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Abstract

We formulate general conditions which imply that L(X,Y), the space of operators from a Banach
space X to a Banach space Y , has 2c closed ideals where c is the cardinality of the continuum.
These results are applied to classical sequence spaces and Tsirelson type spaces. In particular, we
prove that the cardinality of the set of closed ideals inL(`p⊕`q) is exactly 2c for all 1 < p < q < ∞.
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1. Introduction

Given Banach spaces X and Y , we call a subspace J of the space L(X,Y) of
bounded operators an ideal if AT B ∈ J for all A ∈ L(Y), T ∈ J and B ∈ L(X).
In the case that X = Y , this coincides with the standard algebraic definition of
J being an ideal in the algebra of bounded operators L(X). In this paper we
will only be considering closed ideals. For example, if X and Y are any Banach
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spaces, then the space of compact operators from X to Y and the space of strictly
singular operators from X to Y are both closed ideals in L(X,Y). In the case of
X = Y = `p, the compact and strictly singular operates coincide and they are
the only closed ideal in L(`p) other than the trivial cases of {0} and the entire
space L(`p). For p , 2, the situation for Lp is very different from `p. If X
contains a complemented subspace Z such that Z is isomorphic to Z⊕Z, then the
closure of the set of operators in L(X) which factor through Z is a closed ideal,
and moreover the map that associates this closed ideal with the isomorphism
class of Z is injective. In the case 1 < p < ∞ with p , 2, there are infinitely
many (even uncountably many) distinct complemented subspaces of Lp which
are isomorphic to their square [3], and thus there are infinitely many distinct
closed ideals in L(Lp).

Obviously, constructing infinitely many closed ideals for L(`p ⊕ `q) or
L(`p⊕c0) with 1 6 p < q < ∞ requires different techniques than just considering
complemented subspaces, and it was a long outstanding question from Pietsch’s
book [21] whether these spaces have infinitely many distinct closed ideals. For
the cases 1 6 p < q < ∞, the closures of the set of operators which factor
through `p and the operators which factor through `q are distinct closed ideals
(indeed, the only maximal ideals) inL(`p⊕`q), and all other proper closed ideals
in L(`p ⊕ `q) correspond to closed ideals in L(`p, `q). Progress on constructing
new ideals in L(`p, `q) proceeded through building finitely many ideals at a
time (see [23] and [25]) until it was shown using finite-dimensional versions
of Rosenthal’s Xp,w spaces that there is chain of a continuum of distinct closed
ideals in L(`p, `q) for all 1 < p < q < ∞ [27]. For 1 < p < ∞, p , 2,
`p ⊕ `2 is isomorphic to a complemented subspace of Lp, and thus there are
at least a continuum of closed ideals in L(Lp). Other new constructions for
building infinitely many closed ideals soon followed. Wallis observed [31] that
the techniques of [27] extend to prove the existence of a chain of a continuum
of closed ideals for L(`p, c0) in the range 1 < p < 2, and for L(`1, `q) in the
range 2 < q < ∞. Then, using ordinal indices, Sirotkin and Wallis proved
that there is an ω1-chain of closed ideals in L(`1, `q) for 1 < q 6 ∞ as well
as in L(`1, c0) and in L(`p, `∞) for 1 6 p < ∞ [28]. Using matrices with the
Restricted Isometry Property (RIP), both chains and anti-chains of a continuum
of distinct closed ideals were constructed in L(`p, c0), L(`p, `∞), and L(`1, `p)
for all 1 < p < ∞ [6].

Recently, using the infinite-dimensional Xp,w spaces of Rosenthal and almost
disjoint sequences of integers, Johnson and Schechtman proved that there are 2c

distinct closed ideals in L(Lp) for 1 < p < ∞ with p , 2 [12]. In particular, the
cardinality of the set of closed ideals in L(Lp) is exactly 2c.

The goal for this paper is to present a general method for proving when
L(X,Y) contains 2c distinct closed ideals for some Banach spaces X and Y with
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unconditional finite-dimensional decompositions (UFDD). Given a collection of
operators (TN)N∈[N]ω from X to Y indexed by the set of all infinite subsets of the
natural numbers, we give sufficient conditions for there to exist an infinite subset
L of N so that if S ⊂ [L]ω is a set of pairwise almost disjoint subsets of L, then
for allA,B ⊂ S , if M ∈ A \ B, the operator TM is not contained in the smallest
closed ideal containing {TN : N ∈ B}. Thus, L(X,Y) contains 2c closed ideals.
We are able to apply this method to prove in particular that the cardinality of
the set of closed ideals in L(`p ⊕ `q) is exactly 2c for all 1 < p < q < ∞. It
follows at once that L(Lp) contains exactly 2c closed ideals for 1 < p , 2 < ∞,
and thus we have another proof of the aforementioned result of Johnson and
Schechtman [12]. It is worth pointing out that they construct closed ideals using
operators that are not even strictly singular (and on the other hand, their ideals
do not contain projections onto non-Hilbertian subspaces). By contrast, our 2c

closed ideals are small in the sense that they consist of finitely strictly sigular
operators.

In [7] it was shown that there are 2c distinct closed ideals in L(`p, c0),
L(`p, `∞) and L(`1, `p) for all 1 < p < ∞. In this article, we will show that
this result can also be obtained by our general construction.

Although our initial goals were to construct closed ideals between classical
Banach spaces, the generality of our approach allows us to construct 2c closed
ideals in L(X,Y) when X and Y are exotic Banach spaces such as for example p-
convexified Tsirelson spaces. In [2] it was shown that the projection operators in
Tsirelson and Schreier spaces generate a continuum of distinct closed ideals. So
again, an interesting distinction between these two methods is that the operators
we use to generate ideals are finitely strictly singular whereas the projections
used in [2] are clearly not even strictly singular.

The paper is organised as follows. In the next section we give general
conditions on Banach spaces X and Y that ensure that L(X,Y) contains 2c closed
ideals. We also prove two further results giving criteria that help with verifying
those general conditions. Each one of these two results have applications that we
present in the following two sections. In the final section we give further remarks
and state some open problems.

2. General Conditions for having 2c closed ideals in L(X, Y)

Let X and Y be Banach spaces and let T be a subset of L(X,Y), the space of
all bounded linear operators from X to Y . The closed ideal generated by T is the
smallest closed ideal in L(X,Y) containing T and is denoted by JT (X,Y). That
is, JT (X,Y) is the closure in L(X,Y) of the set{ n∑

j=1

A jT jB j : n ∈ N, (A j)n
j=1 ⊂ L(Y), (T j)n

j=1 ⊂ T , (B j)n
j=1 ⊂ L(X)

}
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consisting of finite sums of operators factoring through members of T . When
T consists of a single operator T ∈ L(X,Y), then we write JT (X,Y) instead of
J {T }(X,Y).

In [6], for each 1 < p < ∞, a collection (TN)N⊂N ⊂ L(`p, c0) of operators was
constructed such that JTM (`p, c0) , JTN (`p, c0) whenever M 4 N is infinite. For
a non-empty family A of subsets of N, let JA be the closed ideal of L(`p, c0)
generated by {TN : N ∈ A}. There are at most a continuum of closed ideals
in L(`p, c0) that are generated by a single operator. However, it was observed
in [7] that if S is an almost disjoint family of cardinality c consisting of infinite
subsets of N, then {JA : A ⊂ S, A , ∅} is a lattice of 2c distinct closed ideals
in L(`p, c0).

In this section, we will present a general condition which implies thatL(X,Y)
has 2c closed ideals in the following framework in which the above example also
sits.

