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w2\ )0,

=1

where H! stands for the 1-dimensional Hausdorff measure. A locally finite Borel measure
wnon C is rectifiable if there exist a rectifiable set £ C C such that

T\ B) =0,
The goal of this paper is to prove the following result.

Theorem 1.1. Fiz an odd number k € N. Suppose that p is a finite Borel measure for
which

B
lim sup Bz 1)) € (0,00) for p-a.e. z € C. (1.1)
r—0 r
If the limit
, (z —w)* -
}1_% mdu(w) exists for p-a.e. z € C, (1.2)
|z—w|>r

then p is rectifiable.

If K = 1 then Theorem 1.1 was proved by Tolsa [27] using the Menger-Melnikov
curvature method'; in this case the principal value integral is the Cauchy transform of
the measure p. The curvature method is no longer directly applicable to this problem
for £ > 3, and it had been an open problem as to whether Theorem 1.1 holds in this
case (see for instance [29]).

If one replaces the limsup condition in (1.1) with the condition of positive lower density

lim inf 7M(B(Z’ )
r—0 T

> 0 for pra.e. z € C, (1.3)

then the case k = 1 of Theorem 1.1 was proved earlier by Mattila [16], and subsequently
for all k& odd by Huovinen [9]. It is for this reason that we call the integral transform
given by convolution of a measure with the singular kernel z +— |Z|ZTk+1 the Huovinen
transform.

Under the assumption (1.3), much stronger criteria for rectifiability are available in
terms of tangent measures that no longer hold under the condition (1.1), see [26, Section
5.8]. Nevertheless, the tools introduced by Mattila and Huovinen are essential to our

method.?

! building upon a number of important results including [22,19,5,6,18,25].
2 More precisely, these techniques play an important role in Theorem A below.
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A natural higher dimensional generalization of Mattila’s result for kK = 1 was proved
by Mattila-Preiss [20], who showed that if d € Z N [2,00), s € ZN[l,d — 1] and 0 <
liminf, .o w < oo for p-a.e. x € R%, then the existence of the s-Riesz transform
in principal value implies s-rectifiability.® Here the Riesz transform is the convolution of
a measure in R? with the kernel r7err where z € R?\ {0}. The positive lower density
assumption was later removed by Tolsa [28], who introduced a very novel variation of a
scheme of Legér [14] (which in turn has its origins in the work of David-Semmes [7]).

Villa [30] recently extended the results of [16] to perturbations of the Cauchy kernel,
and it would be interesting to understand whether those results remain valid without
the assumption of positive lower density. The Huovinen kernel does not fall within this
perturbative theory, but our analysis does not appear to apply to perturbations in the
generality that they are considered in [30].

Broadly speaking, we proceed by adapting the scheme implemented by in Tolsa [2§],
but doing so required overcoming a basic difficulty. A measure p for which the Cauchy
(or Riesz) transform exists in principal value enjoy some ‘local flattening’ properties* on
account of the fact that the only symmetric measures associated to these kernels with
suitable growth are (the Hausdorff measures of) planes. However, there are symmetric
measures associated to the Huovinen kernel which are not flat — the spike measures —
which will appear often in our analysis. It appears that all variants of the Legér scheme
(for instance in [14,2,29,13]) have relied on this local flattening property in one way or
another. In this paper we circumvent these difficulties with a novel decomposition of a
measure involving a modified density, relying significantly on our previous papers [10,11],
which we recall in the next sections.

Any notation that the reader is unfamiliar with may be found in Section 2.

1.1. A first necessary condition for existence of principal value: small local action and
transportation coefficients

In the paper [10] we studied the geometric consequences of a weaker notion than
existence of principal value called small local action.

For a homogeneous Calderén-Zygmund operator, one can characterize the small local
action property geometrically in terms of the transportation distance to the class of
symmetric measures associated to the kernel (Theorem 1.1 of [10], building upon work
of Mattila [16,17]). We do not define these terms here, but rather state what it means
for the Huovinen transform.

