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Abstract. We study quotients of the Toeplitz C*-algebra of a ran-
dom walk, similar to those studied by the author and Markiewicz for
finite stochastic matrices. We introduce a new Cuntz-type quotient C*-
algebra for random walks that have convergent ratios of transition prob-
abilities. These C*-algebras give rise to new notions of ratio limit space
and boundary for such random walks, which are computed by appealing
to a companion paper by Woess. Our combined results are leveraged
to identify a unique symmetry-equivariant quotient C*-algebra for any
symmetric random walk on a hyperbolic group, shedding light on a ques-
tion of Viselter on C*-algebras of subproduct systems.

1. Introduction

It is an age-old tradition, since the work of Murray and von Neumann
[42, 43], to use operator algebras as means of producing new invariants
in various theories in Mathematics. One instance where the theory of C*-
algebras was useful in this regard is in the classification of Cantor minimal Zd
systems up to orbit equivalence through the use of K-theoretical invariants,
leading to new notions of equivalence relations between the systems [27, 26].

Another instance of this is in graph theory and symbolic dynamics, where
invariants of C*-algebras studied by Cuntz and Krieger coincide with in-
variants coming from subshifts of finite type [13, 12]. After contributions
and improvements by too many authors to list here, these works led to
C*-algebraic interpretations of equivalence relations occurring naturally in
symbolic dynamics [40, 6], and provided a rich class of examples for classi-
fication of operator algebras [22, 17].

A concrete way of constructing and studying C*-algebras of directed
graphs is by realizing them as unique T-equivariant quotients of the Toeplitz
C*-algebras of the graph. These Toeplitz C*-algebras are simply those
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2 A. DOR-ON

generated by concatenation operators on the space of square-summable se-
quences indexed by all finite paths of the graph. Such concrete realizations,
together with previous works on C*-algebras of subproduct systems [52, 53],
allowed us to reveal the structure of Toeplitz C*-algebras and tensor opera-
tor algebras of subproduct systems arising from stochastic matrices [19, 20].

In this paper, we introduce a new Cuntz-type C*-algebra O(G,µ) for a
random walk P on a group G induced by a finitely supported measure µ,
which is a quotient of the Toeplitz algebra T (G,µ) of the stochastic matrix
P . The computation of O(G,µ) in this paper gave rise to new notions of
ratio-limit space and boundary for random walks, prompting the study in
the companion paper by Woess [58]. When the random walk is finite, our
Cuntz C*-algebras coincide with the ones computed in [20, Theorem 2.1],
but new subtleties emerge for random walks on infinite groups.

For a stochastic matrix P on a group G, we denote by P
(n)
x,y := (Pn)x,y

the n-step transition probability from x to y, for x, y ∈ G.

Definition 1.1. Let P be an irreducible stochastic matrix over G. We say
that P has the strong ratio limit property (SRLP) if for all x, y, z ∈ Ω we

have that the limit lim
m→∞

P
(m)
x,y

P
(m)
z,y

exists.

SRLP was first established for integer lattices in works of Chung and
Erdös [11] and of Kesten [36], and was later shown to hold for random
walks over abelian groups [51], random walks on nilpotent groups [39], and
symmetric random walks on amenable groups [1]. These days, establishing
SRLP often relies on local limit theorems. More precisely, typical local limit

theorems for P determine the asymptotic behavior of P
(n)
x,y in the sense that

P (n)
x,y ∼

n→∞
C · β(x, y) · ρn · n−α,

for C, β(x, y), α > 0, where the ratio between the LHS and RHS goes to 1
as n→∞ (see [47, 4] for other kinds of local limit theorems). If we have a

local limit theorem as above, we get SRLP where lim
m→∞

P
(m)
x,y

P
(m)
z,y

= β(x,y)
β(z,y) .

Local limit theorems have been established for certain random walks on
free products [54, 8], random walks on free groups and trees [37], symmetric
random walks on co-compact Fuchsian groups [29] and symmetric random
walks on non-elementary hyperbolic groups [28]. For more on the history of
local limit theorems we refer the reader to [56, Chapter III], as well as the
companion paper by Woess [58]. In general, it is unknown whether or not
aperiodic random walks automatically satisfy SRLP.

Assuming SRLP, a ratio-limit space and boundary arise from the com-
putation of O(G,µ), leading to the following definitions in the theory of
random walks. The ratio-limit kernel H : G×G→ (0,∞) is given by

H(x, y) = lim
m→∞

P
(m)
x,y

P
(m)
e,y

,
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which turns out to be bounded in y ∈ G for every fixed x ∈ G. We let
Rµ be the largest subgroup of G on which the functions y 7→ H(x, y) are
constant for all x ∈ G. Then, we define the ratio-limit space R(G,µ) to be
the smallest compactification of G/Rµ to which the functions y 7→ H(x, y)
extend continuously for all x ∈ G. The ratio limit boundary is given by

∂RG = R(G,µ) \ [G/Rµ].

Let T be the unit circle, and denote by K(`2(G)) the compact operators on
the Hilbert space `2(G). The following establishes the connection between
O(G,µ) and the ratio limit space R(G,µ) in this work.

Theorem 1.2. Let P be a random walk on a group G induced by a finitely
supported measure µ, and assume that P has SRLP. Then

O(G,µ) ∼= C(R(G,µ)× T)⊗K(`2(G)).

This result prompted the computation of the ratio-limit boundary for
several classes of examples in the companion paper by Woess [58]. This
includes isotropic random walks on trees [58, Theorem 3.3], random walks
on free groups [58, Theorem 3.12], and symmetric random walks on non-
elementary hyperbolic groups [58, Theorem 4.5].

As a consequence, we are able to shed light on a questions of Viselter on
C*-algebras associated with subproduct systems. Subproduct systems were
introduced by Shalit and Solel in [50] for the purpose of studying quantum
Markov semigroups (see also [41, 3]), and for unifying the study of certain
operator algebras of nc holomorphic functions (see for instance [15, 16, 48]).
In work of Viselter [53], Cuntz-Pimsner C*-algebras of a subproduct system
were defined in a way that generalized essentially all previous examples.

In [53, Section 6, Question 1] Viselter asked if his C*-algebras have a
universal property in the spirit of a gauge-invariant uniqueness theorem.
Gauge-invariant uniqueness theorems have a plethora of applications in the
structure and representation theory of operator algebras, and have been
extended significantly to various scenarios [44, 33, 45, 34, 7, 18, 21]. Hence,
it is natural to ask for such uniqueness theorems in the context of subproduct
systems. However, already in [53, Example 2.3] it was shown that a unique
T-gauge equivariant quotient C*-algebra may fail to exist in general.

In a recent preprint of Arici and Kaad [2] it is shown that subproduct
systems arising from representations of SU(2) give rise to a natural SU(2)-
action on associated Toeplitz and Cuntz C*-algebras. These symmetries are
leveraged to provide analogues of Gysin sequences that are used to compute
the K-theory of these Toeplitz and Cuntz C*-algebras via Euler character-
istic classes. Analogously to Viselter’s question, in [2, Section 8, Question
3] it is asked whether Viselter’s Cuntz-Pimsner C*-algebra is the unique
SU(2)-equivariant quotient for subproduct systems arising in [2]. The key
observation made by asking this question is that Viselter’s Cuntz-Pimsner
algebra in [53, Example 2.3] turns out to be the unique SU(2)-equivariant
quotient of its respective Toeplitz C*-algebra.
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Hence, Viselter’s question can be interpreted as asking whether his Cuntz-
Pimsner C*-algebras satisfy symmetry-uniqueness with respect to a natural
class of symmetries on the Toeplitz algebra, at least in cases where a unique
equivariant quotient of Toeplitz algebra exists with respect to this class.

We answer the above question in the negative, showing that Viselter’s
Cuntz-Pimsner C*-algebra has a proper quotient which is the unique G×T
equivariant quotient of T (G,µ). In fact, for symmetric aperiodic random
walks on non-elementary hyperbolic groups, whose ratio-limit boundary is
computed in the companion paper [58], we get a unique G × T-equivariant
quotient of T (G,µ) which is a proper quotient of both Viselter’s C*-algebra
and O(G,µ).

Theorem 1.3. Let P be a symmetric aperiodic random walk on a non-
elementary hyperbolic group induced by a finitely supported measure µ, and
let ∂G be the Gromov boundary of G. Then, the C*-algebra C(∂G × T) ⊗
K(`2(G)) is the unique smallest G× T-equivariant quotient of T (G,µ).

