN,Ne[{neN: n>m+1}]”and B € L(E,, Xy)
with [|B]| < 1. Let H C J be such that |[H| < [,,. Note that if we prove that
|H| < é&l,, then we have that |J| < &l,. For each n € N denote H, = {j €
{1,2,...,1,} : (n,j) € H}). We have that

ARSI

J€H,
dim(E,,) P
= 2| 2 @ enie |
jeH, =1
dim(E,,)
<o DL DU IBE (endl' by (@),
jeH, i=1
dlm(Em)
X K
& D Db (PYBen)l
i=l  jeH,
dlm(ElPl)
X
<ce Z IPYBenll* by (b).

For the case that r < s, we may use the fact that ||P,’f Be,, |l < 1 to obtain

dim(E,,) dim(E,,)
K X X
§'|H,l < cjes Z IPYBendl” <cjes > IPYBenl' . (19)
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For the case that s < ¢, Holders inequality gives that

dim(E,,) dim(E,) s/t
0'|H,| < ¢jc Z I|PX Beyll* < C]Cz(dlm(Em)) [ Z IPy Bemlll’] .

By raising the above inequality to the power ¢/s, we have for s < ¢ that

dim(E,)
§'1H,| < §'1H,|"* < cich(dim(E,)) = > I1PYBepl . (20)
i=1
We now finish the proof for the case that + < s, and we will consider the
remaining case later. Summing (19) over n € N gives that

|H| = ) |H,|

neN
dlm(EIPX)

5¢ies Y Y IPYBenilly,

i=1 neN
dim(E,,)

<o7¢es Y cliBenl by (@),
i=1
< 6 %ciescl dim(E,,) .

As t < s we have by (d) that lim,,_,., dim(E,,)[;! = 0. Hence, if m € N is large
enough then |H| < &l,,, and thus |J| < &I, as well.
We now consider the remaining case that s < 7. By (20) we have that

|H| = " |H,|

neN
dlm(E”X)

5l (dimE) T DT D IPY Byl
i=1 neN
dlm(Em)

= 67l (dimE) T D [IBenill by (©),
< 57l el (dim(E,)) T dim(E,,)
= 57'c! e (dim(E,))*

As s < t we have by (d) that lim,,_,c (dim(Em))il;ll = 0. Hence, if m € N is
large enough then |H| < &l,,, and thus |J| < &l,,. d
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3. Applications I

In this section we apply the general process developed in Section 2 together
with Lemma 3 to establish a class of pairs (X, Y) of Banach spaces for which
L(X,Y) contains 2° distinct closed ideals. We will then give a list of examples
including classical £,-spaces and p-convexified Tsirelson spaces.

THEOREM 5. Let 1 < p < r<2and1 <r < q < . Let X be an unconditional
sum of a sequence (E,) of finite-dimensional Banach spaces satisfying a lower
{,-estimate, and assume that the E, contain uniformly complemented, uniformly
isomorphic copies of {}). Let Y be an unconditional sum of a sequence (F,) of
finite-dimensional Banach spaces satisfying an upper € -estimate. Then L(X,Y)
contains 2° distinct closed ideals.

Let us first recall some of the terminology used here. To say that X is
an unconditional sum of a sequence (E,) of finite-dimensional Banach spaces
means that X consists of all sequences (x,) with x,, € E, for all n € N, and there
is an unconditional basis (u,) of some Banach space such that the norm of an

element (x,) of X is given by
= || D sl
n

If the (u,) is a C-unconditional basis, then we say that X is a C-unconditional
sum of (E,). In this case (E,) is a UFDD for X, but the converse is not true in
general.

We say that X satisfies a lower {,-estimate if (u,) dominates the unit vector
basis of £,, i.e., if for some ¢ > 0 and for all (x,,) € X, the estimate

H;m>4;mm”

holds. In this case we say that X satisfies a lower {,-estimate with constant c. An
upper {,-estimate is defined analogously in the obvious way. To say that the E,
contain uniformly complemented, uniformly isomorphic copies of £} means that
for some C > 0 and for all m € N there exist n € N and a projection P,,: E,, — E,
with [|P,]| < C whose image is C-isomorphic to £}

The special case of X = £, and Y = ¢, was treated in [27] where the existence
of a continuum of distinct closed ideals was established. Here we shall make
use of finite-dimensional versions of Rosenthal’s X,,,, spaces which were also
the main ingredient in [27]. We begin by recalling the definition and relevant
properties.