We are given two Banach spaces X and Y which are assumed to have uncon-
ditional finite-dimensional decompositions (UFDDs) (En) and (Fn), respectively.
By this we mean that En is a finite-dimensional subspace of X for each n ∈ N
and that each element of x can be written in a unique way as x =

∑
n∈N xn with

xn ∈ En for each n ∈ N and that
∑

n∈N xn converges unconditionally. We can
therefore think of the elements x ∈ X being sequences (xn) with xn ∈ En, which
we call the n-component of x, for each n ∈ N.

As in the case of unconditional bases, this implies that for N ⊂ N, the map

PX
N : X → X, (xn)n∈N 7→ (xn)n∈N

((xn)n∈N is identified with the element in X whose m-component vanishes for
m ∈ N\N) is well-defined and uniformly bounded. It follows that for some C > 0
we have

∥∥∥∑
n∈N σnxn

∥∥∥ 6 C
∥∥∥∑

n∈N xn

∥∥∥ for all (xn) ∈ X and all (σn) ∈ {±1}N. In
this case we say that (En) is a C-unconditional finite-dimensional decomposition
(or C-unconditional FDD) of X. After renorming X, we can (and will) assume
that ‖PX

N‖ = 1 for a non-empty N ⊂ N and that moreover∥∥∥∥∑
n∈N

xn

∥∥∥∥ =
∥∥∥∥∑

n∈N
σnxn

∥∥∥∥ (1)

for all (xn) ∈ X and all (σn) ∈ {±1}N. We denote for N ⊂ N the image of X
under PX

N by XN . Thus XN = PX
N(X) = span

⋃
n∈N En is 1-complemented in X

and (En : n ∈ N) is a 1-unconditional FDD of XN . Similarly, for the space Y
with UFDD (Fn) we define PY

N and YN for every N ⊂ N. We further assume that
‖PY

N‖ = 1 for every non-empty N ⊂ N and that (Fn) is a 1-unconditional FDD of
Y .
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For each n ∈ N we are given a linear operator Tn : En → Fn and we assume
that the linear operator

T : span
⋃

n∈N En → span
⋃

n∈N Fn, (xn) 7→ (Tn(xn))

extends to a bounded operator T : X → Y . We then define for N ⊂ N, the
diagonal operator TN : XN → YN by TN = T ◦ PX

N = PY
N ◦ T . Note that

‖TN‖ 6 ‖T‖.
Our goal is to formulate conditions which imply that the following holds for

some ∆ > 0.

∀M,N ∈ [N]ω if M \ N ∈ [N]ω then dist(TM ,J
TN ) > ∆. (2)

Using an observation in [12], we can conclude that L(X,Y) has 2c closed ideals
assuming that (2) holds.

Proposition 1. Let X, Y and (Tn) be as above, and assume that condition (2)
holds for some ∆ > 0. Let S ⊂ [N]ω be an almost disjoint family of cardinality
c. ForA ⊂ S, let JA be the closed ideal of L(X,Y) generated by {TN : N ∈ A}.
Then if A,B ⊂ S with A , B, then JA , JB. In particular, the cardinality of
the set of closed ideals of L(X,Y) is 2c.

Proof. Let A and B be two different subsets of S. Without loss of generality,
we assume that there is an M ∈ A\B. We claim that TM < JB, and that actually
dist(TM ,JB) > ∆.

Indeed, let n ∈ N, (A j)n
j=1 ⊂ L(Y), (B j)n

j=1 ⊂ L(X) and (N j)n
j=1 ⊂ B. Put

N =
⋃n

j=1 N j. It follows that

n∑
j=1

A j ◦ TN j ◦ B j =

n∑
j=1

A j ◦ PY
N j
◦ TN ◦ B j ∈ J

TN .

Since M \ N is infinite, it follows from (2) that∥∥∥∥ n∑
j=1

A j ◦ TN j ◦ B j − TM

∥∥∥∥ > ∆ .

SinceJB is the closure of the set of operators of the form
∑n

j=1 A j ◦TN j ◦B j with
n ∈ N, (A j)n

j=1 ⊂ L(Y), (B j)n
j=1 ⊂ L(X) and (N j)n

j=1 ⊂ B, we deduce our claim.2

In order to separate TM fromJTN if M \N is infinite, the following condition
is sufficient.
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For each n ∈ N there exist ln ∈ N and vectors
(
xn, j

)ln
j=1 ⊂ S En ,(

y∗n, j
)ln

j=1 ⊂ S F∗n so that

y∗n, j
(
Tn(xn, j)

)
> 1 for n ∈ N and j = 1, 2, . . . , ln, (3a)

lim
m→∞

m∈M\N

1
lm

lm∑
i=1

∥∥∥TN ◦ B(xm,i)
∥∥∥ = 0 (3b)

whenever M,N ∈ [N]ω satisfy M \ N ∈ [N]ω, and B ∈ L(X).

Indeed, for n ∈ N we define the following functional Ψn ∈ L(X,Y)∗ by

Ψn(S ) =
1
ln

ln∑
j=1

y∗n, j
(
S (xn, j)

)
, for S ∈ L(X,Y) .

Given M,N ∈ [N]ω with M \ N ∈ [N]ω, we let Ψ be a w∗-accumulation point of
(Ψm : m ∈ M \ N). It follows from (3a) that

Ψ(TM) > lim inf
m∈M\N

Ψm(TM) > 1

and for any A ∈ L(Y) and B ∈ L(X) it follows from (3b) that∣∣∣Ψ(ATN B)
∣∣∣ 6 lim sup

m∈M\N

∣∣∣∣ 1
lm

lm∑
i=1

y∗m,i
(
ATN B(xm,i)

)∣∣∣∣
= lim sup

m∈M\N

∣∣∣∣ 1
lm

lm∑
i=1

A∗y∗m,i
(
TN B(xm,i)

)∣∣∣∣
6 ‖A‖ lim sup

m∈M\N

1
lm

lm∑
i=1

‖TN B(xm,i)‖ = 0 .

Since ‖Ψn‖ 6 1 for all n ∈ N, it follows that ‖Ψ‖ 6 1, which in turn implies
condition (2) with ∆ = 1.

Remark. Some extension of the above result is possible. Assume for example
that (3) holds and that U is an isomorphism of Y into another Banach space
Z. Then L(X,Z) also has at least 2c distinct closed ideals. Indeed, by Hahn–
Banach, there are functionals z∗n, j ∈ Z∗ such that U∗

(
z∗n, j

)
= y∗n, j for all n ∈ N

and j = 1, 2, . . . , ln, and moreover, C = supn, j‖z
∗
n, j‖ < ∞. If we now define

Ψn ∈ L(X,Z)∗ as above but replacing y∗n, j with z∗n, j, then the above argument will
show that condition (2) holds with ∆ = 1/C if we replace TN with U ◦ TN for
every N ⊂ N.
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We now want to formulate conditions on the spaces X and Y and the
operators Tn : En → Fn, n ∈ N, which imply that condition (3) is satisfied.
From now on we assume that for each n ∈ N, the spaces En and Fn have
1-unconditional, normalized bases (en, j)

dim(En)
j=1 and ( fn, j)

dim(Fn)
j=1 with coordinate

functionals (e∗n, j)
dim(En)
j=1 and ( f ∗n, j)

dim(Fn)
j=1 , respectively.

