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C*-ENVELOPES FOR OPERATOR ALGEBRAS WITH A COACTION AND

CO-UNIVERSAL C*-ALGEBRAS FOR PRODUCT SYSTEMS

A. DOR-ON, E.T.A. KAKARIADIS, E. KATSOULIS, M. LACA, AND X. LI

Abstract. A cosystem consists of a possibly nonselfadoint operator algebra equipped with a coaction
by a discrete group. We introduce the concept of C*-envelope for a cosystem; roughly speaking, this is
the smallest C*-algebraic cosystem that contains an equivariant completely isometric copy of the original
one. We show that the C*-envelope for a cosystem always exists and we explain how it relates to the usual
C*-envelope. We then show that for compactly aligned product systems over group-embeddable right
LCM semigroups, the C*-envelope is co-universal, in the sense of Carlsen, Larsen, Sims and Vittadello,
for the Fock tensor algebra equipped with its natural coaction. This yields the existence of a co-universal

C*-algebra, generalizing previous results of Carlsen, Larsen, Sims and Vittadello, and of Dor-On and
Katsoulis. We also realize the C*-envelope of the tensor algebra as the reduced cross sectional algebra
of a Fell bundle introduced by Sehnem, which, under a mild assumption of normality, we then identify
with the quotient of the Fock algebra by the image of Sehnem’s strong covariance ideal. In another
application, we obtain a reduced Hao-Ng isomorphism theorem for the co-universal algebras.

1. Introduction

In a remarkable series of papers spanning four decades, Arveson developed a non-commutative analogue
of boundary theory for nonselfadjoint operator algebras [1, 2, 3, 4], which constitutes one of the most
fundamental and fruitful areas of interaction between C*-algebras and nonselfadjoint operator algebras.
One specific noncommutative boundary is the noncommutative analogue of the Shilov boundary, called
the C*-envelope, which can be thought of as the smallest C*-algebra containing the given operator algebra
in a reasonable sense. Computing the C*-envelope in various cases has been of interest and use to many
authors over the years [17, 18, 21, 22, 32, 39, 49]. C*-envelopes have also had recent applications
in classification of nonselfadjoint operator algebras [19], finite dimensional approximation [11], crossed
products [39], group theory [6, 34], noncommutative geometry [12], and noncommutative convexity
[24].

In the seminal work of Pimsner [54], many operator algebra constructions were generalized and unified
by associating them to a single C*-correspondence. This allowed Pimsner to generalize the work of Cuntz
and Krieger [15], as well as many others. Pimsner’s work was refined by Katsura [40], who removed all
conditions on the C*-correspondence to obtain an in-depth study of what we now call Cuntz-Pimsner
algebras. A natural context for further generalization, unification and insight was introduced by Fowler
in his work on discrete product systems of C*-correspondences over quasi-lattice ordered semigroups
[27]. Fowler’s Toeplitz-Nica-Pimsner algebras generalize Nica’s Wiener-Hopf algebras from [51], as well
as Pimsner’s Toeplitz algebras. Although Fowler provided a Cuntz-type algebra for regular product
systems when the semigroup is directed, for many years it was unclear what the right notion of a Cuntz
algebra of a product system should be. Eventually, Sims and Yeend [57] were able to give a definition
of a Cuntz-Nica-Pimsner algebra NO(X) for many new product systems. In further work, Carlsen,
Larsen, Sims and Vitadello [9] introduced a co-universal Cuntz-Nica-Pimsner type of algebra, which they
denoted as NOr(X), that satisfies an appropriate uniqueness theorem for equivariant homomorphisms.
Their co-universal algebra was shown to exist under additional hypothesis on the product system; it
generalizes reduced crossed products by quasi-lattice ordered groups, Crisp-Laca boundary quotients
[14], and higher-rank graph C*-algebras [41].

The tensor algebra Tλ(X)+ is the canonical nonselfadjoint subalgebra of the reduced Toeplitz C*-
algebra, or Fock C*-algebra, Tλ(X) generated by the left-creation operators of the C*-correspondences
that comprise the product system. It models many of the nonselfadjoint operator algebras that were
previously investigated in the multivariable setting [18, 33]. As with any nonselfadjoint algebra, a
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fundamental problem regarding Tλ(X)+ is the identification of its C*-envelope C∗
env(Tλ(X)+). In the case

of a single C∗-correspondence this was done by Katsoulis and Kribs [38], following earlier work of Muhly
and Solel [49], who pioneered the study of tensor algebras. In [17], Davidson, Fuller and Kakariadis
identified the C*-envelope for tensor algebras of product systems associated with Zn-dynamical systems.
In that paper dilation theoretic techniques merged with uniqueness theorems for the images of equivariant
homomorphisms and gave strong motivating evidence that one can use C*-envelope techniques in order
to prove the existence of a co-universal object for more general product systems over abelian orders.
This approach was fully materialized by Dor-On and Katsoulis [20] who proved that for a compactly
aligned product system X over any abelian lattice ordered semigroup, C∗

env(Tλ(X)+) has the co-universal
property proposed in [9], thus showing in particular that the co-universal algebra NOr(X) of [9] exists
without the injectivity assumption when the semigroup is abelian lattice ordered. This result strengthened
the important connection between nonselfadjoint and selfadjoint operator algebra theory and raised the
tantalising possibility of proving directly the existence of an appropriate notion of C*-envelope that
satisfies the desired co-universal property automatically beyond abelian orders. Even though some of the
techniques of [20] are indeed applicable to more general settings, it soon became clear that significant
progress would require new ideas. The purpose of the present paper is to realize this possibility through
the use of an equivariant version of the C*-envelope.

The turning point in our investigation is the realization that if X is a product system over a sub-
semigroup P of a group G, then the tensor algebra Tλ(X)+ comes equipped with a natural (normal)
coaction of G, forming what we call a cosystem. A cosystem (A, G, δ) consists of an operator algebra A
and a coaction δ : A → A⊗C∗(G) by a discrete group G. In Section 3 we develop a boundary theory for
cosystems that parallels the corresponding theory for operator algebras. In particular, given a cosystem
(A, G, δ), we define notions of C∗-cover and C*-envelope for (A, G, δ). Both notions are equivariant ana-
logues of the classical definitions. In Theorem 3.8, which is the main result of Section 3, we show that
the C*-envelope C∗

env(A, G, δ) of a cosystem (A, G, δ) always exists. Furthermore we give a picture of
C∗

env(A, G, δ) that connects it with the C*-envelope of A. Specifically, C∗
env(A, G, δ) is the C∗-subalgebra

of C∗
env(A)⊗C∗(G) generated by δ(A), equipped with the coaction id⊗∆, where ∆ is the comultiplication

on G.
Having developed a satisfactory theory of C*-envelopes for cosystems, we then move to applications.

In Section 4 we investigate various C*-algebras associated with a product system over a right LCM
subsemigroup of a group. Right LCM semigroups that embed in a group include quasi-lattice orders as
well as several other important classes of semigroups. In Theorem 4.9 we show that for every compactly
aligned product systemX over a right LCM subsemigroup P of a groupG, the C*-envelope of the cosystem

(Tλ(X)+, G, δ
+
) has the co-universal property with respect to injective, gauge equivariant representations

of X . This resolves the problem of existence of a co-universal C*-algebra, which is one of the central
problems raised by Carlsen, Larsen, Sims and Vitadello in [9]. Specifically, our Theorem 4.9 removes all
the injectivity assumptions on X from [9, Theorem 4.1] and at the same time generalizes the results for
abelian semigroups of [20] to the realm of right LCM semigroups that embed in a group. We remark
that all the necessary facts from the theory of product systems over these semigroups are developed here
from scratch, so, in particular, the proof of Theorem 4.9 is essentially self-contained as it requires only
some additional basic facts regarding the cross sectional C*-algebra of a Fell bundle [25].

In [56] Sehnem introduced a covariance C*-algebra A×X P associated to a product system X over a
general subsemigroup P of a group G with coefficients in a C*-algebra A. There is a natural coaction of G
on A×X P giving a grading SCX := {[A×X P ]g}g∈G. Sehnem’s covariance algebra satisfies an important
property: any representation of A ×X P that is injective on A is automatically injective on the fiber
[A×X P ]e over the identity. In Theorem 5.3 we show that if the product system X is compactly aligned
over a right LCM subsemigroup of a group, then our C*-envelope is naturally isomorphic to the reduced
cross-sectional algebra of SCX , while Sehnem’s algebra A×X P is isomorphic to the full cross-sectional
algebra of SCX . We also consider the quotient of Tλ(X) by the image of Sehnem’s ideal I∞, and in
Corollary 5.6 we show that under a mild assumption (which is satisfied by all right LCM subsemigroups

of exact groups), our C*-envelope is canonically isomorphic to this quotient: C∗
env(Tλ(X)+, G, δ

+
) ≃

Tλ(X)/qλ(I∞). When combined with our main result, Theorem 4.9, these results give a very detailed

picture of C∗
env(Tλ(X)+, G, δ

+
).

In the final section of the paper we give an application of our theory to Hao-Ng type isomorphisms,
much in the spirit of earlier works [20, 35, 39].
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2. Preliminaries

If X and Y are subspaces of some B(H) then we write XY := span{xy | x ∈ X , y ∈ Y}. We denote
the spatial tensor product by ⊗. All the semigroups considered in this paper are assumed to embed in a
group and to contain the identity.

2.1. Operator algebras. We begin by establishing terminology and recalling some fundamental facts
in the theory of operator algebras. For additional details and proofs, the monographs [5, 53] provide an
excellent introduction to the subject.

By an operator algebra A we mean a norm-closed subalgebra of some B(H) for a Hilbert space H .
By a representation of A we mean a completely contractive homomorphism φ : A → B(H). When
φ : A → B(H) is a representation, we will always assume it is non-degenerate in the sense that φ(A)H is
dense in H .

Meyer [48] has established the passage from the unital to the non-unital theory, which we now explain.
Suppose that A ⊆ B(H) and IH /∈ A. Meyer shows that if φ : A → B(K) is a (completely isometric)
representation then the extension φ1 : A1 → B(K) given by

φ1(a+ λIH) = φ(a) + λIK for A1 = span{A, IH}

is also a (completely isometric resp.) representation. Hence A1 is independent of the completely isometric
representation of A and thus constitutes the unique “one-point” unitization of A.

A dilation of a representation φ : A → B(H) is a representation φ′ : A → B(H ′) such that H ⊆ H ′

and φ(a) = PHφ′(a)|H for all a ∈ A. A representation φ : A → B(H) is called maximal if every dilation
φ′ : A → B(H ′) of φ is trivial, in the sense that H is reducing for φ(A). The existence of maximal
dilations in the unital case was first established by Dritschel and McCullough [23], and later simplified
by Arveson [4]. Dor-On and Salomon [22] have shown that a representation φ is maximal if and only
if its unitization φ1 is so. Hence, maximal dilations exist for possibly non-unital operator algebras, as
arising from maximal dilations of their unitizations.

Now consider A inside the C*-algebra C∗(A) it generates. By passing to the unitization and apply-
ing Arveson’s Extension Theorem we see that every representation φ : A → B(H) admits an extension

φ̃ : C∗(A) → B(H) to a completely contractive and completely positive map (ccp). A representation
φ : A → B(H) is said to have the unique extension property (UEP) if every ccp extension to C∗(A) is a
∗-representation, and thus φ has a unique extension to a ∗-representation of C∗(A). Arveson [4] shows
that a representation is maximal if and only if it has the UEP in the unital case. Dor-On and Salomon
[22] have extended this to the non-unital case as well.