Definition 1.2. A k-spike measure associated to a line D € Gy (i.e. going through 0) and
the vertex z € C is a measure of the form, for some ¢ > 0,

3 We say that a Borel measure y is s-rectifiable if there exist Lipschitz maps f; : R® — R%, ¢ =0,1,...,
such that p(R™\ U2, fi(R*)) = 0.

4 by this we mean that on a small scale either there is very little measure, or the support of the measure
is close to a line/plane of appropriate dimension.
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where m divides k (henceforth m | k). We set S to be the collection of all such spike
measures over D € Gy, z € C.

Fix the Lipschitz continuous function ¢ that satisfies ¢ = 1 on [0, 3), ||¢||zip = 1, and
supp(p) C [0,4).

Definition 1.3. Given a locally finite Borel measure p, z € C, and r > 0, we define the
transportation distance as

al(j‘k)(B(Zar)) = inf OZ#,V(B(ZJA))?

z€supp(v)

where, for a Borel measure v,

o (B(z,1)) = sup
fE€Lipy(B(z,4r))
I fllein <+

* () s |
C

and with the normalizing constant c,, ,°

Je (52 dn f (52 av] it foo(15aw £ 0

0 otherwise.

Cuv =

The following result is an immediate consequence of Proposition A.1 and Theorem 1.5
of [10], making essential use of the aforementioned work of Mattila [16] and Huovinen

[9].

Theorem A. [10] Suppose that p is a finite Borel measure satisfying (1.1) and (1.2) for
some k € N odd, then

lim a&k)(B(z,r)) =0 for u-a.e. z€ C. (1.4)

r—0

This result provides valuable geometric information without which we would not be
able to prove Theorem 1.1, but the condition (1.4) alone does not imply that p is recti-
fiable, even if k = 1 — see for instance the examples in Section 5.8 of [26].

5 For convenience, from now on we will suppress the dependence on both location and radius.
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1.2. A second necessary condition for the existence of principal value: operator
boundedness

We set

Ki(2) = L for z € C \ {0}.

2T
For a non-atomic Borel measure p, we say the Huovinen transform associated to pu is
bounded in L?(u) if there exists C' > 0 such that

2 < 9
sw (| [ Kt )@t dute) < Cll IR (1.5
C C\B(z,x)

for every f € L?(u).

A well-known consequence (see, for instance [4], page 56) of the L2-boundedness con-

p(B(z,r))

p < 0.

dition (1.5) is that sup,cc ;=0
A simple special case of much more general results of Nazarov-Treil-Volberg [25] and

Tolsa [27] is the following theorem, valid for a wide class of Calderén-Zygmund operators.

Theorem B. [25] Suppose that p is a finite Borel measure satisfying (1.2) and

lim sup < oo for p-a.e. z € C. (1.6)

r—0

w(B(z,))

For every € > 0 there is a set E. and a constant C = C(g) such that u(C\E;) < £ and
the measure pu|p, satisfies the L?-boundedness condition (1.5).

The following Corollary is immediate from Theorem B.

Corollary 1.4. Suppose that p is a finite Borel measure satisfying (1.2) and (1.6). There
is a decomposition supp(p) = F U U;‘;l E;, where u(F) = 0 and (1.5) holds with p
replaced by p|g, for a constant C' = C(j).

We conclude that the notion of principal value is (although qualitative) stronger than
the L2-boundedness of the operator. It is actually significantly stronger: In [12] an exam-
ple was constructed of a (purely unrectifiable) measure for which the Huovinen transform
is bounded in L?, but fails to exist in principal value.® Higher dimensional analogues of
this example featuring kernels of spherical harmonics have recently been developed by

6 This is another instance in which the Huovinen and Cauchy transforms behave very differently, since if
1 is a non-atomic measure for which the Cauchy transform is bounded in L?, then the Cauchy transform
exists in principal value (the same result here also holds for the (d — 1)-Riesz transform in R%, as can be
seen by stringing together the results of [8,23,24,21]).
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Mateu and Prat [15]. It would be very challenging to extend Theorem 1.1 to this higher
dimensional setting — with the primary issue being to understand the structure of the set
of symmetric measures associated to these higher dimensional kernels. Other examples
of kernels for which L?-boundedness does not imply existence of principal value can be
found in [1,3].

