
Bioinspiration & Biomimetics

PAPER

Passive concentration dynamics incorporated into
the library IB2d, a two-dimensional implementation
of the immersed boundary method
To cite this article: Matea Santiago et al 2022 Bioinspir. Biomim. 17 036003

 

View the article online for updates and enhancements.

You may also like
Modal decompositions of the kinematics of
Crevalle jack and the fluid–caudal fin
interaction
Muhammad Saif Ullah Khalid, Junshi
Wang, Imran Akhtar et al.

-

Bioinspired design and optimization for
thin film wearable and building cooling
systems
Jonathan Grinham, Matthew J Hancock,
Kitty Kumar et al.

-

School formation characteristics and
stimuli based modeling of tetra fish
S R Rahman, I Sajjad, M M Mansoor et al.

-

This content was downloaded from IP address 69.242.232.75 on 17/04/2022 at 20:46

https://doi.org/10.1088/1748-3190/ac4afa
/article/10.1088/1748-3190/abc294
/article/10.1088/1748-3190/abc294
/article/10.1088/1748-3190/abc294
/article/10.1088/1748-3190/ac2f55
/article/10.1088/1748-3190/ac2f55
/article/10.1088/1748-3190/ac2f55
/article/10.1088/1748-3190/aba2f6
/article/10.1088/1748-3190/aba2f6
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstrAol8vrlxTdmBnge4NjUoX2fuhLRnVeXHXipp7jeICxbHGGgDy1E3iuyC0GkysG2hiXfSlYzPRS2a-z0ML6TSJqv4XYNysegXA_zyx2T1OSwwQvNVLLDvA2ZLWWYt7RLRb8VdXQ-22gLoqGrJq7t4Kid7_euKcB9pWXQq2MWCn_c8iwXTbM5u5BEdOB11kuPOqMkNlTobu1XqRKbYYBxIBTZt-4baHqpiiNwByzKCsuAG4p4uJdHiP-n348Pj8dDRK3Up82wda6yKarI4yPQ_2ZCIwporJ-Q&sig=Cg0ArKJSzGkXgFDDjwfP&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Bioinspir. Biomim. 17 (2022) 036003 https://doi.org/10.1088/1748-3190/ac4afa

RECEIVED

23 July 2021

REVISED

2 December 2021

ACCEPTED FOR PUBLICATION

13 January 2022

PUBLISHED

10 March 2022

PAPER

Passive concentration dynamics incorporated into the library
IB2d, a two-dimensional implementation of the immersed
boundary method

Matea Santiago1 , Nicholas A Battista2,4 , Laura A Miller1 and Shilpa Khatri3,∗

1 Department of Mathematics, University of Arizona, PO Box 210089, Tucson, AZ 85721, United States of America
2 Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Rd., Ewing, NJ 08628, United States of America
3 Department of Applied Mathematics, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, United States of

America
∗ Author to whom any correspondence should be addressed.
4 http://battistn.pages.tcnj.edu.

E-mail: malvarado27@ucmerced.edu, battistn@tcnj.edu, lauram9@math.arizona.edu and
skhatri3@ucmerced.edu

Keywords: advection–diffusion, immersed boundary method, fluid-structure interaction, mathematical biology, biomechanics, biofluids

Supplementary material for this article is available online

Abstract
In this paper, we present an open-source software library that can be used to numerically simulate
the advection and diffusion of a chemical concentration or heat density in a viscous fluid where a
moving, elastic boundary drives the fluid and acts as a source or sink. The fully-coupled
fluid-structure interaction problem of an elastic boundary in a viscous fluid is solved using Peskin’s
immersed boundary method. The addition or removal of the concentration or heat density from
the boundary is solved using an immersed boundary-like approach in which the concentration is
spread from the immersed boundary to the fluid using a regularized delta function. The
concentration or density over time is then described by the advection-diffusion equation and
numerically solved. This functionality has been added to our software library, IB2d, which
provides an easy-to-use immersed boundary method in two dimensions with full implementations
in MATLAB and Python. We provide four examples that illustrate the usefulness of the method. A
simple rubber band that resists stretching and absorbs and releases a chemical concentration is
simulated as a first example. Complete convergence results are presented for this benchmark case.
Three more biological examples are presented: (1) an oscillating row of cylinders, representative of
an idealized appendage used for filter-feeding or sniffing, (2) an oscillating plate in a background
flow is considered to study the case of heat dissipation in a vibrating leaf, and (3) a simplified
model of a pulsing soft coral where carbon dioxide is taken up and oxygen is released as a
byproduct from the moving tentacles. This method is applicable to a broad range of problems in
the life sciences, including chemical sensing by antennae, heat dissipation in plants and other
structures, the advection-diffusion of morphogens during development, filter-feeding by marine
organisms, and the release of waste products from organisms in flows.

1. Introduction

The interactions between fluid flow and chemical
concentrations or heat densities play a significant role
in many biological, chemical, and engineering sys-
tems. The flow relative to an organism can be due
to interactions between a moving organism and the
fluid, environmental flows moving past a tethered

organism, or both [1]. These flows can bring nutri-
ents or chemical cues to the organism or remove
waste, and facilitate feeding processes [2–4], repro-
duction [5, 6], respiration [7], photosynthesis [8, 9],
the dissipation of heat [10], and signaling [11]. In
silico models of these processes have brought insight
and knowledge into the field beyond what is possible
via field and experimental work [12–15]. Although
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a broad body of computational work has been done
to study fluid-structure interactions [9, 16–20], work
that couples flow with concentration dynamics in
these contexts is much more limited. Recently, the
authors have developed a numerical method to cou-
ple concentration dynamics with a moving struc-
ture that drives the movement of fluid and acts
as a source for the chemical concentration [21].
This method was inspired by a numerical method
developed by Lai et al. [22] to simulate interfacial
flows with insoluble surfactants. Here, we incorpo-
rate this novel methodology for chemical or ther-
mal dynamics into the open-source code IB2d, a
two-dimensional MATLAB and Python package that
implements the immersed boundary (IB) method
for solving fully-coupled fluid-structure interaction
(FSI) problems.

The IB method, developed by Peskin [23–25], has
been used extensively to study FSI problems [26, 27].
While improved upon numerous times [26, 28–34],
it is still a leading numerical framework for study-
ing problems in FSI due to its robustness, simplic-
ity, and flexibility in modeling complex deformable
structures, such as biological tissues [35, 36]. The IB
method is well suited for applications with Reynolds
numbers up to around O(102) [37]. Part of the ele-
gance of the IB method is its ability to solve fully-
coupled FSI problems involving complicated time-
dependent geometries, all while using a fixed Carte-
sian mesh to describe the fluid flow. The immersed
structure is composed of elastic fibers that gov-
ern the material properties of the structures. The
immersed boundaries are then discretized on a curvi-
linear Lagrangian mesh. The IB moves at the local
fluid velocity, enforcing the no-slip condition, and the
IB applies a body force to the fluid. This coupling is
handled using regularized delta functions [25]. There
are many ways to model the material properties of the
immersed structure, such as the use of virtual springs,
beams, and target points, which allow for the desired
characteristics under stretching or compression and
bending [33, 35, 38], the effects of porosity [35, 39, 40]
and poroelasticity [36], the action of muscles [37],
and forces due to coagulation and aggregation
[41, 42]. One should note that the limitations of the
IB method are present in this work. Depending on the
application, simulations can have non-physical pres-
sure oscillations and non-conservation of mass. The
user can refine the mesh to mitigate these issues.

TheIB2d project has provided the scientific com-
munity an open-source software package that con-
tains the aforementioned material property infras-
tructure options, along with over 80 built-in examples
illustrating their usage [35–37]. It is written with two
complete high-level programming implementations,
MATLAB [43] and Python [44]. Both languages were
chosen for familiarity and accessibility to students,
scientists, and engineers. Beyond its infrastructure for
research [45–51], a significant effort has been made

to develop educational materials for its use as a teach-
ing tool. Modules have already been designed to teach
concepts in foundational physics (like damped pen-
dulums [52]), numerical analysis (e.g. convergence
tests [53], interpolation [54]), and the biomechanics
of locomotion (e.g. idealized anguilliform swim-
ming [54]). Furthermore, a complementary semi-
automated meshing tool was created to ease the
burden of manually discretizing complex geometries
that describe the immersed structures [55].

In addition to fluid-structure interactions, there
are many challenging problems in the life and phys-
ical sciences that require understanding chemical and
thermal dynamics. Examples at a large scale include
the modeling of pollutants in urban areas [56], chem-
icals in marine ecology [57, 58], and contaminants
in hydrogeological systems [59]. In biofluids, studies
of concentration dynamics can improve our under-
standing of the role of fluid dynamics in nutrient
transport [60], feeding [2], and chemosensing [61].
For example, numerical simulations have been used
to understand mass transport in coral colonies [14]
and odor capture of terrestrial and marine crabs [62].
The advection–diffusion equations have been used
to model heat transfer in biological tissues [63] and
chemotaxis in bacteria [64]. A variety of numer-
ical methods have been developed to study these
advection–diffusion problems, including finite dif-
ference methods [65], finite element methods [66],
and meshless methods [67, 68]. Additionally, there
has been work done to couple diffusion through a
permeable interface in an IB framework using a flux
condition [69].

Coupling the advection and diffusion of a concen-
tration or density with the movement of an elastic
structure in a fluid that acts as a source or sink is an
even more challenging problem. This is due to the
fact that one must solve a system of nonlinear par-
tial differential equations with a moving and deform-
ing elastic boundary. The methodology outlined here
was specifically developed to study the photosynthe-
sis of symbiotic algae living in the tentacles of pulsing
soft corals. These algae provide the corals with most
of their energy, and the pulsing behavior of the coral
is believed to remove oxygen and increase the uptake
of carbon dioxide. These active dynamics are thought
to enhance the rate of photosynthesis up to an order
of magnitude [21, 70]. Photosynthesis in soft corals is
an oxygen-limited process, and this method was ini-
tially applied to a problem that considers the advec-
tion and diffusion of oxygen with an IB acting as a
source. In this method, a regularized delta function,
similar to that used in the IB method [25], is used to
spread the concentration from the IB source to the
fluid. This paper extends this methodology to other
application problems and shows how it can be used
more generally. Such functionality has not yet been
included in other IB software libraries and has not
been commonly used.
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Beyond the examples presented here, there are
many other application problems where the numer-
ical simulation of a FSI coupled to a chemical con-
centration or heat density, where the boundary is a
source or sink, can provide insights into biological
processes. Examples in the biological sciences include
filter-feeding, sniffing or chemical sampling for nutri-
ent access, predator awareness, and reproduction
[62, 71–74], chemotaxis of bacteria [75, 76], pho-
tosynthesis in plants [77], and heat dissipation [78].
In the medical sciences, these tools can be used to
study cellular dynamics that are often regulated by
chemical concentrations near the boundary [79] or
for understanding surfactants and the role they play
in lung development [80]. These are just a few exam-
ples of how ubiquitous such processes are in the nat-
ural world around us. Clearly, the availability of an
open-source software package that can model the
advection and diffusion of a chemical or heat from a
moving boundary would find immediate application
to various research problems. Moreover, the creators
of IB2d have prioritized ease of usage for researchers
and students.