This paper has five sections, including this introduction. In Section 2
we provide some of the necessary preliminaries on stochastic matrices and
random walks. In Section 3 we introduce the ratio-limit space and boundary
of a random walk with SRLP arising in this work, and provide some examples
by appealing to the companion paper by Woess [58]. In Section 4 we define
Toeplitz and Cuntz algebras for random walks, and compute the latter under
the assumption of SRLP. Finally, in Section 5 we find conditions on the ratio
limit boundary to ensure uniqueness of equivariant quotients, and explain
how our setting transfers to the context of subproduct systems where we
discuss consequences on Viselter’s question.

Acknowledgments. The author is grateful to Wolfgang Woess for many
helpful exchanges on the subject of random walks and their boundaries, for
providing remarks on this paper, and for computing ratio limit boundaries
in many classes of examples in the companion paper [58]. The author is also
grateful to Christopher Linden and Alex Vernik for suggestions, discussions
and remarks on draft versions of this paper.

2. Stochastic matrices and random walks.

In this subsection we discuss some of the needed theory on stochastic
matrices and random walks. For more on the relevant theory we recommend
the survey [55] and the books [56, 57].

Definition 2.1. Let X be a countable set. A stochastic matrix over X is a
map P : X ×X → [0, 1] such that

∑
j Pij = 1. We let Gr(P ) be the directed

graph on X with directed edges E(P ) := { (i, j) | Pij > 0 }. We say that P
is irreducible if Gr(P ) = (X , E(P )) is a strongly connected directed graph.

When P is a stochastic matrix over X , we denote by Pn the n-th iterate

of P , and by P
(n)
ij the ij-th entry of Pn. We denote P 0 := I the identity
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matrix. We say that P is symmetric when it is equal to its transpose. We
also say that P is aperiodic if the greatest common divisor of lengths of all
cycles in Gr(P ) is 1. We will assume henceforth that X is countable.

Definition 2.2. Let P be an irreducible stochastic matrix over X . The
spectral radius of P is given by

ρ(P ) := lim sup
n→∞

n

√
P

(n)
ij

and is independent of i, j ∈ X .

We denote by ρ := ρ(P ) when the context is clear. We will say that a
non-negative function h : X → [0,∞) is ρ-harmonic at i ∈ X if (Ph)(i) :=∑

j∈X Pijh(j) = ρ · h(i). The Green kernel of P is given for i, j ∈ X by

G(i, j|z) =
∞∑
n=0

P
(n)
ij zn,

with radius of convergence ρ−1. We denote also F (i, j|z) := G(i,j|z)
G(j,j|z) , so that

by [57, Lemma 3.66] we get that limz→ρ−1 F (i, j|z) exists for every i, j ∈ X .
Let o ∈ X be some fixed element. We define the ρ-Martin kernel of P to be

K(i, j) := lim
z→ρ−1

G(i, j|z)

G(o, j|z)
= lim

z→ρ−1

F (i, j|z)

F (o, j|z)
,

which exists and is finite. For fixed j ∈ X , the function i 7→ K(i, j) is
then ρ-harmonic at all points, except when i = j, while for fixed i ∈ X the
function j 7→ K(i, j) is bounded above and away from 0.

Now let φ : X → N be some bijection. The ρ-Martin compactification
∆ρX is the completion of X with respect to the metric

d(j1, j2) =
∑
i∈X

|K(i, j1)−K(i, j2)|+ |δij1 − δij2 |
Ci · 2φ(i)

.

Then, ∆ρX becomes the smallest compactification of X to which the func-
tions i 7→ K(i, j) extend continuously for every fixed j ∈ X , and contains
X as an open subset (see for instance [56, Theorem 7.13] for an equiva-
lent construction). A sequence αn ∈ X converges to a α ∈ ∆ρX if either
α ∈ X and αn is eventually equal to α, or αn is eventually outside any
finite set and limnK(i, αn) = K(i, α) for every i ∈ X . The closed subspace
∂∆,ρX = ∆ρX \ X is called the ρ-Martin boundary of P .

Our focus in this work will be on irreducible stochastic matrices that are
random walks on groups, with finitely supported measures.

Definition 2.3. Let G be a countable discrete group, and µ : G → [0, 1] a
finitely supported probability measure such that supp(µ) generates G as a
semigroup. The stochastic matrix P on G given by Px,y = µ(x−1y) is called
the random walk on G induced by µ.
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The iterates of P are then given by P
(n)
x,y = µ∗n(x−1y) where µ∗n is the

n-th convolution power of µ. Note also that P is symmetric if and only if
µ(g) = µ(g−1) for every g ∈ G, and that P is aperiodic if and only if there
is some odd n such that µ∗n(e) > 0.

The main reason for choosing a finitely supported measure µ in the above
definition, is to assure that the random walk P has finite range, or alterna-
tively, that the graph Gr(P ) is locally finite. More precisely, for any fixed
z ∈ G, there are finitely many y ∈ G such that Py,z > 0.

One of the defining features of random walks is that they have symmetries

coming from a group. That is, for every g ∈ G we have that P
(n)
gx,gy = P

(n)
x,y .

This gives rise to G-invariance of the Green kernel in the sense that for
every g ∈ G and x, y ∈ G and 0 < z < ρ−1 we have G(gx, gy|z) = G(x, y|z),
and for 0 < z ≤ ρ−1 we have F (gx, gy|z) = F (x, y|z). But then, since
K(x, gy) = K(g−1x, y)/K(g−1, y), we see that the left multiplication map
αg : x 7→ gx is continuous with respect to the metric d. Hence, αg extend
to a homeomorphism (still denoted) αg on ∆ρG. Furthermore, αg clearly
maps G onto itself, and so must map ∂∆,ρG onto itself as well. Thus, when
P is a random walk, we see that the compacta ∆ρG and ∂∆,ρG both carry
G-actions by homeomorphisms induced by left multiplication on G.

3. Ratio limit space and boundary.

Recall an essential assumption for random walks and their operator alge-
bras, that will be used throughout this paper.

Definition 3.1. Let P be a random walk on G induced by a finitely sup-
ported measure µ. We say that P has the strong ratio limit property (SRLP)

if for all x, y, z ∈ G we have that limm→∞
P

(m)
x,y

P
(m)
z,y

exists.

Note that if these limits exist and are all non-zero, this implies that P is
aperiodic, so that for any x, y ∈ G we have n0 such that for all n ≥ n0 one

must have P
(n)
x,y > 0.

Suppose now that P is an aperiodic random walk on a group G induced by
a finitely supported measure µ. By [25, Satz 1] (see also [30, Proposition 7.1])

we know that limm→∞
µ∗(m+1)(x)
µ∗m(x) = ρ for every x ∈ G where ρ = ρ(P ) is the

spectral radius. Thus, the limiting behavior of the sequences
{
µ∗m(x−1y)
µ∗m(y)

}
is comparable with some other better-behaved sequences. Indeed, when
µ∗n(y) > 0 and µ∗n

′
(x−1y) > 0 we get that

µ∗m(x−1y)

µ∗m(y)
∼

m→∞

ρ(P )nµ∗m(x−1y)

µ∗(m+n)(y)
∼

m→∞

µ∗(m+n′)(x−1y)

ρ(P )n′ · µ∗m(y)

The advantage of doing this, is that we can assure that eventually µ∗m(x−1y)
µ∗m(y)

is bounded above and away from 0 for every fixed x ∈ G. Indeed, for smallest
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n, n′ ∈ N such that µ∗n(x), µ∗n
′
(x−1) > 0 we get that

ρ(P )nµ∗m(x−1y)

µ∗(m+n)(y)
≤ Cx, and

µ∗(m+n′)(x−1y)

ρ(P )n′ · µ∗m(y)
≥ cx.

where

Cx =
ρ(P )n

µ∗n(x)
and cx =

µ∗n
′
(x−1)

ρ(P )n′
.

Hence, for fixed x ∈ G and sufficiently large m we get cx ≤ µ∗m(x−1y)
µ∗m(y) ≤ Cx

for every y ∈ G.
Suppose now that P has SRLP. From the G-symmetry of the random

walk, this is equivalent to the existence of the limits limm
µ∗m(x)
µ∗m(e) for each

x ∈ G. We may define the ratio limit kernel H : G×G→ (0,∞) given by

H(x, y) = lim
m

µ∗m(x−1y)

µ∗m(y)
.