We have thus far recorded two necessary conditions for the existence of principal value
in Theorems A and B. Taken individually, neither condition needs to imply the existence
of principal value, but by building on prior work of Mattila-Verdera [21], we showed in
[11] that when combined, these two necessary conditions are indeed sufficient:

Theorem C. [11, Theorem 1.5] Suppose that u is a finite non-atomic Borel measure sat-
isfying the transportation coefficient condition (1.4), and the L*-boundedness condition
(1.5) holds. Then the principal value limit (1.2) exists.

1.3. A revised statement

We conclude with a revised statement, which is essentially equivalent to Theorem 1.1,
and which will be our focus:

Theorem 1.5. Let u be a finite non-atomic Borel measure in the complex plane and whose
support satisfies H'(supp(p)) < co. Suppose that the Huovinen transform is bounded in
L?(u) and

lim o*)(B(z,7)) = 0 for p-a.e. z € C.

ro0 H

Then  is rectifiable.

This result is only new if k¥ > 3 (for k¥ = 1 it is a consequence of [27]), but we
will prove the statement for all odd & (although many of the statements of lemmas are
automatically satisfied in the case k = 1). In the case k = 1, imposing the condition
lim, ¢ a,(f)(B(z,r)) = 0 for p-a.e. z € C is unnecessary — the result still holds if one
removes this statement, which is a theorem due to David [5], see also David-Mattila
[6]. However, for k > 3 the conclusion of rectifiability may fail without the additional

assumption on the transportation numbers (cf. [12]).
1.4. An overview of the proof

As we have already mentioned, the proof of Theorem 1.5 follows a similar scheme to
the one in Tolsa [28]: We decompose our measure into different pieces, where an adapted
version of the David-Léger-Semmes scheme [14,7] may be applied to construct a Lipschitz
graph that approximates our measure. Finally, we revise Tolsa’s scheme in order to prove
that the Lipschitz graph actually covers a good portion of our measure.
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In order to carry both Léger’s and Tolsa’s schemes in a given scale, one needs, besides
of course the analytic properties of the singular integral operator, two specific features
from the measure: flatness with respect to lines and nearly maximal density. A priori, we
are only equipped with spike flatness, i.e. our measure is in concentration close to either
a line or to a spike. However, spikes allow big oscillations in density, making harder the
search for suitable scales with nearly maximal density.

These issues are mainly bypassed with the decomposition of the measure (see Sec-
tion 6) and the development of a modified density (see Sections 4 and 5). This new
density moves us away from the center of the spikes (therefore it finds for us scales with
regular flatness) and helps us to classify the spikes by the density in their rays.

In Sections 7 and 8 we carry out a variant of the Léger construction of an approxi-
mating Lipschitz curve, where the transportation coefficients play a central role.

The necessary geometric toolbox for Sections 4-8 is developed in Section 3.

Sections 9 and 10 closely follow Tolsa [28], and mainly concern the Calderén-Zygmund
theory required to show that the approximate Lipschitz curve (constructed in Section 7)
does not rotate too much.

2. Notation and preliminaries

In this section we include the basic notation that we will use throughout the paper and
include some preliminaries that are relevant for the geometric constructions occupying
the first half of the paper. Notation specific for the analytic part of the paper is included
in Section 10.