2. Mathematical model

This section introduces the two-dimensional IB
method coupled with the modeling of a chemical or
heat advecting with the flow and diffusing at a given
rate that can be adsorbed or desorbed by the elastic IB.
Note that the exact method outlined below is the ver-
sion implemented in the IB2d software. All domain
boundary conditions are set to be periodic in this soft-
ware. For a full review of the IB method, see Peskin
[25]. For more details of the IB implementation in
IB2d, see [35, 36]. For a treatise of the novel method-
ology implemented here for the concentration or heat
density, see [21]. Note here that we assume that the
IB is neutrally buoyant unless otherwise stated. Addi-
tionally, the chemical concentration or heat density is
also assumed to be neutrally buoyant.

2.1. Governing equations for the immersed
boundary and fluid flow
The two-dimensional incompressible Navier–Stokes
equations that describe the conservation of momen-
tum and mass of a viscous fluid are solved for the fluid
velocity, u(x, t) and the pressure, p(x, t),

ρ

[
∂u

∂t
(x, t) + (u(x, t) · ∇)u(x, t)

]

= −∇p(x, t) + μΔu(x, t) + f(x, t), (1)

∇ · u(x, t) = 0, (2)

where f(x, t) is the force per unit area applied to the
fluid by the IB, and ρ and μ are the fluid density
and dynamic viscosity, respectively. The independent

variables are the time t and the position x. The vari-
ables u, p, and f are all defined in an Eulerian frame of
reference on the fixed Cartesian mesh, x.

The interaction equations, which handle the cou-
pling between the Eulerian fluid grid and the curvi-
linear mesh describing the IB in a Lagrangian frame
of reference, are given by the following two integral
equations,

f(x, t) =

∫
F(s, t)δ (x − X(s, t)) ds,

(3)

∂X

∂t
(s, t) = U(s, t) =

∫
u(x, t)δ (x − X(s, t)) dx,

(4)

where F(s, t) is the force per unit length applied by
the boundary to the fluid as a function of the mate-
rial point labeled by the Lagrangian parameter, s, and
time, t, X(s, t) is the Cartesian coordinates at time t
of the material point labeled by s, and U(s, t) is the
velocity of the boundary as a function of t and s. Each
integral transformation uses the two-dimensional
Dirac delta function kernel, δ (x − X(s, t)), to trans-
form between Lagrangian variables and Eulerian vari-
ables. Equation (3) applies the force density from the
IB to the fluid through the external forcing term in
equation (1), f(x, t). Equation (4) moves the IB at
the local fluid velocity, u(x, t). This enforces a no-
slip boundary condition. The manner in which the
force density along the IB, F(s, t), is computed in the
integrand of equation (3), is specific to the applica-
tion and can include elastic forces along the boundary,
penalty forces to prescribe the motion of the bound-
ary, damping forces, and many more. Details of these
forces and their derivations are given in [35, 36, 38].
The specific form that F(s, t) takes is described below
in the corresponding section for that example.

2.2. Governing equations for the chemical or
thermal dynamics
The advection–diffusion equation coupled with the
immersed-boundary equations, equations (1)–(4), is
used to model the chemical concentration or heat
density,

∂c

∂t
(x, t) + u(x, t) · ∇c(x, t)

= DΔc(x, t) +

∫
G(s, t)δ (x − X(s, t)) ds,

(5)

where c(x, t) is the concentration or density in the
Eulerian frame of reference and D is the diffusion
coefficient of the concentration or the thermal con-
ductivity in the fluid. The concentration or density,
c(x, t), is solved for with periodic boundary condi-
tions in the domain. The elastic boundary can either
adsorb or desorb the chemical or heat, and this is

3
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modeled in an immersed-boundary fashion via the
last term in equation (5). The Dirac delta func-
tion, δ (x − X(s, t)), is once again used to couple
this adsorption or desorption model, G(s, t), defined
in the Lagrangian frame of reference with the con-
centration or density solved on the Eulerian grid.
This approach is based on the modeling by Chen and
Lai for surfactants [81] and further developed by the
authors for studying the photosynthesis of symbiotic
algae on pulsing corals [21]. This model, equation (5),
can also be used with other methods, including sharp
interface methods.

The IB2d software allows for multiple concentra-
tions and densities to be coupled with the IB simulta-
neously, each modeled using equation (5). Each con-
centration or density has its own corresponding diffu-
sion coefficient and adsorption or desorption model.
However, in the formulation given here, we present
only one concentration or density for the sake of
simplicity.

Additionally, the IB2d software allows for a user-
defined function to be inputted for the model of
adsorption or desorption of the chemical or heat by
the elastic boundary, G(s, t). The framework allows
for this user-defined function to use the concentration
or density interpolated to the boundary,

C(s, t) =

∫
c(x, t)δ(x − X(s, t))dx. (6)

Here, we present two models for the adsorption
or desorption of the chemical or heat by the elastic
boundary. In the first model, the boundary adsorbs
or desorbs a constant amount that is not dependent
on how much chemical or heat is already present,

G(s, t) = α, (7)

where α can be positive or negative and is the amount
of chemical or heat adsorbed or desorbed, respec-
tively, per length of the boundary per unit of time. The
second model is limiting, a more realistic model for
most situations where the amount adsorbed or des-
orbed is dependent on how much chemical or heat is
present locally,

G(s, t) = βC(s, t), (8)

G(s, t) = β(C∞ − C(s, t)). (9)

In the examples below, equation (8) is the model for
adsorption and equation (9) is for desorption, except
for the coral example given in section 4.3, where fur-
ther details about the models are provided. Here, β
is a negative parameter in equation (8) and a posi-
tive parameter in equation (9) and may be consid-
ered as a velocity that multiplies the concentration or
density in the Lagrangian frame of reference in two
dimensions.

2.3. Nondimensional parameters
The governing equations presented in this section
have been given in dimensional form, and the imple-
mentation in IB2d is also dimensional. It is use-
ful when conducting simulations to consider the
nondimensional parameters governing this system.
Two nondimensional parameters are sufficient to
describe this system with an additional parameter in
the adsorption or desorption model (the nondimen-
sional number corresponding to α or β). We will be
using the Reynolds number, the ratio of inertial forces
to viscous forces for the fluid flow, which is derived
from the nondimensionalization of equations (1) and
(2), and the Péclet number, the ratio of advective to
diffusive forces, which is derived from the nondimen-
sionalization of equation (5). One could also consider
the Schmidt number instead, the ratio of the kine-
matic viscosity to the mass diffusivity. We choose to
focus on the Péclet number, as in the examples pre-
sented in section 3, we will keep the Reynolds number
fixed.

3. Numerical methods

3.1. Numerical methods for the governing
equations
Equations (1)–(4) are numerically solved for the
velocity and pressure of the fluid, the position of the
boundary, and the force of the boundary acting on the
fluid. We solve at time tn+1 using data from time tn

using the following steps [25]:

(a) Compute the force density, Fn
k on the discretized

IB Lagrangian mesh, using the current bound-
ary configuration, Xn

k . This is dependent on the
application, and details are provided below for
the examples included here.

(b) Use equation (3) to spread this boundary force,
Fn

k , from the Lagrangian boundary mesh to the
Eulerian fluid grid, xij, solving for fn

ij.

(c) Solve the Navier–Stokes equations, equations (1)
and (2), on the Eulerian grid using the fast
Fourier transform. We are solving for un+1

ij and

pn+1
ij using un

ij, pn
ij, and fn

ij.

(d) Update the material positions, Xn+1
k = Xn

k +
ΔtUn

k , using the local fluid velocities, Un+1
k , inter-

polated from un+1
ij using equation (4).

A regularized and discretized delta function is
used as the kernel in the interaction equations,
equations (3) and (4). This makes the IB method
relatively easy to implement and flexible since one
does not have to consider if and how the Lagrangian
boundary points coincide with the Eulerian fluid grid
points. We use the regularized delta function given in
[25],

δh(x) =
1

h2
φ
( x

h

)
φ
( y

h

)
, (10)
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where x = (x, y) and φ(r) is defined as,

φ(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

8
(3 − 2|r|+

√
1 + 4|r| − 4r2), 0 � |r| < 1

1

8
(5 − 2|r|+

√
−7 + 12|r| − 4r2), 1 � |r| < 2

0 2 � |r|.
(11)

Details of the discretization and the implementation
of IB2d are given in the appendices of Battista et al
2015 [37] and Battista et al 2017 [35]. Further details
of these steps of the IB can also be found in [25].

In these prior works, equation (3) was discretized
for an open boundary in space at time tn using the
composite trapezoidal rule,∫

F(s, tn)δ (x − X(s, tn)) ds ≈ 1

2
Fn

1δh(xij − Xn
1)Δs1

+
1

2

N−1∑
k=2

Fn
kδh(xij − Xn

k )(Δsk−1 +Δsk)

+
1

2
Fn

Nδh(xij − Xn
N )ΔsN−1, (12)

where N is the number of points on the Lagrangian
boundary mesh. In this formulation, Δsk = ‖Xk+1 −
Xk‖2 is a fixed Lagrangian spacing of the Lagrangian
boundary at rest provided by the user. This is a good
approximation when the boundary undergoes min-
imal stretching or compression. This discretization
is modified appropriately in the case of a periodic
boundary.

We have now modified the discretization of
equation (3) in step 2 above to be more accurate when
the boundary undergoes considerable stretching and
compression and more consistent with the discretiza-
tion of the integral in equation (5), described below,

∫
F(s, tn)δ (x − X(s, tn)) ds ≈ 1

2
Fn

1δh(xij − Xn
1)Δs̃n

1

+
1

2

N−1∑
k=2

Fn
kδh(xij − Xn

k )(Δs̃n
k−1 +Δs̃n

k )

+
1

2
Fn

Nδh(xij − Xn
N)Δs̃n

N−1, (13)

where Δs̃n
k = ‖Xn

k+1 − Xn
k‖2 is the mesh width for

the Lagrangian boundary, updated in time. A conver-
gence study was performed for varying grid resolu-
tions with this discretization. This data is provided in
appendix A for the rubber band example presented in
section 3.3.