Then, by the above x 7→ H(x, y) is ρ-harmonic for every fixed y ∈ G and
y 7→ H(x, y) is bounded and bounded away from 0 for every fixed x ∈ G.
For each x ∈ X, we denote by H(x, ·) the ratio-limit function y 7→ H(x, y).

Proposition 3.2. Let P be a random walk on a group G induced by a finitely
supported measure µ. Suppose that P has SRLP. Then the set

Rµ := { y ∈ G | H(x, y) = H(x, e) ∀x ∈ G }
is a subgroup of G.

Proof. For y, z ∈ Rµ and x ∈ G we have

H(x, yz) = lim
m

µ∗m(x−1yz)

µ∗m(yz)
= lim

m

µ∗m((y−1x)−1z)

µ∗m(z)
· µ∗m(z)

µ∗m((y−1)−1z)
=

= H(y−1x, z)H(y−1, z)−1 = H(y−1x, e)H(y−1, e)−1 =

lim
m

µ∗m(x−1y)

µ∗m(e)
· µ
∗m(e)

µ∗m(y)
= H(x, y) = H(x, e),

and we also have

H(x, y−1) = lim
m

µ∗m((yx)−1)

µ∗m(y−1)
= lim

m

µ∗m((yx)−1)

µ∗m(e)

µ∗m(e)

µ∗m(y−1)
=

H(yx, e)H(y, e)−1 = H(yx, y)H(y, y)−1 =

lim
m

µ∗m(x−1)

µ∗m(y)

µ∗m(y)

µ∗m(e)
= H(x, e).

�

We call Rµ the ratio-limit radical, as it is the largest subgroup of G on
which the ratio-limit functions {H(x, ·)}x∈G are constant. We let G/Rµ be
the left cosets of G by Rµ. Note that the ratio-limit functions are well-
defined on, and separate points in G/Rµ.
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Remark 3.3. When P as above is also symmetric, there is a subgroup
Aµ ≤ G defined in [23] given by

Aµ =
{
y ∈ G

∣∣ lim
m

µ∗m(y)

µ∗m(e)
= 1

}
,

which is amenable by [23, Theorem 4.2]. Together with SRLP, from the
definition of Rµ we see that for any y ∈ Rµ we have H(y, y) = H(y, e).
Hence, by symmetry of P we dedudce that y ∈ Aµ, so that Rµ is a subgroup
of Aµ. Hence, when P is symmetric we get that Rµ is amenable.

Definition 3.4. Let P be a random walk on a group G induced by finitely
supported µ. Suppose that P satisfies SRLP. The (reduced) ratio-limit space
R(G,µ) is the smallest compactification of G/Rµ which makes the ratio limit
functions {H(x, ·)}x∈G extend continuously to R(G,µ). More precisely, if
φ : G → N is some bijection, then R(G,µ) is the completion of G/Rµ with
respect to the bounded metric

d(yRµ, zRµ) =
∑
x∈G

|H(x, y)−H(x, z)|
Cx · 2φ(x)

.

The subspace ∂RG = R(G,µ) \ (G/Rµ) is called the (reduced) ratio-limit
boundary of the random walk.

It follows from general topology (see [24, Theorem 3.5.8]) that G/Rµ
is open in R(G,µ), so that ∂RG is a closed subspace. The topology on
R(G,µ) is determined by specifying that a sequence yn ∈ G converges to
a point y ∈ R(G,µ) if either y ∈ G and yn ∼ y for eventually every n, or
that y ∈ ∂RG and limnH(x, yn) = H(x, y) for every x ∈ G. Furthermore,
since H(x, gy) = H(g−1x, y)/H(g−1, y), again we get that left multiplication
βg : xRµ 7→ gxRµ on G/Rµ is continuous with respect to d, and extends to
a homeomorphism (still denoted) βg on R(G,µ). Hence, as before, we get
that the compacta R(G,µ) and ∂RG carry G-actions by homeomorphisms
induced by left multiplication on G (for the latter when it is non-empty).

When G is an amenable group, and P is a symmetric aperiodic random
walk on G induced by a finitely supported µ, by Avez’ theorem [1] (see also

[23, Corollary 3.3]) we get for any x ∈ G that lim µ∗m(x)
µ∗m(e) = 1. In this case

Rµ = G, so that R(G,µ) = G/Rµ is trivial, and the ratio limit boundary
is empty. Together with this, the next example shows that the ratio limit
boundary / space may fail to coincide with the ρ-Martin boundary in general.

Example 3.5 (Random walks on lamplighter groups). Let LL(Zd) = Zd ×[⊕
x∈Zd Z2

]
where

⊕
x∈Zd Z2 are finitely supported functions on Zd with

d ≥ 3. Then, LL(Zd) has group multiplication given by (x,w) · (y, u) =
(x+ y, w+Tx(u)) where Tx(u) is given by Tx(u)(z) = u(z−x). Let P be an
aperiodic symmetric random walk on LL(Zd) induced by a finitely supported
measure µ. From [31, Example 6.1] we know that LL(Zd) is amenable, so
that by Kesten’s amenability criterion [35] we get that the spectral radius
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of P is ρ = 1. On the other hand, by [31, Proposition 6.1] we also get that µ
has a non-trivial Poisson boundary. Since the Poisson boundary is contained
in the 1-Martin boundary, we see that P has non-trivial ρ-Martin boundary
while having a trivial ratio limit space and empty ratio limit boundary.

Example 3.6. Let Fs be the free group on s generators a1, ..., as, and let d
be the shortest path metric on the Cayley graph T of Fs with respect to the
symmetric generating set S = {a1, ..., as, a

−1
1 , ..., a−1

s }. Note that T = T2s is
just the 2s regular tree. We take a (finitely supported) probability measure
µ on Fs with µ(e) > 0, which is a function µ(w) = f(d(e, w)) of the distance
of w ∈ Fs to the identity element e ∈ Fs in T. Then µ induces what is
known as an isotropic random walk on Fs. By the local limit theorem of
Sawyer [49] (see also [56, Theorem 19.30]), we have that

P (n)
x,y ∼

n→∞
C · β(x, y) · ρn · n−3/2,

where β(x, y) = (1+ s−1
s d(x, y))(2s−1)−d(x,y)/2. Hence, for x, y ∈ Fs we get

a formula for the ratio-limit kernel,

H(x, y) =
1 + s−1

s d(x, y)

1 + s−1
s d(e, y)

(2s− 1)
d(e,y)−d(x,y)

2 .

In particular, we see that the ratio-limit functions separate points in Fs, so
that Rµ is trivial. Hence, Fs embeds into R(Fs, µ), and by [58, Theorem 3.3]
the ratio limit boundary ∂RFs coincides with the space of ends ∂T2s of the
2s-regular tree T2s. Hence, we get that R(Fs, µ) = Fs ∪ ∂T2s.

Example 3.7. Let P be an aperiodic isotropic random walk on Fs1 arising
from µ1 and Q be an apriodic symmetric random walk on Zs2 arising from
µ2 where s1 ≥ 2 and s2 ≥ 1. Take the Cartesian product G = Fs1×Zs2 , and
let π1 : G → Fs1 and π2 : G → Zs2 be the coordinate projections. By [56,
Theorem 13.12] we have that Q satisfies a local limit theorem of the form

Q(n)
v1,v2 ∼

n→∞
C · n−s2/2.

Next, define the Cartesian random walk by setting µ = 1
2 [µ1◦π−1

1 +µ2◦π−1
2 ]

where µ1, where µ1 ◦ π−1
1 and µ2 ◦ π−1

2 are pushforward measures. Then,
by [58, Proposition 5.3] (see also [9]), we get that the ratio limit kernel H
for µ is given by H((w1, v1), (w2, v2)) = H1(w1, w2)H2(v1, v2), where H1 and
H2 = 1 are the ratio limit kernels of P and Q respectively. By Example 3.6
and the formula for H1 there, so we get that Rµ = Rµ2 = Zs2 . Thus, G/Rµ
coincides with Fs1 , and the ratio limit space R(G,µ) is equal to Fs1 ∪∂T2s1 .