[|Cxa)
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Given2 < p < 00,0 <w < 1 and n € N, we denote by E;,”zt the Banach
space (R”, ||]l,v), where

el = (2"”"’); Y W(ila,»ff
j= =

We write { ™. 1<j< n} for the unit vector basis of Ef,,"zv and we denote
(n)

by {e(j") : g j < n} the unit vector basis of the dual space (E,},)", which is
biorthogonal to the unit vector basis of Ef,"zv

Given 1 < p<2,0 <w < 1andn € N, we fix once and for all a sequence
f;”) = f;f’v)v’j, 1 < j < n, of independent symmetric 3-valued random variables
with IIJC;")IILP =1 and || f;")llL2 = ' - for 1 < j < n (these two equalities determine
the distribution of a 3-valued symmetrlc random variable). We then define F;"‘L
to be the subspace span{ f(") 1 < j < n}of L, It follows from the work of

Rosenthal [22] that there ex1sts a constant K, > 0 dependent only on p so that
for all scalars (a j)’j’: we have

1

n
—I[ Y aje
KP

; 21

n n
<|Se], <] 30
— L —
J=1 4 j=1

1 < j < n} is the unit vector basis of the dual space (Ef,,'f?w)* as

where {e; ()

defined above and p’ is the conjugate index of p. Since the random variables f;”)

are 3-valued, F E,"fv

disjoint sets. Thus, we can and will think of FE,"QV as a subspace of 6’13,". The
following result follows directly from Rosenthal’s work [22].

is a subspace of the span of indicator functions of 3" pairwise

ProposiTiON 6. [27, Proposition 1] Let 1 < p <2, 0 <w < landn € N.
Then

(i) {f;") : 1 < j < n}is a normalized, 1-unconditional basis ofFE, )
(ii) There exists a projection P\, : £ — 63 onto F)) o) with ”P(") ||

(iii) For each 1 < k < nand for every A C {1,...,n} with |A| = k we have
Lot 14 o
e GRS ”Zf]
P jeA

The lower estimate of the lower fundamental function in Lemma 7 below
follows easily from [27, Lemma 3] and its proof.

1
P ALE
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LemMmA 7. Given an increasing sequence (k,) in N and a decreasing sequence
wy) in (0,1], let 1 < p < r < 2 and let Z be a 1-unconditional sum of

(F ;,kw)") satisfying a lower {.-estimate with constant 1. Then with respect to the

unconditional basis (f;k”) :neN, 1< j<ky)ofZ forallm e N we have

s—1
1 (;mn1/r k; /2
e > ((5)" (X5 5) )
P J

where s = s(m) € N is maximal so that Zj;{ ki<m/2andt=m/2 - Z;i kj. In
particular, if m < ky then

ml/z)

1
Az(m) > —(ml/’ A
w1

2K,
Let us denote by (e(zf’?);le the unit vector basis of £;. We will need the
following lemma from [2’/]. Recall that p’ is the conjugate index of p.

LemMma 8. [27, Lemma 5] Given 1 < p < 2 and p < q < oo, letn € N,
we (0,11and F = Fph. Lety = S5, y;f{" € Fwith |llr < 1, and let

1_1 1_1
y= 27:1 yje;";. € 0. If IVllo = maxjly;| <o < landw < 0> 7 =0r 2, then

1517, < Do - Iyl »

p g _
2° 2

I

Proor (of Theorem 5). Choose n € (0,1) so that n < % - % and for each
n € Nlet w, = n™. After passing to a complemented subspace of X using
Proposition 6, and after passing to an equivalent norm, we may assume that X
is a I-unconditional sum of (E,) satisfying a lower {,-estimate with constant 1,
where E, = Fﬁ,"zv for all n € N. Also, using Dvoretzky’s theorem, after passing
to a subspace of Y with suitable renorming, we may assume that Y is a I-
unconditional sum of (F),) satisfying an upper {,-estimate with constant 1, where
F, = ] for all n € N (¢f. Remark following condition (3)).