The focus of this work is the inclusion of the con-
centration and thermal dynamics in theIB2d library.
Equation (5) is discretized using a forward Euler
method in time. The velocity at time tn, solved for
using equations (1)–(4), is used to advance the chem-
ical concentration or heat density on the same Eule-
rian grid as the fluid velocity and pressure, xij. The dif-
fusion term, DΔc(x, t), is discretized using standard

centered differences. For the spatial discretization of
the advection term, un(x, t) · ∇c(x, t), two options
are provided for the user, either a first-order upwind
method or a third-order weighted essentially non-
oscillatory (WENO) scheme [82]. The option of the
WENO scheme is provided to allow for more accu-
racy for the advection term in advection-dominated
simulations.

For the last term that handles the adsorption and
desorption of the chemical or heat, a similar method
as given in equation (13) is used. At time tn, for an
open boundary this term is discretized as,∫

G(s, tn)δ (x − X(s, tn)) ds ≈ 1

2
Gn

1δh(xij − Xn
1)Δs̃n

1

+
1

2

N−1∑
k=2

Gn
kδh(xij − Xn

k )(Δs̃n
k−1 +Δs̃n

k )

+
1

2
Gn

Nδh(xij − Xn
N)Δs̃n

N−1. (14)

For the integral over the fluid grid, equation (6), a
standard two-dimensional trapezoidal rule is used, as
was used for equation (4).

3.2. Workflow
In Battista et al. [35], details of the IB workflow are
provided for IB2d, along with additional capabil-
ities of its library. The authors give details of the
full structure of the library there. In this section, we
focus on the workflow and how to implement the
chemical or thermal dynamics in IB2d. IB2d can be
downloaded at www.github.com/nickabattista/IB2d.

The numerical methods for the chemical con-
centration or heat density are implemented in the
IBM_Blackbox folder, and as for the IB, the
user should not need to modify these methods
unless developing new numerical techniques. The
user should rather make modifications in the example
subdirectory they are working with, including adding
a new problem or example. Several files are modi-
fied and/or added to incorporate the concentration or
thermal dynamics.

The input2d file must be modified in the
example subdirectory. This file is responsible for set-
ting all parameters for the simulation. The necessary
parameters needed to include chemical or thermal
dynamics in the simulation are shown and described
in figure 1. Note here that the number of concen-
tration or densities being modeled is included and
the corresponding diffusion coefficients are given in
a vector. The number of elements of this vector must
match the number of concentrations or densities
being tracked.

Files including the initial conditions for the con-
centration or density must be included as well. Each
file should be called struct.concentration_X if the
immersed structure is called struct (i.e. there is already
a struct.vertex file in the example subdirectory) where
X is the concentration or density number. Each file

5
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Figure 1. Incorporation of chemical or thermal dynamics and the corresponding parameters in the input2d file in IB2d.

includes a matrix that is the initial concentration
values on the Eulerian grid. This matrix should be
Ny × Nx, where Nx and Ny are the number of points
on the Eulerian fluid grid in the x-direction and the
y-direction, respectively, defined in theinput2dfile.

Additionally, the user-defined adsorp-
tion or desorption model is given in the file
give_me_source_model.m in the example directory.
The inputs for the function are the array of concen-
trations or densities interpolated to the boundary
and a parameter indicating which concentration
or density is being updated. The output gives the
adsorption or desorption model, G(s, t).

Finally, due to the new discretization imple-
mented for equation (3) and the discretization
implemented for equations (5), (13) and (14), respec-
tively, a file including the connections between IB
points must be included. This file should be called
struct.geo_connect. This file includes a matrix, where
each row gives the material point labels of the points
on the Lagrangian mesh that are connected to one
another.

3.3. Rubber band example
First, we present the standard IB example of a rub-
ber band initially stretched relaxing to a circle, cou-
pled with concentration dynamics. This example will
serve to illustrate differences between different con-
centration dynamics functionality. Adjacent points
along the rubber band are tethered to each other by
springs. In this case, the force density applied by the
Lagrangian boundary mesh to the fluid grid is defined
as,

Fn
k = ks(Xn

k+1 − Xn
k ) − ks(Xn

k − Xn
k−1), (15)

where ks is the spring constant. The rubber band is
initialized as an ellipse with a major axis of length
0.8 m aligned with the y-axis and a minor axis of
length 0.4 m aligned with the x-axis centered in the
domain. The fluid is initialized at rest in a 1 × 1 m2

domain, and the flow develops from the motion of
the elastic boundary. The density of the fluid is set to
ρ = 1 kg m−3, and the viscosity of the fluid is set to
μ = 0.01 N s m−2.

Note that the fluid flow will stay the same across
all examples presented in this section, only the con-
centration dynamics are varied. The fluid flow itself
is not coupled to the concentration dynamics, i.e.

there is only a one-way coupling. The spatial Eule-
rian grid for the velocity, pressure, and concentra-
tion is 512 × 512. Below we will notate this as
Nx = Ny = 512 and refer to the spatial grid size as
h = 1/512. The number of discretized points on the
Lagrangian mesh is N = 1820. The spring constant,
dependent on the resolutions of the Eulerian grid and
Lagrangian mesh, is ks = 6.4 × 106 kg m s−2. The
time step is 3.125 × 10−5 s for most examples shown
below except when the CFL condition for the concen-
tration dynamics dictates otherwise, and such cases
are noted. The physical and numerical parameters
are provided in table 1. Snapshots of the resulting
fluid flow and vorticity up to final time t = 2 s are
presented in figure 2.

The Reynolds number in these examples is com-
puted as

Re∞ =
ρLU∞
μ

(16)

where the velocity scale, U∞ = 4.228 m s−1, is the
maximum velocity in space and time during the sim-
ulation, and the length scale, L =

√
(0.2)(0.4) m is

the radius of the equivalent circle. This maximum
velocity was computed using data from a simulation
saved every 0.01 s. This results in a Reynolds number
Re∞ ≈ 120.

We now present several cases with varying chem-
ical concentration models, solving equations (5)
and (6), coupled with the fluid flow from the IB
simulation presented in figure 2. In all cases pre-
sented, the elastic boundary is either adsorbing or
desorbing a chemical. One could also consider
these examples to be modeling some other quan-
tity of interest, such as heat. In these examples, the
advection term in equation (5) is handled by the
first-order upwind scheme. Each simulation is pre-
sented until a final time of t = 2 s. Note that this is
long enough that the effects of the periodic boundary
conditions on the domain can be observed in some
simulations.

The first model we present for the concentra-
tion dynamics is the constant model, equation (7),
in figure 3. In this example, the diffusion coeffi-
cient is set to D = 0.01 m2 s−1, and the amount
of chemical desorbed from the elastic boundary is
α = 0.1 kg (m−1 s−1). We observe that during the
simulation, the chemical is emitted from the bound-
ary and diffuses into the domain.

6
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Table 1. Numerical and physical parameters for the rubber band examples.

Parameter Value Units

Domain size (D) 1.0 × 1.0 m2

Initial rubber band major axis 0.8 m
Initial rubber band minor axis 0.4 m
Equivalent radius of rubber band (L)

√
(0.4)(0.2) m

Fluid density (ρ) 1.0 kg m−3

Fluid viscosity (μ) 0.01 kg (m−1 s−1)
Diffusivity (D) 0.001–0.1 m2 s−1

Maximum velocity (U∞) 4.23 m s−1

Time step (dt) 7.8125 × 10−6 –3.125 × 10−5 s
Spatial grid size (h) 1/1024–1/64 m
Number of Lagrangian points (N) 249–3969 —
Spring stiffness (ks) 6.1/(0.5h)2 kg m s−2

Chemical desorbed in constant model (α) 0.1 kg (m−1 s−1)
Velocity of adsorption/desorption in limiting models (β) 0.1, −0.1 m s−1

Maximum concentration in limiting model (C∞) 1.0 kg m−2

Figure 2. Velocity and vorticity simulation of an initially stretched rubber band for the first two seconds. The vectors present the
velocity field (m s−1), and the color provides the vorticity (1/s). Note the time between panels is not equal. See supplemental
movie 1 (https://stacks.iop.org/BB/17/036003/mmedia).

Figure 3. Desorption of a chemical concentration (kg m−2) from the boundary using the constant model, equation (7),
where D = 0.01 m2 s−1 and α = 0.1 kg (m−1 s−1). The Péclet number in this simulation is approximately 120. See supplemental
movie 2.

The Péclet number in these examples,

Pe∞ =
LU∞

D
, (17)

is computed using the same velocity scale and length
scale as in the Reynolds number, U∞ = 4.228 m s−1

and L =
√

(0.2)(0.4) m. The diffusion coefficient
varies among the simulations presented. In figure 3,
the Péclet number is approximately Pe∞ ≈ 120.

In figures 4 and 5, we present simulations where
we have varied the diffusion coefficient and the
amount of chemical desorbed from the boundary
in comparison to the previous simulation to give
a sense of these parameters in the concentration
dynamics. In figure 4, the diffusion coefficient is now
D = 0.1 m2 s−1, and the amount of chemical des-
orbed is the same as before, α = 0.1 kg (m−1 s−1).
In this simulation, due to the CFL condition

7
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for the concentration dynamics, the time step is
7.8125 × 10−6 s. This smaller time step results in
a very slightly different U∞ = 4.233 m s−1, result-
ing in a negligible difference in the Reynolds num-
ber. In this case, the Péclet number is approxi-
mately Pe∞ ≈ 12, which is an order of magnitude
smaller. We observe that in this case, the chemi-
cal almost instantaneously diffuses into the entire
domain, and we do not see a build-up around the
boundary even though the chemical is being desorbed
from the boundary, as in the simulation presented in
figure 3.

In figure 5, the amount of chemical desorbed is
modified to α = 0.2 kg (m−1 s−1), while the diffusion
coefficient remains the same, D = 0.01 m2 s−1, and
therefore the Péclet number also remains the same,
Pe∞ ≈ 120. Note that we have chosen to keep the con-
centration limits in the visualization the same as in the
previous two simulations to allow for comparisons,
from 0 to 1 kg m−2. However, so much chemical is
being desorbed that the build-up near the boundary
allows for values larger than 1 kg m−2. This simula-
tion exemplifies how this model may not be realistic
as usually a chemical is not desorbed without limi-
tations. The next example presents a more realistic
model in these types of situations.

It is more likely that the amount of chemical
desorbed from a boundary will be dependent on the
amount of that chemical present in the fluid locally,
and there is a maximum amount of chemical concen-
tration possible in the fluid, C∞. Figure 6 presents a
simulation with such a model for the chemical con-
centration, equation (9). In this simulation, the diffu-
sion coefficient is set to D = 0.01 m2 s−1, the velocity
that multiplies the concentration in the Lagrangian
frame is β = 0.1 m s−1, and the maximum pos-
sible concentration at any point in the fluid is
C∞ = 1 kg m−2. In comparison to the simulation in
figure 3, the boundary desorbs less chemical as it is
limited by the chemical already present in the fluid
surrounding the boundary.