The companion paper [58] deals mostly with full versions of the ratio-limit
compacta, which are generally different from the respective ones considered
here1. The full ratio-limit space is defined without incorporating Rµ into

1In [58], the full ratio-limit space and boundary are referred to simply as ratio-limit
compactification and boundary respectively, and our ratio-limit space and boundary are
also refereed to as the reduced ratio-limit compactification and boundary respectively.
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the picture, and is the smallest compactification ∆RG of G to which the
ratio-limit functions y 7→ H(x, y) extend continuously (see [58, Section 6]
for a comparison). It is straightforward to show that the quotient map
G → G/Rµ extends to a continuous surjective G-equivariant map from
∆RG onto R(G,µ). However, a key observation is that the full ratio-limit
boundary and the (reduced) ratio-limit boundary considered in this paper
coincide whenever G is infinite and Rµ is finite. Hence, by [58, Corollary
6.6] the two ratio-limit boundaries coincide for all classes of random walks
considered in [58].

A key step in the computation of full ratio limit boundaries in [58] is
to show that they coincide with the respective ρ-Martin boundaries, whose
computation was previously attained in many classes of examples. More
precisely, for the classes of examples considered in [58], it follows that the
quotient map G → G/Rµ induces a homeomorphism τ : ∂∆,ρG → ∂RG
(which also satisfies K(x, ξ) = H(x, τ(ξ)) for every x ∈ G and ξ ∈ ∂∆,ρG).

In such cases, a simple approximation argument together with continuity
of left multiplication by g shows that τ(gξ) = gτ(ξ) for every ξ ∈ ∂∆,ρG and
g ∈ G. Thus, we get that the identification τ is automatically G-equivariant.
This, together with the above examples, suggests the following question:

Question 3.8. Suppose P is a random walk on G induced by a finitely
supported measure µ with SRLP and spectral radius ρ. Does the ρ-Martin
compactification cover the ratio-limit space? More precisely, is there a sur-
jective G-equivariant continuous map τ : ∆ρG→ R(G,µ) which restricts to
the quotient map G→ G/Rµ on G?

4. Toeplitz quotient C*-algebras for random walks.

The ratio-limit space R(G,µ) arises from the computation of the Cuntz
C*-algebra O(G,µ) as part of its spectrum. In this section of the paper
we will show this. Toeplitz C*-algebras, tensor algebras and C*-envelopes
arising from stochastic matrices were studied previously in [19, 20] (see also
[10]), but the definition of Cuntz C*-algebra we give below is new.

Let P be the stochastic matrix over a set X . For each m ∈ N we denote
F (m)
P the Hilbert space with orthonormal basis {e(m)

jk }(j,k)∈E(Pm). The Fock

Hilbert space of P is then given by

FP :=
∞⊕
m=0

F (m)
P

Next, for each n ∈ N and (i, j) ∈ E(Pn) we define an operator S
(n)
ij on

FP by setting for every (j′, k) ∈ E(Pm),

S
(n)
ij (e

(m)
j′k ) = δjj′

√√√√P
(n)
ij P

(m)
jk

P
(n+m)
ik

e
(n+m)
ik .
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Since S
(n)
ij maps an orthonomal basis to a uniformly bounded (by 1) orthog-

onal set, it defines a bounded operator on FP . For a fixed k ∈ X , we denote

by FP,k the closed linear span of { e(m)
jk | (j, k) ∈ E(Pm), m ≥ 0 }. It follows

that FP,k is a reducing subspace for the operators S
(n)
ij . For a fixed m ∈ N

we also denote F (m)
P,k the closed linear span of { e(m)

jk | (j, k) ∈ E(Pm) }.

Definition 4.1. Let P be a stochastic matrix on a set X . The Toeplitz
C*-algebras of P is given by

T (P ) := C∗( S
(n)
ij | (i, j) ∈ E(Pn), n ∈ N ).

Note that c0(X ) ⊆ T (P ) via the identification (ci) 7→
∑

i∈X ciS
(0)
ii for

(ci) ∈ c0(X ). We will henceforth identify c0(X ) with its copy in B(FP ) as

above, and denote by pi := S
(0)
ii the operator corresponding in c0(X ) to the

characteristic function of i ∈ X .

Remark 4.2. We warn the reader that the Toeplitz C*-algebra T (P ) de-
fined here and in [19, 20] for a stochastic matrix P are different when X
is infinite. For instance, the former is non-unital while the latter is unital.
In Section 5 we will see how the Toeplitz C*-algebras given here arise from
subproduct systems with coefficients c0(X ), while the Toeplitz C*-algebra
in [19, 20] arise from subproduct systems with coefficients `∞(X ).

Definition 4.3. Let P be a stochastic matrix over X . Denote by J (P ) :=
T (P )∩

∏
k∈X K(FP,k), which is a closed ideal in T (P ). We define the Cuntz

C*-algebra of P to be

O(P ) := T (P )/J (P ).

We let qP : T (P ) → O(P ) be the natural quotient map. Since for each

i ∈ P we have that pi = S
(0)
ii /∈

∏
k∈P K(FP,k), we see that {qP (pi)}i∈X are

still pairwise orthogonal projections, so that qP is injective on c0(X ). Hence,
we may also identify c0(X ) as a subalgebra of O(P ) via qP .

Henceforth, we will assume that P is a random walk on a group G induced
by a finitely supported measure µ. To emphasize this we denote

T (G,µ) := T (P ), J (G,µ) := J (P ), and O(G,µ) := O(P ).

For m ∈ N and x ∈ G, denote by Q(m) the orthogonal projection from

FP onto F (m)
P , and Q

(m)
x := Q(m)px = pxQ

(m). Denote also Q[m,∞) :=∑∞
`=mQ

(`), and Q
[m,∞)
x := Q[m,∞)px = pxQ

[m,∞) =
∑∞

`=mQ
(`)
x .

Proposition 4.4. Let P be a random walk on a group G induced by a finitely

supported measure µ. Then Q
(0)
x ∈ T (G,µ) for every x ∈ G. Moreover, we

have that the closed ideal IK := 〈Q(0)
z 〉z∈GCT (G,µ) is equal to ⊕z∈GK(FP,z),

and that Q
(`)
x ∈ IK for every ` ∈ N and x ∈ G.
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Proof. Since Gr(P ) is locally finite, for every x ∈ G there are finitely many
y ∈ G such that (x, y) ∈ E(P ). Hence, for every x ∈ G we have that

R(0)
x := S(0)

x,x −
∑

(x,y)∈E(P )

S(1)
x,yS

(1)∗
x,y ∈ T (G,µ).

Then, on a standard basis vector e
(m+1)
x,z for m ∈ N we get

R(0)
x (e(m+1)

x,z ) = e(m+1)
x,z −

∑
y∈G

P
(n)
x,y P

(m)
y,z

P
(n+m)
x,z

e(m+1)
x,z = 0,

and since R
(0)
x (e

(0)
x,x) = e

(0)
x,x for each x ∈ G, and R

(0)
x (e

(m)
y,z ) = 0 if x 6= y, we

get that Q
(0)
x = R

(0)
x ∈ T (G,µ).

Since {Q(0)
z }z∈G is a set of pairwise orthogonal rank-one projection, each

onto the subspace Ce(0)
z,z ⊆ FP,z, and since T (G,µ)e

(0)
z,z = FP,z, we see that

the closed ideal 〈Q(0)
z 〉z∈G is equal to ⊕z∈GK(FP,z).

Finally, since Gr(P `) is locally finite, for x ∈ G we see that Q
(`)
x :=

pxQ
(`) = Q(`)px is finite rank, and Q

(`)
x =

∑
(x,z)∈E(P `)Q

(`)
x,z where Q

(`)
x,z is

the rank-one projection onto the subspace Ce(`)
x,z. Since Q

(`)
x,z ∈ K(FP,z) for

each x, z ∈ G and ` ∈ N, the proof is concluded. �

Remark 4.5. In Proposition 5.5 we will see that IK coincides with Viselter’s
ideal of T (G,µ), which is realized as the Toeplitz C*-algebra of a subproduct
system arising from the random walk as in Section 5.

We will define an auxiliary C*-algebra T̂ (G,µ) and auxiliary operators

{W (n)
x,y } and {T (n)

x,y } which will help make our computation of O(G,µ) easier.
Denote by JK :=

∏
z∈GK(FP,z), and let

T̂ (G,µ) := T (G,µ) + JK.

Since J (G,µ) = T (G,µ) ∩ JK by definition, by [14, Corollary I.5.6] we get
that

T̂ (G,µ)
/

[J (G,µ) + JK] ∼= O(G,µ).