2.1. Notation

e We shall denote by C' > 0 and ¢ > 0 respectively large and small constants that may
change from line to line. By A < B, we shall mean that A < CB for some constant
C > 0. A =~ B then means that both A < B and B < A. By A < B we shall mean
that A < ¢oB for some sufficiently small constant ¢y > 0.

e Throughout the paper we will only consider locally finite Borel measures and they
will simply be referred to as measures.

e An interval in R will be typically denoted by I. Set Iy = (—1,1).

o B(z,r) denotes the open ball centered at z € C with radius r > 0. Given an open
ball B, we will denote its center by ¢(B) and its radius by r(B). Given A > 0 we
denote by AB the ball with center ¢(B) and radius Ar(B).

e G, denotes the collection of 1-dimensional affine linear subspaces of C going through
zeC.

e For F C C set

HYE) = 21;[0) [inf{jz_; 2r; « EC JngB(mj,rj) and r; < (5H
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With this normalization, for L € G,, ”H‘IL coincides with the usual one-dimensional
Lebesgue measure on L.
e For a function f defined on an open set U C C, define

Wl =  sup L@ =IO

z,yel, z#y lz =yl

In the case U = C, we write || f||Lip instead of || f||rip(c)-
e For an open set U C C, define Lip,(U) to be the collection of functions f supported
on a compact subset of U with

[ fllLip) < oo.
e We denote by supp(p) the closed support of the measure p; that is,
supp(u) = C \ {UB : B is an open ball with u(B) = 0}.

o 0,(B(z,1)) = w is referred to as the density of p at the scale B(z,r).
o« We denote by @Z(z) = limsup,_,q %, the upper density of the measure p at
the point z.

e For z € C, write z = R(z) + iS(x). Denote by 7 the projection from C — R:

o We will use the notation

Par(y) = w(|y;z|)’ for y € C.

e We define the class of functions F, , as follows:

For ={f : [ € Lipg(B(z,47)), || fllLip < 1/r}-

e Given a ball B and a line D € G,(p), it will be convenient to write «,, p(B) instead
of a, 31 (B). We will often refer to measures of the form C'HllD for some ¢ > 0 as

|
line measures.

2.2. Two transportation numbers that will recur throughout the work

We will mainly work with two transportation numbers (Definition 1.3). Recall that
Sj. is the set of k-spike measures, and so Sy is the set of line measures in C. We set
. afﬁ) (B(z,7)) as the transportation coefficient with respect to spikes and
o oyu(B(z,r)) = aLl)(B(z, 7)) as the transportation coefficient with respect to lines.
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2.3. Basic operator notation

For a kernel function K : C x C\{(z,w) : 2 = w} — C such that |K(z,w)(z — w)|
extends to a bounded function on C x C, we set

r—0
|z—w|>r

PV, / K (2w) f(@)dp(w) = lim K (2 0) f(w)dpu(w)
C

provided that the right hand side exists. We say that K forms a principal value operator
on LP(p) (1 < p < 00) if there is a constant C' > 0

[pv. [ K@) ) < i, (2.1)
C C

for all f € LP(u). We call the least constant C' such that (2.1) holds as the principal
value operator norm.

It will prove very useful to define operators with a smoother cut-off. Define a function
U : [0,00) — [0,00) such that ¥ is non-decreasing, ¥(¢t) =0 on [0,1/2] and ¥(t) = 1 for

t>1, and [|¥”]|s < 1. Put, for r > 0 and any measure v

~

TTZ/(Z) = /\I/(Z%O'}')Kk(z —w)dr(w),

C

Tru(z) = /W(M>K,€L(z —w)dv(w),
r
C
1 (=)
where K (z) = T for z € C\ {0},
ﬁl,rzu(m) _ T, v(z) — fmu(x) ifr) <rg
0 if T2 S 1,

and

TE () = féu(w) - ﬁtu(m) ifr; <y
e Oif’f’g §7'1.

Lemma 2.1. Suppose p is a locally finite Borel measure.