The existence of maximal dilations leads naturally to the concept of the C*-envelope for an operator
algebra, which we now discuss. We say that (C, ι) is a C*-cover of A if ι : A → C is a completely
isometric representation with C = C∗(ι(A)). The C*-envelope C∗

env(A) of A is a C*-cover (C∗
env(A), ι)

with the following universal property: if (C′, ι′) is a C*-cover of A then there exists a (necessarily unique)
∗-epimorphism φ : C′ → C∗

env(A) such that the following diagram

(2.1) C′

φ

��
A

ι′

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥ ι // C∗
env(A)

commutes. Arveson predicted the existence of the C*-envelope, which he computed for a variety of
operator algebras [1], but the existence problem was open for a decade until Hamana solved it for unital
algebras by proving the existence of injective envelopes [28]. It follows from [22, Subsection 2.2] that
the C*-envelope of an operator algebra A is the C*-algebra generated by a maximal completely isometric
representation, even when A is non-unital.

2.2. C*-correspondences. A C∗-correspondence X over A is a right Hilbert module over a C*-algebra
A with a left action of A given by a ∗-homomorphism ϕX of A into the adjointable operators on X . We
write LX for the adjointable operators on X and KX for the norm closure of the generalized finite rank
operators on X . For two C*-correspondences X,Y over the same A we write X ⊗A Y for the balanced
tensor product over A. We say that X is unitarily equivalent to Y (symb. X ≃ Y ) if there is a surjective
adjointable operator U ∈ L(X,Y ) such that 〈Uξ, Uη〉 = 〈ξ, η〉 and U(aξb) = aU(ξ)b for all ξ, η ∈ X and
a, b ∈ A.
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A Toeplitz representation (π, t) of a C*-correspondenceX overA is a pair (π, t) such that π : A → B(H)
is a ∗-representation and t is a left module map implemented by π which satisfies π(〈ξ, η〉) = t(ξ)∗t(η).
Then t is automatically a bimodule map via π. When (π, t) is a Toeplitz representation of the C*-
correspondence X , there exists an induced ∗-representation of KX denoted by t as well and determined
by t(θξ,η) = t(ξ)t(η)∗ for all rank-one operators θξ,η ∈ KX .

2.3. Product systems and their representations. Let P be a unital discrete subsemigroup of a
discrete group G. We will write P ∗ = P ∩ P−1 for the set of invertible elements in P . We write C∗

λ(P )
for the C*-algebra generated by the left regular representation of P , i.e., the shift operators Vp on ℓ2(P )
given by

Vper = epr for all r ∈ P,

where {er}r∈P is the standard orthonormal basis for ℓ2(P ).

Definition 2.1. A product system X over P with coefficients in a C*-algebra A is a family {Xp | p ∈ P}
of C*-correspondences over A together with multiplication maps Mp,q : Xp ⊗A Xq → Xpq such that

(i) Xe is the standard bimodule AAA, and Me,e : A⊗A A
∼=
−→ A is simply multiplication on A;

(ii) if p = e, then Me,q : A⊗A Xq

∼=
−→ A ·Xp is the left action of A on Xq;

(iii) if q = e then Mp,e : Xp ⊗A A
∼=
−→ Xp is the right action of A on Xp;

(iv) if p, q ∈ P \ {e}, then Mp,q : Xp ⊗A Xq

∼=
−→ Xpq;

(v) the multiplication maps are associative in the sense that

Mpq,r(Mp,q ⊗ idXr
) = Mp,qr(idXp

⊗Mq,r) for all p, q, r ∈ P.

Throughout this work we will also assume that the left action of A on Xq is nondegenerate (or essential)

in the sense that A ·Xq = Xq for every q ∈ P , and hence the multiplication map Me,q in (ii) is an
isomorphism of Xe ⊗A Xq onto Xq.

Remark 2.2. We assume that the left action of A is nondegenerate in order to be able to freely use the
results from [56]. Observe that, as pointed out in [43, Remark 1.3], this assumption is automatically
satisfied when P has a nontrivial unit u because then

Xq = Xu ⊗A Xu−1q = Xu ⊗A Xu−1 ⊗A Xq = Xe ⊗Xq.

It is plausible that one could extend the main results from [56] to product systems with degenerate left
actions, and that this would allow us to include such product systems in our results.

Henceforth we will be suppressing the use of the symbols Mp,q, thus writing ξpξq for the image of
ξp ⊗ ξq under Mp,q, and so

ϕpq(a)(ξpξq) = (ϕp(a)ξp)ξq for all a ∈ A and ξp ∈ Xp, ξq ∈ Xq.

The product system structure gives rise to maps

ipqp : LXp → LXpq such that ipqp (S)(ξpξq) = (Sξp)ξq .

If x ∈ P ∗ then irxr : LXr → LXrx is a ∗-isomorphism with inverse irxx
−1

rx : LXrx → LXr.

Definition 2.3. Let P be a subsemigroup of a group G and let X be a product system over P . A Toeplitz
representation t = {tp}p∈P of the product system {Xp | p ∈ P} is a family of maps tp : Xp → B(H) such
that (te, tp) is a Toeplitz representation of Xp and

tp(ξp)tq(ξq) = tpq(ξpξq) for all ξp ∈ Xp, ξq ∈ Xq.

The representation t is said to be injective if the homomorphism te : Xe → B(H) is injective, in which
case tp is isometric for each p ∈ P . The Toeplitz algebra T (X) of X is the universal C*-algebra generated
by X with respect to the Toeplitz representations of X . The Toeplitz tensor algebra T (X)+ of X is the
norm-closed nonselfadjoint subalgebra of T (X) generated by X and A. Note that in the present situation
Xe = A, so T (X)+ is generated by X alone.

A Toeplitz representation t = {tp}p∈P induces a representation tr,s of K(Xs, Xr) on the same Hilbert
space, determined by tr,s(θξr,ξs) = tr(ξr)ts(ξs)

∗. In the case s = r we slightly abuse the notation, as al-
ready indicated above for a single correspondence, and write ts in place of ts,s. This gives a representation
triple (tr, tr,s, ts) of the bimodule (KXr ,K(Xs, Xr),KXs).



C*-ENVELOPES FOR COACTIONS ON OPERATOR ALGEBRAS 5

Proposition 2.4. Let P be a subsemigroup of a group G and let X product system over P . Let t =
{tp}p∈P be a Toeplitz representation of X. If r ∈ P ∗ then

tr(Xr)
∗ = tr−1(Xr−1).

If w ∈ P and r ∈ P ∗ then

iwr
w (kw) ∈ KXwr and twr(i

wr
w (kw)) = tw(kw) for all kw ∈ KXw.

Proof. Since r ∈ P ∗ we have that Xe ≃ Xr⊗Xr−1. Since r−1 ∈ P ∗ we also have that Xe⊗Xr−1 ≃ Xr−1 .
Hence we get the two equations

te(Xe) = tr(Xr)tr−1(Xr−1) and te(Xe)tr−1(Xr−1) = tr−1(Xr−1).

By multiplying the first equation on the left with tr(X)∗, and by using the second equation, we get

tr(Xr)
∗te(Xe) ⊆ tr(Xr)∗tr(Xr)tr−1(Xr−1) ⊆ te(Xe)tr−1(Xr−1) = tr−1(Xr−1).

Replacing r−1 by r in the second equation and taking adjoints gives tr(Xr)
∗ = tr(Xr)∗te(Xe), hence

tr(Xr)
∗ ⊂ tr−1(Xr−1).

As this holds for arbitrary r ∈ P ∗ it also holds for r−1 ∈ P ∗ and so

tr−1(Xr−1)∗ ⊆ tr(Xr).

By applying adjoints we get the required reverse inclusion.
Since r ∈ P ∗ we have that ιwr

w : LXw → LXwr is a ∗-isomorphism and thus it preserves the compact
operators. Therefore ιwr

w (kw) ∈ KXwr for kw ∈ KXw. By applying on elementary tensors we see

that twr(i
wr
w (kw)) coincides with tw(kw) restricted on twr(KXwr)H , where H is the Hilbert space where

t = {tp}p∈P acts on. On the other hand tw(kw) is completely defined by its representation on tw(KXw)H .
However by the first part we have that

twr(Kwr) = tw(Xw)tr(Xr)tr(Xr)∗tw(Xw)∗ = tw(Xw)te(Xe)tw(Xw)∗ = tw(KXw),

and so twr(i
wr
w (kw)) = tw(kw).

The Fock space representation t of Fowler [27] ensures that X , embeds isometrically in T (X). It is
given as follows. Let F(X) = ⊕r∈PXr and for ξp ∈ Xp define

tp(ξp)ηr = ξpηr for all ηr ∈ Xr.

Then t := {tp} defines a representation of Xp for every p ∈ P , and induces a representation of T (X). By
taking the compression of te at the (e, e)-entry we see that te is injective, and hence tp is injective for
each p ∈ P .

Definition 2.5. Let P be a subsemigroup of a group G and let X a product system over P . The Fock
algebra Tλ(X) is the C*-algebra generated by the Fock representation. The Fock tensor algebra Tλ(X)+

is the subalgebra of Tλ(X) generated by X .

2.4. Product systems over right LCM semigroups. A semigroup P is said to be a right LCM
semigroup if it is left cancellative and satisfies Clifford’s condition [45, 52]:

for every p, q ∈ P with pP ∩ qP 6= ∅ there exists a w ∈ P such that pP ∩ qP = wP .

In other words, if p, q ∈ P have a right common multiple then they have a right Least Common Multiple.
We always assume that the semigroup P is contained in a group, and that it contains the identity element.
It follows that P is by default cancellative, and we will refer to P simply as a right LCM subsemigroup
of a group. It is clear that if an element w ∈ P is a right Least Common Multiple for p, q ∈ P then so
is wx for every unit x ∈ P ∗ := P ∩ P−1. Right LCM semigroups that embed in a group and have no
nontrivial units, so that least common multiples are unique whenever they exist, have been called weak
quasi-lattice ordered semigroups in [31].

Example 2.6. Right LCM subsemigroups of groups include as primary examples the quasi-lattice orders
defined in [51]. Several noteworthy examples beyond quasi-lattice orders have been considered recently
in the context of isometric representations. We would like to list a few here in order to illustrate the
variety. Since we do not require any specialized knowledge of these examples in this paper, we limit
ourselves to giving references where details can be found.

The inclusion of an Artin monoid in its corresponding Artin group is always a right LCM subsemigroup
of a group [7]. Artin monoids have trivial unit groups so they actually determine weak quasi-lattice
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orders in their respective groups. At this point, only the particular cases of Artin monoids of spherical
and rectangular type are actually known to be true quasi-lattice orders, [7] and [13].

Another important class of right LCM subsemigroups of groups are the inclusions of Baumslag-Solitar
monoids B(m,n)+ in their corresponding Baumslag-Solitar groups B(m,n) := 〈a, b | abm = bna〉. These
monoids always have trivial unit groups, and they give quasi-lattice orders in their groups if and only
if either mn > 0 [58, Theorem 2.11] or else mn < 0 and |m| = 1 [58, Lemma 2.12], see also [31,
Example 3.5]. The remaining case is particularly interesting because when mn < 0 and |m| 6= 1, no
group embedding of B(m,n)+ can be a quasi-lattice order. This is proved directly in [31, Proposition
3.10] under the extra assumption that m does not divide n; a proof without this assumption can be
derived from the failure of the Toeplitz condition in this case, as shown in [47, Section 4.2].