Hence, even though some operators we define may not be in T (G,µ), they

will all be in T̂ (G,µ) so that their images in O(G,µ) will make sense. More
precisely, qP : T (G,µ) → O(G,µ) extends to a well-defined quotient map

(denoted still by) qP : T̂ (G,µ) → O(G,µ), and we denote for an operator

T ∈ T̂ (G,µ) its image in O(G,µ) by T := qP (T ).

Proposition 4.6. Let P be a random walk on a group G induced by a finitely

supported measure µ. Then, for any T ∈ T̂ (G,µ) we have that

‖T‖ = sup
z∈G

lim
m
‖TQ[m,∞)|FP,z

‖
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Proof. For every ε > 0 there is some K ∈ JK such that

‖T‖ ≥ ‖T +K‖ − ε = sup
z∈G
‖[T +K]|FP,z

‖ − ε ≥

sup
z∈G

lim
m
‖[T +K]Q[m,∞)|FP,z

‖ − ε

But since for every m ∈ N and z ∈ G we have

‖[T +K]Q[m,∞)|FP,z
‖ ≥ ‖TQ[m,∞)|FP,z

‖ − ‖KQ[m,∞)|FP,z
‖,

by taking m→∞, and as K|FP,z
∈ K(FP,z) for z ∈ G, we get that

‖T‖ ≥ sup
z∈G

lim
m
‖TQ[m,∞)|FP,z

‖ − ε.

Hence, we arrive at the lower bound ‖T‖ ≥ supz∈G limm ‖TQ[m,∞)|FP,z
‖.

On the other hand, for every T ∈ T̂ (G,µ) and a sequence of natural
numbers (mz)z∈G, we get by local finiteness of Gr(P ) that the operator

T |FP,z
· (I −Q[mz ,∞))|FP,z

on FP,z is finite rank, so that

T0 := ⊕
z∈G

[
T |FP,z

· (I −Q[mz ,∞))|FP,z

]
∈ JK =

∏
K(FP,z).

Thus, we get for any sequence of natural numbers (mz)z∈G that

‖T‖ ≤ ‖T − T0‖ = sup
z∈G
‖TQ[mz ,∞)|FP,z

‖.

Since (mz)z∈G is arbitrary, we get the upper bound

‖T‖ ≤ sup
z∈G

lim
m
‖TQ[m,∞)|FP,z

‖.

Combined with the the previously obtained lower, we get our result. �

Suppose that P is a random walk with SRLP on a group G induced by a
finitely supported measure µ. Then, for any n ∈ N and (x, y) ∈ E(Pn) we

define two operators W
(n)
x,y and T

(n)
x,y on FP by setting for (y′, z) ∈ E(Pm),

W (n)
x,y (e

(m)
y′,z) = δy,y′ ·

√
H(x−1y, x−1z) · e(m+n)

x,z ,

and T
(n)
x,y :=

[
ρ(P )

P
(n)
x,y

]n
2
S

(n)
x,y ∈ T (P ), alternatively given by the formula

T (n)
x,y (e

(m)
y′,z) = δy,y′

√√√√ρ(P )nP
(m)
y,z

P
(n+m)
x,z

e(n+m)
x,z .

Boundedness of the operators W
(n)
x,y and T

(n)
x,y can be observed from the esti-

mates in Section 3 and the fact that the ratio-limit functions are bounded.
Then, their adjoints are given for x′, z ∈ G by W

(n)∗
x,y (e

(m)
x′,z) = T

(n)∗
x,y (e

(m)
x′,z) = 0

for m < n and otherwise for m ∈ N we have

W (n)∗
x,y (e

(n+m)
x′,z ) =

{
δx,x′ ·

√
H(x−1y, x−1z) · e(m)

y,z if (y, z) ∈ E(Pm)

0 if otherwise.
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and

T (n)∗
x,y (e

(n+m)
x′,z ) = δx,x′

√√√√ρ(P )nP
(m)
y,z

P
(n+m)
x,z

e(m)
y,z .

Proposition 4.7. Suppose P is a random walk on a group G induced by
a finitely supported measure µ, and assume P has SRLP. Then for every

n ∈ N and (x, y) ∈ E(Pn) we have that T
(n)
x,y −W (n)

x,y ∈ JK. In particular,

we get that W
(n)
x,y ∈ T̂ (G,µ).

Proof. Fix z ∈ G. It will suffice to show that the restriction of T
(n)
x,y −W (n)

x,y

to FP,k is compact. Let m ∈ N. If (y, z) /∈ E(Pm), then T
(n)
x,y −W (n)

x,y is zero

on F (m)
P,z . If (y, z) ∈ E(Pm), then e

(m)
y,z is the only standard basis vector of

F (m)
P which is not annihilated by T

(n)
x,y −W (n)

x,y . In this case, we get that

‖[T (n)
x,y −W (n)

x,y ](e(m)
y,z )‖ =

∣∣∣
√√√√ρ(P )nP

(m)
y,z

P
(n+m)
x,z

−
√
H(x−1y, x−1z)

∣∣∣.
However, since T

(n)
x,y −W (n)

x,y is at most a rank-one operator when restricted

to an operator from F (m)
P,z to F (m+n)

P,z , it will suffice to show that as m→∞,

the above goes to 0. But now, the estimates in Section 3 (up to applying a
square root) establish this convergence. �

Remark 4.8. It is at this point where we see the importance of defining
O(G,µ) as a quotient by JK ∩ T (G,µ) as opposed to a quotient by IK =
⊕z∈GK(FP,z)CT (G,µ). It turns out that in most cases O(G,µ) is a proper
quotient of T (G,µ)/IK. This is because of the following reasoning.

When G is infinite, since µ is finitely supported, for each x, y ∈ G and

m ∈ N we may always choose z for which P
(m)
x,z = P

(m)
y,z = 0. Hence, we see

that the convergence

ρ(P )nP
(m)
y,z

P
(n+m)
x,z

−→
m→∞

H(x−1y, x−1z)

is never uniform in z, and we get that T
(n)
x,y −W (n)

x,y /∈ IK. On the other hand

we have shown above that T
(n)
x,y − W

(n)
x,y ∈ JK. Thus, in order to show a

proper inclusion IK ( J (G,µ), it will suffice to show that W
(n)
x,y ∈ T (G,µ),

so that T
(n)
x,y −W (n)

x,y is in J (G,µ) = T (G,µ) ∩ JK but not in IK.
This can be done for instance when Rµ = G, so that all ratio-limit func-

tions {H(x, ·)}x∈G are constant 1. Indeed, one can show that W
(n)
x,y is the par-

tial isometry in the polar decomposition T
(n)
x,y = W

(n)
x,yA where A ∈ T (G,µ)

is positive with σ(A) bounded away from 0. Continuous functional calculus

can then used to show W
(n)
x,y ∈ T (G,µ), with similar techniques as below.
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Next, for (x, y) ∈ E(Pn) we denote Rx,y := R
(n)
x,y =

√
W

(n)∗
x,y W

(n)
x,y ∈

T̂ (G,µ). By definition, we get for (y′, z) ∈ E(Pm) that,

Rx,y(e
(m)
y′,z) = δy,y′ ·H(x−1y, x−1z)

1
2 · e(m)

y,z .

But now, since (x, y) ∈ E(Pn) are fixed, by estimates in Section 3 there are
cx,y, Cx,y > 0 such that 0 < cx,y ≤ H(x−1y, x−1z) ≤ Cx,y <∞ for all z ∈ G.

Hence, we get that σ(Rx,y) ⊆ [c
1/2
x,y , C

1/2
x,y ], and by applying the non-negative

continuous function

t 7→


0 t ∈ (−∞, 0)

t · c−1
x,y t ∈ [0, c

1/2
x,y ]

t−1 t ∈ [c
1/2
x,y , C

1/2
x,y ]

C
−1/2
x,y t ∈ (C

1/2
x,y ,∞)

to the positive operator Rx,y, we get the positive operator R′x,y ∈ T̂ (G,µ)
given for (y′, z) ∈ E(Pm) by

R′x,y(e
(m)
y′,z) = δy,y′ ·H(x−1y, x−1z)−

1
2 · e(m)

y,z .

But then, V
(n)
x,y = W

(n)
x,yR′y ∈ T̂ (G,µ) is given by

V (n)
x,y (e

(m)
y′,z) = δy,y′e

(m+n)
x,z .