We write for n ∈ N the operator Tn : En → Fn as

Tn : En → Fn, Tn(x) =

dim(Fn)∑
j=1

x∗n, j(x) fn, j ,

where x∗n, j ∈ E∗n for n ∈ N and 1 6 j 6 dim(Fn). In applications, we will define
the Tn by choosing the x∗n, j so that

the operator T : X → Y, (xn) 7→ (T (xn)), is well defined and bounded. (4)

We secondly demand that dim(Fn) = ln and that y∗n, j = f ∗n, j for n ∈ N and
j = 1, 2, . . . , ln. Thus, in order to obtain (3a), we require

x∗n, j(xn, j) > 1 for all n ∈ N and j = 1, 2, . . . , ln. (5)

Finally, in order to satisfy (3b) we will ensure that for m ∈ N and any operator
B ∈ L(Em, XN\{m}) with ‖B‖ 6 1, it follows that

1
lm

lm∑
i=1

∥∥∥TN\{m}B(xm,i)
∥∥∥ 6 εm , (6)

where (εm) is a sequence in (0, 1) decreasing to 0 not depending on B. Now B
can be written as the sum B = B(1) + B(2), where B(1) ∈ L(Em, X{1,2,...,m−1}) and
B(2) ∈ L(Em, XN\{1,2,...,m}).

To force that (6) holds for B(1) with εm/2 instead of εm, is not very hard: it
will be enough to ensure that lm is very large compared to dim(X{1,2,...,m−1}) and
that (see the proof of Proposition 2 below) 1

lm
sup±

∥∥∥∑lm
i=1 ±xm,i

∥∥∥ decreases to 0
for increasing m. To also ensure the necessary estimates for B(1), we will assume
the following slightly stronger condition.

lim
m→∞

lm = ∞ and lim
l→∞

sup
m∈N, lm>l

ϕm(l)
l

= 0, where (7)

ϕm(l) = sup
{∥∥∥∥∑

i∈A

σixm,i

∥∥∥∥ : A ⊂ {1, . . . , `m}, |A| 6 l, (σi)i∈A ⊂ {±1}
}
.

To ensure that (6) holds for B(2) is more complicated and will be done in
two steps. The second one of these two steps is more straighforward: it will
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be enough to assume that TN\{1,2,...m} maps vectors with small coordinates into
vectors with small norm (see condition (a) in Proposition 2 for the precise
statement). The first step is then to assume (see condition (b) in Proposition 2)
that the following set{

(n, j) : n > m, 1 6 j 6 ln,
∣∣∣x∗n, j(B(2)xm,i)

∣∣∣ > δ for some 1 6 i 6 lm
}

has small cardinality compared to lm. In many situations, guaranteeing that this
set has small cardinality relative to lm is the trickiest part, as B(2) is an arbitrary
norm-one operator. However, in Lemmas 3 and 4 we present conditions which
imply this result and are stated in terms of only basic properties of the sequences
(xn, j) and (x∗n, j) as well as the Banach spaces X and Y .

Of course, since for any N ∈ [N]ω, XN and YN are complemented subspaces
of X and Y , respectively, we can pass to subsequences (Ekn ), (Fkn ) and (Tkn ) for
which we are able to verify (2), in order to conclude that the lattice of closed
ideals of L(X,Y) is of cardinality 2c. This follows from the following obser-
vation whose verification is routine. Suppose that V and W are complemented
subspaces of X and Y , respectively. For a closed idealJ in L(V,W), let J̃ be the
closure in L(X,Y) of the set of operators of the form

∑n
j=1 A jS jB j, where n ∈ N,

(A j)n
j=1 ⊂ L(W,Y), (S j)n

j=1 ⊂ J and (B j)n
j=1 ⊂ L(X,V). Then J̃ is a closed ideal

in L(X,Y) and the map J 7→ J̃ is injective.

Proposition 2. Assume that the spaces X and Y, their 1-unconditional FDDs
(En) and (Fn) and the operators Tn : En → Fn, n ∈ N, satisfy conditions (4), (5)
and (7). Assume, moreover, that the following conditions hold.

(a) For all ε > 0 and all M ∈ [N]ω there is a δ > 0 and N ∈ [M]ω so that

∀x ∈ BXN if sup
n∈N,16 j6ln

|x∗n, j(x)| 6 δ, then ‖TN(x)‖ < ε.

(b) For all δ, ε > 0 and all M ∈ [N]ω there are m ∈ M and N ∈ [M]ω so that for
every B ∈ L(Em, XN) with ‖B‖ 6 1 we have that∣∣∣∣{(n, j) : n ∈ N, 1 6 j 6 ln, |x∗n, j(Bxm,i)| > δ for some 1 6 i 6 lm

}∣∣∣∣ < εlm .

Then there is a subsequence (kn) of N so that for Ẽn = Ekn , F̃n = Fkn , T̃n = Tkn ,
l̃n = lkn , (x̃n, j)

l̃n
j=1 = (xkn, j)

lkn
j=1 ⊂ Ẽn and (ỹ∗n, j)

l̃n
j=1 = ( f ∗kn, j

)lkn
j=1 ⊂

(
F̃n

)∗, condition (3)
is satisfied. Hence, L(X,Y) contains 2c closed ideals.
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Proof. Let (εr)∞r=1 ⊂ (0, 1) be a sequence which decreases to 0. Put k0 = 0 and
M0 = N. We will inductively choose kr ∈ N and Mr ∈ [N]ω so that for all r ∈ N

min(Mr) > kr, (8)
kr−1 < kr, Mr ⊂ Mr−1 and kr ∈ Mr−1, (9)

1
lkr

lkr∑
i=1

‖B(xkr ,i)‖ 6 εr for all B ∈ L(Ekr , X{k1,k2,...,kr−1}), ‖B‖ 6 1 , (10)

1
lkr

lkr∑
i=1

‖TMr B(xkr ,i)‖ 6 εr for all B ∈ L(Ekr , XMr ), ‖B‖ 6 1 . (11)

Assume that for some r ∈ N, we have already chosen suitable k1 < k2 < · · · <
kr−1 and N = M0 ⊃ M1 ⊃ · · · ⊃ Mr−1. Put C = ‖T‖. By using (a), we choose
δ > 0 and M ∈ [Mr−1]ω so that

‖TM(x)‖ 6
εr

2
for all x ∈ BXM with sup

m∈M,16i6lm
|x∗m,i(x)| 6 δ, (12)

Note that (12) still holds if we replace M by any infinite subset of M.
We now let p ∈ N be large enough so that there exists a sequence (z∗j)

p
j=1 ⊂

S X{k1 ,k2 ,...,kr−1}
which normalizes the elements of X{k1,k2,...,kr−1} up to the factor 2, i.e.,

‖x‖ 6 max
16 j6p

2|z∗j(x)| for all x ∈ X{k1,k2,...,kr−1}. (13)

We now apply (7) and choose l ∈ N and m1 > kr−1 large enough so that for all
m > m1 we have lm > l and if A ⊂ {1, 2, . . . , lm} has |A| > l, then

sup
±

∥∥∥∥∑
i∈A

±xm,i

∥∥∥∥ < min
(
δ

C
,
εr

2p

)
|A| . (14)

For any m > m1 and any B ∈ L(Em, X{k1,k2,...,kr−1}) with ‖B‖ 6 1 it follows that

1
lm

lm∑
i=1

∥∥∥B(xm,i)
∥∥∥ 6 2

lm

lm∑
i=1

p∑
j=1

∣∣∣z∗j B(xm,i)
∣∣∣ (15)

=
2
lm

p∑
j=1

z∗j ◦ B
( lm∑

i=1

σi, jxm,i

)
(
with σi, j = sign

(
z∗j B(xm,i)

)
for 1 6 i 6 lm and 1 6 j 6 p

)
6

2p
lm

sup
±

∥∥∥∥ lm∑
i=1

±xm,i

∥∥∥∥ 6 εr .
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Thus (10) will hold for any kr > m1. We now apply assumption (b) and choose
kr ∈ M and an infinite subset Mr of M with m1 6 kr < min(Mr) so that for every
B ∈ L(Ekr , XMr ) with ‖B‖ 6 1 we have that

|J(B)| <
εrlkr

2Cl
where

J(B) =
{
(n, j) : n ∈ Mr, 1 6 j 6 ln, |x∗n, j(Bxkr ,i)| > δ for some 1 6 i 6 lkr

}
.