There are also right LCM semigroups such as Z⋊N×, in which the whole additive part Z×{1} consists
of units. A sizable general class of examples like this arises from considering the semigroup R ⋊ R× of
affine transformations of an integral domain R [46]. The hypothesis of integral domain is necessary for
these semigroups to embed in groups; which can be taken to be groups of affine transformations of the
corresponding fields of fractions. The semigroupR⋊R× is a right LCM semigroup if and only if R satisfies
the GCD condition [52, Proposition 2.23]. The best known examples are the ax + b semigroups of the
rings of algebraic integers in number fields of class number 1. In these, the groups of units are nonabelian
and consist of the semidirect products of the additive group of those rings by the multiplicative action of
the units.

Partly inspired by these, more right LCM semigroups that embed in a group have been constructed
as semidirect products associated to certain algebraic actions of Nk on an abelian group that respect the
order in the sense of [8, Definition 8.1].

It will be convenient for us to work with finite subsets F of P on which a ‘local’ right LCM operation
can be defined that reflects the structure of upper bounds in P , thus generalizing the notion of ∨-closed
sets used in the case of a quasi-lattice order. The problem is that expressions like p ∨ q or lcm(p, q)
customarily used to denote smallest common upper bound or least common multiple of two elements, are
not well defined for a general right LCM semigroup because of the nonuniqueness caused by the presence
of nontrivial units in P . So we need to impose restrictions on F to ensure uniqueness.

Definition 2.7. Let P be a right LCM subsemigroup of a group G. A finite subset F of P is said to be
∨-closed if for every p, q ∈ F with pP ∩ qP 6= ∅ there exists a unique w ∈ F such that pP ∩ qP = wP ,
equivalently, F contains exactly one right LCM for any two of its elements that have a right LCM in P .

An easy example that illustrates this notion is provided by the multiplicative semigroup P = Z \ {0},
in which least common multiples are defined only up to ±1. But, for instance, the set F of all positive
divisors of a positive integer is ∨-closed because any two elements of F have a unique l.c.m. in F .

Another way to approach this is to realize that a finite subset F ⊆ P is ∨-closed iff the restriction of
the ‘right ideal map’ I : p 7→ pP to F gives a bijection whose image I(F ) := {pP | p ∈ F} is closed under
intersection. It is then easy to see that if F is ∨-closed, then the familiar relation

p ≤ q ⇔ q−1p ∈ P

actually defines a partial order on F , and hence, being finite, each ∨-closed set has maximal and minimal
elements.

Following Fowler’s work [27], Brownlowe, Larsen and Stammeier [8], and Kwasniewski and Larsen
[42, 43] considered product systems over right LCM semigroups.

Definition 2.8. A product system X over a right LCM semigroup P with coefficients from A is called
compactly aligned if for p, q ∈ P with pP ∩ qP = wP we have that

iwp (kp)i
w
q (kq) ∈ KXw whenever kp ∈ KXp, kq ∈ KXq.

A note is in order for clarifying that this is independent of the choice of w. Recall that if w′ is a right
LCM of p, q then w′ = wx for some x ∈ P ∗. Since LXw ≃ LXwx we have that iwp (kp)i

w
q (kq) ∈ KXw if

and only if iwx
p (kp)i

wx
q (kq) = iwx

w (iwp (kp)i
w
q (kq)) ∈ KXwx for all x ∈ P ∗.

Definition 2.9. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P with coefficients in A. A Nica-covariant representation t = {tp}p∈P is a Toeplitz
representation of X that in addition satisfies the Nica-covariance condition: for all kp ∈ KXp and
kq ∈ KXq, i.e.,

tp(kp)tq(kq) =

{
tw(i

w
p (kp)i

w
q (kq)) if pP ∩ qP = wP,

0 otherwise.
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The Nica-Toeplitz algebra NT (X) of X is the universal C*-algebra generated by X with respect to the
Nica-covariant representations of X . The Nica-Toeplitz tensor algebra NT (X)+ of X is the norm closed
nonselfadoint subalgebra of NT (X) generated by X .

Notice that in the definition of Nica-covariance, the choice of the least common multiple is arbitrary.
This is because Proposition 2.4 implies that

tw(i
w
p (kp)i

w
q (kq)) = twx(i

wx
p (kp)i

wx
q (kq)), kp ∈ KXp, kq ∈ KXq,

provided that pP ∩ qP = wP and x ∈ P ∗.
Under the assumption of compact alignment, one can check that the Fock representation is automat-

ically Nica-covariant. Thus NT (X) is non-trivial. In the case where P = Z+ we actually have that
NT (X) = T (X). This is not necessarily true for other right LCM semigroups. Indeed in the case where
P = Zn

+, n ≥ 2, Dor-On and Katsoulis provide a counterexample to this effect in [20, Example 5.2]. The
same example further shows that T (X)+ need not be completely isometric to NT (X)+.

Our next goal is to understand the cores of Nica-covariant representations of X . So let t = {tp}p∈P

be a Nica-covariant representation of X . We compute

tp(Xp)
∗tp(Xp) · tp(ξp)

∗tq(ξq) · tq(Xq)
∗tq(Xq) ⊆ tp(Xp)∗tp(KXp)tq(KXq)tq(Xq)

and then take a limit by an approximate identity in tp(Xp)∗tp(Xp) and in tq(Xq)∗tq(Xq), to derive that

tp(ξp)
∗tq(ξq) ∈ tp′(Xp′)tq′(Xq′)∗ for wP = pP ∩ qP, p′ = p−1w, q′ = q−1w,

and
tp(ξp)

∗tq(ξq) = 0 for pP ∩ qP = ∅.

Hence the C*-algebra C∗(t) generated by {tp(Xp)}p∈P is given by

C∗(t) = span{tp(ξp)tq(ξq)
∗ | ξp ∈ Xp, ξq ∈ Xq and p, q ∈ P}.

If F ⊆ P , then we write

(2.2) BF,t := span{tp(kp) | kp ∈ KXp, p ∈ F}

By definition, the core of the representation t is the set BP,t, which is clearly given by

BP,t =
⋃

{BF,t | F ⊆ P finite}.

Notice that when I(F ) is closed under intersections, Nica-covariance implies that BF,t is a C∗-subalgebra
of C∗(t). We wish to show next that if we restrict the above union to ∨-closed sets F we still obtain BP,t

and that for ∨-closed sets F the linear spans in (2.2) are automatically closed. We begin with this last
claim.

Proposition 2.10. Let P be a right LCM subsemigroup of a group G, let X be a compactly aligned
product system over P and let t = {tp}p∈P be a Nica-covariant representation of X. If F ⊆ P is a
∨-closed set, then

BF,t = span{tp(kp) | kp ∈ KXp, p ∈ F}.

Proof. It suffices to prove the above in the case where t = t̂ the universal representation t̂ of NT (X).
Let t be the Fock representation of X and Φ: NT (X) → C∗(t) be the canonical ∗-epimorphism. Let
f = limi fi for a net (fi) with

fi =
∑

p∈F

t̂p(kp,i) ∈ span{t̂p(kp) | kp ∈ KXp, p ∈ F}.

Then we also have that
Φ(f) = lim

i

∑

p∈F

tp(kp,i).

Recall that F is ∨-closed, so that P induces a partial order on F , and let p0 ∈ F be a minimal element of
F in this partial order. Take the compression to the (p0, p0)-entry by the projection Qp0

: F(X) → Xp0 .
Then we have that

lim
i
kp0,i = lim

i
Qp0fiQp0 = Qp0Φ(f)Qp0 .

Therefore the net (kp0,i) is convergent in KXp0 , say to some kp0 , and so limi t̂p0(kp0,i) = t̂p0(kp0). We

repeat for f − t̂p0(kp0) and the net (fi − t̂p0(kp0,i)), and for the ∨-closed set F ′ = F \ {p0}. Proceeding
inductively, we see that for every p ∈ F there exists a kp such that limi kp,i = kp and this shows that

f ∈ span{t̂p(kp) | kp ∈ KXp, p ∈ F}, which completes the proof.
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Next we see that ∨-closed sets suffice to generate the core.

Proposition 2.11. Let P be a right LCM subsemigroup of a group G. Let X be a compactly aligned
product system over P and let t = {tp}p∈P be a Nica-covariant representation of X. Then

BP,t =
⋃

{BF,t | F ⊆ P finite and ∨-closed}.

Proof. Suppose that F is an arbitrary finite subset of P . We first saturate I(F ) := {pP : p ∈ F} under
intersections,

I(F )∩ :=
{ ⋂

p∈F ′

pP : ∅ 6= F ′ ⊂ F
}
,

and then choose a unique generator of each principal ideal in the resulting set I(F )∩. This gives a
∨-closed set F∨ with the property that I(F ) ⊆ I(F )∩ = I(F∨). We note in passing that there is no
uniqueness in this process because the choice of generators is arbitrary. The result will follow once we
show that

BF,t ⊆ BF∨,t.

This is not obvious because F itself may not be contained in F∨, so we need to verify that we do not lose
any part of BF,t when we restrict to unique generators for the ideals in I(F )∩. Towards this end, since
I(F )∩ = I(F∨), it is enough to show that given p, q ∈ P with pP = qP , then tq(KXq) = tp(KXp). In that
case there exists a unit r ∈ P ∗ such that q = pr. By Proposition 2.4 we have that tr(Xr)

∗ = tr−1(Xr−1)

and tr(Xr)tr−1(Xr−1) = te(Xe). Hence

tq(KXq) = tp(Xp)tr(Xr)tr(Xr)∗tp(Xp)∗ = tp(KXp).

This completes the proof.

3. Cosystems and their C*-envelopes

In what follows G will always denote a fixed discrete group. We write ug for the generators of the
universal group C*-algebras C∗(G) and λg for the generators of the left regular representation C∗

λ(G).
We write λ : C∗(G) → C∗

λ(G) for the canonical ∗-epimorphism. Recall that C∗(G) admits a faithful
∗-homomorphism

∆: C∗(G) → C∗(G) ⊗ C∗(G) such that ∆(ug) = ug ⊗ ug

given by the universal property of C∗(G); the left inverse of ∆ is given by id⊗ χ, where χ : C∗(G) → C

is the representation arising from the trivial character of G, and we identify C∗(G) ⊗ C with C∗(G).

Definition 3.1. Let A be an operator algebra. A coaction of G on A is a completely isometric repre-
sentation δ : A → A⊗ C∗(G) such that

∑
g∈G Ag is norm-dense in A for the spectral subspaces

Ag := {a ∈ A | δ(a) = a⊗ ug}.

If, in addition, the map (id⊗ λ)δ is injective then the coaction δ is called normal.
A map δ as in Definition 3.1 automatically satisfies the coaction identity

(3.1) (δ ⊗ idC∗(G))δ = (idA ⊗∆)δ.

Indeed, (3.1) is readily seen to hold on Ag, g ∈ G and therefore on A, since
∑

g∈G Ag is norm-dense in
A.

If A is an operator algebra and δ : A → A⊗C∗(G) is a coaction on A, then we will refer to the triple
(A, G, δ) as a cosystem. A map φ : A → A′ between two cosystems (A, G, δ) and (A′, G, δ′) is said to be
G-equivariant, or simply equivariant, if δ′φ = (φ⊗ id)δ.