Now fix x, y, z ∈ G. Since P has SRLP it must be aperiodic, so there exists
n0 (depending on x, y and z) such that (x, x), (x, y), (y, y), (y, z), (z, z) ∈
E(Pn) for all n ≥ n0. Thus, we may define the following operators:

(1) Ex,y = V
(n)∗
x,x V

(n)
x,y

(2) Ux = V
(n)∗
x,x V

(n+1)
x,x , and let U = ⊕x∈GUx.

(3) H
(z)
x,y = Ez,yR

(n)
x,yEy,z, and let Hx,y := ⊕z∈GH(z)

x,y .

It is readily verified that the definitions of Ex,y, Ux and H
(z)
x,y are indepen-

dent of n ≥ n0 modulo JK, by showing that the the restrictions to FP,z of
differences (with different values of n ≥ n0) are in K(FP,z) for each z ∈ G.

For an operator T ∈
∏
z∈GB(FP,z) we denote by T its image in the Calkin

quotient
∏
z∈GB(FP,z)/

∏
z∈GK(FP,z) ∼=

∏
z∈GQ(FP,z), so that when T ∈

T̂ (G,µ) we have that T ∈ O(G,µ).

Proposition 4.9. Let P be a random walk on a group induced by a finitely
supported µ, and assume P has SRLP. Then,

(1) the family of operators {Ex,y} is a G×G system of matrix units.

(2) the family {Ex,y} commutes with {Hx,y} and U .

(3) for each x, y ∈ G we have Hx,yU = UHx,y.

(4) U is a unitary element, and each Ux has spectrum σ(Ux) = T∪{0}.
(5) O(G,µ) is generated by {Ex,y}x,y∈G, {H(e)

x,y}x,y∈G and U e.
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Proof. We first show (1). Let x, y, y′, z ∈ G. Then, by aperiodicity of P , for
fixed w ∈ G there is m0 large enough so that (y, w), (x,w), (x, x), (y′, y′) ∈
E(Pm) for m ≥ m0. Hence, whenever (z′, w) ∈ E(Pm) and m ≥ m0 we
have,

Ex,yEy′,z(e
(m)
z′,w) = δz,z′Ex,y(e

(m)
y′,w) = δy,y′δz,z′e

(m)
x,w = δy,y′Ex,z(e

(m)
z′,w).

Hence, we get that Ex,yEy′,z−Ex,z ∈ JK. A similar computation shows that

E∗x,y −Ey,x ∈ JK as well. Hence, {Ex,y} is a G×G system of matrix units.
Next, we show (2). Indeed, by item (1) we have for x, x′, y, y′ ∈ G that

Ex,yHx′,y′ = Ex,y′Rx′,y′Ey′,y = Hx′,y′Ex,y.

To show that {Ex,y} commutes with U it will suffice to show that Ex,yUy −
UxEx,y ∈ JK. So, for fixed z ∈ G, by aperiodicity of P there is m0 large
enough so that (x, z), (y, z) ∈ E(Pm) for all m ≥ m0. Hence, whenever
(y′, z) ∈ E(Pm) for m ≥ m0 we have

Ex,yUy(e
(m)
y′,z) = δy,y′e

(m+1)
x,z = UxEx,y(e

(m)
y′,z).

Now, we show item (3). By aperiodicity of P , for fixed z ∈ G there is m0

large enough so that (y′, z) ∈ E(Pm) for all m ≥ m0, so that

Hx,yU(e
(m)
y′,z) =

√
H(x−1y, x−1z) · e(m+1)

y′,z = UHx,y(e
(m)
y′,z).

Thus, we get that Hx,yU − UHx,y ∈ JK.
To show item (4), fix z ∈ G, so that by aperiodicity there is m0 large

enough so that (y, z) ∈ E(Pm) for all m ≥ m0. Hence, for any m ≥ m0 + 1
and (y, z) ∈ E(Pm) we have

U∗U(e(m)
y,z ) = e(m)

y,z = UU∗(e(m)
y,z ).

Thus, we get that U∗U − I, UU∗ − I ∈ JK. Since Uy acts as the unilateral

shift on the orthonormal set {e(m)
y,x }m≥m0 , it follows that D ⊆ σ(Uy). Since

Uy is the compression of an essential unitary to one of its reducing subspaces,

it must be a normal partial isometry, and we get that σ(Uy) = T ∪ {0}.
Finally, we show item (5). First note that by construction the operators

{Ex,y}x,y∈G, {H(e)
x,y}x,y∈G and U e are indeed in O(G,µ). To show that these

operators generate O(G,µ) as a C*-algebra, first note that by Proposition
4.7 we have that {W x,y} are generators for O(G,µ). Then, it will suffice to
establish for x, y ∈ G and n ∈ N that

W
(n)
x,y = V

(n)
x,yRx,y = U

n
xEx,eH

(e)
x,yEe,y.

So, for a fixed z ∈ G, by aperiodicity of P there is m0 large enough so that
(e, z), (y, z), (x, z) ∈ E(Pm) for all m ≥ m0. Hence, for (y′, z) ∈ E(Pm) and
m ≥ m0 we have

W (n)
x,y (e

(m)
y′,z) = δy,y′ ·

√
H(x−1y, x−1z) · e(m+n)

x,z =

Unx
(
δy,y′ ·

√
H(x−1y, x−1z) · e(m)

x,z

)
= UnxEx,eH

(e)
x,yEe,y(e

(m)
y′,z).
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Thus, we see that W
(n)
x,y −UnxEx,eH

(e)
x,yEe,y ∈ JK, and the proof is concluded.

�

Recall that Q(m) denotes the orthgonal projection from FP onto F (m)
P ,

and that Q[m,∞) :=
∑∞

`=mQ
(`) is the projection from FP onto ⊕∞`=mF

(`)
P .

Theorem 4.10. Let P be a random walk on a group G induced by a finitely
supported measure µ, and assume P has SRLP. Then,

O(G,µ) ∼= C(R(G,µ)× T)⊗K(`2(G)).

Proof. By item (5) of Proposition 4.9 we know that O(G,µ) is generated by

{Ex,y}x,y∈G, {H(e)
x,y}x,y∈G and U e.

By items (1) and (2) of Proposition 4.9 the operators {Ex,y}x,y∈G form
a system of matrix units which commute with the self-adjoint operators
{Hx,y} and U . Hence, we get that O(G,µ) ∼= A⊗K(`2(G)) where A is the

corner C*-algebra generated by {H(e)
x,y}x,y∈G together with U e.

By items (3) and (4) of Proposition 4.9 we get that U e is a unitary element

of A which commutes with the self-adjoint elements H
(e)
x,y for every x, y ∈ G,

and that σ(U e) = T (as an element in A). Hence, we get that A = C(X) is
commutative, with spectrum X = T × Y so that Y is the spectrum of the

unital commutative C*-algebra C(Y ) generated by H
(e)
x,y for x, y ∈ G.

Denote by dx,y the function given by dx,y(z) =
√
H(x−1y, x−1z). Then,

the rule ϕ(H
(e)
x,y) = dx,y extends to a ∗-isomorphism ϕ : C(Y )→ C(R(G,µ)).

Indeed, if T :=
∑n

i=1 ciM i ∈ C(Y ) is a finite linear combination of monomi-

als in (self-adjoint) generators {H(e)
x,y}, where Mi =

∏`i
j=1H

(e)
xi,j ,yi,j , then its

norm as an element in O(G,µ) is given by Proposition 4.6 as

‖T‖ = sup
z∈G

lim
m
‖TQ[m,∞)|FP,z

‖ =

sup
z∈G

lim
m

∥∥∥[ n∑
i=1

ciMi

]
(e(m)
e,z )

∥∥∥ = sup
z∈G

∣∣ n∑
i=1

ci ·
`i∏
j=1

dxi,j ,yi,j (z)
∣∣,

where the second and third equalities hold because TQ[m,∞)|FP,z
is a diag-

onal operator with eigenvectors e
(m)
e,z for (e, z) ∈ E(Pm) whose eigenvalues

are independent of m. Thus, by Stone–Weierstrass theorem together with
the fact that dx,y separate points in R(G,µ), we get that ϕ extends to a
∗-isomorphism. �

Remark 4.11. Since O(G,µ) can be defined without assuming SRLP, one
may ask whether some compact G-space appears in its computation without
the assumption of SRLP, as R(G,µ) does in the presence of SRLP. This
seems to be the case under certain mild assumptions on the random walk,
and provides a generalized notion of the ratio-limit space without assuming
SRLP. We thank Guy Salomon for raising this question.
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As a consequence of our computation of O(G,µ), we obtain the following
simple corollary. Recall the definition of the ratio-limit radical Rµ ≤ G of
Proposition 3.2, in the presence of SRLP.