We will now follow the scheme developed in Section 2. For each m € N we
let I, = m, x,,; = fl.(”’) € E,and f,; = 6(2”',’-) € F,, for 1 < i < m, and define
Tyw: Ey — Fp by T,(x) = X7, xfn’i(x) fm.i» Where x;‘;”. are the biorthogonal
functionals to the 1-unconditional basis (x,,;)!, of E,. We are thus in the
situation described in Proposition 2. It remains to verify assumptions (a) and (b)
of the proposition as well as the general assumptions (4), (5) and (7).

Assumption (5) is clear. Next, it follows from Proposition 6(i) that sup, ||7,||
is bounded by the cotype-2 constant of L,,. Since r < g, it follows from the upper

{,-estimate on Y and the lower /,-estimates of X that (4) holds.

— min (4
where D only depends on p and g, and s = min {3 —

X e

’
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Using Proposition 6 again, we note that
1 1 41
enll) <10 A L12

for all < m in N, and condition (7) follows.

We next turn to condition (a) of Proposition 2. Fix & > 0 and M € [N]“.
Choose § € (0, 1) so that (Dés); < &9, where D and s are given by Lemma 8
with g replaced by ’?. Then choose N € [M]“ so that w,, < (5%_% foralln € N.
Now fix x € By, with sup,cy <, (0 < 6. Writing x = 3,y 37 dn,j%Xn,js
we have |a, j| < o foralln € Nand 1 < j < n. It follows from Lemma 8 that

pq

n 2r n
2 < D ) p
lan | < D& D anixs
J=1 J=1 !
and hence
n % n r
2 S\ =
DlanP| <D D ansxe, .
J=1 J=1 !

for every n € N. Summing over n € N and using the lower £,-estimate of X and
the upper £,-estimate of ¥, we obtain

ITN OIS < (DS*)7IIlly, < &7,

which completes the proof of condition (a).
To verify condition (b) of Proposition 2, we fix 6,& € (0,1) and M € [N]*.
We first choose m € M so that me > 1 and

1
2K,m"*2
~ 1

mr

<é where m = |em] .

We then choose N € [M]“ so that n = min(N) satisfies TG < s /w,. We
now apply Lemma 3 with G = E,,, [ = m and Z = Xy. First note that by
Proposition 6(iii), we have

1
L m2 1
Omim) <mr A — =m"2 |
m

On the other hand, it follows from Lemma 7 that

%1/2) ’,7ll/r

1
A — 2 _(~l/r /\ —
am) 2 e {m 2K,

p Wn
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1
2K,m""2

by the choice of N. Hence, ¢,,(m)/x,(lem]) < ==— < 6 by the choice of m.

An application of Lemma 3 shows that for any B em.t(E,n, Xy) with ||Bl| < 1 we
have

|{(n, )ineN, 1< j<n, |x, (Bxn)l > 6 for some | < i < m}| <em.

This shows that (b) of Proposition 2 holds and the proof of the theorem is thus
complete. O

Remark. It is not difficult to prove (c¢f. [27, Proposition 8]) that the 2° closed
ideals constructed in the proof of Theorem 5 are all contained in the ideal of
finitely strictly singular operators.

CorOLLARY 9. Let 1 < p < g < oo and let p" and q' denote the conjugate indices
of p and g, respectively. Let X be one of the spaces €, T), or T;,. Let Y be one
of the spaces y, T, or T;,. Then L(X,Y) has exactly 2° closed ideals. It follows
that L(X @ Y) also has exactly 2° closed ideals.

Proor. We recall the following properties of the p-convexified Tsirelson space
T, which can be found in [4]. Its unit vector basis (z,) is normalized, 1-
unconditional, dominated by the unit vector basis of £, and dominates the unit
vector basis of ¢, whenever p < r < co. Moreover, given a sequence (I,) of
consecutive intervals of positive integers with 1 € [, if we let E,, = span{; :
i € I,} and pick any k, € I, for every n € N, then T, is isomorphic to the
unconditional sum of (E,) with respect to the unconditional basis (#,). It follows
from Theorem 5 that £(X, Y) has exactly 2¢ closed ideals when 1 < p < 2, and
the same then holds by duality when 2 < p < co.