It follows from the definition that if (A, G, δ) is a cosystem then

Ag · Ah ⊆ Agh for all g, h ∈ G,

because δ is a homomorphism. Conversely, if there are subspaces {Ag}g∈G such that
∑

g∈G Ag is norm-

dense in A and a representation δ : A → A⊗ C∗(G) such that

δ(ag) = ag ⊗ ug for all ag ∈ Ag, g ∈ G,

then δ is a coaction of G on A. Indeed δ satisfies the coaction identity and it is completely isometric
since (idA ⊗ χ)δ = idA.
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Remark 3.2. Let (A, G, δ) be a cosystem and assume that δ extends to a ∗-homomorphism δ : C∗(A) →
C∗(A)⊗ C∗(G) that satisfies the coaction identity

(δ ⊗ id)δ(c) = (id⊗∆)δ(c) for all c ∈ C∗(A).

Then δ is automatically non-degenerate on C∗(A) in the sense that

δ(C∗(A)) [C∗(A)⊗ C∗(G)] = C∗(A)⊗ C∗(G).

Indeed if (ei) is a contractive approximate identity for C∗(A) then we can write

ag1a
∗
g2
ag3 · · · agn−1a

∗
gn

⊗ uh = lim
i
(ag1 ⊗ ug1) · · · (agn ⊗ ugn)

∗
(
ei ⊗ u(g1g

−1
2 ···g−1

n−1gn)
−1h

)
,

and likewise for all products of the form

a∗g2ag3 · · · agn−1a
∗
gn
, a∗g2ag3 · · · a

∗
gn
agn+1 and ag1a

∗
g2
· · · a∗gnagn+1

in C∗(A). By definition of δ these products generate C∗(A).

Remark 3.3. If the operator algebra A happens to be a C∗-algebra, Definition 3.1 coincides with the
definition given by Quigg in [55, Section 1]. In that case δ is a faithful ∗-homomorphism and we have
that

(Ag)
∗ = {a∗ ∈ A | δ(a∗) = a∗ ⊗ ug−1} = Ag−1 .

As in Remark 3.2 the coaction is then non-degenerate, i.e., it is a full coaction. Furthermore, there exists
a conditional expectation Eδ : A → Ae vanishing on Ag, for all g ∈ G\{e}; see [56, Proposition A.4] for
a proof. Therefore if A0 ⊆ A is a dense subset of A, then Eδ(A0) is a dense subset of Ae.

For our next result, we use Fell’s absorption principle to give sufficient conditions for the existence a
compatible normal coaction.

Proposition 3.4. Let A be an operator algebra and let G be a group. Suppose there are subspaces
{Ag}g∈G such that

∑
g∈G Ag is norm-dense in A, and there is a completely isometric homomorphism

δλ : A −→ A⊗ C∗
λ(G)

such that

(3.2) δλ(a) = a⊗ λg for all a ∈ Ag, g ∈ G.

Then A admits a normal coaction δ of G satisfying δλ = (id⊗ λ)δ.

Proof. That δλ satisfies the coaction identity follows easily from (3.2) and the subspaces

{a ∈ A | δλ(a) = a⊗ λg}, g ∈ G

have dense linear span because they contain the corresponding Ag for every g ∈ G. We need to show
that there is a completely isometric homomorphism

δ : A −→ A⊗ C∗(G)

such that δλ = (id⊗ λ)δ. Let

φ : C∗
λ(G) −→ C∗

λ(G)⊗ I −→ C∗
λ(G)⊗ C∗(G) : λg 7→ λg ⊗ ug

be the ∗-isomorphism given by Fell’s absorption principle. We can then define

δ := (δ−1
λ ⊗ idC∗(G))(idA ⊗ φ)δλ,

which is the desired completely isometric homomorphism. Indeed,

δ(ag) = (δ−1
λ ⊗ idC∗(G))((ag ⊗ λg)⊗ ug) = ag ⊗ ug

for every ag ∈ Ag, and thus δ satisfies the coaction identity and the spectral subspaces of δ have dense
linear span because they contain the subspaces Ag. Since δλ = (idA ⊗ λ)δ is faithful we have that δ is a
normal coaction on A, and the proof is complete.

Example 3.5. The reduced group C*-algebra C∗
λ(G) admits a faithful ∗-homomophism

∆λ : C
∗
λ(G) −→ C∗

λ(G) ⊗ C∗
λ(G) such that ∆λ(λg) = λg ⊗ λg .

Indeed consider the unitary

U : ℓ2(G) ⊗ ℓ2(G) −→ ℓ2(G)⊗ ℓ2(G) with U(er ⊗ es) = er ⊗ ers,

and verify that
(λg ⊗ λg)U = U(λg ⊗ I) for all g ∈ G.
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Therefore adU implements a faithful ∗-homomorphism

C∗
λ(G) ≃ C∗(λg ⊗ I | g ∈ G)

adU−→ C∗(λg ⊗ λg | g ∈ G).

Thus C∗
λ(G) admits a normal coaction of G.

Definition 3.6. Let (A, G, δ) be a cosystem. A triple (C′, ι′, δ′) is called a C*-cover for (A, G, δ) if
(C′, G, δ′) forms a cosystem and (C′, ι′) forms a C*-cover of A with ι : A → C′ being equivariant.

Definition 3.7. Let (A, G, δ) be a cosystem. The C*-envelope of (A, G, δ) is a C*-cover for (A, G, δ), de-
noted by (C∗

env(A, G, δ), ιenv, δenv), that satisfies the following property: for any other C*-cover (C′, ι′, δ′)
of (A, G, δ) there exists an equivariant ∗-epimorphism φ : C′ → C∗

env(A, G, δ) that makes the following
diagram

C′

φ

��
A

ι′

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧ ιenv // C∗
env(A, G, δ)

commutative. We will often omit the embedding ιenv and the coaction δenv and refer to the triple simply
as C∗

env(A, G, δ).

As in the case of the C*-envelope for an operator algebra, it is easily seen that if the C*-envelope for
a cosystem exists, then it is unique up to a natural notion of isomorphism for cosystems. The following
theorem verifies that every cosystem has a C*-envelope and gives a concrete picture for it.

Theorem 3.8. Let (A, G, δ) be a cosystem and let ι : A → C∗
env(A) be the natural inclusion map. Then

the triple (
C∗(ι(ag)⊗ ug | g ∈ G), (ι⊗ idC∗(G))δ, id⊗∆

)

is (isomorphic to) the C*-envelope for the cosystem (A, G, δ).

Proof. Let (A, G, δ) be a cosystem and fix the embedding ι : A → C∗
env(A). By considering the compo-

sition

(3.3) A
δ // A⊗ C∗(G)

ι⊗idC∗(G) // // C∗
env(ι(A)) ⊗ C∗(G),

and recalling that the minimal tensor product of completely isometric representations is completely
isometric, we see that the C*-algebra

C∗(ι(ag)⊗ ug | g ∈ G)

is a C*-cover for A. We can then endow it with the coaction id ⊗∆; ) this makes (ι ⊗ idC∗(G))δ into a
δ–(id⊗∆) equivariant homomorphism and the triple

(C∗(ι(ag)⊗ ug | g ∈ G), (ι⊗ idC∗(G))δ, id⊗∆)

becomes a C*-cover for (A, G, δ). Next let (C′, ι′, δ′) be a C*-cover and let φ : C′ → C∗
env(A) be as in

(2.1). We see that the following diagram is commutative

C′ δ′ //

))

C′ ⊗ C∗(G)
id⊗∆ //

φ⊗id

�� ++

C′ ⊗ C∗(G) ⊗ C∗(G)

φ⊗id⊗id

��
C∗(ι(A)) ⊗ C∗(G)

id⊗∆ // C∗(ι(A)) ⊗ C∗(G) ⊗ C∗(G)

as it is a diagram of ∗-epimorphisms that agree on the copies of A. We then obtain the canonical
equivariant ∗-epimorphism

(φ ⊗ idC∗(G))δ
′ : (C′, ι′, δ′) −→ (C∗(ι(ag)⊗ ug | g ∈ G), (ι ⊗ idC∗(G))δ, id⊗∆)

by following the diagonal arrows and using the coaction identity on δ′. Indeed a direct computation
shows that

(id⊗∆) ((φ⊗ id) δ′) = (φ⊗ id⊗ id)(id⊗∆)δ′ = (((φ⊗ id) δ′)⊗ id) δ′,

and the proof is complete.

Under certain hypothesis, one can obtain a more concrete picture for the C*-envelope.
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Corollary 3.9. Let (A, G, δ) be a normal cosystem, and let δλ : A → A⊗C∗
λ(G) be a completely isometric

homomorphism satisfying the assumptions of Proposition 3.4 with respect to the spectral subspaces of the
coaction δ. If ∆r : C∗

λ(G) → C∗
λ(G)⊗ C∗(G) denotes the normal coaction implied by Example 3.5, then

(3.4)
(
C∗

env(A, G, δ), ιenv, δenv

)
≃

(
C∗(ι(ag)⊗ λg | g ∈ G), (ι⊗ idC∗

λ
(G))δλ, id⊗∆r

)
.

In particular, the coaction δenv on C∗
env(A, G, δ) is normal.

Proof. By Theorem 3.8 the C*-envelope of (A, G, δ) is given by
(
C∗(ι(ag)⊗ ug | g ∈ G), (ι⊗ idC∗(G))δ, id⊗∆

)
.

Since the right side of (3.4) is a C∗-cover for (A, G, δ), the defining properties of the C*-envelope imply
an equivariant ∗-homomorphism

φ : C∗(ι(ag)⊗ λg | g ∈ G) −→ C∗(ι(ag)⊗ ug | g ∈ G).

If q : C∗(G) → C∗
λ(G) is the natural quotient then (id⊗ q)|C∗(ι(ag)⊗ug|g∈G) provides an inverse for φ and

the conclusion follows.

By duality, a coaction of a discrete abelian group G on an operator algebra A corresponds to a point-

norm continuous action {βγ}γ∈Ĝ
of the dual group Ĝ on A. Since each βγ is a completely isometric

automorphism, it extends to an automorphism β̃γ of the C*-envelope C∗
env(A), yielding a point norm

continuous action {β̃γ}γ∈Ĝ
of Ĝ on C∗

env(A). Again by duality, this corresponds to a coaction of G on

C∗
env(A). Hence, for abelian G, the C*-envelope for a cosystem coincides with the usual C*-envelope,

equipped with the coaction given by (the duals of) the group of extended automorphisms {β̃γ | γ ∈ Ĝ}.
Equivalently every coaction of a discrete abelian group on an operator algebra lifts to a coaction on its
C*-envelope. It is not known if this is the case for more general classes of groups.

Corollary 3.10. Let (C∗
env(A, G, δ), ι, δenv) be the C*-envelope for a cosystem (A, G, δ). Suppose that

ψ : C∗
env(A, G, δ) → B is a ∗-homomorphism that is completely isometric on A. Then ψ is faithful on the

fixed point algebra [C∗
env(A, G, δ)]e.

Proof. Without loss of generality assume that ψ is surjective. Let ι : A → C∗
env(A) be the natural

inclusion. Since ψ is surjective and completely isometric on A, the pair (B,ψ(ι ⊗ id)δ) is a C*-cover for
A. By the defining property of C∗

env(A), there exists a surjective ∗-homomorphism φ : B → C∗
env(A) so

that φ
(
ψ(ι⊗ id)δ

)
= ι. Therefore

(3.5) (φψ)(ι(a) ⊗ ug) = ι(a), for all a ∈ Ag, g ∈ G.