Corollary 4.12. Let P be a random walk on a group G induced by a finitely
supported measure µ, and assume P has SRLP. Then the primitive ideal
spectrum of O(G,µ) is homeomorphic to T if and only if Rµ = G.

Proof. First note that the primitive ideal space of O(G,µ) is homeomorphic
to R(G,µ)× T by Theorem 4.10.

If G = Rµ, then we get that H(x, y) are constant in y by definition, so
that the ratio limit space R(G,µ) is trivial. Hence, we get that O(G,µ) has
primitive ideal spectrum homeomorphic to T.

Conversely, if φ : T → R(G,µ) × T is a homeomorphism, let id × π :
R(G,µ) × T → R(G,µ) be the projection onto the first coordinate. Then,
since T is connected, so too would be R(G,µ) as its image under (id×π)◦φ.
However, R(G,µ) contains the discrete subspace G/Rµ, so that R(G,µ) is
connected if and only if G/Rµ is a single point, in which case Rµ = G. �

5. Symmetry-uniqueness and subproduct systems.

In this section we show that when the G action on the ratio limit boundary
is minimal, there is a unique quotient of T (G,µ) that respects natural G×T
symmetries coming from the random walk. After this is done, we explain
how our C*-algebras arise from subproduct systems, and how this sheds
light on Viselter’s question in that context.

Let P be a random walk on G induced by a finitely supported measure µ.
The standard gauge action by the unit circle is the point-norm continuous
action γ : T → Aut(T (G,µ)) given by γζ(T ) = UζTU

−1
ζ where Uζ : FP →

FP is the unitary defined by Uζ(e
(m)
y,z ) = ζme

(m)
y,z for every (y, z) ∈ E(Pm).

When R(G,µ) is trivial, it readily follows that O(G,µ) ∼= C(T)⊗K(`2(G))
is the unique T-equivariant quotient of T (G,µ). On the other hand, when
R(G,µ) is non-trivial, the action of T on O(G,µ) ∼= C(R(G,µ) × T) ⊗
K(`2(G)) has at least two maximal T invariant proper ideals, so there is no
unique T-equivariant quotient.

Thus, in order to get unique symmetry-equivariant quotients, we add
additional symmetries to T (G,µ) coming from G. For each g ∈ G we define

a unitary operator Vg : FP → FP given by Vg(e
(m)
x,y ) = e

(m)
gx,gy. A computation

then shows that for any (x, y) ∈ E(Pn) we have VgS
(n)
x,y = S

(n)
gx,gyVg, so we

then get an induced action δ : G→ Aut(T (G,µ)) given by δg(T ) = VgTV
−1
g .

It is clear that UζVg = VgUζ for every ζ ∈ T and g ∈ G, and we denote
this unitary operator by Wg,ζ . Hence, the actions γ and δ commute and
induce a point-norm continuous action λ : G× T→ Aut(T (G,µ)) given by

λ(g,ζ)(T ) = Wg,ζTW
−1
g,ζ .
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Our goal in this section is to show that when the action of G on ∂RG is
minimal, there is a unique largest λ-invariant proper ideal Jλ in T (G,µ).

It is then clear that the quotient map qλ of T (G,µ) by this ideal is au-
tomatically injective on c0(G) ⊆ T (G,µ), and hence this will establish a
G× T-invariance uniqueness theorem for T (G,µ)/Jλ.

Recall that JK :=
∏
z∈GK(FP,z) is an ideal of T̂ (G,µ) := T (G,µ) + JK

giving rise to the quotient O(G,µ). It is easily shown that VgJKV −1
g =

UζJKU−1
ζ = JK for g ∈ G and ζ ∈ T, so that λ extends to a point-norm

continuous action (denoted still by) λ : G × T → Aut(T̂ (G,µ)), making

JK into a λ-invariant ideal of T̂ (G,µ). Hence, we obtain an induced action
λ : G× T→ Aut(O(G,µ)) on the quotient.

Since for x, y ∈ G we have λg,ζ(W
(n)
x,y ) = ζn · W (n)

gx,gy and λg,ζ(V
(n)
x,y ) =

ζn · V (n)
gx,gy, it follows that λ acts on generators of O(G,µ) by,

λg,ζ(Ex,y) = Egx,gy, λg,ζ(H
(h)
x,y) = H

(gh)
gx,gy, and λg,ζ(Ux) = ζ · Ugx,

for g ∈ G and ζ ∈ T. Let {eg} be a standard orthonormal basis for `2(G),
and let Sg ∈ B(`2(G)) be the unitary shift operator given by Sg(eh) = egh.

Recall now from Section 3 that the compacta R(G,µ) and ∂RG carry a G

action induced from left multiplication on G, which gives rise to an action β̂

of G on C(R(G,µ)) and C(∂RG) given by β̂g(f)(α) = f(g−1α). Under the

identification of H
(e)
x,y with dx,y and of Ex,y as matrix units acting on `2(G)

in Theorem 4.10, it is readily verified that

λg,ζ(f ⊗K)(α, ξ) = f(g−1α, ζξ)⊗ SgKS−1
g .

Finally, recall the notation for the natural quotient map qP : T (G,µ) →
O(G,µ) by the ideal J (G,µ) := JK ∩ T (G,µ). By the above, we see that
qP is naturally a G×T-equivariant map with the appropriate G×T actions.
Hence, the ideal

Jλ := q−1
P

[
(C([G/Rµ]× T)⊗K(`2(G))

]
,

is clearly λ-invariant in T (G,µ), and is proper if and only if ∂RG 6= ∅.

Theorem 5.1. Suppose P is a random walk on an infinite group G induced
by a finitely supported measure µ, and assume that P has SRLP. Suppose
that ∂RG 6= ∅ and that the action of G on ∂RG is minimal. Then Jλ is the
largest λ-invariant proper ideal of T (G,µ).

Proof. Let J be a λ-invariant proper ideal. We denote by J the image of
J under the quotient map qP . Then, there are two cases.

Suppose first that J (G,µ) ⊆ J . Then, we get that J is a proper ideal
in C(R(G,µ) × T) ⊗ K(`2(G)). Hence, there exists an open λ-invariant set
Y ⊆ R(G,µ)×T such that J = C(Y )⊗K(`2(G)). Then, we must have that
Y ⊆ [G/Rµ] × T. Indeed, if not, then there exists (ξ, ζ) ∈ Y ∩ [∂RG × T].
Now, since G acting on ∂RG is minimal, we get that the G × T action on
∂RG×T is also minimal. Hence, we get that Y ⊇ ∂RG×T. But now, since
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Y is open, it must contain some element (hRµ, ζ) ∈ [G/Rµ]×T, and as λg,1
acts as left multiplication on G/Rµ together with λ-invariance of Y we get

that Y = R(G,µ). Hence, we obtain that J = C(R(G,µ) × T) ⊗ K(`2(G))
in contradiction to J being a proper ideal. Thus, we have shown that
Y ⊆ [G/Rµ]× T, and we obtain that J ⊆ Jλ.

Now suppose that J is a general λ-invariant proper ideal. Then, since
J is proper in O(G,µ), we get that J + J (G,µ) is also proper in T (G,µ).
Hence, by the previous argument we see that J ⊆ J + J (G,µ) ⊆ Jλ. �

Recall that a discrete group G is said to be hyperbolic if all geodesic
triangles in its Cayley graph are δ-thin for some δ > 0. This turns out to
be independent of the finite set of generators for G. The Gromov boundary
∂G of G is a compact metrizable G-space comprised of equivalence classes
of geodesic rays under the equivalence relation of uniform bounded time-
distance. A combination of [5, Proposition 1.13 & Proposition 3.3] (see also
[32, Remark 5.6]) shows that the action of G on ∂G is minimal. For more
on the theory of hyperbolic graphs and their boundaries in the context of
random walks, we refer to [56, Section 22 & Section 27].