The last example in this section presents how
adsorption is also included in the software package.
In figure 7, we present an example of a rubber band
adsorbing a chemical from the surrounding fluid.
Here, the concentration was initialized in the domain
as a constant, c(x, t) = 1 kg m−2, and the diffusion
coefficient of the chemical in the fluid was set to
D = 0.01 m2 s−1. This model used for the adsorption
depends on the amount of chemical present locally,
equation (8), where the velocity that multiplies the
concentration in the Lagrangian frame was set to
β = −0.1 m s−1. In this simulation, the chemical is
adsorbed from the fluid locally by the boundary, and
then more chemical diffuses towards the boundary. As
a result, the depletion region widens as the simulation
progresses.

3.4. Higher order advection scheme
If the Péclet number is large and the system is
advection-dominated, a more accurate scheme for the
advection may be necessary. For these cases, we imple-
mented a third-order WENO scheme for the advec-
tion term in equation (5), as discussed in section 3.1.
This WENO scheme takes the weighted average of
all finite difference stencils for an upwind third-order
approximation for the first derivatives of the con-
centration or density. The weights are chosen to be
inversely proportional to the magnitude of the deriva-
tives so that larger magnitude derivative approxima-
tions are given a smaller weight, preventing spurious
oscillations from occurring. Details of this method
can be found in [82]. In this section, we present results
for this situation.

Figure 8 shows the results of the constant model,
equation (7), using both the upwind and WENO
advection schemes. The parameters are set such
that the diffusion coefficient is D = 0.01 m2 s−1 or
0.001 m2 s−1 and the amount of chemical desorbed
from the elastic boundary is α = 0.1 kg (m−1 s−1).
For this simulation, the Péclet number is Pe∞ ≈
120 or 1200, respectively, corresponding to the two
diffusion coefficients. Note that in these advection-
dominated situations, we can observe the benefits
of using a more accurate method for the advec-
tion term, even though it is not necessary. For
this example, the other numerical and physical
parameters are the same as in the above exam-
ples, provided in table 1. Note, however, that the
grid resolution was set to Nx = Ny = 1024, and
an appropriate time step of dt = 1.5625 × 10−5 s
was chosen to ensure numerical stability. Further-
more, N and ks were correspondingly modified to
N = 3969 and ks = 6.1/(0.5h)2 kg m s−2, where
h = 1/1024. Note here that ks increases in value with
the increased refinement.

We present the total mass of the chemical in the
domain and the error in the total mass versus time
for both advection schemes. Details of how these are
computed are provided in section 3.5. We observe that
the total mass is conserved much better, up to approx-
imately two orders of magnitude, when using the
WENO scheme. Convergence results of these meth-
ods with D = 0.01 m2 s−1 and Pe∞ ≈ 120 are pro-
vided in section 3.5.

3.5. Convergence
In this section, we present convergence results of
the chemical dynamics for the rubber band example.
This example was selected for investigating con-
vergence properties due to the Lagrangian struc-
ture undergoing large deformations. The associated
convergence properties of the rubber band itself,
the Lagrangian IB, and the underlying fluid flow,
the Eulerian data, are provided in appendix A.
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Figure 4. Desorption of a chemical concentration (kg m−2) from the boundary using the constant model, equation (7), where
D = 0.1 m2 s−1 and α = 0.1 kg (m−1 s−1). The Péclet number in this simulation is approximately 12. See supplemental movie 3.

Figure 5. Desorption of a chemical concentration (kg m−2) from the boundary using the constant model, equation (7),
where D = 0.01 m2 s−1 and α = 0.2 kg (m−1 s−1). The Péclet number in this simulation is approximately 120. See supplemental
movie 4.

Figure 6. Desorption of a chemical concentration (kg m−2) from the boundary using a model where the maximum concentration
is limited in the field and the desorption is dependent on how much chemical is present locally, equation (9), where D = 0.01 m2

s−1, β = 0.1 m s−1, and C∞ = 1 kg m−2. The Péclet number in this simulation is approximately 120. See supplemental movie 5.

Figure 7. Adsorption of a chemical concentration (kg m−2) by the boundary using a model that is dependent on how much
chemical is present locally, equation (8), where D = 0.01 m2 s−1 and β = −0.1 m s−1. The Péclet number in this simulation is
approximately 120. See supplemental movie 6.

In this section we focus on the convergence of the
concentration dynamics, for cases with both the con-
stant desorption model, equation (7), and the lim-
ited desorption model, equation (9), with a diffusion
coefficient of D = 0.01 m2 s−1. We calculate the L2

and L∞ errors in the concentration between succes-
sive grid resolutions (see equations (A.1) and (A.2)
in appendix A for more details) and also present

the total mass conservation properties. We present
these convergence results for both advection schemes,
upwind and WENO, discussed in section 3.1. In all the
results shown here, we provide the Eulerian grid size,
Nx = Ny or h = 1/Nx. The number of discretized
points on the Lagrangian mesh was chosen such
that the spacing between nodes initially for the rub-
ber band was 0.5h, and the time step was set to

9
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Figure 8. Total mass and the error in the total mass (kg) when modeling desorption of a chemical concentration from the
boundary using the constant model, equation (7), where D was either 0.01 or 0.001 m2 s−1 and α = 0.1 kg (m−1 s−1). The Péclet
number in this simulation is approximately 120 and 1200, respectively. In these simulations, the advection term in equation (5) is
solved using both an upwind and a WENO method.

dt = 3.125 × 10−5 s, although to maintain sta-
bility in the case of Nx = Ny = 1024, the time-
step was changed to dt = 1.5625 × 10−5 s. Spring
stiffnesses were also scaled with the resolution,
ks = 6.1/(0.5h)2 kg m s−2. The wall-clock time for
the simulations at the coarsest refinement was about
ten minutes and about ten days for the most refined
simulations.

For cases of constant desorption, the total mass
can be computed exactly via equations (5) and (7),

M(t) =

∫ t

0

∫
Ω

α δ (x − X(s, τ)) ds dτ

= α

∫ t

0
L(τ)dτ , (18)

where there is no chemical in the domain initially, and
L(t) is the length of the IB at time t. Equation (18)
was computed numerically using the trapezoidal rule,
where the length of the boundary was evaluated with
a linear piecewise approximation using the location of
the Lagrangian points at time t. The total mass in the
domain during the simulation can be computed as

Mn
h =

∫
Ω

cn
h(x)dx ≈

∑
ij

cn
ijh

2, (19)

and hence the total mass error at time tn is

|M(tn) − Mn
h | . (20)

The convergence data corresponding to the con-
stant desorption model with D = 0.01 m2 s−1 and
α = 0.1 kg (m−1 s−1), presented in figure 3, is shown
in figure 9 and is given in table 2. Over time the
convergence rates of the L2 and L∞ errors in the con-
centration are approximately the same for both the
upwind and WENO schemes. They are found to be
first-order, as expected. However, as discussed above
in section 3.4, the WENO scheme better conserved the

overall total mass in the domain, see figure 10. Similar
trends were observed for other parameter values.

For the limited desorption model, we found sim-
ilar results as in the constant desorption case. The
L2 and L∞ errors in the chemical concentration
were comparable, see figure 11. The WENO advec-
tion scheme has better mass conservation results
than the upwind scheme, see figure 12. These results
correspond to the case where D = 0.01 m2 s−1,
β = 0.1 m s−1, and C∞ = 1 kg m−2, as in figure 6.
Note that in these limited desorption simulations, the
exact mass in the domain cannot be computed, as
in equation (18) for the constant desorption case.
Instead, the mass conservation error was computed by
taking the difference between the total mass at a reso-
lution and the next finest resolution, e.g. the error in
the total mass for the case with resolution Nx = Ny =

512 is |Mn
1/512 − Mn

1/1 024|. Explicit convergence rates
computed at t = 2.0 s are given in table 3. We observe
first-order convergence for the chemical concentra-
tion, as expected. We observe that the upwind scheme
results in non-monotonic trends in the total mass
error and believe that this is due to both using con-
secutive resolutions to compute the error and need-
ing finer resolutions to observe the trend. The WENO
scheme better conserves the overall total mass in the
domain and converges at a higher rate.

4. Examples

In this section, we present three examples where the
modeling of chemical or thermal dynamics is use-
ful in elucidating the biological processes occurring.
These examples can be found in the IB2d directory
Example_Concentration_Dynamics.

4.1. Flow between cylinders
Arrays of bristles, hairs, and other cylindrically shaped
structures are often used in the natural world for

10
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Figure 9. The (a) L2 error and (b) L∞ error between successive grid resolutions (Nx = Ny) for the chemical concentration in the
case of the constant desorption model, equation (7), for the rubber band example with D = 0.01 m2 s−1 and α = 0.1 kg (m−1 s−1)
over the course of the simulation. Both advection schemes, upwind (U) and WENO (W) are presented. (c) Convergence plot of
the concentration errors for both advection schemes at time t = 2.0 s.

Table 2. The errors and the order of convergence for the chemical concentration for the IB2d upwind (top) and WENO (bottom)
advection solvers in the case of the constant desorption model, equation (7), for the rubberband example with D = 0.01 m2 s−1 and
α = 0.1 kg (m−1 s−1). The errors were computed at time t = 2.0 s.

Nx h (1/Nx) ‖ch − ch/2‖2 Order ‖ch − ch/2‖∞ Order |
∫
Ω

ch dx −
∫
Ω

c dx | Order

Upwind
128 7.8125 × 10−3 1.83 × 10−2 0.68 6.19 × 10−2 0.50 8.47 × 10−3 0.90
256 3.9062 × 10−3 1.10 × 10−2 0.72 4.14 × 10−2 0.58 4.41 × 10−3 0.94
512 1.9531 × 10−3 6.11 × 10−3 0.86 2.04 × 10−2 1.02 2.26 × 10−3 0.96
1024 9.7655 × 10−4 — — — — 1.15 × 10−3 0.97

WENO
128 7.8125 × 10−3 1.79 × 10−2 0.69 5.70 × 10−2 0.58 6.78 × 10−3 1.14
256 3.9062 × 10−3 1.09 × 10−2 0.72 3.85 × 10−2 0.57 3.03 × 10−3 1.16
512 1.9531 × 10−3 5.99 × 10−3 0.86 1.88 × 10−2 1.03 1.42 × 10−4 1.10
1024 9.7655 × 10−4 — — — — 7.03 × 10−5 1.01

Figure 10. The errors in the total mass in the case of the constant desorption model, equation (7), for the rubber band example
with D = 0.01 m2 s−1 and α = 0.1 kg (m−1 s−1) for the (a) upwind and (b) WENO advection schemes, for a variety of grid
resolutions (Nx = Ny) over the course of the simulation. (c) Convergence plot of the total mass errors for both advection schemes
at time t = 2.0 s.

filter feeding, sniffing, and to alter boundary layers
and, subsequently, exchange [62, 83–85]. At interme-
diate Reynolds numbers, the ratio of the gap between
the cylinders to their diameter can alter the flow
through the cylindrical arrays in a highly nonlinear
way, and organisms have a variety of ways to take
advantage of this effect [86–89]. These dynamics
become particularly interesting when considering the

associated Péclet number as small changes in
velocity and spacing, which the animal can control,
can greatly change the amount of chemical that is
taken up or carried away.