(16)

We now verify (11) and complete the inductive construction. Let B ∈ L(Ekr , XMr )
with ‖B‖ 6 1 and set J = J(B). For each (n, j) ∈ J we denote

In, j =
{
i ∈ {1, 2, . . . , lkr } : |x∗n, j(Bxkr ,i)| > δ

}
.

We now have for each (n, j) ∈ J that

C sup
±

∥∥∥∥ ∑
i∈In, j

±xkr ,i

∥∥∥∥ > sup
±

∥∥∥∥ ∑
i∈In, j

±TMr Bxkr ,i

∥∥∥∥
> sup

±

∑
i∈In, j

± f ∗n, j(TMr Bxkr ,i)

> |In, j|δ

where we used the fact that f ∗n, j ◦ TMr = x∗n, j. On the other hand, we have by (14)
that if |In, j| > l then

sup
±

∥∥∥∥ ∑
i∈In, j

±xkr ,i

∥∥∥∥ < δ|In, j|/C .

Thus, |In, j| < l for all (n, j) ∈ J. We now set I =
⋃

(n, j)∈J In, j and calculate

lkr∑
i=1

‖TMr B(xkr ,i)‖ 6
∑
i∈I

‖TMr B(xkr ,i)‖ +
∑
i<I

‖TMr B(xkr ,i)‖

6
∑
i∈I

‖TMr B(xkr ,i)‖ + εrlkr/2 by (12),

6
∑

(n, j)∈J

∑
i∈In, j

‖TMr B(xkr ,i)‖ + εrlkr/2

6 Cl|J| + εrlkr/2 as |In, j| < l for all (n, j) ∈ J,
6 εrlkr by (16).

Thus we have proven (11) and our induction is complete.
We now prove that condition (3) holds. Assumption (5) and the definition

of Tn imply that (3a) holds with y∗n, j = f ∗n, j. To verify (3b), we consider infinite
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subsets M and N of {kr : r ∈ N} with M \ N ∈ [N]ω. Let B ∈ L(X) and
let m ∈ M \ N. Define r by m = kr. Let N<m = {n ∈ N : n < m} and
N>m = {n ∈ N : n > m}. We then have the following.

1
lm

lm∑
i=1

‖TN B(xm,i)‖ 6
1
lm

lm∑
i=1

‖TN<m B(xm,i)‖ +
1
lm

lm∑
i=1

‖TN>m B(xm,i)‖

6
1
lkr

lkr∑
i=1

C‖P{k1,...,kr−1}B(xkr ,i)‖ +
1
lkr

lkr∑
i=1

‖TMr B(xkr ,i)‖

6 εrC‖B‖ + εr‖B‖ by (10) and (11).

Hence we have that

lim
m→∞

1
lm

lm∑
i=1

‖TN B(xm,i)‖ = 0

and (3b) is satisfied. 2

As mentioned before, the key assumption in Proposition 2 is assumption (b).
We will now present conditions (Lemmas 3 and 4 below) which imply this
assumption. We will later give applications in Sections 3 and 4.

For a Banach space Z with an unconditional basis ( f j), we define the lower
fundamental function λZ : N→ R of Z by

λZ(n) = inf
{∥∥∥∥∑

j∈A

f j

∥∥∥∥ : A ⊂ N, |A| > n
}

(n ∈ N).

Lemma 3. We are given δ, ε ∈ (0, 1), l ∈ N with εl > 1, Banach spaces G and Z
and a 1-unconditional basis ( f j)∞j=1 for Z with biorthogonal functionals ( f ∗j )∞j=1.
Assume that for some sequence (xi)l

i=1 ⊂ S G we have

ϕ(l)/λZ(bεlc) < δ (17)

where ϕ(l) = sup
{
‖
∑

i∈I σixi‖ : I ⊂ {1, 2, . . . , l}, (σi)i∈I ⊂ {±1}
}
. Then for any

B : G → Z with ‖B‖ 6 1 we have∣∣∣{ j ∈ N : | f ∗j (Bxi)| > δ for some 1 6 i 6 l
}∣∣∣ 6 εl .

Proof. Fix an operator B : G → Z with ‖B‖ 6 1 and set

I =
{
i ∈ {1, 2, . . . , l} : | f ∗j (Bxi)| > δ for some j ∈ N

}
,

J =
{
j ∈ N : | f ∗j (Bxi)| > δ for some 1 6 i 6 l

}
.
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We next fix independent Rademacher random variables (ri)i∈I and establish the
estimate

E
∣∣∣∣∣∑

i∈I

ri f ∗j
(
B(xi)

)∣∣∣∣∣ > δ for all j ∈ J . (18)

To see this, fix j ∈ J and set yi = f ∗j
(
B(xi)

)
for i ∈ I. By the definition of J, there

is an i0 ∈ I such that |yi0 | > δ. Thus, by Jensen’s inequality we have

E
∣∣∣∣∣∑

i∈I

riyi

∣∣∣∣∣ = E
∣∣∣∣∣∑

i∈I

ri0 riyi

∣∣∣∣∣ = E
∣∣∣∣∣yi0 +

∑
i∈I, i,i0

ri0 riyi

∣∣∣∣∣
>

∣∣∣∣∣yi0 +
∑

i∈I, i,i0

E(ri0 ri)yi

∣∣∣∣∣ = |yi0 | > δ .

We then calculate

ϕ(l) > E
∥∥∥∥∥∑

i∈I

riB(xi)
∥∥∥∥∥

Z
as ‖B‖ 6 1,

= E
∥∥∥∥∥∑

j

∣∣∣∣∣∑
i∈I

ri f ∗j
(
B(xi)

)∣∣∣∣∣ f j

∥∥∥∥∥
Z

as ( f j) is 1-unconditional,

>
∥∥∥∥∥∑

j

E
∣∣∣∣∣∑

i∈I

ri f ∗j
(
B(xi)

)∣∣∣∣∣ f j

∥∥∥∥∥
Z

by Jensen’s inequality,

> δ

∥∥∥∥∥∑
j∈J

f j

∥∥∥∥∥
Z

using (18) and the 1-unconditionality of ( f j) ,

> δλZ(|J|) .

Since the lower fundamental function λZ is clearly increasing, it follows from
assumption (17) that |J| 6 εl. 2

We now state and prove a very different condition that also implies assump-
tion (b) in Proposition 2. Here we use the notation and framework established
on page 7.

Lemma 4. Let 1 6 s, t < ∞ and suppose the following holds.

(a) There is a constant c1 > 0 so that (e∗m,i)
dim(Em)
i=1 is c1-dominated by the unit

vector basis of `s for each m ∈ N. That is,∥∥∥∥∥∥∥
dim(Em)∑

i=1

aie∗m,i

∥∥∥∥∥∥∥ 6 c1

dim(Em)∑
i=1

|ai|
s


1/s

for all scalars (ai)
dim(Em)
i=1 ,
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(b) There is a constant c2 > 0 so that for all m, n ∈ N with m < n and all
A ⊂ {1, 2, . . . , ln} with |A| 6 lm, the sequence (x∗n, j) j∈A is c2-weak `s. That is,(∑

j∈A

|x∗n, j(x)|s
)1/s

6 c2‖x‖ for all x ∈ En .

(c) There is a constant c3 > 0 so that if zn ∈ S En for all n ∈ N then (zn)∞n=1
c3-dominates the unit vector basis for `t. In other words,(∑

n∈N
‖PX

n x‖t
)1/t

6 c3‖x‖ for all x ∈ X .