Now for our purposes, it suffices to show that φ ◦ ψ is injective on [C∗
env(A, G, δ)]e. Notice that

span
{∏

ι(agi)ι(ahi
)∗ ⊗ ugih

−1
i

| agi ∈ Agi , ahi
∈ Ahi

}

is a dense subset of C∗
env(A, G, δ) with

span
{∏

ι(agi)ι(ahi
)∗ ⊗ ugih

−1
i

| agi ∈ Agi , ahi
∈ Ahi

,
∏

gih
−1
i = g

}
⊆ [C∗

env(A, G, δ)]g , g ∈ G.

Therefore, (the last two sentences of) Remark 3.3 implies that

[C∗
env(A, G, δ)]e = span

{∏
ι(agi )ι(ahi

)∗ ⊗ 1 | agi ∈ Agi , ahi
∈ Ahi

,
∏

gih
−1
i = e

}
.

Now (3.5) implies that φψ is the inverse of the ampliation map on [C∗
env(A, G, δ)]e and the conclusion

follows.

Let us close this section with a discussion on gradings of C*-algebras in the sense of [26].

Definition 3.11. Let B be a C*-algebra and G a discrete group. A collection of closed linear subspaces
{Bg}g∈G of B is called a grading of B by G if

(i) BgBh ⊆ Bgh

(ii) B∗
g = Bg−1

(iii)
∑

g∈GBg is dense in B.

If in addition there is a conditional expectation E : B → Be which vanishes on Bg for g 6= e, we say that
the pair ({Bg}g∈G, E) is a topological grading of B.
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When δ is a coaction on a C*-algebra B, the spectral subspaces Bg for g ∈ G comprise a topological
grading for B with conditional expectation Ee = (id ⊗ Fe) ◦ δ where Fe : C∗(G) → B is the e-th
Fourier coefficent. Completely contractive maps Eg : B → Bg can be similarly defined by setting
Eg := (id⊗ Fg) ◦ δ, where Fg : C∗(G) → C is the g-th Fourier coefficient.

A grading of a C*-algebra by a group constitutes a Fell bundle over the group, and every Fell bundle
arises this way, but not uniquely. Indeed, there may be many non-isomorphic graded C*-algebras whose
gradings are all equal to a pre-assigned Fell bundle B. At one extreme sits the maximal C*-algebra
C∗(B), which is universal for representations of B, while at the other extreme is the minimal (reduced)
cross sectional algebra C∗

λ(B) which is defined via the left regular representation of B on ℓ2(B). We refer
to [25, 26] for the precise definitions and details.

Definition 3.12. Let B = {Bg}g∈G be a topological grading for a C*-algebra B over a group G. We say
that an ideal I ⊳B is induced if I = 〈I ∩Be〉.

If δ : B → B ⊗ C∗(G) is a coaction on a C*-algebra and I ⊳ B is an induced ideal then δ induces a
faithful coaction B/I, see for example [9, Proposition A.1]. Normal actions also descend through induced
ideals when G is exact, see for example [9, Proposition A.5].

4. C*-envelopes of cosystems as co-universal C*-algebras

In this section we consider the cosystem consisting of the Fock tensor algebra Tλ(X)+ of a compactly
aligned product system X over a right LCM subsemigroup P of a group G, together with a natural
coaction. We prove that the associated C*-envelope has the co-universal property of [9, Theorem 4.1]
with respect to X .

Let t̃ = {t̃p}p∈P be the universal Toeplitz representation for X . By the universal property of T (X)
there is a canonical ∗-homomorphism

δ̃ : T (X) −→ T (X)⊗ C∗(G) : t̃p(ξp) 7−→ t̃p(ξp)⊗ up.

Sehnem [56, Lemma 2.2] has shown that δ̃ is a non-degenerate and faithful coaction of T (X), where each
spectral subspace T (X)g with g ∈ G is the closed linear span of the products

t̃p1(ξp1)t̃p2(ξp2 )
∗t̃p3(ξp3) · · · t̃pn

(ξpn
)∗ for p1p

−1
2 p3 · · · p

−1
n = g and ξpi

∈ Xpi

Let t̂ = {t̂p}p∈P be the universal Nica-Toeplitz representation of X . As NT (X) is a quotient of T (X)
by an induced ideal, by [9, Proposition A.1] the non-degenerate and faithful coaction of G on T (X)
descends canonically to one on NT (X). Therefore, the canonical ∗-homomorphism

δ̂ : NT (X) −→ NT (X)⊗ C∗(G) : t̂p(ξp) 7−→ t̂p(ξp)⊗ up

defines a coaction on NT (X).
The following proposition shows that the Fock algebra, being a reduced type object, admits a normal

coaction. We state and prove the result in complete generality for future reference.

Proposition 4.1. Let P be a unital subsemigroup of a group G and X a product system over P with
coefficients in A. Let t be the Fock representation. Then there is a normal coaction

δ : Tλ(X) −→ Tλ(X)⊗ C∗(G) : tp(ξp) 7−→ tp(ξp)⊗ up.

Moreover each spectral space Tλ(X)g with g ∈ G is generated by the products of the form

tp1(ξp1 )tp2(ξp2)
∗tp3(ξp3 ) · · · tpn

(ξpn
)∗, p1p

−1
2 p3 · · · p

−1
n = g.

Proof. Let the operator U : FX ⊗ ℓ2(G) → FX ⊗ ℓ2(G) be given by

U(ξr ⊗ eg) = ξr ⊗ erg for all r ∈ P, g ∈ G.

We have that U is a unitary in L(FX ⊗ ℓ2(G)) for the Hilbert bimodule FX ⊗ ℓ2(G) over A ⊗ C = A,
with

U∗(ξr ⊗ eh) = ξr ⊗ er−1g.

We can then directly verify that U(t(ξp) ⊗ I) = (t(ξp) ⊗ λp)U for all p ∈ P . Thus adU implements a
faithful ∗-homomorphism δλ : Tλ(X) → Tλ(X)⊗ C∗

λ(G) given by

Tλ(X) ≃ C∗(tp(ξp)⊗ I | p ∈ P )
adU // C∗(tp(ξp)⊗ λp | p ∈ P ).
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Let t∗ : T (X) → Tλ(X) be the canonical surjection induced by t. Since the spectral subspaces T (X)g,

g ∈ G, for the coaction δ̃ are the closed linear span of products

t̃p1(ξp1 )t̃p2(ξp2)
∗ t̃p3(ξp3 ) · · · t̃pn

(ξpn
)∗ for p1p

−1
2 p3 · · · p

−1
n = g.

and
∑

g∈G T (X)g is dense in T (X), we see that the same persists after the application of t∗. More

precisely, we let Tλ(X)g for g ∈ G be the subspaces given by the closed linear span of

tp1(ξp1 )tp2(ξp2)
∗tp3(ξp3 ) · · · tpn

(ξpn
)∗ for p1p

−1
2 p3 · · · p

−1
n = g.

As t∗ is surjective, we get that
∑

g∈G Tλ(X)g is dense in Tλ(X), and that t∗(T (X)g) = Tλ(X)g.

Since by definition δλ(a) = a⊗ λg for a ∈ Tλ(X)g, we get that δλ satisfies the conditions of Proposi-
tion 3.4. Hence, there is a normal coaction δ of G on Tλ(X) whose spectral subspaces are Tλ(X)g.

The faithful conditional expectation E := Eδ
: Tλ(X) → Tλ(X)e given by the normal coaction δ of

Proposition 4.1 satisfies

E(f) =
∑

r∈P

QrfQr for all f ∈ Tλ(X),

for the projections Qr : F(X) → Xr. Indeed, the above sum of compressions to the (r, r)-entries in

L(FX) acts as the identity on Tλ(X)e and zeroes all other spectral subspaces of δ. By Remark 3.3, E
demonstrates exactly the same behavior on the spectral subspaces of δ and since these form a grading of
Tλ(X), the conclusion follows.

We need the following auxiliary proposition. Even though it can be deduced from [43, Theorem 2.17],
we give instead a self-contained proof.

Lemma 4.2. Let P be a right LCM subsemigroup of a group G and X be a compactly aligned product
system over P . If Φ: NT (X) → Tλ(X) is the canonical ∗-epimorphism, then Φ is faithful on NT (X)e.

Proof. Let NT (X) = C∗(t̂) and Tλ(X) = C∗(t). Since NT (X)e = BP,t̂, Proposition 2.11 implies that
it suffices to prove the injectivity of Φ on every BF,t̂, where F ranges over all finite and ∨-closed subsets
of P . Towards this end suppose that kp ∈ KXp for p ∈ F and

0 6= f :=
∑

p∈F

t̂p(kp) ∈ kerΦ.

Let p0 be minimal in F such that t̂p0(kp0 ) 6= 0; then kp0 6= 0. Recall that tp(kp)ξq 6= 0 for ξq ∈ Xq implies
p ≤ q, so by minimality of p0 in F we have that Qp0tp(kp)Qp0 = 0 for p ∈ F \ {p0}. Hence

kp0 = Qp0



∑

p∈F

tp(kp)


Qp0 = Qp0Φ(f)Qp0 = 0,

which is a contradiction.

Proposition 4.3. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P . Consider the Fell bundle

NX := {[NT (X)]g}g∈G

induced by the canonical coaction δ̂ of G on NT (X). Then

C∗(NX) ≃ NT (X) and C∗
λ(NX) ≃ Tλ(X),

i.e., NT (X) is the full C*-algebra of the bundle NX and Tλ(X) is the reduced C*-algebra of the bundle
NX.

Proof. For the first part, let t′ : X → B(H) be a Nica-covariant representation such that the repre-
sentation t′∗ : NT (X) → C∗(t′) is injective. Let A be a graded C*-algebra with grading isomorphism
φg : [NT (X)]g → Ag for each g ∈ G. Define a map t : X → A by setting tp(ξ) = φp(t

′
p(ξ)) for ξ ∈ Xp

and p ∈ P .
We claim that t : X → A is a Nica-covariant representation. Indeed, if ξ, ζ ∈ Xp, p ∈ P , then

tp(ξ)
∗tp(ζ) = φp−1 (t′p(ξ)

∗)φp(t
′
p(ζ)) = φe

(
t′p(ξ)

∗t′p(ζ)
)

= φe

(
t′e(〈ξ | ζ〉)

)

= te(〈ξ | ζ〉)
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and so t : X → A is a Toeplitz representation. Similar arguments show that tp(kp) = φe(t
′
p(kp)), for any

rank-one operator kp ∈ KXp, and thus by continuity for any compact operator operator kp ∈ KXp. From
this it is clear that the Nica-covariance of t′ implies that of t.

Having established the Nica-covariance of t, we now have an induced ∗-surjection t∗ : NT (X) → A
such that φ := t∗ restricts to φg on NT (X)g. This shows that C

∗(NX) ≃ NT (X).
For the second part, there exists a canonical ∗-epimorphism Φ: NT (X) → Tλ(X) which by definition

intertwines the coactions, and thus the conditional expectations. By Lemma 4.2 the map Φ is faithful on
the fixed point algebra of NT (X) and thus induces an isomorphism of the Fell bundle NX . Since the
conditional expectation on Tλ(X) is faithful it follows by [25, Proposition 3.7] that Tλ(X) is ∗-isomorphic
to the reduced C*-algebra of the Fell bundle NX .

Our next result shows that up to a canonical ∗-isomorphism, the tensoring of any injective Nica-
covariant representation of the product system X with the left regular representation of P produces the
C*-algebra of the Fock representation of X .