In this example, a row of five cylinders moves
back and forth in a fluid. The surface of the cylinders
absorbs the chemical, simulating an uptake process
such as feeding or sniffing. The physical parameters
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Figure 11. The (a) L2 error and (b) L∞ error between successive grid resolutions (Nx = Ny) for the chemical concentration in the
case of the limited desorption model, equation (9), for the rubber band example with D = 0.01 m2 s−1, β = 0.1 m s−1, and
C∞ = 1 kg m−2 over the course of the simulation. Both advection schemes, upwind (U) and WENO (W) are presented.
(c) Convergence plot of the concentration errors for both advection schemes at time t = 2.0 s.

Figure 12. The errors in the total mass in the case of the limited desorption model, equation (9), for the rubber band example
with D = 0.01 m2 s−1, β = 0.1 m s−1, and C∞ = 1 kg m−2 for the (a) upwind and (b) WENO advection schemes, for a variety of
grid resolutions (Nx = Ny) over the course of the simulation. (c) Convergence plot of the total mass errors for both advection
schemes at time t = 2.0.

Table 3. The errors and the order of convergence for the chemical concentration for the IB2d upwind (top)
and WENO (bottom) advection solvers in the case of the limited desorption model, equation (9), for the
rubber band example with D = 0.01 m2 s−1, β = 0.1 m s−1, and C∞ = 1 kg m−2. The errors were computed
at time t = 2.0 s.

Nx h (1/Nx) ‖ch − ch/2‖2 Order ‖ch − ch/2‖∞ Order |
∫
Ω

ch dx −
∫
Ω

ch/2 dx| Order

Upwind
64 1.5625 × 10−2 1.63 × 10−2 1.86 4.40 × 10−2 2.15 1.09 × 10−3 1.48
128 7.8125 × 10−3 1.00 × 10−2 0.71 2.78 × 10−2 0.66 8.06 × 10−5 3.76
256 3.9062 × 10−3 5.96 × 10−3 0.75 1.83 × 10−2 0.61 3.17 × 10−4 -1.98
512 1.9531 × 10−3 3.28 × 10−3 0.86 8.78 × 10−3 1.06 2.62 × 10−4 0.27

WENO
64 1.5625 × 10−2 1.80 × 10−2 1.83 4.51 × 10−2 2.24 3.45 × 10−3 1.43
128 7.8125 × 10−3 1.05 × 10−2 0.78 2.69 × 10−2 0.75 1.03 × 10−3 1.74
256 3.9062 × 10−3 6.09 × 10−3 0.78 1.76 × 10−2 0.62 2.08 × 10−4 2.31
512 1.9531 × 10−3 3.32 × 10−3 0.87 8.46 × 10−3 1.05 4.96 × 10−6 5.39

used are representative of a dynamically scaled
physical model that is immersed in a highly vis-
cous fluid, similar to experiments and simulations
that have been performed for sniffing of marine blue
crabs, Callinectes sapidus, in water, see the down-
stroke data in table 2 in [62]. In this simulation,
the fluid domain is a 1.0 × 1.0 m2 box with a
density ρ = 1000 kg m−3 and a dynamic viscos-
ity μ = 48 kg (m−1 s−1). The cylinders of diam-
eter 0.04 m move from position x = 0.05 m to

x = 0.95 m in 0.5 s such that the average velocity
of the row of cylinders is U = 1.8 m s−1, making
the cylinder based Reynolds number Rec = 1.5. The
diffusivity is set to D = 7.2 × 10−5 m2 s−1 such that
the Péclet number is Pe = 1000, half of that as in [62].
We assume an initial thin chemical filament with a
width ten times that of the diameter of the cylinders,
see SI of [62], c(x, 0) = e−175(x−0.3)2

kg m−2.
The cylinders model the chemosensory hairs of

the marine blue crabs that take up chemicals to sniff
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the environment. The prescribed motion of the hairs
is accomplished through the use of target points. In
this formulation, each Lagrangian point of the IB hair
is tethered to an individual target point. When the
target point position is dynamically updated during
the simulation, it pulls the Lagrangian point with it.
This action is implemented by applying a force pro-
portional to the distance between the location of the
Lagrangian point and its preferred position, in very
much the same way as a virtual spring,

Fn
target,k = ktarget

(
Yn

k − Xn
k

)
, (21)

where ktarget is the stiffness coefficient and Xn
k and

Yn
k are the position of the kth Lagrangian point and

the prescribed position of its target point at time tn,
respectively. Furthermore, to maintain the circular
shape of the hairs throughout all of the motion, vir-
tual springs and beams are used. Springs tether adja-
cent Lagrangian nodes within each hair as well as
across each hair (circle), as in the case of the rub-
ber band example, equation (15). These springs were
given high spring stiffnesses in order to preserve the
desired spacing between nodes.

Virtual non-invariant beams preserved the desired
circular curvature of each hair. Non-invariant beams
were used as the hairs did not rotate but only exhib-
ited translational movement. The continuous defor-
mation force of a beam was computed at time tn,

Fn
beam = kbeam

∂4

∂s4
(Xn − Xcon) , (22)

where kbeam is the beam stiffness, Xn is the position
of a Lagrangian point along the hair at time tn, and
∂4

∂s4 (Xcon) is its corresponding preferred curvature.
Details regarding the 4th-order derivative discretiza-
tion of equation (22) are provided in [36]. The force
per unit length applied by the boundary to the fluid,
F, is then the sum of these three forces from the target
points, springs, and beams.

We use the model given in equation (8) with
β = −1 m s−1 to model the uptake by the hairs. In this
example, we choose to use the high-order advection
scheme described in section 3.4 as the Péclet num-
ber is large. All physical and numerical parameters are
provided in table 4.

In figure 13, we present the results of this simula-
tion. Observe that the chemosensory hairs create flow
that mixes the chemical filament as the animal takes
up the chemical. In figure 13(b), we present the total
mass of the chemical in the domain throughout the
duration of the simulation. Notice that there are peri-
ods where the chemical is taken up when the hairs
are moving through the filament and periods where
much less chemical is taken up. The slight increase
in the total mass at a few time points is within the
numerical error of this simulation.

4.2. Flow past a plate
The example in this section is inspired by airflow over
a broad leaf at low Reynolds numbers. It has long
been established that many broad leaves reconfigure
and reduce flutter in strong flows [90, 91]. There may
be situations, however, in which flutter is desirable
in light winds. Examples include the enhancement of
canopy light penetration via the fluttering of poplar
leaves [92] or for the purpose of convective and evap-
orative heat transfer [93, 94]. A particularly interest-
ing case is the tulip poplar leaf that flutters more than
a similarly shaped flexible cut out at low wind speeds
while reducing flutter and drag at high wind speeds
[95]. In the absence of passive movement, the shape
of a stationary leaf itself has been shown to enhance
heat dissipation [10, 96]. It may also be the case that
some leaf shapes enhance passive movement through
augmented vortex shedding, thereby increasing waste
removal or nutrient uptake through increased mixing
dynamics.

In this example, we model airflow and cooling
of a leaf by the release of sensible heat [97] using a
flexible flat plate. To enhance vortex formation over
the plate for the purpose of this example, a cylinder
is attached to the leading edge of the plate, which is
similar to the petiole of a leaf. The petiole (cylinder) is
held nearly rigid by target points. Springs and beams
are also used to help further minimize geometric
perturbations.

The plate (leaf) is given additional mass, and the
upwind end of the plate is tethered using target points
as in equation (21). Springs and beams are also placed
between adjoining points to model the plate’s flexibil-
ity. The additional mass is modeled using a formula-
tion similar to target points, where a massive point is
tethered to a Lagrangian point. If the force acting on
the Lagrangian point is large enough, it will cause the
Lagrangian point to drag the massive point along with
it. Mathematically, this is described in the following
way

Fn
mass = kmass(Yn

k − Xn
k ) (23)

M(k)
∂2Yn

k

∂t2
= −Fn

mass (24)

where kmass is a stiffness coefficient with kmass � 1,
M(k) is the mass density of the kth massive point, Yn

k ,
and Xn

k and is the position of the kth Lagrangian point
at time tn.

The density and viscosity of the fluid are set to that
of air [98], and a 25 cm s−1 background flow is gen-
erated using an applied external force. Details of the
mathematical methodology used to implement these
forces for the IB plate can be found in [35].

The physical and numerical parameters for this
example are given in table 5. The plate is 1 cm in
length, and the fluid domain is a 30 × 5 cm2 box.
The plate is a source of the sensible heat with a flux
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Table 4. Numerical and physical parameters for the example of flow between
moving cylinders.

Parameter Value Units

Domain size (D) 1.0 × 1.0 m
Cylinder diameter (d) 0.04 m
Fluid density (ρ) 1000 kg m−3

Fluid viscosity (μ) 48 kg (m−1 s−1)
Diffusivity (D) 7.2 × 10−5 m2 s−1

Average velocity (U) 1.8 m s−1

Time step (dt) 3.125 × 10−6 s
Spatial grid size (h) 1/1024 m
Number of Lagrangian points per hair (N) 257 —
Spring stiffness (ks) 1 × 106 kg m s−2

Target stiffness (ktarget) 5 × 106 kg m s−2

Beam stiffness (kbeam) 1.0 × 109 kg m s−2

Velocity of adsorption in limiting models (β) −1 m s−1

Figure 13. Simulation of chemical uptake by an array of moving cylinders modeling the sniffing of marine blue crabs.
(a) Location of the chemosensory hairs, the velocity field (m s−1), and the chemical concentration (kg m−2) throughout the
duration of the simulation. (b) Total mass of the chemical (kg) in the domain versus time. See supplemental movie 7.

of α = 204 400 g cm s−3 in the constant desorption
model, equation (7). This value is based on param-
eters for modeling the sensible heat flux of a two-
dimensional leaf at 35 degrees Celsius in air that
is at 31.5 degrees Celsius, with total leaf conduc-
tance of 2 × 10−4 mol (cm2 s−1) and specific heat
of the moist air of 29.2 J (mol−1 K−1), see equation
(10.5) and figure 10.3 in [97], resulting in a flux of
0.020 44 W m−2. We are only modeling the initial few
seconds of the leaf releasing heat and not consider-
ing the temperature of the leaf or the air changing.
The thermal diffusivity is set for air at 30 degrees
Celsius [99]. The Reynolds number using the back-
ground flow, the length of the leaf, and the density
and viscosity of the fluid is approximately Re ≈ 151
and the Péclet number using the thermal diffusivity is
approximately Pe ≈ 109.