(d) limm→∞
(

dim(Em)
)max(1,t/s)l−1

m = 0.

Then for all δ, ε > 0 there exists m ∈ N so that for all N ∈ [{n ∈ N : n > m + 1}]ω

and for all B ∈ L(Em, XN) with ‖B‖ 6 1, the set

J =
{
(n, j) : n ∈ N, 1 6 j 6 ln, |x∗n, j(Bxm,i)| > δ for some 1 6 i 6 lm

}
has |J| 6 εlm.

Proof. Let 0 < δ, ε < 1, m ∈ N, N ∈ [{n ∈ N : n > m + 1}]ω and B ∈ L(Em, XN)
with ‖B‖ 6 1. Let H ⊂ J be such that |H| 6 lm. Note that if we prove that
|H| < εlm then we have that |J| < εlm. For each n ∈ N denote Hn =

{
j ∈

{1, 2, . . . , ln} : (n, j) ∈ H}. We have that

δs|Hn| 6
∑
j∈Hn

‖B∗x∗n, j‖
s

=
∑
j∈Hn

∥∥∥∥ dim(Em)∑
i=1

(
B∗x∗n, j(em,i)

)
e∗m,i

∥∥∥∥s

6 cs
1

∑
j∈Hn

dim(Em)∑
i=1

|B∗x∗n, j(em,i)|s by (a),

= cs
1

dim(Em)∑
i=1

∑
j∈Hn

|x∗n, j(P
X
n Bem,i)|s

6 cs
1cs

2

dim(Em)∑
i=1

‖PX
n Bem,i‖

s by (b).

For the case that t 6 s, we may use the fact that ‖PX
n Bem,i‖ 6 1 to obtain

δs|Hn| 6 cs
1cs

2

dim(Em)∑
i=1

‖PX
n Bem,i‖

s 6 cs
1cs

2

dim(Em)∑
i=1

‖PX
n Bem,i‖

t . (19)
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For the case that s < t, Hölders inequality gives that

δs|Hn| 6 cs
1cs

2

dim(Em)∑
i=1

‖PX
n Bem,i‖

s 6 cs
1cs

2
(

dim(Em)
) t−s

t

dim(Em)∑
i=1

‖PnBem,i‖
t


s/t

.

By raising the above inequality to the power t/s, we have for s < t that

δt |Hn| 6 δt |Hn|
t/s 6 ct

1ct
2
(

dim(Em)
) t−s

s

dim(Em)∑
i=1

‖PX
n Bem,i‖

t . (20)

We now finish the proof for the case that t 6 s, and we will consider the
remaining case later. Summing (19) over n ∈ N gives that

|H| =
∑
n∈N

|Hn|

6 δ−scs
1cs

2

dim(Em)∑
i=1

∑
n∈N

‖PX
n Bem,i‖

t
En

6 δ−scs
1cs

2

dim(Em)∑
i=1

ct
3‖Bem,i‖

t by (c),

6 δ−scs
1cs

2ct
3 dim(Em) .

As t 6 s we have by (d) that limm→∞ dim(Em)l−1
m = 0. Hence, if m ∈ N is large

enough then |H| < εlm, and thus |J| < εlm as well.
We now consider the remaining case that s < t. By (20) we have that

|H| =
∑
n∈N

|Hn|

6 δ−tct
1ct

2
(

dim(Em)
) t−s

s

dim(Em)∑
i=1

∑
n∈N

‖PX
n Bem,i‖

t
En

= δ−tct
1ct

2ct
3
(

dim(Em)
) t−s

s

dim(Em)∑
i=1

‖Bem,i‖
t by (c),

6 δ−tct
1ct

2ct
3
(

dim(Em)
) t−s

s dim(Em)

= δ−tct
1ct

2ct
3
(

dim(Em)
) t

s .

As s < t we have by (d) that limm→∞
(

dim(Em)
) t

s l−1
m = 0. Hence, if m ∈ N is

large enough then |H| < εlm, and thus |J| < εlm. 2
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3. Applications I

In this section we apply the general process developed in Section 2 together
with Lemma 3 to establish a class of pairs (X,Y) of Banach spaces for which
L(X,Y) contains 2c distinct closed ideals. We will then give a list of examples
including classical `p-spaces and p-convexified Tsirelson spaces.

Theorem 5. Let 1 < p 6 r < 2 and 1 < r < q < ∞. Let X be an unconditional
sum of a sequence (En) of finite-dimensional Banach spaces satisfying a lower
`r-estimate, and assume that the En contain uniformly complemented, uniformly
isomorphic copies of `m

p . Let Y be an unconditional sum of a sequence (Fn) of
finite-dimensional Banach spaces satisfying an upper `q-estimate. Then L(X,Y)
contains 2c distinct closed ideals.

Let us first recall some of the terminology used here. To say that X is
an unconditional sum of a sequence (En) of finite-dimensional Banach spaces
means that X consists of all sequences (xn) with xn ∈ En for all n ∈ N, and there
is an unconditional basis (un) of some Banach space such that the norm of an
element (xn) of X is given by∥∥∥(xn)

∥∥∥ =
∥∥∥∥∑

n

‖xn‖un

∥∥∥∥ .
If the (un) is a C-unconditional basis, then we say that X is a C-unconditional
sum of (En). In this case (En) is a UFDD for X, but the converse is not true in
general.

We say that X satisfies a lower `r-estimate if (un) dominates the unit vector
basis of `r, i.e., if for some c > 0 and for all (xn) ∈ X, the estimate∥∥∥∥∑

n

xn

∥∥∥∥ > c
(∑

n

‖xn‖
r
)1/r

holds. In this case we say that X satisfies a lower `r-estimate with constant c. An
upper `r-estimate is defined analogously in the obvious way. To say that the En

contain uniformly complemented, uniformly isomorphic copies of `m
p means that

for some C > 0 and for all m ∈ N there exist n ∈ N and a projection Pn : En → En

with ‖Pn‖ 6 C whose image is C-isomorphic to `m
p .

The special case of X = `p and Y = `q was treated in [27] where the existence
of a continuum of distinct closed ideals was established. Here we shall make
use of finite-dimensional versions of Rosenthal’s Xp,w spaces which were also
the main ingredient in [27]. We begin by recalling the definition and relevant
properties.
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Given 2 < p < ∞, 0 < w 6 1 and n ∈ N, we denote by E(n)
p,w the Banach

space
(
Rn, ‖·‖p,w

)
, where∥∥∥(a j)n

j=1

∥∥∥
p,w =

( n∑
j=1

|a j|
p
) 1

p

∨ w
( n∑

j=1

|a j|
2
) 1

2

.

We write
{
e(n)

j : 1 6 j 6 n
}

for the unit vector basis of E(n)
p,w, and we denote

by
{
e(n)∗

j : 1 6 j 6 n
}

the unit vector basis of the dual space
(
E(n)

p,w
)∗, which is

biorthogonal to the unit vector basis of E(n)
p,w.