It follows by standard basis techniques that every operator from Y to X is
compact. Hence non-trivial closed ideals of £(X, Y) correspond to non-trivial
closed ideals of L(X & Y) as follows. We think of operators on X @ Y as 2 X 2
matrices in the obvious way. Given a non-trivial closed ideal J in £(X, Y), it is
easy to see that

T = {(‘é g) cAeKX), Be LIV,X),CeJ,De V((Y)}
is a closed ideal of £(X @ Y), and moreover, the map J +— i is injective. It
follows that L(X @ Y) also has 2° closed ideals, and this completes the proof of
the theorem. O

As mentioned in the Introduction, the above result implies the recent result
of Johnson and Schechtman [12] that £(L,) contains 2° closed ideals for 1 < p #
2 < o0,

CoroLLARY 10. Let 1 < p # 2 < oo. The algebra L(L,) of operators on L,
contains exactly 2° closed ideals.
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4. Applications IT

As in the previous section, we will apply the general process developed in
Section 2 to establish a class of pairs (X, Y) of Banach spaces for which £(X,Y)
contains 2° distinct closed ideals. However, we will be using Lemma 4 in this
section as opposed to Lemma 3.

Let 1 < p < g < oo. Suppose that (&), is a UFDD for a Banach space
X with a lower ¢,-estimate and that (¢7,), is a UFDD for a Banach space Y
with an upper £,-estimate. We will prove that £(X, Y) contains 2° distinct closed
ideals. As (@::1 [g)f,, is complemented in £, for all 1 < p < co, we obtain
that £(,, co) contains 2° distinct closed ideals for all 1 < p < oo, which proves
that our general setup incorporates the results presented in [7]. By duality, we
obtain that L(¢y,{,) and L(£,, {) each contain 2° distinct closed ideals. Hence,
the cardinality of the set of closed ideals is exactly 2° for each of L({, & co),
L, ® t) and L(¢; & ¢,) for all 1 < p < oco. Note that we also obtain that
the cardinality of the set of closed ideals in .£(( @;o:l £3),, ® co) is 2¢, however
we are not able to conclude anything about £({; & c() as the finite-dimensional
spaces ¢} are not uniformly complemented in ¢;.

In the previous section, for each n € N, the operator 7,,: E,, — Z; was the
formal identity between two n-dimensional Banach spaces. Now, we will choose
sequences k| < I; < kp <l < ... and operators T}, : 6/;” - 5{;. When considered
as a matrix, each 7T, will be much taller than it is wide.

Let 1 < p < oo. The probabilistic proofs for the existence of RIP (Restricted
Isometry Property) matrices from compressed sensing [5] show that there exist
sequences k| < Iy < ky < I, < ... with limy_e kT™"?/?[-1 = 0 such that if unit
vectors (X, j)l]f’:] are randomly chosen with uniform distribution in f’;" then with
high probability we have for all J c {1,2,...,1,} with |J| < [,- that

1 2
5 2ail < 1> apm| <2 o forall @ cR, 22
jeJ jeJ jeJ
ZI(x, X )P < 2lIxd1 for all x € €5 . (23)

jeJ
We now show how this construction satisfies the conditions of Proposition 2 and
Lemma 4.

TheorREM 11. Let 1 < p < g < o0. Suppose that (€3);" | is a UFDD for X with a
lower €y-estimate and that ({y,),” | is a UFDD for Y with an upper {,-estimate.