In figure 14, we present a time series of the
simulation of the leaf flutter and the release of sensi-
ble heat. We observe that since the leaf and fluid start

at rest, it takes some time for the flutter to develop,
three to four seconds. Initially, without much flow,
the released heat builds up around the leaf, around
time 1.5 s, but once there is significant flow, the heat
is advected further away from the leaf.

4.3. Pulsing corals
The methodology presented in this work and
incorporated into the IB2d software was initially
developed by the authors to study pulsing soft
corals [21]. Some species of sessile soft corals in the
family Xeniidae pulse their tentacles. These corals live
in colonies and are one of the few animals that have
an energetically expensive behavior for a purpose
other than locomotion. It is hypothesized that the
pulsing behavior enhances the photosynthesis of
their symbiotic algae, which provides the corals with
most of their energy [70]. Fluid flow has also been
shown to enhance photosynthesis in other marine
benthic autotrophs such as stony corals, sea grass,
and algae [8].
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Table 5. Numerical and physical parameters for the example of flow past a plate.

Parameter Value Units

Domain size (D) 30 × 5 cm2

Plate length (L) 1.0 cm
Fluid density (ρ) 1.145 × 10−3 g cm−3

Fluid viscosity (μ) 1.895 × 10−4 g (cm−1 s−1)
Inflow velocity (U) 25.0 cm s−1

Thermal diffusivity (D) 0.23 cm2 s−1

Time step (dt) 5 × 10−5 s
Spatial grid size (h) 5/256 cm
Number of Lagrangian point (N ) 103 —
Massive points (m) 5 × 10−4 g
Spring stiffness (kspring) 2.5 × 104 g cm s−2

Target stiffness (ktarget) 2.5 × 104 g cm s−2

Beam stiffness (kbeam) 2.0 × 108 g cm s−2

Heat density desorbed in constant model (α) 204 400 g cm s−3

Figure 14. Simulation of a fluttering leaf releasing sensible heat until time t = 6 s. The velocity field (cm s−1) is plotted with the
heat released (×104 g s−2) in color. Note the time between panels is not equal. See supplemental movie 8.

In this example, we simulate the motion of a puls-
ing soft coral polyp coupled with a model of the pho-
tosynthesis of the algae. During photosynthesis, the
algae uptake carbon dioxide and release the byprod-
uct, dissolved oxygen. We model the photosynthesis
by tracking the concentration of oxygen, c1, and car-
bon dioxide, c2. The motion of the tentacles is pre-
scribed using target points as in equation (21). The
tentacles absorb the carbon dioxide according to the
model G(s, t) = −βC2 and desorb the oxygen accord-
ing to the model G(s, t) = βC2, where C2 is the carbon
dioxide present locally around the tentacles, given by
equation (6).

The physical and numerical parameters for this
example simulating a coral polyp pulsing in the ocean
are given in table 6. The length of a coral tentacle is

0.407 cm and the polyp length, including the base,
is 0.920 cm. The fluid domain is a 2.0 × 5.0 cm2

box with a density of ρ = 1 g cm−3 and a dynamic
viscosity of μ = 0.01 g (cm−1 s−1). The period
of the coral pulse is 1.89 s and is composed of
contraction, expansion, and resting phases. The
frequency-based Reynolds number is defined using
the tentacle length, frequency of the pulsing, and
viscosity and is Ref = 8.76 and the frequency-based
Péclet number is Pef = 100. In figure 15, we present
the results of the simulation. The fluid started at rest
with no oxygen in the domain and an initial carbon
dioxide concentration of c2(x, 0) = 10−6 mol cm−2.
The simulation was run until time t = 18.9 s, ten
pulses of the coral. We present the results during the
tenth pulse here. See supplemental movies 9 and 10
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Table 6. Numerical and physical parameters for the example of pulsing corals.

Parameter Value Units

Domain size (D) 2.0 × 5.0 cm
Tentacle length (L) 0.407 cm
Fluid density (ρ) 1 g cm−3

Fluid viscosity (μ) 0.01 g (cm−1 s−1)
Pulsing period (T) 1.89 s
Diffusivity of oxygen and carbon dioxide in water (D) 8.75 × 10−4 cm2 s−1

Timestep (dt) 2.5 × 10−4 s
Spatial grid size (h) 1/128 cm
Number of Lagrangian points (N) 235 —
Target stiffness (ktarget) 8 × 105 kg m s−2

Velocity of adsorbtion and desorption (β) 0.0215 cm s−1

Figure 15. Simulation of a soft coral polyp pulsing with a model of photosynthesis. Five time points (s) during the tenth pulse
are presented here. The velocity field (cm s−1) is plotted with the oxygen concentration in the top row and the carbon dioxide
concentration in the bottom row (×10−6 mol cm−2) in color. See supplemental movies 9 and 10.

to see the simulation in its entirety, including all ten
pulses. Observe that the fluid flow allows more car-
bon dioxide to reach the coral and therefore allows
more photosynthesis to occur and more oxygen
byproduct to be created. More results and analysis of
this biological system were provided in [21].

5. Discussion and conclusion

This paper presents a new methodology to
incorporate the advection and diffusion of heat or a
chemical with a moving IB acting as a source or sink.

Furthermore, the boundary is fully coupled to the
fluid in that it moves at the local fluid velocity
and applies a body force to the fluid. The methods
are developed within the IB framework, a com-
monly used method for simulating fluid-structure
interactions. The methodology supports solving
for multiple concentrations, representing a heat
distribution or chemical concentrations and user-
defined source or sink models at the boundary.
This new methodology was initially developed to
study pulsing corals [21] and has been generalized
here in the software library IB2d for application
to diverse problems in biological fluid dynamics
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at intermediate scales. This tool should find broad
use as many natural and engineered systems have
fluid-structure interactions coupled with chemical or
thermal dynamics and there are very few tools and
software libraries available for the numerical sim-
ulations of these systems.

IB2d is a two-dimensional IB library designed to
lower the steep learning curve necessary to conduct
numerical simulations. Therefore, it is not only use-
ful to the scientific community for research endeav-
ors but can also be used in educational settings.
Before this project, the package included over 80
IB examples that included multiple ways to describe
the elastic boundary, including the use of springs,
beams, tether points, masses, and porous interfaces.
We have now included all of the examples described
in this paper that model the advection and diffusion
of heat and chemical concentrations. This will allow
users to develop their own simulations with relative
ease.

Future work consists of two different avenues: (1)
extending the numerical methods to three dimen-
sions and (2) improving the implementation and
options in the two-dimensional methods within
IB2d. Work is currently ongoing in both direc-
tions. The extension to three dimensions is mathe-
matically straightforward, similar to the IB method.
The authors plan to incorporate the method into the
software library IBAMR [33]. In terms of method
development, a major improvement would be the
incorporation of implicit time stepping. The time step
is already restricted in the IB due to the explicit meth-
ods used for the Navier–Stokes equations. By mak-
ing the methodology implicit for equation (5), we
would reduce the time step restrictions from two dif-
ferent ones to just the restriction from the fluid solver.
This is especially relevant in the case of larger dif-
fusion coefficients or smaller Péclet numbers as in
the rubber band example with Pe ≈ 12, see figure 4,
where the restriction from the advection–diffusion
equation required a smaller time step than it did
for the fluid solver. Furthermore, we can extend the
work here to take into account how the concentration
interacts with the fluid more generally. This could be
included in various forms, including through a reac-
tion term in the bulk for a concentration or density
and by having the fluid parameters depend on the
amount of chemical or heat present. As the software
library has more usage, we believe these extensions
will be incorporated as they are needed for various
applications.
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Appendix A. Immersed boundary and
fluid flow convergence for the rubber
band example

As the force interpolation functionality was
modified from the original IB2d implementa-
tion [35–37], we present convergence properties for
both the Lagrangian IB and Eulerian fluid data for the
rubber band example of section 3.3 and figure 2. The
modifications to the force interpolation functionality
were described in section 3.1. In the simulations
presented herein, the Eulerian fluid grid resolution
was varied and appropriate modifications were made
to the Lagrangian rubber band structure based on
each particular resolution. For each resolution, we
selected a different number of nodes on the initial
configuration of the stretched rubber band, the
Lagrangian mesh, such that once in its circular
state, their spacing satisfied 0.5h. Spring
stiffnesses were also scaled appropriately, i.e.
ks = 6.1/(0.5h)2 kg m s−2. The time step was
also modified based on the resolution such
that dt = 3.125 × 10−5 s for Nx = 32, 64, 128, 256
and 512, but was reduced to dt = 1.5625 × 10−5 s
for Nx = 1024 to satisfy numerical stability
requirements.

As the resolution increased, i.e. Nx = Ny

increased, the rubber band more accurately con-
served its area over time, as shown in figure 16. The
exact area is known based on the original area of the
ellipse, A = πab = π(0.4)(0.8) m2. The approximate
area of the ellipse at each time point saved in the
simulation was found via Green’s theorem and
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Figure 16. (a) Error in the area conservation within the rubber band (m2) over time (s) for varying grid resolutions.
(b) Convergence plot of the areas computed at time t = 2.0 s.

Figure 17. Eccentricity of the rubber band over time for different grid resolutions.

Table 7. Convergence properties of the rubber band, the immersed Lagrangian structure using the
updated IB2d force spreading, equation (13). The errors were computed at time t = 2.0 s.

Nx h = 1/Nx

∣
∣ecch − ecch/2

∣
∣ Order |Ah − A| Order

128 7.8125 × 10−3 2.32 × 10−2 2.17 1.76 × 10−2 0.68
256 3.9062 × 10−3 8.96 × 10−3 1.37 1.01 × 10−2 0.81
512 1.9531 × 10−3 2.18 × 10−3 2.04 5.44 × 10−3 0.89
1024 9.7655 × 10−4 — — 2.82 × 10−3 0.94

then using the trapezoidal rule to approximate the
integral,

An
h =

∮
Xn dY ≈

[
1

2

N−1∑
k=1

[
Xn

k + Xn
k+1

] (
Yn

k+1 − Yn
k

)]

+
1

2

[
Xn

N + Xn
1

] (
Yn

N − Yn
1

)
,

where An
h is the approximate area at time tn and

Xn
k = (Xn

k , Yn
k ). The error in the area is computed

as the absolute value of the difference between the

known exact area, A, and the successive approxima-

tions, An
h, at each time step, |A − An

h|.
Figure 16 illustrates the area conservation conver-

gence properties, both over time (figure 16(a)) and

as a convergence plot (figure 16(b)). The error in

figure 16(b) was calculated at time t = 2.0 s. More-

over, varying grid resolutions also led to slightly per-

turbed dynamics in each case, as figure 17 illustrates.
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Figure 18. (a) L2 error and (b) L∞ error in the horizontal component of the velocity, u (m s−1), between successive grid
resolutions over the course of the simulation. (c) Convergence plot of the errors in the velocity data, both horizontal (u) and
vertical (v) velocity (m s−1) components at time t = 2.0 s.