Given 1 < p < 2, 0 < w 6 1 and n ∈ N, we fix once and for all a sequence
f (n)

j = f (n)
p,w, j, 1 6 j 6 n, of independent symmetric, 3-valued random variables

with ‖ f (n)
j ‖Lp = 1 and ‖ f (n)

j ‖L2 = 1
w for 1 6 j 6 n (these two equalities determine

the distribution of a 3-valued symmetric random variable). We then define F(n)
p,w

to be the subspace span
{
f (n)

j : 1 6 j 6 n
}

of Lp. It follows from the work of
Rosenthal [22] that there exists a constant Kp > 0 dependent only on p so that
for all scalars (a j)n

j=1 we have

1
Kp

∥∥∥∥∥ n∑
j=1

a je
(n)∗
j

∥∥∥∥∥ 6 ∥∥∥∥∥ n∑
j=1

a j f (n)
j

∥∥∥∥∥
Lp

6
∥∥∥∥∥ n∑

j=1

a je
(n)∗
j

∥∥∥∥∥ , (21)

where
{
e(n)∗

j : 1 6 j 6 n
}

is the unit vector basis of the dual space
(
E(n)

p′,w
)∗ as

defined above and p′ is the conjugate index of p. Since the random variables f (n)
j

are 3-valued, F(n)
p,w is a subspace of the span of indicator functions of 3n pairwise

disjoint sets. Thus, we can and will think of F(n)
p,w as a subspace of `3n

p . The
following result follows directly from Rosenthal’s work [22].

Proposition 6. [27, Proposition 1] Let 1 < p < 2, 0 < w 6 1 and n ∈ N.
Then

(i)
{
f (n)

j : 1 6 j 6 n
}

is a normalized, 1-unconditional basis of F(n)
p,w.

(ii) There exists a projection P(n)
p,w : `3n

p → `3n

p onto F(n)
p,w with

∥∥∥P(n)
p,w

∥∥∥ 6 Kp.

(iii) For each 1 6 k 6 n and for every A ⊂ {1, . . . , n} with |A| = k we have

1
Kp
·
(
k

1
p ∧ 1

w k
1
2

)
6

∥∥∥∥∥∑
j∈A

f (n)
j

∥∥∥∥∥ 6 k
1
p ∧ 1

w k
1
2 .

The lower estimate of the lower fundamental function in Lemma 7 below
follows easily from [27, Lemma 3] and its proof.
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Lemma 7. Given an increasing sequence (kn) in N and a decreasing sequence
(wn) in (0, 1], let 1 < p 6 r < 2 and let Z be a 1-unconditional sum of(
F(kn)

p,wn

)
satisfying a lower `r-estimate with constant 1. Then with respect to the

unconditional basis ( f (kn)
j : n ∈ N, 1 6 j 6 kn) of Z, for all m ∈ N we have

λZ(m) >
1

Kp

((m
2

)1/r
∧

( s−1∑
j=1

k j

w2
j

+
t

w2
s

)1/2)
where s = s(m) ∈ N is maximal so that

∑s−1
j=1 k j 6 m/2 and t = m/2−

∑s−1
j=1 k j. In

particular, if m 6 k1 then

λZ(m) >
1

2Kp

(
m1/r ∧

m1/2

w1

)
.

Let us denote by
(
e(n)

2, j
)n

j=1 the unit vector basis of `n
2. We will need the

following lemma from [27]. Recall that p′ is the conjugate index of p.

Lemma 8. [27, Lemma 5] Given 1 < p < 2 and p < q < ∞, let n ∈ N,
w ∈ (0, 1] and F = F(n)

p,w. Let y =
∑n

j=1 y j f (n)
j ∈ F with ‖y‖F 6 1, and let

ỹ =
∑n

j=1 y je
(n)
2, j ∈ `

n
2. If ‖y‖∞ = max j|y j| 6 σ 6 1 and w 6 σ

1
2−

1
p′ = σ

1
p−

1
2 , then

‖ỹ‖q
`n

2
6 Dσs · ‖y‖pF ,

where D only depends on p and q, and s = min
{ q

2 −
p
2 ,

q
2 −

q
p′
}
.

Proof (of Theorem 5). Choose η ∈ (0, 1) so that η < 1
r −

1
2 and for each

n ∈ N let wn = n−η. After passing to a complemented subspace of X using
Proposition 6, and after passing to an equivalent norm, we may assume that X
is a 1-unconditional sum of (En) satisfying a lower `r-estimate with constant 1,
where En = F(n)

p,wn for all n ∈ N. Also, using Dvoretzky’s theorem, after passing
to a subspace of Y with suitable renorming, we may assume that Y is a 1-
unconditional sum of (Fn) satisfying an upper `q-estimate with constant 1, where
Fn = `n

2 for all n ∈ N (cf. Remark following condition (3)).
We will now follow the scheme developed in Section 2. For each m ∈ N we

let lm = m, xm,i = f (m)
i ∈ Em and fm,i = e(m)

2,i ∈ Fm for 1 6 i 6 m, and define
Tm : Em → Fm by Tm(x) =

∑m
i=1 x∗m,i(x) fm,i, where x∗m,i are the biorthogonal

functionals to the 1-unconditional basis (xm,i)m
i=1 of Em. We are thus in the

situation described in Proposition 2. It remains to verify assumptions (a) and (b)
of the proposition as well as the general assumptions (4), (5) and (7).

Assumption (5) is clear. Next, it follows from Proposition 6(i) that supn‖Tn‖

is bounded by the cotype-2 constant of Lp. Since r < q, it follows from the upper
`q-estimate on Y and the lower `r-estimates of X that (4) holds.
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Using Proposition 6 again, we note that

ϕm(l) 6 l
1
p ∧ 1

wm
l

1
2

for all l 6 m in N, and condition (7) follows.
We next turn to condition (a) of Proposition 2. Fix ε > 0 and M ∈ [N]ω.

Choose δ ∈ (0, 1) so that
(
Dδs) r

p < εq, where D and s are given by Lemma 8
with q replaced by pq

r . Then choose N ∈ [M]ω so that wn 6 δ
1
p−

1
2 for all n ∈ N.

Now fix x ∈ BXN with supn∈N, 16 j6n|x
∗
n, j(x)| 6 δ. Writing x =

∑
n∈N

∑n
j=1 an, jxn, j,

we have |an, j| 6 δ for all n ∈ N and 1 6 j 6 n. It follows from Lemma 8 that n∑
j=1

|an, j|
2


pq
2r

6 Dδs
∥∥∥∥ n∑

j=1

an, jxx, j

∥∥∥∥p

En
,

and hence  n∑
j=1

|an, j|
2


q
2

6
(
Dδs) r

p

∥∥∥∥ n∑
j=1

an, jxx, j

∥∥∥∥r

En

for every n ∈ N. Summing over n ∈ N and using the lower `r-estimate of X and
the upper `q-estimate of Y , we obtain

‖TN(x)‖qY 6
(
Dδs) r

p ‖x‖rXN
< εq ,

which completes the proof of condition (a).
To verify condition (b) of Proposition 2, we fix δ, ε ∈ (0, 1) and M ∈ [N]ω.

We first choose m ∈ M so that mε > 1 and

2Kpmη+ 1
2

m̃
1
r

< δ where m̃ = bεmc .

We then choose N ∈ [M]ω so that n = min(N) satisfies m̃
1
r 6 m̃

1
2 /wn. We

now apply Lemma 3 with G = Em, l = m and Z = XN . First note that by
Proposition 6(iii), we have

ϕm(m) 6 m
1
p ∧

m
1
2

wm
= mη+ 1

2 .

On the other hand, it follows from Lemma 7 that

λXN (m̃) >
1

2Kp

(
m̃1/r ∧

m̃1/2

wn

)
=

m̃1/r

2Kp
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by the choice of N. Hence, ϕm(m)/λXN (bεmc) 6 2Kpmη+ 1
2

m̃
1
r

< δ by the choice of m.
An application of Lemma 3 shows that for any B ∈ L(Em, XN) with ‖B‖ 6 1 we
have∣∣∣∣{(n, j) : n ∈ N, 1 6 j 6 n, |x∗n, j(Bxm,i)| > δ for some 1 6 i 6 m

}∣∣∣∣ < εm .