Proposition 4.4. Let P be a right LCM subsemigroup of a group G, let X be a compactly aligned product
system over P and let t = {tp}p∈P be an injective Nica-covariant representation of X. Then there exists
a faithful ∗-homomorphism

Tλ(X) −→ C∗(t)⊗ C∗
λ(P ) : tp(ξp) 7−→ tp(ξp)⊗ Vp.

Proof. Consider the Nica-covariant representation

t⊗ V : X −→ C∗(t)⊗ C∗
λ(P ) : ξp 7−→ tp(ξp)⊗ Vp, ξp ∈ Xp, p ∈ P.

We claim that the induced representation (t ⊗ V )∗ : NT (X) → C∗(t) ⊗ C∗
λ(P ) is faithful on the fixed

point algebra NT (X)e. According to Proposition 2.11, it suffices to verify injectivity on BF,t̂ ⊆ NT (X),
where F is an arbitrary finite ∨-closed subset of P . Towards this end let kp ∈ KXp with p ∈ F such that

f :=
∑

p∈F

t̂p(kp) 6= 0 and (t⊗ V )∗(f) =
∑

p∈F

tp(kp)⊗ VpV
∗
p = 0.

Let p0 ∈ F be minimal such that t̂p0(kp0) 6= 0; then kp0 6= 0. We directly compute

tp0(kp0 ) = (I ⊗ PCep0
)

(∑

p∈F

tp(kp)⊗ VpV
∗
p

)
(I ⊗ PCep0

) = 0.

Since t is injective, we have that kp0 = 0, a contradiction that establishes the desired injectivity for
(t⊗ V )∗ on NT (X)e.

It follows now that (t ⊗ V )∗ is injective on each fiber of the bundle NX of Proposition 4.3 and so
C∗(t⊗ V ) becomes a cross sectional algebra of NX . According to Proposition 4.3, Tλ(X) is the reduced
cross sectional algebra of NX and so [25, Theorem 3.3] implies a map

(4.1) C∗(t)⊗ C∗
λ(P ) −→ Tλ(X) : tp(ξp)⊗ Vp 7−→ tp(ξp).

The canonical expectation of C∗(t ⊗ V ) onto (t ⊗ V )∗(NT (X)e) coincides with id ⊗ EP , where EP is
compression on the diagonal, and so it is faithful. By [25, Proposition 3.7], the map in (4.1) is faithful
and the conclusion follows.

As a consequence the injective representations of a product system X that inherit the coaction of G

produce C*-covers for (Tλ(X)+, G, δ
+
).

Proposition 4.5. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P . Let (B,G, δ) be a cosystem for which there exists an equivariant epimorphism

φ : Tλ(X) −→ B.

If φ|t(Xe) is faithful, then φ|Tλ(X)+ is completely isometric and therefore (B,G, δ) forms a C*-cover for

(Tλ(X)+, G, δ
+
).

Proof. Consider the unital completely positive map

ψ : C∗(G) −→ C∗
λ(G) −→ B(ℓ2(P )) : ug 7→ λg 7→ Pℓ2(P )λg|ℓ2(P )
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which is multiplicative on the subalgebra of C∗(G) generated by all up, p ∈ P . Since ψ(up) = Vp for all
p ∈ P , the following diagram of completely contractive homomorphisms

Tλ(X)+

φ

��

// B ⊗ C∗
λ(P )

B // B ⊗ C∗(G)

id⊗ψ

OO

commutes. By Proposition 4.4 the upper horizontal map is a restriction of a faithful ∗-homomorphism
and thus it is completely isometric. Hence φ is completely isometric.

Definition 4.6. Following [9, Section 4] we say that a representation t of a product system X is gauge-
compatible, or simply equivariant if C∗(t) admits a coaction of G that makes the canonical epimorphism
T (X) → C∗(t) equivariant with respect to the natural (gauge) coaction of G on T (X).

Carlsen, Larsen, Sims and Vittadello proposed the idea of a co-universal C*-algebra with respect to
gauge-compatible, injective, Nica-covariant representations of X . Roughly speaking, such a co-universal
C*-algebra is the smallest C*-algebra carrying a coaction of G that is generated by an equivariant, injec-
tive, Nica-covariant representation of X . For the precise formulation see Definition 4.7 below. Carlsen,
Larsen, Sims and Vittadello went on to prove that under various hypotheses on the product system, the
reduced cross sectional algebra of the Fell bundle associated with NO(X) does satisfy the co-universal
property [9, Theorem 4.1].

Definition 4.7. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P . Suppose (C,G, γ) is a cosystem and j : X → C is a Nica-covariant isometric
representation, with integrated version denoted by j∗ : NT (X) → C. We say that (C,G, γ, j) has the
co-universal property for equivariant, injective, Nica-covariant representations of X if

(i) je is faithful;

(ii) j∗ : NT (X) → C is δ̂-γ equivariant; and
(iii) for every equivariant, injective, Nica-covariant representation t : X → C∗(t), there is a surjective

∗-homomorphism φ : C∗(t) → C such that

φtp(ξp) = jp(ξp), for all ξp ∈ Xp and p ∈ P.

Notice that, as observed at the beginning of [9, Section 4], the map φ is automatically equivariant because
j∗ and t∗ are surjective.

Remark 4.8. We have eschewed the notation NOr(X) used in [9] because there is a certain degree
of ambiguity in relation to its meaning. On the one hand, it is clear from [9, Introduction] and the
statement of [9, Theorem 4.1] that NOr(X) is implicitly intended to mean any C*-algebra that satisfies
the co-universal property, while on the other hand at the start of the proof of [9, Theorem 4.1], NOr(X)
is explicitly defined to be the reduced cross sectional algebra of the Fell bundle NOX := {[NO(X)]g}g∈G

of the natural coaction of G on NO(X). This causes no problem so long as the product system X satisfies
the assumptions of [9, Theorem 4.1], but there is a definite clash for some examples that do not satisfy
those hypothesis, see e.g. [9, Remark 4.2]. We point out that there is no ambiguity in [20] where the
notation is exclusively used to denote any C*-algebra that satisfies the co-universal property.

Our next result shows that the C*-envelope of the tensor algebra Tλ(X)+ taken with its natural
coaction satisfies the co-universal property, thus establishing the existence of a co-universal object for
general compactly aligned product systems over right LCM semigroups. This completes the program
initiated in [9] and continued in [20].

Theorem 4.9. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned product

system over P . Let δ
+
: Tλ(X)+ → Tλ(X)+ ⊗ C∗(G) be the restriction of the coaction from Proposition

4.1 to Tλ(X)+. Then the C*-envelope (C∗
env(Tλ(X)+, G, δ

+
), δenv, ιenv) of the cosystem (Tλ(X)+, G, δ

+
)

satisfies the co-universal property associated with X. In particular, the canonical coaction on the co-
universal object is normal.

Proof. By definition C∗
env(Tλ(X)+, G, δ

+
) is generated by an injective Nica-covariant, G-compatible

representation of X . It remains to show that it has the required co-universal property.
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Let E be the faithful conditional expectation on Tλ(X) and let Φ: NT (X) → Tλ(X) be the canonical
∗-epimorphism. Then we have that

kerΦ = {f ∈ NT (X) | EΦ(f∗f) = 0}.

In particular, since Φ is faithful on the fixed point algebra by Lemma 4.2, we get that

Ê := (Φ|[NT (X)]e)
−1EΦ

is the conditional expectation on NT (X).
Let t be an injective, Nica-covariant, equivariant representation of X . Then C∗(t) admits a G-grading

and let us write B = {Bg}g∈G for this grading of C∗(t). Due to the existence of the conditional expectation
on C∗(t), by [25, Theorem 3.3] there exists a canonical equivariant ∗-epimorphism

φ : NT (X) −→ C∗(t) −→ C∗
λ(B)

where C∗
λ(B) is the reduced cross sectional C*-algebra of the Fell bundle B. Let us write E′ for the

associated faithful conditional expectation on C∗
λ(B). For f ∈ kerΦ we have that

Ê(f∗f) = (Φ|[NT (X)]e)
−1EΦ(f∗f) = 0.

As φ intertwines the conditional expectations Ê and E′, we derive that E′(φ(f∗f)) = 0 and so φ(f) = 0,
because E′ is faithful. Since f was arbitrary in kerΦ we get that φ(ker Φ) = {0}. Hence there is an
induced ∗-homomorphism φ′ that makes the following diagram

NT (X)
φ //

Φ

$$❏
❏
❏
❏
❏
❏
❏
❏
❏

C∗
λ(B)

Tλ(X)

φ′
::

commutative. By construction φ′ is equivariant. Since te is faithful we have that A →֒ Be ⊆ C∗
λ(B)

faithfully. Then, by Proposition 4.5 we have that C∗
λ(B) is a C*-cover of (Tλ(X)+, G, δ

+
). Therefore we

have the following ∗-epimorphisms

C∗(t) −→ C∗
λ(B) −→ C∗

env(Tλ(X)+, G, δ
+
),

which establishes that C∗
env(Tλ(X)+, G, δ

+
) satisfies the co-universal property for X . The last sentence

in the statement of the theorem follows from Corollary 3.9.

Remark 4.10. Theorem 4.9 shows that every compactly aligned product system over a right LCM
subsemigroup of a group has an associated co-universal C*-algebra. This generalizes [9, Theorem 4.1]
by removing the assumption that X is injective or that P is directed and the augmented left actions are
injective, and it also generalizes [20, Theorem 3.3] by removing the assumption that P is abelian. We
have been able to do this through the use of nonselfadjoint techniques adapted to the setting of operator
algebras with a coaction, which ultimately relies on the existence of the usual C*-envelope, through our
Theorem 3.8.

5. Co-universality and Sehnem’s covariance algebras

In [9], Carlsen, Larsen, Sims and Vittadello show that under certain hypothesis on a product systemX ,
the reduced cross sectional algebra of the Fell bundle NOX := {[NO(X)]g}g∈G of the natural coaction
of G on the C*-algebra NO(X) satisfies the co-universal property. But examples such as [9, Remark 4.2]
indicate that the same bundle may fail to produce a co-universal C∗-algebra for product systems X
outside the framework of [9]. This raises the question of whether a different bundle might do the job.
We settle this question in the present section by considering the Fell bundle determined by the natural
coaction on Sehnem’s covariance algebra [56]. We begin by establishing the notation and reviewing the
basic details of Sehnem’s construction.

Let P be a unital subsemigroup of a group G and let X = {Xp}p∈P be a product system over P with
coefficients in A := Xe. For a finite set F ⊆ G let

KF :=
⋂

g∈F

gP.
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For r ∈ P and g ∈ F define the ideal of A given by

Ir−1K{r,g}
:=

{⋂
t∈K{r,g}

kerϕr−1t if K{r,g} 6= ∅ and r /∈ K{r,g},

A otherwise.

Then let
Ir−1(r∨F ) :=

⋂

g∈F

Ir−1K{r,g}
,

and let the C*-correspondences

XF := ⊕r∈PXrIr−1(r∨F ) and X+
F

:= ⊕g∈GXgF .

For every p ∈ P we define

tF,p(ξp)(ηr) = Mp,r(ξp ⊗ ηr) ∈ XprI(pr)−1(pr∨pF ), for all ηr ∈ XrIr−1(r∨F ).

This is well-defined as Ir−1(r∨F ) = I(pr)−1(pr∨pF ) for all r ∈ P , and Ir−1(r∨F ) = I(s−1r)−1(s−1r∨s−1F ) for

all r ∈ sP . Therefore we obtain a representation tF := {tF,p}p∈P of X on L(X+
F ) that integrates to a

representation

(5.1) ΦF : T (X) −→ L(X+
F ).