Table 8. Convergence results of the fluid flow, specifically in the horizontal component of the velocity,
u (m s−1), in IB2d using the updated force spreading functionality, as described in section 3.1, in the
rubber band example. The errors were computed at time t = 2.0 s.

Nx h = 1/Nx ‖uh − uh/2‖2 Order ‖uh − uh/2‖∞ Order

64 1.5625 × 10−2 3.92 × 10−2 1.93 2.64 × 10−1 1.50
128 7.8125 × 10−3 2.00 × 10−2 0.97 1.90 × 10−1 0.47
256 3.9062 × 10−3 1.11 × 10−2 0.85 1.17 × 10−1 0.70
512 1.9531 × 10−3 4.92 × 10−3 1.17 5.59 × 10−2 1.06

Figure 17 provides the eccentricity of the rubber band
over time for varying grid resolutions. The eccentric-
ity is defined as,

eccn
h =

√
1 − min{rn

1 , rn
2}

max{rn
1 , rn

2}
,

where rn
1 and rn

2 are the semi-major and semi-minor
axes of the rubber band over time. As the rubber band
oscillates over time, the major and minor axes of the
ellipse switch. The error and convergence rates for
both the area conservation and eccentricity are given
in table 7, at time t = 2.0 s.

The L2 and L∞ errors in the Eulerian data were
also computed. Since the exact fluid dynamics are not
known, in order to calculate errors, the successive grid
resolutions were compared and then the select metric
was computed, i.e. for the quantity f,

‖ fh − fh/2‖2 ≈
√∑

ij

((
fh
)

ij
−
(
fh/2

)
ij

)2
h2 (A.1)

‖ fh − fh/2‖∞ = max
ij

∣∣∣(fh
)

ij
−
(
fh/2

)
ij

∣∣∣ . (A.2)

The higher resolved grids were subsampled, so that
data for the same spatial locations were being com-
pared in equations (A.1) and (A.2).

Figures 18(a) and (b) provide the L2 and L∞

errors in the horizontal component of the velocity
over time, u. The errors for the vertical component
look very similar and are omitted. Figure 18(c) pro-
vides a convergence plot for both velocity compo-
nents and table 8 provides the convergence rates in
the L2 and L∞ errors for the horizontal component

of velocity. We observe first-order convergence, as
expected.
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[11] Seymour J R, Simó R, Ahmed T and Stocker R 2010
Chemoattraction to dimethylsulfoniopropionate
throughout the marine microbial food web Science 329
342–5

[12] Ghalambaz M, Jamesahar E, Ismael M A and Chamkha A J
2017 Fluid-structure interaction study of natural convection
heat transfer over a flexible oscillating fin in a square cavity
Int. J. Therm. Sci. 111 256–73

[13] Al-Amiri A and Khanafer K 2011 Fluid-structure
interaction analysis of mixed convection heat transfer in a
lid-driven cavity with a flexible bottom wall Int. J. Heat
Mass Transfer 54 3826–36

[14] Hossain M M and Staples A E 2019 Passive vortical flows
enhance mass transport in the interior of a coral colony
Phys. Fluids 31 061701

[15] Shapiro O H, Fernandez V I, Garren M, Guasto J S,
Debaillon-Vesque F P, Kramarsky-Winter E, Vardi A and
Stocker R 2014 Vortical ciliary flows actively enhance mass
transport in reef corals Proc. Natl Acad. Sci. USA 111
13391–6

[16] Nielsen L T, Asadzadeh S S, Dölger J, Walther J H, Kiørboe
T and Andersen A 2017 Hydrodynamics of microbial filter
feeding Proc. Natl Acad. Sci. USA 114 9373–8

[17] Adams M P et al 2016 Feedback between sediment and light
for seagrass: where is it important? Limnol. Oceanogr. 61
1937–55

[18] Crimaldi J P and Zimmer R K 2014 The physics of broadcast
spawning in benthic invertebrates Annu. Rev. Mar. Sci. 6
141–65

[19] Hamlet C, Miller L A, Rodriguez T and Santhanakrishnan A
2012 The fluid dynamics of feeding in the upside-down
jellyfish Natural Locomotion in Fluids and on Surfaces
(Berlin: Springer) pp 35–51

[20] Fauci L J and McDonald A 1984 Sperm motility in the
presence of boundaries Bull. Math. Biol. 57 679–99

[21] Santiago M, Mitchell K A, Khatri S 2022 Numerical method
for modeling photosynthesis of algae on pulsing soft corals
Phys. Rev. Fluids (accepted)

[22] Lai M-C, Tseng Y-H and Huang H 2008 An immersed
boundary method for interfacial flows with insoluble
surfactant J. Comput. Phys. 227 7279–93

[23] Peskin C S 1972 Flow patterns around heart valves: a
numerical method J. Comput. Phys. 10 252–71

[24] Peskin C S 1977 Numerical analysis of blood flow in the
heart J. Comput. Phys. 25 220–52

[25] Peskin C S 2002 The immersed boundary method Acta
Numer. 11 479–517

[26] Mittal R and Iaccarino G 2005 Immersed boundary
methods Annu. Rev. Fluid Mech. 37 239–61

[27] Griffith B E and Patankar N A 2020 Immersed methods for
fluid-structure interaction Annu. Rev. Fluid Mech. 52
421–48

[28] Fauci L J and Fogelson A L 1993 Truncated Newton
methods and the modeling of complex immersed elastic
structures Commun. Pure Appl. Math. 46 787–818

[29] Lai M-C and Peskin C S 2000 An immersed boundary
method with formal second-order accuracy and reduced
numerical viscosity J. Comput. Phys. 160 705–19

[30] Cortez R and Minion M 2000 The blob projection method
for immersed boundary problems J. Comput. Phys. 161
428–53

[31] Griffith B E and Peskin C S 2005 On the order of accuracy of
the immersed boundary method: higher order convergence
rates for sufficiently smooth problems J. Comput. Phys. 208
75–105

[32] Griffith B E, Hornung R D, McQueen D M and Peskin C S
2007 An adaptive, formally second order accurate version of
the immersed boundary method J. Comput. Phys. 223
10–49

[33] Griffith B E 2014 An adaptive and distributed-memory
parallel implementation of the immersed boundary (ib)
method https://github.com/IBAMR/IBAMR (online
accessed 21 October 2014)

[34] Griffith B E and Luo X 2017 Hybrid finite difference/finite
element immersed boundary method Int. J. Numer. Methods
Biomed. Eng. 33 e2888

[35] Battista N A, Strickland W C and Miller L A 2017 IB2d: a
Python and MATLAB implementation of the immersed
boundary method Bioinspiration Biomimetics 12 036003

[36] Battista N A, Strickland W C, Barrett A and Miller L A 2018
IB2dReloaded: a more powerful Python and MATLAB
implementation of the immersed boundary method Math.
Methods Appl. Sci. 41 8455–80

[37] Battista N A, Baird A J and Miller L A 2015 A mathematical
model and Matlab code for muscle-fluid-structure
simulations Integr. Comp. Biol. 55 901–11

[38] Eyre D J and Fogelson A L 1997 IBIS: a software system for
immersed boundary and interface simulations
http://math.utah.edu/IBIS/

[39] Kim Y and Peskin C S 2006 2D parachute simulation by the
immersed boundary method SIAM J. Sci. Comput. 28
2294–312

[40] Stockie J M 2009 Modelling and simulation of porous
immersed boundaries Comput. Struct. 87 701–9

[41] Fogelson A L 1984 A mathematical model and numerical
method for studying platelet adhesion and aggregation
during blood clotting J. Comput. Phys. 56 111–34

[42] Fogelson A L and Guy R D 2008 Immersed-boundary-type
models of intravascular platelet aggregation Comput.
Methods Appl. Mech. Eng. 197 2087–104

[43] 2015 MATLAB, Version 8.5.0 (R2015a) Natick, MAThe
MathWorks https://mathworks.com/matlabcentral/
answers/780292-how-to-cite-matlab www.mathworks.
com/products.html

[44] Van Rossum G 2015 Python, Version 3.5 https://python.org
http://citebay.com/how-to-cite/python/

[45] Taheri A 2018 Lagrangian coherent structure analysis of
jellyfish swimming using immersed boundary FSI
simulations J. Mech. Civil Eng. 15 69–74

[46] Miles J G and Battista N A 2019 Naut your everyday jellyfish
model: exploring how tentacles and oral arms impact
locomotion Fluids 4 169

[47] Pallasdies F, Goedeke S, Braun W and Memmesheimer R-M
2019 From single neurons to behavior in the jellyfish Aurelia
aurita eLife 8 e50084

[48] Lai X 2019 Modeling and numerical simulations of active
and passive forces using immersed boundary method MS
Thesis (Mathematical Sciences) Worcester Polytechnic
Institute

[49] Battista N A 2020 Diving into a simple anguilliform
swimmer’s sensitivity Integr. Comp. Biol. 60 1236–50

[50] Chen S, Xue J, Hu J, Ding Q, Zhou L, Feng S, Cui Y, Lü S
and Long M 2020 Flow field analyses of a porous
membrane-separated, double-layered microfluidic chip for
cell co-culture Acta Mech. Sin. 36 754–67

[51] Malvar S and Carmo B S 2021 Wavelet analysis of a flexible
filament kinematics: emulating C. elegans swimming
behavior J. Braz. Soc. Mech. Sci. Eng. 43 207

[52] Mongelli M and Battista N A 2020 A swing of beauty:
pendulums, fluids, forces, and computers Fluids 5 48