This shows that (b) of Proposition 2 holds and the proof of the theorem is thus
complete. 2

Remark. It is not difficult to prove (cf. [27, Proposition 8]) that the 2c closed
ideals constructed in the proof of Theorem 5 are all contained in the ideal of
finitely strictly singular operators.

Corollary 9. Let 1 < p < q < ∞ and let p′ and q′ denote the conjugate indices
of p and q, respectively. Let X be one of the spaces `p, Tp or T ∗p′ . Let Y be one
of the spaces `q, Tq or T ∗q′ . Then L(X,Y) has exactly 2c closed ideals. It follows
that L(X ⊕ Y) also has exactly 2c closed ideals.

Proof. We recall the following properties of the p-convexified Tsirelson space
Tp which can be found in [4]. Its unit vector basis (tn) is normalized, 1-
unconditional, dominated by the unit vector basis of `p and dominates the unit
vector basis of `r whenever p < r < ∞. Moreover, given a sequence (In) of
consecutive intervals of positive integers with 1 ∈ I1, if we let En = span{ti :
i ∈ In} and pick any kn ∈ In for every n ∈ N, then Tp is isomorphic to the
unconditional sum of (En) with respect to the unconditional basis (tkn ). It follows
from Theorem 5 that L(X,Y) has exactly 2c closed ideals when 1 < p < 2, and
the same then holds by duality when 2 6 p < ∞.

It follows by standard basis techniques that every operator from Y to X is
compact. Hence non-trivial closed ideals of L(X,Y) correspond to non-trivial
closed ideals of L(X ⊕ Y) as follows. We think of operators on X ⊕ Y as 2 × 2
matrices in the obvious way. Given a non-trivial closed ideal J in L(X,Y), it is
easy to see that

J̃ =

{(
A B
C D

)
: A ∈ K(X), B ∈ L(Y, X), C ∈ J , D ∈ K(Y)

}
is a closed ideal of L(X ⊕ Y), and moreover, the map J 7→ J̃ is injective. It
follows that L(X ⊕ Y) also has 2c closed ideals, and this completes the proof of
the theorem. 2

As mentioned in the Introduction, the above result implies the recent result
of Johnson and Schechtman [12] thatL(Lp) contains 2c closed ideals for 1 < p ,
2 < ∞.

Corollary 10. Let 1 < p , 2 < ∞. The algebra L(Lp) of operators on Lp
contains exactly 2c closed ideals.
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4. Applications II

As in the previous section, we will apply the general process developed in
Section 2 to establish a class of pairs (X,Y) of Banach spaces for which L(X,Y)
contains 2c distinct closed ideals. However, we will be using Lemma 4 in this
section as opposed to Lemma 3.

Let 1 6 p < q 6 ∞. Suppose that
(
`n

2
)∞
n=1 is a UFDD for a Banach space

X with a lower `p-estimate and that
(
`n
∞

)∞
n=1 is a UFDD for a Banach space Y

with an upper `q-estimate. We will prove that L(X,Y) contains 2c distinct closed
ideals. As

(⊕∞

n=1 `
n
2
)
`p

is complemented in `p for all 1 < p < ∞, we obtain
that L(`p, c0) contains 2c distinct closed ideals for all 1 < p < ∞, which proves
that our general setup incorporates the results presented in [7]. By duality, we
obtain that L(`1, `p) and L(`p, `∞) each contain 2c distinct closed ideals. Hence,
the cardinality of the set of closed ideals is exactly 2c for each of L(`p ⊕ c0),
L(`p ⊕ `∞) and L(`1 ⊕ `p) for all 1 < p < ∞. Note that we also obtain that
the cardinality of the set of closed ideals in L

((⊕∞

n=1 `
n
2
)
`1
⊕ c0

)
is 2c, however

we are not able to conclude anything about L(`1 ⊕ c0) as the finite-dimensional
spaces `n

2 are not uniformly complemented in `1.
In the previous section, for each n ∈ N, the operator Tn : En → `n

2 was the
formal identity between two n-dimensional Banach spaces. Now, we will choose
sequences k1 < l1 < k2 < l2 < . . . and operators Tn : `kn

2 → `ln
∞. When considered

as a matrix, each Tn will be much taller than it is wide.
Let 1 6 p < ∞. The probabilistic proofs for the existence of RIP (Restricted

Isometry Property) matrices from compressed sensing [5] show that there exist
sequences k1 < l1 < k2 < l2 < . . . with limn→∞ kmax(1,p/2)

n l−1
n = 0 such that if unit

vectors (xn, j)
ln
j=1 are randomly chosen with uniform distribution in `kn

2 then with
high probability we have for all J ⊂ {1, 2, . . . , ln} with |J| 6 ln−1 that

1
2

∑
j∈J

|a j|
2 6

∥∥∥∥∑
j∈J

a jxn, j

∥∥∥∥2
6 2

∑
j∈J

|a j|
2 for all (a j) j∈J ⊂ R , (22)

∑
j∈J

|〈x, xn, j〉|
2 6 2‖x‖2 for all x ∈ `kn

2 . (23)

We now show how this construction satisfies the conditions of Proposition 2 and
Lemma 4.

Theorem 11. Let 1 6 p < q 6 ∞. Suppose that (`n
2)∞n=1 is a UFDD for X with a

lower `p-estimate and that (`n
∞)∞n=1 is a UFDD for Y with an upper `q-estimate.

Then L(X,Y) contains 2c distinct closed ideals.
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Proof. Choose k1 < l1 < k2 < l2 < . . . in N with limn→∞ kmax(1,p/2)
n l−1

n = 0
and unit vectors (xn, j)

ln
j=1 ⊂ `kn

2 for all n ∈ N to satisfy (22) and (23). Let

En = `kn
2 and Fn = `ln

∞ for all n ∈ N. As En is a Hilbert space, we may take
(x∗n, j)

ln
j=1 = (xn, j)

ln
j=1 ⊂ S E∗n . Suppose that C1,C2 > 0 are such that if (xn)∞n=1 ∈ X

then
(∑
‖xn‖

p)1/p 6 C1‖(xn)‖X and if (yn)∞n=1 ∈ Y then ‖(yn)‖Y 6 C2
(∑
‖yn‖

q)1/q.
For each n ∈ N we define the operator Tn : `kn

2 → `ln
∞ by x 7→ (〈x, xn, j〉)

ln
j=1.

We now show that the conditions of Proposition 2 are satisfied.
We have that (4) is satisfied as if (xn) ∈ X then∥∥∥T

(
(xn)

)∥∥∥
Y 6 C2

(∑
‖Tnxn‖

q
∞

)1/q

= C2

∑ sup
16 j6ln

|〈xn, xn, j〉|
q

1/q

6 C2

(∑
‖xn‖

q
)1/q

6 C2

(∑
‖xn‖

p
)1/p

6 C2C1‖(xn)‖X .

Thus, the map (xn) 7→ T
(
(xn)

)
is well-defined and bounded. Condition (5) is

trivially satisfied as (x∗m,i)
lm
i=1 = (xm,i)

lm
i=1 for all m ∈ N.

To prove (7), fix n ∈ N, and let l ∈ N be such that l > ln > kn. Given m ∈ N
with lm > l and A ⊂ {1, 2, . . . , lm} with |A| = l, set tn = dl/kne. Partition A into
(A j)

tn
j=1 such that |A j| 6 kn for all 1 6 j 6 tn. By (22) we have for all 1 6 j 6 tn

that ∥∥∥∥∑
i∈A j

σixm,i

∥∥∥∥2
6 2|A j| for all (σi)i∈A j ⊂ {±1} .