1. If the principal value limit (1.2) exists at a given point z € C, then lim,_,q ﬁ(,u)(z)
exists and is equal to the same limit.
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2. If the Huovinen transform is bounded in L?(u) (in the sense that (1.5) holds), then
there is a constant C' such that

I sup T (F )32y < ClS 72 for every f € L2(u) (2.2)

The proof of (1) is by direct calculation, while (2) is standard Calderén-Zygmund
theory: one estimates the difference between the smooth and rough cut-off by a suitable
maximal function, and applies a Cotlar type lemma to bound the maximal singular
integral (see [29], Chapter 2).

In the event that there is a constant C' such that (2.2) holds, we denote the least such
constant by [T, | z2(u), 22 ()

We warn the reader here that, even if the associated principal value operator exists
and is bounded in L?(y1), then ||quL2(u),L2(u) need not be comparable with the principal
value operator norm.

3. Transportation coefficients tool box

Now we proceed to record a series of estimates regarding the transportation coefficients
that will be used throughout the paper.

Throughout this section, v will denote a locally finite Borel measure, z,z € C and
r > 0.

Lemma 3.1. Let v > 0 and suppose s € (0,r), B(z,s) C B(x,3r), dist(z,supp(v)) > 2s,
and

o (B(2,1)) < 40,(B(x, 7)),

Then

r

5,(B(z,5)) < 7(—)2JM(B(:U,T)).

S

Proof. Choose f = 1 on B(z,s) with supp(f) C B(z,2s) and ||f||lLip < . Then £f €
Far. Since ay,,, (B(x, 7)) < 70, (B(x,7)), but supp(f) Nsupp(v) = 2,

S| =
S |l®w

- (B(z,5)) <0, (B(z,7)),
and the result follows. O

Lemma 3.2. Let v > 0 and suppose s € (0,7/2), B(z,3s) C B(z,3r), and

o (B2,7)) < 18,(B(a, ).
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Then
o (B(z,9)) £ (%) 6Bl ))

Proof. Without loss of generality, suppose x = 0, » = 1 and u(B(0,1)) = 1. Insofar
as B(z,3s) C B(0,3) and s < 1/2, supp(¢.,s) C {¢o1 > 3} and so the function
g= % > € Lipy(B(0,4)) with ||g|lLip S L. For f € F., the function &f - g € Fo, for a
sultable constant C' > 0, so testing the condition ay, , (B(0,1)) < ~ yields that

VI e L

On the other hand, testing the condition oy, ., (B(0,1)) < with the function Zg yields

f<P01d,u/ 1
Z,8 zst’,S t
‘/@ f(p()ldl/ Yz, K S

The required estimate is now obtained by combining these two inequalities. O

Lemma 3.3 (Continuity of transportation coefficients). Given a sequence {(z;,7;)}j>0 €
C x (0,00) satisfying that x; — xo and r; — 1o, we have the following:

L au(B(z;,75)) = au(B(zo,r0))-
2. Moreover, given a sequence Dj € G, for all j > 0 satisfying Z(Dj, Do) — 0, then
au,p,;(B(xj,r5)) = aup(B(xo,70))-

We postpone the proof to the appendix.
4. Density ratio

For a non-zero measure v we set

6y (B(x, 1))
D, = —_—
rexo  0,(B(23))
x,z€supp(v)
Observe that
« for any non-zero measure v %0, D, > 1,

e if v is a line measure, then D, = 1, and
e if v €Sy, then D, < k.

Lemma 4.1. Given a measure v and x € C,

0,(B(z,r)) < 3D, -6,(B(z,s)) for every r,s > 0 and z € supp(v).
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Moreover, if v is a line measure, then
0,(B(x,r)) < 6,(B(z,8)) for every r,s >0 and z € supp(v).