20

https://doi.org/10.1146/annurev.bioeng.3.1.421
https://doi.org/10.1146/annurev.bioeng.3.1.421
https://doi.org/10.1146/annurev.bioeng.3.1.421
https://doi.org/10.1146/annurev.bioeng.3.1.421
https://doi.org/10.1073/pnas.0912348107
https://doi.org/10.1073/pnas.0912348107
https://doi.org/10.1073/pnas.0912348107
https://doi.org/10.1073/pnas.0912348107
https://doi.org/10.1016/j.compag.2011.01.015
https://doi.org/10.1016/j.compag.2011.01.015
https://doi.org/10.1016/j.compag.2011.01.015
https://doi.org/10.1016/j.compag.2011.01.015
https://doi.org/10.1093/jxb/21.1.91
https://doi.org/10.1093/jxb/21.1.91
https://doi.org/10.1093/jxb/21.1.91
https://doi.org/10.1093/jxb/21.1.91
https://doi.org/10.1126/science.1188418
https://doi.org/10.1126/science.1188418
https://doi.org/10.1126/science.1188418
https://doi.org/10.1126/science.1188418
https://doi.org/10.1016/j.ijthermalsci.2016.09.001
https://doi.org/10.1016/j.ijthermalsci.2016.09.001
https://doi.org/10.1016/j.ijthermalsci.2016.09.001
https://doi.org/10.1016/j.ijthermalsci.2016.09.001
https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.047
https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.047
https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.047
https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.047
https://doi.org/10.1063/1.5094076
https://doi.org/10.1063/1.5094076
https://doi.org/10.1073/pnas.1323094111
https://doi.org/10.1073/pnas.1323094111
https://doi.org/10.1073/pnas.1323094111
https://doi.org/10.1073/pnas.1323094111
https://doi.org/10.1073/pnas.1708873114
https://doi.org/10.1073/pnas.1708873114
https://doi.org/10.1073/pnas.1708873114
https://doi.org/10.1073/pnas.1708873114
https://doi.org/10.1002/lno.10319
https://doi.org/10.1002/lno.10319
https://doi.org/10.1002/lno.10319
https://doi.org/10.1002/lno.10319
https://doi.org/10.1146/annurev-marine-010213-135119
https://doi.org/10.1146/annurev-marine-010213-135119
https://doi.org/10.1146/annurev-marine-010213-135119
https://doi.org/10.1146/annurev-marine-010213-135119
https://doi.org/10.1016/s0092-8240(05)80768-2
https://doi.org/10.1016/s0092-8240(05)80768-2
https://doi.org/10.1016/s0092-8240(05)80768-2
https://doi.org/10.1016/s0092-8240(05)80768-2
https://doi.org/10.1016/j.jcp.2008.04.014
https://doi.org/10.1016/j.jcp.2008.04.014
https://doi.org/10.1016/j.jcp.2008.04.014
https://doi.org/10.1016/j.jcp.2008.04.014
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1146/annurev-fluid-010719-060228
https://doi.org/10.1146/annurev-fluid-010719-060228
https://doi.org/10.1146/annurev-fluid-010719-060228
https://doi.org/10.1146/annurev-fluid-010719-060228
https://doi.org/10.1002/cpa.3160460602
https://doi.org/10.1002/cpa.3160460602
https://doi.org/10.1002/cpa.3160460602
https://doi.org/10.1002/cpa.3160460602
https://doi.org/10.1006/jcph.2000.6483
https://doi.org/10.1006/jcph.2000.6483
https://doi.org/10.1006/jcph.2000.6483
https://doi.org/10.1006/jcph.2000.6483
https://doi.org/10.1006/jcph.2000.6502
https://doi.org/10.1006/jcph.2000.6502
https://doi.org/10.1006/jcph.2000.6502
https://doi.org/10.1006/jcph.2000.6502
https://doi.org/10.1016/j.jcp.2005.02.011
https://doi.org/10.1016/j.jcp.2005.02.011
https://doi.org/10.1016/j.jcp.2005.02.011
https://doi.org/10.1016/j.jcp.2005.02.011
https://doi.org/10.1016/j.jcp.2006.08.019
https://doi.org/10.1016/j.jcp.2006.08.019
https://doi.org/10.1016/j.jcp.2006.08.019
https://doi.org/10.1016/j.jcp.2006.08.019
https://github.com/IBAMR/IBAMR
https://doi.org/10.1002/cnm.2888
https://doi.org/10.1002/cnm.2888
https://doi.org/10.1088/1748-3190/aa5e08
https://doi.org/10.1088/1748-3190/aa5e08
https://doi.org/10.1002/mma.4708
https://doi.org/10.1002/mma.4708
https://doi.org/10.1002/mma.4708
https://doi.org/10.1002/mma.4708
https://doi.org/10.1093/icb/icv102
https://doi.org/10.1093/icb/icv102
https://doi.org/10.1093/icb/icv102
https://doi.org/10.1093/icb/icv102
http://math.utah.edu/IBIS/
https://doi.org/10.1137/s1064827501389060
https://doi.org/10.1137/s1064827501389060
https://doi.org/10.1137/s1064827501389060
https://doi.org/10.1137/s1064827501389060
https://doi.org/10.1016/j.compstruc.2008.11.001
https://doi.org/10.1016/j.compstruc.2008.11.001
https://doi.org/10.1016/j.compstruc.2008.11.001
https://doi.org/10.1016/j.compstruc.2008.11.001
https://doi.org/10.1016/0021-9991(84)90086-x
https://doi.org/10.1016/0021-9991(84)90086-x
https://doi.org/10.1016/0021-9991(84)90086-x
https://doi.org/10.1016/0021-9991(84)90086-x
https://doi.org/10.1016/j.cma.2007.06.030
https://doi.org/10.1016/j.cma.2007.06.030
https://doi.org/10.1016/j.cma.2007.06.030
https://doi.org/10.1016/j.cma.2007.06.030
https://mathworks.com/matlabcentral/answers/780292-how-to-cite-matlab www.mathworks.com/products.html
https://mathworks.com/matlabcentral/answers/780292-how-to-cite-matlab www.mathworks.com/products.html
https://mathworks.com/matlabcentral/answers/780292-how-to-cite-matlab www.mathworks.com/products.html
https://python.org
http://citebay.com/how-to-cite/python/
https://doi.org/10.3390/fluids4030169
https://doi.org/10.3390/fluids4030169
https://doi.org/10.7554/elife.50084
https://doi.org/10.7554/elife.50084
https://doi.org/10.1093/icb/icaa131
https://doi.org/10.1093/icb/icaa131
https://doi.org/10.1093/icb/icaa131
https://doi.org/10.1093/icb/icaa131
https://doi.org/10.1007/s10409-020-00953-4
https://doi.org/10.1007/s10409-020-00953-4
https://doi.org/10.1007/s10409-020-00953-4
https://doi.org/10.1007/s10409-020-00953-4
https://doi.org/10.1007/s40430-021-02915-8
https://doi.org/10.1007/s40430-021-02915-8
https://doi.org/10.3390/fluids5020048
https://doi.org/10.3390/fluids5020048


Bioinspir. Biomim. 17 (2022) 036003 M Santiago et al

[53] Battista N A and Mizuhara M S 2019 Fluid-structure
interaction for the classroom: speed, accuracy, convergence,
and jellyfish! (arXiv:1902.07615)

[54] Battista N A 2021 Fluid-structure interaction for the
classroom: interpolation, hearts, and swimming! SIAM
Review 63 1

[55] Senter D M, Douglas D R, Strickland W C, Thomas S G,
Talkington A M, Miller L A and Battista N A 2020 A
semi-automated finite difference mesh creation method for
use with immersed boundary software IB2d and IBAMR
Bioinspiration Biomimetics 16 016008

[56] Egan B A and Mahoney J R 1972 Numerical modeling of
advection and diffusion of urban area source pollutants J.
Appl. Meteorol. 11 312–22

[57] Faugeras B and Maury O 2007 Modeling fish population
movements: from an individual-based representation to an
advection–diffusion equation J. Theor. Biol. 247 837–48

[58] Largier J L 2003 Considerations in estimating larval
dispersal distances from oceanographic data Ecol. Appl. 13
71–89

[59] van der Lee J and De Windt L 2001 Present state and future
directions of modeling of geochemistry in hydrogeological
systems J. Contam. Hydrol. 47 265–82

[60] Muñoz-García J, Neufeld Z and Torney C 2010 Nutrient
exposure of chemotactic organisms in small-scale turbulent
flows New J. Phys. 12 103043

[61] Weissburg M 2000 The fluid dynamical context of
chemosensory behavior Biol. Bull. 198 188–202

[62] Waldrop L D, Miller L A and Khatri S 2016 A tale of two
antennules: the performance of crab odour-capture organs
in air and water J. R. Soc. Interface 13 20160615

[63] Khaled A-R A and Vafai K 2003 The role of porous media in
modeling flow and heat transfer in biological tissues Int. J.
Heat Mass Transfer 46 4989–5003

[64] Deleuze Y, Chiang C-Y, Thiriet M and Sheu T W H 2016
Numerical study of plume patterns in a
chemotaxis-diffusion–convection coupling system Comput.
Fluids 126 58–70

[65] Wang K and Wang H 2011 A fast characteristic finite
difference method for fractional advection–diffusion
equations Adv. Water Resour. 34 810–6

[66] Burman E and Ern A 2007 Continuous interior penalty
hp-finite element methods for advection and
advection–diffusion equations Math. Comput. 76 1119–41

[67] Zhuang P, Gu Y T, Liu F, Turner I and Yarlagadda P K D V
2011 Time-dependent fractional advection–diffusion
equations by an implicit MLS meshless method Int. J.
Numer. Methods Eng. 88 1346–62

[68] Liu G and Karamanlidis D 2003 Mesh free methods: moving
beyond the finite element method Appl. Mech. Rev. 56
B17–8

[69] Huang H, Sugiyama K and Takagi S 2009 An immersed
boundary method for restricted diffusion with permeable
interfaces J. Comput. Phys. 228 5317–22

[70] Kremien M, Shavit U, Mass T and Genin A 2013 Benefit of
pulsation in soft corals Proc. Natl Acad. Sci. 110 8978–83

[71] Waldrop L D, Reidenbach M A and Koehl M A R 2015
Flexibility of crab chemosensory sensilla enables flicking
antennules to sniff Biol. Bull. 229 185–98

[72] Waldrop L D, He Y and Khatri S 2018 What can
computational modeling tell us about the diversity of
odor-capture structures in the pancrustacea? J. Chem. Ecol.
44 1084–100

[73] Olson S D 2013 Fluid dynamic model of invertebrate sperm
chemotactic motility with varying calcium inputs J.
Biomech. 46 329–37

[74] Kiselev A and Ryzhik L 2012 Biomixing by chemotaxis and
enhancement of biological reactions Commun. PDE 37
298–318

[75] Dillon R, Fauci L and Gaver D III 1995 A microscale model
of bacterial swimming, chemotaxis and substrate transport
J. Theor. Biol. 177 325–40

[76] Stocker R and Seymour J R 2012 Ecology and physics of
bacterial chemotaxis in the ocean Microbiol. Mol. Biol. Rev.
76 792–812

[77] Boulard T, Roy J-C, Pouillard J-B, Fatnassi H and Grisey A
2017 Modelling of micrometeorology, canopy transpiration
and photosynthesis in a closed greenhouse using
computational fluid dynamics Biosyst. Eng. 158
110–33

[78] Dudley P N, Bonazza R, Jones T T, Wyneken J and Porter W
P 2014 Leatherbacks swimming in silico: modeling and
verifying their momentum and heat balance using
computational fluid dynamics PLoS One 9 e110701

[79] Zhang S, Guy R D, Lasheras J C and del Álamo J C 2017
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