Now let the projections
Qg,F : X+

F −→ XgF

and define
‖f‖F := ‖Qe,FΦF (f)Qe,F ‖ for all f ∈ [T (X)]e .

In particular we have that

tF,p(ξp)Qg,F = Qpg,F tF,p(ξp) and tF,p(ξp)
∗Qg,F = Qp−1g,F tF,p(ξp)

∗.

and so Qe,F is reducing for the fixed point algebra under ΦF .

Definition 5.1. [56, Definition 3.2] A Toeplitz representation is called strongly covariant if it vanishes
on the ideal Ie ⊳ [T (X)]e given by

Ie := {f ∈ [T (X)]e | lim
F

‖f‖F = 0},

where the limit is taken with respect to the partial order induced by inclusion on finite sets of P . We
denote by A×X P the universal C*-algebra with respect to the strongly covariant representations of X .

That is, A ×X P is the quotient T (X)/I∞ for the ideal I∞ ⊳ T (X) generated by Ie. For example,
in the simplest case of a product system generated by a single correspondence, A ×X P coincides with
the Cuntz-Pimsner algebra, see [56, Section 4]. One of the important points of Sehnem’s theory is that
A×X P does not depend on the group G where P embeds, while A →֒ A×X P faithfully. As a quotient
by an induced ideal of T (X), it follows that A ×X P inherits the coaction of G [56, Lemma 3.4]. The
following is the main theorem of [56].

Theorem 5.2. [56, Theorem 3.10] Let P be a unital subsemigroup of a group G and let X be a product
system over P with coefficients in A. Then a ∗-homomorphism of A×X P is faithful on A if and only if
it is faithful on the fixed point algebra [A×X P ]e.

The construction of Sehnem [56] encompasses a number of variants that have appeared in the literature.
This applies to the case where (G,P ) is a weak quasi-lattice ordered pair and X is a compactly aligned
product system such that X is faithful, or P is directed and the representation of X in NO(X) is faithful.
In this case Sehnem [56, Proposition 4.6] obtains that A×XP is the Cuntz-Nica-Pimsner algebraNO(X)
of Sims-Yeend [57]. Our next theorem confirms that the Fell bundle of the covariance algebra A ×X P
provides the right setup for co-universality. Indeed, our equivariant C*-envelope coincides with the
reduced cross sectional C*-algebra of the Fell bundle determined by the natural coaction on A×X P .

Theorem 5.3. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P with coefficients from A. Consider the Fell bundle

SCX := {[A×X P ]g}g∈G

induced by the natural coaction of G on A×X P . Then the cross sectional algebra and the reduced cross
sectional algebra of SCX are isomorphic to the covariance algebra and to the C*-envelope, respectively:

C∗(SCX) ≃ A×X P and C∗
λ(SCX) ≃ C∗

env(Tλ(X)+, G, δ
+
).
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Proof. For the first part, one argues as in the proof of Proposition 4.3, since the strong covariance
relations live in the fixed point algebra. For the second part note that by [56, Theorem 3.10] we have
an equivariant, injective, Nica-covariant representation of X into A ×X P . Hence the co-universality of

C∗
env(Tλ(X)+, G, δ

+
) proved in Theorem 4.9 implies the existence of a ∗-epimorphism

φ : A×X P −→ C∗
env(Tλ(X)+, G, δ

+
),

which is injective on A →֒ A ×X P and maps generators to generators. By [56, Theorem 3.10], φ is

injective on [A ×X P ]e and so it is injective on SCX . Therefore C∗
env(Tλ(X)+, G, δ

+
) becomes a cross

sectional algebra of the bundle SCX with a conditional expectation on SCXe. By the minimality property
of the reduced cross sectional algebra [25, Theorem 3.3], there is a canonical ∗-epimorphism

C∗
env(Tλ(X)+, G, δ

+
) −→ C∗

λ(SCX).

By Theorem 4.9, the coaction on C∗
env(Tλ(X)+, G, δ

+
) is normal. Therefore the conditional expectation

on C∗
env(Tλ(X)+, G, δ

+
) is faithful and thus the above ∗-epimorphism is faithful.

Let us see the form of the strong covariance relations for compactly aligned product systems over right
LCM semigroups. The following is proved by Sehnem in [56, Proposition 4.2] for quasi-lattices, but the
same proof passes to right LCM-semigroups as well. Notice that we consider the restriction to XF rather
than the representation on the entire X+

F .

Proposition 5.4. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P . A representation t = {tp}p∈P of X is strongly covariant if and only if it is
Nica-covariant and it satisfies

∑

p∈F

tF,p(kp)|XF
= 0 =⇒

∑

p∈F

tp(kp) = 0

for any finite F ⊆ P and kp ∈ KXp.

Proof. The proof is identical to that of [56, Proposition 4.2] by replacing p∨q with w whenever pP∩qP =
wP . Note that the ideals are defined in such a way that if F is a finite subset of P and r ∈ P then

∑

p∈F

tp(kp)tr(ηr) =
∑

r∈pP

tp(kp)tr(ηr) =
∑

r∈pP

tr(i
r
p(kp)ηr)

for all ηr ∈ Xr · Ir−1(r∨F ) and every Nica-covariant representation {tp}p∈P of X .

Let P be a unital subsemigroup of a group G and X be a product system over P with coefficients in
A. Let qλ : T (X) → Tλ(X) be the canonical ∗-epimorphism. Another interesting C*-algebra related to
Sehnem’s algebra can be obtained from Tλ(X) by taking the quotient of Tλ(X) by the ideal qλ(I∞). We
would like to analyze this quotient and discuss its relation with the cross sectional algebra C∗

λ(SCX). It
is easy to see that the ideal qλ(I∞) of Tλ(X) is induced, hence Tλ(X)/qλ(I∞) inherits from Tλ(X) the
coaction of G and, with it, a topological grading [26, Proposition 23.10]. By [25, Theorem 3.3], we then
have an equivariant ∗-epimorphism

Tλ(X)/qλ(I∞) −→ C∗
λ(SCX),

which is known to be an isomorphism if, for instance, G is exact.
We see that the representations ΦF from (5.1) used to define the strong covariance relations are sub-

representations of δλ : Tλ(X) → Tλ(X)⊗C∗
λ(G) for δλ = (id⊗ λ)δ where δ is the normal coaction on the

Fock representation. Indeed we can identify

X+
F = ⊕g∈G ⊕r∈P XrIr−1(r∨gF )

with a submodule of FX ⊗ ℓ2(G) through the isometry given by

XrIr−1(r∨gF ) ∋ ηr 7→ ηr ⊗ eg ∈ Xr ⊗ ℓ2(G).

Recall here that FX ⊗ ℓ2(G) is the exterior tensor product of two modules (seeing ℓ2(G) as a module
over C), and there is a faithful ∗-homomorphism

Tλ(X)⊗ C∗
λ(G) ⊆ L(FX)⊗ B(ℓ2(G)) →֒ L(FX ⊗ ℓ2(G)).

We then see that

tF,p(ξp) = (tp(ξp)⊗ λp)|X+
F
= δλ(tp(ξp))|X+

F
for all p ∈ P,
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and likewise for their adjoints. Thus X+
F is reducing under δλ(Tλ(X)). Recall also that XF is reducing

for [T (X)]e as the range of the projection Qe,F and so we obtain the representation

⊕

F⊆G finite

ΦF (·)|XF
: [T (X)]e −→ [Tλ(X)]e −→

∏

F⊆G finite

B(XF ).

In particular almost by definition we have for an f ∈ T (X) that

f ∈ Ie if and only if
⊕

F⊆G finite

ΦF (f)|XF
∈ c0(B(XF ) | F ⊆ G finite).

By definition we then get that the following diagram

[T (X)]e

��

// [Tλ(X)]e //

��

∏
F⊆G finite

B(XF )

��
[A×X P ]e // [Tλ(X)/qλ(I∞)]e //

∏
F⊆G finite

B(XF )
/
c0(B(XF ) | F ⊆ G finite)

is commutative. Consequently the e-graded ∗-algebraic relations in Tλ(X) induce strong covariance
relations; this is why strong covariance relations are Nica-covariant. In particular we obtain the following
corollary.

Corollary 5.5. Let P be a unital subsemigroup of a group G and let X be a product system over P with
coefficients in A. Then A →֒ Tλ(X)/qλ(I∞). Moreover a ∗-homomorphism of Tλ(X)/qλ(I∞) is faithful
on A if and only if it is faithful on [Tλ(X)/qλ(I∞)]e.

Proof. The proof that A →֒ Tλ(X)/qλ(I∞) follows by combining the commutative diagram

T (X)

��

// Tλ(X)

��
A×X P // Tλ(X)/qλ(I∞)

of ∗-epimorphisms with the fact that

A ∩ c0(B(XF ) | F ⊆ G finite) = {0},

which is the main argument in [56, Lemma 3.6]. The rest now follows by combining this with [56,
Theorem 3.10].

Surprisingly, the key to injectivity is the normality of the coaction of G on Tλ(X)/qλ(I∞).

Corollary 5.6. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P with coefficients from A. Then the equivariant ∗-epimorphism

Tλ(X)/qλ(I∞) −→ C∗
λ(SCX)

is faithful if and only if the coaction of G on Tλ(X)/qλ(I∞) is normal.

Proof. First suppose that the coaction of G on Tλ(X)/qλ(I∞) is normal. Then the equivariant ∗-
epimorphism Tλ(X)/qλ(I∞) → C∗

λ(SCX) is faithful if and only if it is faithful on the fixed point algebra.
By Corollary 5.5, this happens if and only if it is faithful on A, which is the case because, by Theorem
4.9 and Theorem 5.3, we have

A →֒ Tλ(X)+ →֒ C∗
env(Tλ(X)+, G, δ

+
) ≃ C∗

λ(SCX).

Conversely suppose that the equivariant ∗-epimorphism is faithful. By Corollary 3.9, the coaction δenv
on C∗

env(Tλ(X)+, G, δ
+
) is normal and normality passes to Tλ(X)/qλ(I∞) via the equivariant map.
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6. Reduced Hao-Ng isomorphisms

Let G be a discrete group. Suppose that an operator algebra A admits a G-action α by completely
isometric automorphisms αg for g ∈ G. The G-action extends to an action on C∗

env(A) and one can
form the reduced C*-crossed product C∗

env(A) ⋊α,λ G. Following Katsoulis and Ramsey [39, Definition
3.17], we define the nonselfadjoint reduced crossed product A ⋊α,λ G as the norm-closed subalgebra of
C∗

env(A) ⋊α,λ G spanned by the canonical generators of C∗
env(A) ⋊α,λ G associated with A and G. If

A ⊆ B(H) and the G-action α extends to the C∗-algebra generated by A, then [39, Corollary 3.16] shows
that A⋊α,λ G is completely isometrically isomorphic to the subalgebra of B(H)⊗B(ℓ2(G)) generated by

π(a) = sot−
∑

h∈G

αh−1(a)⊗ Ph, ∀a ∈ A

Ug = I ⊗ ug, ∀g ∈ G,

where Ph, h ∈ G, denotes the projection on the h-coordinate of ℓ2(G).
It is well known that the reduced crossed product of C∗-algebras is a covariant functor from the

category of C∗-dynamical systems with morphisms the G-equivariant ∗-homomorphisms to the category
of C∗-algebras. Specifically if (C, σ,G) and (D, ρ,G) are C∗-dynamical systems and φ : C → D is an
equivariant ∗-homomorphism, i.e., φσg = ρgφ, for all g ∈ G, then there exists a map

φ⋊ id : C ⋊σ,λ G −→ D ⋊ρ,λ G

which acts as the identity on the copy of G and satisfies φ⋊ id(c) = φ(c), for all c ∈ C. Since the reduced
crossed product of an operator algebra is defined as a subset of a C∗-algebra crossed product, we obtain
that the crossed product of operator algebras is also a covariant functor in the above sense from the
category of dynamical systems with morphisms the G-equivariant completely isometric homomorphisms
to the category of operator algebras with morphisms the completely isometric homomorphisms.