Proof. If v(B(z,r)) = 0 then there is nothing to prove. Otherwise r > dist(x, supp(v)),
and fix x,, € supp(v) to be the closest point to x. The first statement follows from
noticing that B(x,r) C B(x,,3r). For the second statement, merely observe that if v is
a line measure, then B(z,r) Nsupp(v) C B(x,,r) Nsupp(v). O

Lemma 4.2. Let v > 0 and suppose s € (0,7], B(z,s) C B(z,3r), and
Oéu,,,(B(x, 7')) < 75M(B($>7"))7
for some measure v satisfying that x € supp(v). Then,

(1) if v < %(s/r)?, one has

5u(B(,5)) <3D, (1487 g)éM(B(ac,r)),

and moreover, if v is a line measure,
r
6u(B(2,5)) < (1+8y7 - 2 )u(Bla.7)).

(2) If vy < ﬁ(s/r){ and in addition, z € supp(v), then

8,(B(z,5)) > D (1 — 8Dy - g)éﬂ(B(x,r)).

Proof. The statements are both trivial if D, = +oc0, so we assume otherwise. Addi-
tionally, if 6,(B(z,r)) = 0, then p = v in B(z,r), but « € supp(v) so p(B(z,r)) =
v(B(z,r)) > 0, a contradiction. Therefore d,,(B(x,r)) > 0.

Now, without loss of generality we set * = 0, r = 1, and u(B(0,1)) = 1. Then
0 € supp(v). We first prove (1). Fix € (0,1/3). Pick two bump functions f; and fo
satisfying

e fi =1on B(z,s), fi =0 outside B(z, (1 + n)s),
0<fi<1, and [|filLip < 1/(ns).

e fo=1on B(0,1—7), fo =0 outside B(0,1),
0< fe <1, and [|follLip < 1/7.

On one hand, observe that nsf; € Fo 1 and therefore testing the condition v, ,, (B(0,1)) <
~v with nafi yields
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p(B(z5) _ V(B(Z,(1+77)8))/

-1
v
. S @du[/ gpdl/} +7732. (4.2)
C

C

On the other hand, we notice that nf, € F¢ 1, and hence by analogous reasoning,

L= u(BO,1) 2 (BO1~ ) [ wau [ sodu]_l—%. (4.3)

C C

Set (cf. Lemma 4.1)

{1 if v is a line measure
w =

3 otherwise

Bringing (4.2) and (4.3) together, we obtain

HB(z5)) (

5 L ) ABE ) |

n S'V(B(O,l—n)) 77?
n

1—n 6,(B(0,1—-m))  ns?
§(1+1)1+J%Dy+l
n/1—n ns?
1
(ﬂ_FB_V)%DW

<
1—-n ns?

where in the final inequality we have used the facts that 1%71 <2,%>1, D, >1and
s<1.Putp!= s,/% + 1 so that then

S

3
—+—2=1+2\/6‘ﬂ+—z <1+ (14+2v6)Y,
1—-n mns ] ] ]
and (1) follows.
The proof of (2) follows an entirely analogous line of reasoning. Again fix n € (0,1/3).
First notice that testing a, , (B(0,1)) < with suitable test functions yields

w(B(z,3)) N\Y(B(z (1 -n)s) v
s 2( _5) sv(B(0,1+17) ns?

Next, observe that due to the fact that z € supp(v),

v(B(z,(1=m)s) _1-—n,4
sv(B(0,1+n)) 2 1+77DV ’

and so
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L—n 29D,y
6u(B(z9) = (72 — LX) D,
1+n s

(Here we are using that }__TZ <1,and D, > 1.) Choosing n™! = s 3"/% —1 we complete

the proof of part (2) with some elementary manipulations. O

Lemma 4.3. Let 6,7 > 0 with § < 1 and suppose s € (0,r], B(z,s) C B(z,2r),
0u(B(2,8)) >6-6,(B(z,r)), and

Ao (B(x, 1)) <0, (B(2,7)), apy(B(2,5)) < v0u(B(2,5)),

where v and o are measures such that x € supp(c) and z € supp(v). Then for every
y € supp(v) N B(z, s),

’Y.DV r
5 .

min{s, dist(y, supp(o))}§

Proof. Suppose z = 0, r = 1 and u(B(0,1)) = 1. Fix y € B(z,s) N supp(v), and set
t = min{s, § - dist(y,supp(c))}. We may assume that t > 161/D,7 - s as otherwise the
claimed estimate is clearly true.