In work of Gouëzel and Lalley [29] and Gouëzel [28], it is shown, via
a local-limit theorem, that every symmetric aperiodic random walk P on
a non-elementary hyperbolic group G satisfies SRLP. From [58, Corollary
6.6(b)] we get that Rµ is finite, so combined with [58, Theorem 4.5] we get
that the quotient map G → G/Rµ induces a homeomorphism τ : ∂G →
∂RG which is automatically G-equivariant. Thus, we obtain the following
corollary, showing the existence of a unique G × T-equivariant quotient for
Toeplitz algebras of symmetric random walks on hyperbolic groups.

Corollary 5.2. Let P be a symmetric aperiodic random walk on a non-
elementary hyperbolic group G induced by a finitely supported µ. Then
C(∂G × T) ⊗ K(`2(G)) is the unique smallest G × T equivariant quotient
of T (G,µ).

Hence, in many examples O(G,µ) ∼= C(R(G,µ) × T) ⊗ K(`2(G)) fails to
be the unique G× T equivariant quotient, even when one such exists.

Our final goal is to show that the Toeplitz algebra T (G,µ) arises as a
Toeplitz algebra of a subproduct system associated to the random walk.
We define subproduct systems in the restricted context where the coefficient
C*-algebra is c0(X ) for a countable set X (see [52, Definition 1.4] for the
general definition). We will say that a space X is a correspondence (over
c0(X )) if it is a c0(X )-bimodule together with a right-compatible c0(X )-
valued inner product so that the left action of c0(X ) is a ∗-homomorphism
into bounded operators respecting the right-module structure on X. For
more on subproduct systems over C*-algebras we recommend [52, 53], and
for the theory of C*-correspondences we recommend [38].

Definition 5.3. Let X be a countable set. A subproduct system is a family
X = {Xn} of correspondences (over c0(X )) such that
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(1) X0 = c0(X )
(2) For all n,m ∈ N there are coisometric bimodule maps

Un,m : Xn ⊗Xm → Xn+m

such that U0,n and Un,0 are the left and right actions of the bimodule
Xn, and for all n,m, ` ∈ N we have the associativity condition

Un+m,`(Un,m ⊗ IX`
) = Un,m+`(IXn ⊗ Um,`).

Given a subproduct system X = {Xn} as above, we may form its Fock
space FX := ⊕∞m=0Xm C*-correspondence, as well as the bounded bimodule

operators S
(n)
ξ aon FX for ξ ∈ Xn, so that S

(n)
ξ : Xm → Xn+m is given by

setting S
(n)
ξ (η) = Un,m(ξ ⊗ η). Denote by L(FX) all bounded right module

maps on FX . The Toeplitz algebra of X is then the C*-subalgebra of L(FX)
given by

T (X) := C∗( S
(n)
ξ | ξ ∈ Xn, n ∈ N ).

Now let P be a random walk on a group G induced by a finitely supported
measure µ. We define the correspondences

Arv0(Pn) = { [ax,y] ∈ c0(G×G) | ax,y = 0 if (x, y) /∈ E(Pn) }.
together with the c0(G)-valued inner product 〈A,B〉 = Diag(A∗B), and left
and right bimodule actions of c0(G) given by left and right diagonal matrix
multiplication. Note also that each Arv0(Pn) is the closed linear span of
matrix units ex,y for (x, y) ∈ E(Pn).

The operation Un,m : Arv0(Pn) ⊗ Arv0(Pm) → Arv0(Pn+m) is given on
matrix units ex,y ∈ Arv0(Pn) and ey′,z ∈ Arv0(Pm) by the rule

Un,m(ex,y ⊗ ey′,z) = δy,y′

√√√√P
(n)
x,y P

(m)
y,z

P
(n+m)
x,z

ex,z.

It follows from local finiteness of Gr(P ) together with [19, Theorem 3.4]
that ArvP0 := {Arv0(Pn)} together with {Un,m} is a subproduct system.
More precisely, Arv0(Pn) are correspondences with the above inner product
and bimodule actions, and the above rule for Un,m yields a well-defined
coisometric bimodule map satisfying the conditions in Definition 5.3.

Now, since c0(G) is represented as diagonal matrix multiplication on
`2(G), by [46, Corollary 2.74] we get a faithful ∗-representation on Hilbert
space ρ : L(FArvP

0
) → B(FArvP

0
⊗ `2(G)) given by ρ(T )(ξ ⊗ h) = Tξ ⊗ h.

We may then identify the the space FArvP
0
⊗ `2(G) with FP via the unitary

identification ex,z ⊗ ez 7→ e
(m)
x,z for ex,z ∈ Arv0(Pm). Under this identifica-

tion, Arv0(Pm) is identified with F (m)
P , and FArvP

0
⊗ Cez is identified with

FP,z. Hence, we get that FArvP
0
⊗ `2(G) ∼= FP , so that the representation

ρ maps S
(n)
ex,y (which initially acts on FArvP

0
) to S

(n)
x,y acting on FP . thus,

ρ restricts to a ∗-isomorphism from T (ArvP0 ) onto T (G,µ) (see also [19,
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Notation 3.2] and the preceding discussion). The following then coincides
with of Viselter’s ideal in [53, Theorem 2.5] by virtue of [53, Corollary 2.7].

Definition 5.4. Let X = {Xn} be a subproduct system. Viselter’s ideal
I C T (X) is given

IX := { T ∈ T (X) | lim
m
‖TQ[m,∞)‖ = 0},

Where Q[m,∞) =
∑∞

`=mQm, and Qm is the natural orthogonal projection
from FX onto Arv0(Pm). Viselter’s Cuntz-Pimsner algebra is defined as

O(X) = T (X)/IX .

Proposition 5.5. Let P be a random walk on a group G induced by a finitely
supported measure µ. Then IArvP

0

∼= ⊕z∈GK(FP,k).

Proof. Let ρ : T (ArvP0 ) → T (G,µ) be the isomorphism in the discussion
preceding Definition 5.4. Then we get that

ρ(IX) = { T ∈ T (G,µ) | lim
m
‖TQ[m,∞)‖ = 0 },

where now Q[m,∞) is the projection from FP onto ⊕∞`=mF
(`)
P appearing after

Definition 4.3. Clearly ⊕z∈GK(FP,k) ⊆ ρ(IX), and from Proposition 4.4 we

get that Q
(`)
z ∈ ⊕z∈GK(FP,k) for every ` ∈ N and z ∈ G.

For the converse inclusion, let T ∈ ρ(IX). For a finite set F ⊆ G we let
pF =

∑
x∈F px, and note that {pF } is an approximate identity for T (G,µ).

Hence, it suffices to show that TpF ∈ ⊕z∈GK(FP,k) for every finite subset
F ⊂ G. But then,

‖TpF − TpF · [
m−1∑
`=0

Q(`)]‖ = ‖TpFQ[m,∞)‖ → 0,

and since TpF · [
∑m−1

`=0 Q(`)] = TpF ·
∑m−1

`=0

∑
x∈F Q

(`)
x ∈ ⊕z∈GK(FP,k), we

get that TpF ∈ ⊕z∈GK(FP,k). �

In [53, Section 6, Question 1] Viselter asked whether there is some kind of
universality of O(X) in the spirit of a gauge-invariant uniqueness theorem.
By Corollary 5.2 we get that for symmetric random walks on non-elementary
hyperbolic groups the quotient T (G,µ)/Jλ ∼= C(∂RG× T)⊗K(`2(G)) sat-
isfies a G × T-uniqueness theorem even though it is a proper quotient of
O(G,µ) ∼= C(R(G,µ) × T) ⊗ K(`2(G)), and hence of O(ArvP0 ). Thus, even
with additional natural symmetries that enable the existence of a unique
symmetry-equivariant quotient, the quotient by Jλ fails to coincide with
Viselter’s Cuntz-Pimsner algebra of the subproduct system.

When R(G,µ) = G/Rµ, then ∂RG = ∅ and the action of G on R(G,µ) is
minimal. In this case, we can deduce similarly that O(G,µ) is the unique
G × T-equivariant quotient of T (G,µ). Theorem 5.1 then motivates the
following question in the complementary case
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Question 5.6. Let P be a random walk on G induced by a measure µ.
Suppose P has SRLP and that ∂RG 6= ∅. Is there a unique G×T-equivariant
quotient of T (G,µ)? Better yet, is the action of G on ∂RG always minimal?
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