Then L(X,Y) contains 2° distinct closed ideals.
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Prook. Choose ky < I} < ky < I, < ... in N with lim,_ k7721 =
and unit vectors (x,, j)i.”: , C 512‘” for all n € N to satisfy (22) and (23). Let
= {k” and F, = ¢ for all n € N. As E, is a Hilbert space, we may take
(xnj)] L= (x,,j)J | € SE;. Suppose that Cy, C, > 0 are such that if (x,))”, € X
then ( Zlx,1”)""” < Cill(x)llx and if (7)., € ¥ then [[(y)lly < Ca( Zllyal |q)”q
For each n € N we define the operator T,,. 512‘” - ff;;, by x = ({x, xp, J>)/.:1

We now show that the conditions of Proposition 2 are satisfied.
We have that (4) is satisfied as if (x,) € X then

I, < €2 (O ITum) "

l/q
=G (Z sup |<x,,,xn,,~>|"]

1<j<h

< & (D alie)
<G (YIlr)"” < el -

Thus, the map (x,) — T((xn)) is well defined and bounded. Condition (5) is
trivially satisfied as (xm l) = (X, ,)l , forallm e N.

To prove (7), fixn € N and let/ € Nbesuchthat!/ > [, > k,. Givenm € N
with /,, > land A C {1,2,...,1,} with |A| = [, set ¢, = [l/k,]. Partition A into

(AJ)’” such that |A;| < k, for all 1 < j<t,. By(22) wehaveforall 1 < j <,

that’
| o

iEAj

< 2|A) for all (07)iea; C {1} .

Thus, for all (o)., C {+1} we have that

In
DRET EDN PR
icA Jj=1 i€A;

1
< Z 21/2|Aj|1/2
j=1
< tn21/2k’11/2
< QU2 N < 41k
Thus, for

e = sup || 3 i 1 A 1,2, hd, AT L (@ier © (1)

i€A
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@m(D)

we have that me(l) < 4k, 172, Hence, lim  sup = 0, and we have (7).

=00 e, 1,1
We next verify condition (a) of Proposition 2. Fix & > 0. There exists § > 0
such that if (a;) € ¢, with [|(@)ll,, < C; and |a;] < ¢ for all j € N then
ltaplle, < C2‘1.s. Let x = (x,) € Sx such that suplgjg”l(x,,,xn’j)l < 6 for all
n € N. Thus, we have that

(e8]

(> sup KanmapP) " < O all)? < €4 (24)

<<l =

and

7))

|y < o Drxat)
= CZ(Z sup [(x, x,,)17)

1)<

l/q

<eg by (24) and our assumption on ¢.

Finally, it follows from (22) and (23) that the conditions of Lemma 4 are satisfied
for s = 2 and ¢t = p. This in turn implies assumption (b) of Proposition 2, and
thus the proof is complete. O

ReMark. The earlier remark following the proof of Theorem 5 applies here, too.
The closed ideals constructed above are all contained in the ideal of finitely
strictly singular operators.

Theorem 11 gives the following immediate corollary.

CoroLLarY 12. Let 1 < p < oco. Then L({),co), L(£1,£p), and L(Lp, L) each
contain 2° distinct closed ideals.

Proor. We have by Theorem 11 that L(( @:o:l f;)[p,co) contains 2¢ distinct

closed ideals, and (@;0:1 3), is isomorphic to ¢, for 1 < p < co. By duality
we have that L(¢;,¢,) and L(é p» o) €ach contain 2° distinct closed ideals. O

In the previous section we deduced from our results that the cardinality of
the lattice of closed ideals of £(L,), 1 < p # 2 < oo, is 2°. Note that the
Hardy space H; and its predual VMO can be seen as the “well-behaved” limit
cases of the L,-spaces. For example ¢, is complemented in both spaces, and
H| contains a complemented copy of £; and VMO a complemented copy of cg
(cf- [19] and [20, page 125]). Thus, we deduce the following corollary.

CoroLLARY 13. The cardinality of the lattice of closed ideals of L(VMO) and
L(Hy) is 2.
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5. Final remarks and open problems

If one only considers Banach spaces X with an unconditional basis or, more
generally, with an UFDD, then the cardinalities « for which we know examples
of Banach spaces X with an UFDD for which the number of non-trivial proper
closed ideals of £(X) is «, are only the following three:

k=1ForX=1¢{, 1 <p<oo,orX = cy, the closed ideal of compact operators
is the only non-trivial proper closed ideal [8].