Under this assumption on ¢, part (2) of Lemma 4.2 ensures that

(B 1) 2 D7 (1= 8D )au(Bas) 2 57-0u(B(z08) 2 -

On the other hand, by construction ¢ < 1, so B(y,t) C B(0,3) and by Lemma 3.1,

8u(B(y,1)) < Ju(BO,1) = .

o~

Joining these two chains of inequalities together, we obtain

2
0 S 2Dut_2a
and this yields the desired upper bound on t. O

The following Corollary is an immediate consequence of this lemma in the case when
v and o are line measures, but it will be used very often in what follows so we state it
separately.

Corollary 4.4. Let v > 0 and 6 € (0,1]. Suppose s € (0,7], B(z,s) C B(z,2r),
0u(B(z,8)) > 6-0,(B(z,r)) and there exist D € G, and D' € G, such that

aup(B(z,7)) < v0u(B(x,7)),  aup(B(z,8)) <70u(B(z,9)).

Then
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min{s,dist(y,D)}§ \/j -1 for every y € D' N B(z, s),

and therefore

Z(D,D') < \/E

The next lemma will play a crucial role in the stopping time argument.

w |3

(=%}

Lemma 4.5. Fiz § € (0,1] and v > 0 with v < 8. There is a constant C > 0 such that
the following holds:
Suppose that B(z,4s) C B(x,2r) where s € [C\/Tr, 7], and additionally

° OéM7D(B(Z‘,’I"))§’y(5 B(Z‘,T)),
o o, (B(z,45)) <
o 6,(B(z,8))>0-

2

Then there exists D' € G, such that

2
aup(B(z,8) S %%(B(z,s)) and Z(D',D) < \/?Z'
s

Proof. Fix ¢ > 1 to be chosen momentarily, and suppose that s € [qy/Zr, 17]. Insofar as
0u(B(z,8)) > 6-0,(B(z,r)), there is a spike measure v, with z € supp(v), satisfying

2
. (B(z,45)) < 2%5M(B(z,s)).

There is a line D' in supp(v) that contains 2. If v|g(; 45) = H\lD'nB(zAs)v then certainly the
desired inequality holds (see Lemma 3.2). So suppose not and therefore there is another
line D" in the support of v which intersects B(z,4s). But now since Z(D’, D") > = /k,
there must be a point y € B(z,4s)N (D' UD") C B(z,4s) Nsupp(v) that is at a distance
> s from the line D. On the other hand, B(z,4s) C B(xz,2r) and y € B(z,4s) so
Lemma 4.37 ensures that (recall D, < k)

min(s, dist(y, D)) < \/gr <2
q
But dist(y, D) = r, so we reach a contradiction if ¢ is large enough. Therefore, setting
2
C = q, we must have that o, pr(B(2,5)) S 5 0,(B(2,5)).

Since v < 6, the second assertion of the lemma now follows from Corollary 4.4. O

7 Applied with o — HI\D, v — v, and s replaced by 4s.
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5. Navigating through spikes: a modified density

We introduce a density that enables one to find a flat piece of a measure p given that
w is close to a spike in transportation distance.
For v € S; \ {v # 0}, set

there are B(z,t) C B(z,r), z € supp(v),

Ay = inf 1sup t € (0,r):aline D eg,, and ¢ > 0, such that
z€supp(v) T

_ 1
r>0 V|B(z,4-30t) = CH\Dn(B(zABOt))
and
A = inf  A\,.
k ueégvio v

We will often use the simple observation that A; = 1.
Now recall the density ratio (4.1). We define

D= sup D,.
vESy, vZ£0

Observe that 1 < Dy < k < 1.
Fix e < 1. For x € C and r > 0, set

‘r(B) > Ay and a,(30B) <

Soi(6) =B ‘Bahall,BC B(z,r),0,(B) > 2ék 6,(B(z,7)),
o 2 €6,(B) .