Katsoulis [35, Theorem 2.5] has shown that

C∗
env(A ⋊α,λ G) ≃ C∗

env(A)⋊α,λ G.

The isomorphism also holds for C*-envelopes of cosystems whose coactions are equivariant with respect
to the actions α and α⊗ id of G on A and A⊗ C∗(G) respectively, as the next result shows

Proposition 6.1. Let (A, G, δ) be a (normal) cosystem. Let G be a group acting on A by completely
isometric automorphisms αg for g ∈ G, such that

(6.1) δαg = (αg ⊗ id)δ for all g ∈ G.

Then G induces a (normal resp.) coaction δ̃ ⋊ id on A⋊α,λ G and

C∗
env(A⋊α,λ G, G, δ̃ ⋊ id) ≃ C∗

env(A, G, δ)⋊α,λ G.

Proof. For convenience suppose that A ⊆ C∗
env(A) ⊆ B(H) and C∗(G) ⊆ B(K). The action α⊗ id of G

on C∗
env(A)⊗C∗(G) gives rise to the crossed product [C∗

env(A)⊗C∗(G)]⋊α⊗id,λG. To make a distinction
we write

π(a) ∈ B(H)⊗ B(ℓ2(G)) and π′(a⊗ ug) ∈ B(H)⊗ B(K)⊗ B(ℓ2(G))

for all a ∈ Ag, g ∈ G, while we use the symbols

Ug ∈ B(H)⊗ B(ℓ2(G)) and U ′
g ∈ B(H)⊗ B(K)⊗ B(ℓ2(G))

for the different shifts that define the crossed products

C∗
env(A) ⋊α,λ G and [C∗

env(A)⊗ C∗(G)]⋊α⊗id,λ G.

Up to a unitary interchanging of K with ℓ2(G), we get the ∗-isomorphism

Φ: [C∗
env(A) ⊗ C∗(G)]⋊α⊗id,λ G −→ [C∗

env(A) ⋊α,λ G]⊗ C∗(G)

given by

Φ[π′(a⊗ ug)U
′
g] = (π(a)Ug)⊗ ug

for all a ∈ Ag, g ∈ G and g ∈ G. Consider the completely isometric map

δ̃ ⋊ id := Φ ◦ (δ ⋊ id) : A⋊α,λ G −→ (A⋊α,λ G)⊗ C∗(G).
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Note that

δ̃ ⋊ id(π(a)Ug) = Φ ((δ ⋊ id)(π(a)Ug))

= Φ(π′(a⊗ ug)U
′
g)

= (π(a)Ug)⊗ ug,

for all a ∈ Ag, g ∈ G and g ∈ G. Therefore, δ̃ ⋊ id is a completely isometric map which satisfies the
coaction identity on A ⋊α,λ G. Since δ is non-degenerate, we have that

∑
g∈G Ag is dense in A, so that

also
∑

g∈G[A⋊α,λ G]g is dense in A⋊α,λ G. Hence (A⋊α,λ G, G, δ̃ ⋊ id) is a cosystem.

When δ is normal then we can deduce that δ̃ ⋊ id is also normal by working with C∗
λ(G) ⊆ B(ℓ2(G))

and δλ, in place of C∗(G) ⊆ B(K) and δ, respectively. This will give that the ∗-homomorphism

(idA⋊α,λG ⊗ λ)δ̃ ⋊ id = δ̃λ ⋊ id : A⋊α,λ G 7→ (A⋊α,λ G)⊗ C∗
λ(G)

and thus δ ⋊ id is normal.
For the second part we will use the realization of the C*-envelope of a cosystem from Theorem 3.8.

Since we are assuming that A ⊆ C∗
env(A), the proof of Theorem 3.8 (and in particular (3.3)) establishes

a ∗-isomorphism

δ∗ : C∗
env(A, G, δ) −→ C∗

env(A)⊗ C∗(G),

which coincides with δ on A. We also have a similar ∗-isomorphism

(δ̃ ⋊ id)∗ : C∗
env(A⋊α,λ G, G, δ̃ ⋊ id) −→ C∗

env(A⋊α,λ G)⊗ C∗(G).

Now [35, Theorem 2.5] provides a ∗-isomorphism

φ : C∗
env(A⋊α,λ G) −→ C∗

env(A) ⋊α,λ G,

and so we have the following faithful ∗-homomorphisms

C∗
env(A⋊α,λ G, G, δ̃ ⋊ id)

(δ̃⋊id)∗ //
OO

��

C∗
env(A⋊α,λ G)⊗ C∗(G)

φ⊗id

��
(C∗

env(A)⋊α,λ G)⊗ C∗(G)

Φ−1

��
C∗

env(A, G, δ)⋊α,λ G (C∗
env(A) ⊗ C∗(G))⋊α⊗id,λ G

(δ∗)
−1

⋊id

oo

whose composition establishes the desired ∗-isomorphism.

Next we discuss the application of Proposition 6.1 to cosystems. A generalized gauge action of G on
Tλ(X) is an action α : G → Aut(Tλ(X)) that satisfies

αg(tp(Xp)) = tp(Xp) for all p ∈ P and g ∈ G.

Then α preserves Tλ(X)+ and thus we get the nonselfadjoint crossed product Tλ(X)+ ⋊α,λ G. The
ideal qλ(I∞) of strong covariance in Tλ(X) is α-invariant, so that α descends to a group action of
G on Tλ(X)/qλ(I∞) which is also a generalized gauge action and gives the reduced crossed product
(Tλ(X)/qλ(I∞))⋊α,λ G.

Given a faithful representation ρ⋊ U of Tλ(X)⋊α,λ G, where ρ is a representation of Tλ(X) and U a
unitary representation of G such that ρ ◦ αg(·) = Ugρ(·)U∗

g , we can define a product system by using the
concrete representations of X and G. To this end, for every p ∈ P we define

Xp ⋊α,λ G := span{ρ(tp(ξp))Ug | ξp ∈ Xp, g ∈ G}.

Since ραg(f) = Ugρ(f)U
∗
g for all f ∈ Tλ(X) we can also write

Xp ⋊α,λ G := span{Ugρ(tp(ξp)) | ξp ∈ Xp, g ∈ G}.

Consequently

(Xp ⋊α,λ G) · (Xq ⋊α,λ G) = Xpq ⋊α,λ G,

and thus the family

X ⋊α,λ G := {Xp ⋊α,λ G}p∈P
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defines a product system over P with coefficients from A⋊α,λ G. Furthermore we can write

K(Xp ⋊α,λ G) = span{ρ(tp(kp))Ug | kp ∈ KXp, g ∈ G}

= span{Ugρ(tp(kp)) | kp ∈ KXp, g ∈ G}.

As X ⋊α,λ G is defined concretely we get that

ipqp
(
ρ(tp(kp))Ug

)
ρ(tpq(ξpq)Uh) = ρ(tp(kp))Ugρ(tpq(ξpq)Uh).

Moreover we see that

Ugρ(tp(kp)) · ρ(tp(kp))Uh = ρ(αg(tp(kp)tq(kq)))Ugh.

As αg defines automorphisms on the compact operators then a proof similar to [20, Proposition 6.3]
(see also [36, Proposition 3.2] for a shorter proof) shows that compact alignment of X implies compact
alignment of X ⋊α,λ G.

Proposition 6.2. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P with coefficients from A. Let α : G → Aut(Tλ(X)) be a generalized gauge action
by a discrete group G. Then

Tλ(X)⋊α,λ G ≃ Tλ(X ⋊α,λ G) and Tλ(X)+ ⋊α,λ G ≃ Tλ(X ⋊α,λ G)+.

Proof. Assume that Tλ(X) ⊆ B(H) and for specificity let

ρ(tp(ξp)) = sot−
∑

h∈G

αh−1(tp(ξp))⊗ Ph, ξp ∈ Xp, p ∈ P

Ug = I ⊗ ug, g ∈ G,

acting on H ⊗ ℓ2(G). From Proposition 4.4 we obtain a faithful representation

Tλ(X) −→ Tλ(X)⊗ C∗
λ(P ) : tp(ξp) 7−→ tp(ξp)⊗ Vp

and from this representation of Tλ(X) we produce the (faithful) induced representation of Tλ(X)⋊α,λ G

on H ⊗ ℓ2(G)⊗ ℓ2(G) with

(6.2) Tλ(X)⋊α,λ G ∋ ρ(tp(ξp))Ug 7−→ sot−
∑

h∈G

tp(αh−1(ξp))⊗ Vp ⊗ Phug.

On the other hand, Proposition 4.4 applied to the identity representation of X ⋊α,λ G, which is Nica
covariant, gives a faithful representation of Tλ(X ⋊α,λ G) with

(6.3) Tλ(X ⋊α,λ G) ∋ tp
(
ρ(tp(ξp))Ug

)
7−→ sot−

∑

h∈G

tp(αh−1(ξp))⊗ Phug ⊗ Vp.

The right sides of (6.2) and (6.3) are unitarily equivalent via the unitary that switches ℓ2(P ) and ℓ2(G).
Hence the algebras on the left of these equations are isomorphic with an isomorphism that preserves the
corresponding tensor algebras.

Since we are dealing with two different product systems at once, we write I∞(X) and I∞(X ⋊α,λ G)
to distinguish the two relevant strong covariance ideals.

Theorem 6.3. Let P be a right LCM subsemigroup of a group G and let X be a compactly aligned
product system over P with coefficients from A. Let α : G → Aut(Tλ(X)) be a generalized gauge action
by a discrete group G. Then

C∗
λ(SC(X ⋊α,λ G)) ≃ C∗

λ(SCX)⋊α,λ G.

If in addition the coaction of G on A⋊α,λ G is normal, which is the case e.g. when G is exact, then

(6.4) Tλ(X ⋊α,λ G)/qλ(I∞(X ⋊α,λ G)) ≃ (Tλ(X)/I∞(X))⋊α,λ G.

Proof. For convenience set Y := X ⋊α,λ G. By construction we see that

(Tλ(X)⊗ C∗(G)) ⋊α⊗id,λ G ≃Ψ (Tλ(X)⋊α,λ G)⊗ C∗(G).

In particular Ψ is equivariant and by restricting Ψ we get

(Tλ(X)+ ⊗ C∗(G))⋊α⊗id,λ G ≃ (Tλ(X)+ ⋊α,λ G)⊗ C∗(G).
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By Theorem 4.9, Proposition 6.1 and Proposition 6.2 we have that

C∗
env(Tλ(Y )+, G, δ̃ ⋊ id) ≃ C∗

env(Tλ(X)+ ⋊α,λ G, G,Ψ(δ̃ ⋊ id))

≃ C∗
env(Tλ(X)+, G, δ

+
)⋊α,λ G,

and now an application of Theorem 5.3 proves (6.4). The second part follows from Corollary 5.6 and the
proof is complete.
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