Thus, for all (σi)l
i=1 ⊂ {±1} we have that∥∥∥∥∑

i∈A

σixm,i

∥∥∥∥ 6 tn∑
j=1

∥∥∥∥∑
i∈A j

σixm,i

∥∥∥∥
6

tn∑
j=1

21/2|A j|
1/2

6 tn21/2k1/2
n

< (2l/kn)21/2k1/2
n < 4lk−1/2

n .

Thus, for

ϕm(l) = sup
{∥∥∥∥∑

i∈A

σixm,i

∥∥∥∥ : A ⊂ {1, 2, . . . , lm}, |A| 6 l, (σi)i∈A ⊂ {±1}
}
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we have that ϕm(l)
l < 4k−1/2

n . Hence, lim
l→∞

sup
m∈N, lm>l

ϕm(l)
l

= 0, and we have (7).

We next verify condition (a) of Proposition 2. Fix ε > 0. There exists δ > 0
such that if (a j) ∈ `p with ‖(a j)‖`p 6 C1 and |a j| 6 δ for all j ∈ N then
‖(a j)‖`q < C−1

2 ε. Let x = (xn) ∈ S X such that sup16 j6ln |〈xn, xn, j〉| 6 δ for all
n ∈ N. Thus, we have that( ∞∑

n=1

sup
16 j6ln

|〈xn, xn, j〉|
p
)1/p

6 (
∞∑

n=1

‖xn‖
p)1/p 6 C1 (24)

and ∥∥∥T
(
(xn)

)∥∥∥
Y 6 C2

(∑
‖Tnxn‖

q
∞

)1/q

= C2

(∑
sup

16 j6ln
|〈xn, xn, j〉|

q
)1/q

< ε by (24) and our assumption on δ.

Finally, it follows from (22) and (23) that the conditions of Lemma 4 are satisfied
for s = 2 and t = p. This in turn implies assumption (b) of Proposition 2, and
thus the proof is complete. 2

Remark. The earlier remark following the proof of Theorem 5 applies here, too.
The closed ideals constructed above are all contained in the ideal of finitely
strictly singular operators.

Theorem 11 gives the following immediate corollary.

Corollary 12. Let 1 < p < ∞. Then L(`p, c0), L(`1, `p), and L(`p, `∞) each
contain 2c distinct closed ideals.

Proof. We have by Theorem 11 that L
((⊕∞

n=1 `
n
2
)
`p
, c0

)
contains 2c distinct

closed ideals, and
(⊕∞

n=1 `
n
2
)
`p

is isomorphic to `p for 1 < p < ∞. By duality
we have that L(`1, `p) and L(`p, `∞) each contain 2c distinct closed ideals. 2

In the previous section we deduced from our results that the cardinality of
the lattice of closed ideals of L(Lp), 1 < p , 2 < ∞, is 2c. Note that the
Hardy space H1 and its predual VMO can be seen as the “well-behaved” limit
cases of the Lp-spaces. For example `2 is complemented in both spaces, and
H1 contains a complemented copy of `1 and VMO a complemented copy of c0
(cf. [19] and [20, page 125]). Thus, we deduce the following corollary.

Corollary 13. The cardinality of the lattice of closed ideals of L(VMO) and
L(H1) is 2c.
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5. Final remarks and open problems

If one only considers Banach spaces X with an unconditional basis or, more
generally, with an UFDD, then the cardinalities κ for which we know examples
of Banach spaces X with an UFDD for which the number of non-trivial proper
closed ideals of L(X) is κ, are only the following three:

κ = 1 For X = `p, 1 6 p < ∞, or X = c0, the closed ideal of compact operators
is the only non-trivial proper closed ideal [8].

κ = 2 For the spaces X =
(⊕

`n
2
)
c0

and its dual X∗ =
(⊕

`n
2
)
`1

, there are
exactly two non-trivial proper closed ideals, the compacts and the closure
of operators which factor through c0 or `1, respectively [14, 15].

κ = 2c L(X) has 2c closed ideals for the spaces listed in the previous two
sections. In addition to these spaces, it was recently observed by Johnson
[11] that also L(T ) and L(T (p)), where T is Tsirelson space and T (p) its
p-convexification for 1 < p < ∞, has 2c closed ideals. 1

This begs the following questions:

Problem 14. Are there Banach spaces X with an countable unconditional basis
or unconditional UFDD for which the cardinality of the non-trivial proper closed
ideals of L(X) is strictly between 2 and 2c? Can this cardinality be any natural
number, countable infinite or c?

An interesting space in the context of this question is c0 ⊕ `1. According to [28],
L(c0 ⊕ `1) contains an ω1-chain of closed ideals.

Problem 15. What is the cardinality of the lattice of the closed ideals of the space
of the operators on c0 ⊕ `1?

Another space of interest for Problem 14 is the Schreier space. In [2] it was
shown that the space of operators on this space has continuum many maximal
ideals.

Problem 16. What is the cardinality of the lattice of closed ideals of the space of
operators on Schreier spaces?

1Moreover, during Kevin Beanland’s talk at the Banach Space Webinar on 3 April 2020,
Johnson noted that the case p = 2 was already covered using method’s in [12].
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Among the class of general separable Banach spaces, there are more exam-
ples for which the lattice of closed ideals of their algebra of operators, or at least
its cardinality, is determined. Such a list can be found in [13].

Based on the construction by Argyros and Haydon [1] of a space on which
all operators are compact perturbations of multiples of the identity, Tarbard [29]
constructed for each n ∈ N a space Xn for which L(Xn) has exactly n non-trivial
proper closed ideals. There are also Banach spaces X for which the cardinality
of the lattice of closed ideals of L(X) is exactly c. Indeed, suppose that A is
a separable Banach algebra isomorphic to the Calkin algebra L(X)/K(X) for a
Banach space X which has the approximation property (to ensure K(X) is the
smallest non-trivial closed ideal). Then, as observed in [13], the closed ideals of
L(X) arise from preimages of closed ideals in A. Examples of separable Banach
spaces X for which L(X)/K(X) has exactly continuum many closed ideals were
constructed, for instance, in [9, 17, 18, 30]. An example of a space X for which
the number of closed ideals is infinite but countable seems to be missing.

Problem 17. Are there Banach spaces X for which L(X) has countably infinitely
many closed ideals?

A candidate of such a space is C[0, α], where α is a large enough countable
ordinal. But already for α = ωω (the first ordinal α for which C[0, α] is not
isomorphic to c0) the answer of the following question is not known.

Problem 18. For a countable ordinal α, what are closed ideals of L
(
C[0, α]

)
?

What is the cardinality of the lattice of these ideals?

Another space of interest is L1[0, 1]. It was shown by Johnson, Pisier and
Schechtman [10] that L(L1[0, 1]) has at least c closed ideals.

Problem 19. How many closed ideals does L(L1[0, 1]) have?

As alluded by our terminology, the closed ideals of L(X,Y) for Banach spaces
X and Y form a lattice with respect to inclusion and with lattice operations given
by I ∧ J = I ∩ J and I ∨ J = I +J for closed ideals I and J . In the
problems above, we have only asked about the cardinality of this lattice. As a
future ambitious target, one could study the lattice structure.

After the submission of this paper additional examples of spaces X were
discovered, for which L(X) has 2c closed ideals:

• Antonis Manoussakis and Anna Pelczar [16] showed that if X is a Schreier
space of finite order or X is the arbitrarily distorted space constructed by
the third named author [24] then L(X) 2c closed ideals. Thus Problem 16
is only open for Schreier spaces of infinite order.

• The third named author, recently proved [26] that modified Schreier fami-
lies of any order coincide with the usual Schreier families. It follows from
this that the arguments of [12] extend to all higher order Tsirelson spaces
and their convexifications.
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