« =2 For the spaces X = (€D £3), and its dual X* = (P £3),,, there are
exactly two non-trivial proper closed ideals, the compacts and the closure
of operators which factor through ¢y or €1, respectively [14,15].

k=2 L(X) has 2 closed ideals for the spaces listed in the previous two
sections. In addition to these spaces, it was recently observed by Johnson
[11] that also £(T) and L(T?’), where T is Tsirelson space and T its
p-convexification for 1 < p < oo, has 2° closed ideals. !

This begs the following questions:

ProBLEM 14. Are there Banach spaces X with an countable unconditional basis
or unconditional UFDD for which the cardinality of the non-trivial proper closed
ideals of L(X) is strictly between 2 and 2°? Can this cardinality be any natural
number, countable infinite or ¢?

An interesting space in the context of this question is ¢y ® €;. According to [28],
L(co @ ¢y) contains an w;-chain of closed ideals.

ProBLEM 15. What is the cardinality of the lattice of the closed ideals of the space
of the operators on cy ® €;?

Another space of interest for Problem 14 is the Schreier space. In [2] it was
shown that the space of operators on this space has continuum many maximal
ideals.

ProBLEM 16. What is the cardinality of the lattice of closed ideals of the space of
operators on Schreier spaces?

"Moreover, during Kevin Beanland’s talk at the Banach Space Webinar on 3 April 2020,
Johnson noted that the case p = 2 was already covered using method’s in [12].
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Among the class of general separable Banach spaces, there are more exam-
ples for which the lattice of closed ideals of their algebra of operators, or at least
its cardinality, is determined. Such a list can be found in [13].

Based on the construction by Argyros and Haydon [1] of a space on which
all operators are compact perturbations of multiples of the identity, Tarbard [29]
constructed for each n € N a space X,, for which £(X,,) has exactly n non-trivial
proper closed ideals. There are also Banach spaces X for which the cardinality
of the lattice of closed ideals of £(X) is exactly ¢. Indeed, suppose that A is
a separable Banach algebra isomorphic to the Calkin algebra L(X)/K(X) for a
Banach space X which has the approximation property (to ensure K(X) is the
smallest non-trivial closed ideal). Then, as observed in [13], the closed ideals of
L(X) arise from preimages of closed ideals in A. Examples of separable Banach
spaces X for which £(X)/K(X) has exactly continuum many closed ideals were
constructed, for instance, in [9, 17, 18,30]. An example of a space X for which
the number of closed ideals is infinite but countable seems to be missing.

ProBLEM 17. Are there Banach spaces X for which L£(X) has countably infinitely
many closed ideals?

A candidate of such a space is C[0, @], where « is a large enough countable
ordinal. But already for @ = w® (the first ordinal @ for which C[0, @] is not
isomorphic to ¢p) the answer of the following question is not known.

ProBLeM 18. For a countable ordinal «, what are closed ideals of L(C[0, a])?
What is the cardinality of the lattice of these ideals?

Another space of interest is L;[0, 1]. It was shown by Johnson, Pisier and
Schechtman [10] that £(L;[0, 1]) has at least ¢ closed ideals.

ProBLEM 19. How many closed ideals does L(11]0, 1]) have?

As alluded by our terminology, the closed ideals of £(X, Y) for Banach spaces
X and Y form a lattice with respect to inclusion and with lattice operations given

by IANY =InNnYgand IV YJ =1+ Y9 forclosed ideals 7 and J. In the
problems above, we have only asked about the cardinality of this lattice. As a
future ambitious target, one could study the lattice structure.

After the submission of this paper additional examples of spaces X were
discovered, for which £(X) has 2° closed ideals:

e Antonis Manoussakis and Anna Pelczar [16] showed that if X is a Schreier
space of finite order or X is the arbitrarily distorted space constructed by
the third named author [24] then £(X) 2° closed ideals. Thus Problem 16
is only open for Schreier spaces of infinite order.

e The third named author, recently proved [26] that modified Schreier fami-
lies of any order coincide with the usual Schreier families. It follows from
this that the arguments of [12] extend to all higher order Tsirelson spaces
and their convexifications.
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