We then define the modified density

~ infBeSz,r(E) 5#(3) if Sfﬂﬂ“(g) + g
0 otherwise.

We will usually just drop the subscript €, and write g,L(B(z, r)) instead of gme(B(x, r)).
Observe that we have, for any ball B(z,r) and B € S, ,(¢),

5,(B) < 2-6,(B(x,r)), and o 8,(B(x,r)) < —8,(B(,r)). (5.1)
)\k )\k

Lemma 5.1. Let x € C and r > 0 be such that
a® (B(z,30r)) < £6,(B(x,7)). (5.2)

"

Then we have that

Ser(e) £ 0
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and
7 0u(B(z, 7)) < 6,(B(z,7)) < Ckbu(B(x,7)) (5-3)
where Cy, = max{2Dy,2/\}.

Proof. Without loss of generality, we assume that x = 0, r = 1 and p(B(0,1)) = 1.
Choose v € Sy such that a, ., (B(0,30)) < s - ¢ with 2 < 1.

First, we note that it suffices to verify that S 1(¢) # (0. Indeed, if this is the case,
then the lower bound in (5.3) is given by the definition of Sy 1 (¢), while the upper bound
follows from (5.1).

Now we proceed to prove that Sp1(g) # 0. If the measure v is a line, then the scale
B(0,1) itself belongs to Sy 1(€).

If v is a spike, i.e. v € S \ &1, then by using the definition of A,, we can find
z € supp(v) N B(0,1) and s > 0 satisfying s > )\, > 2\, 2 1, B(z,s) C B(0,1), and
such that v|p(. 4.30s) = CH\leB(z,4<305)’ for some line segment L and ¢ > 0.

Now using Part 2 of Lemma 4.2, we have that

1 1
0u(B(2,8)) = ﬁ%(B(O,l)) = 5D,

and so §,,(B(z,s)) ~ 1. On the other hand, B(z,30s) C B(0,30) and s 2 1, so Lemma 3.2
ensures that

a,(B(z,30s)) < »e < #e6,(B(2,5)) < €6u(B(z,9)).
This proves that Sp1(g) #0. O

Our last preparatory lemma is an essential ingredient to push through an analogue
of Tolsa’s scheme. It says, roughly, that for flat scales, control of §,, prevents the density
0, from being too large.

Lemma 5.2. Fiz 6 € (0,1) and 0 < ¢ < 6. Suppose o, (B(z,30r)) < e and g#(B(:v,r)) <
1+ 0. Then for every B' C B(x,30r) satisfying r(B') > 5ise'/*r we have that
5,(B') <140+ CeV/.

Proof. Without loss of generality, set = 0 and r = 1. Fix D € Dy with a, p(B(0,30)) <
(14+6)e. Assume there exists a ball B’ C B(0, 30) satisfying r(B') > 5se'/4 and 6, (B’) >
1+ 6 + Le'/® for a large constant L. By monotonicity of the measure, this ensures that
6,.(B(0,30)) > /4. Therefore,

a,.p(B(0,30)) < £¥46,(B(0,30)),
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and since €3/* < (r(B'))?, using parts (1) and (2) of Lemma 4.2 (in that order) results
in the following chain of inequalities:

14+0+ Le'/8 < 6,(B) < (14 Ce/®)8,(B(0,30)) < (1 + Ce/®)5,(B(0,1)).

Insofar as ¢ < 1, if L is large enough then

L
0u(B(0,1)) > 140+ Ze/%.
We notice that the previous trivially implies that
a,,p(B(0,30)) < e6,(B(0,1)),

and so in particular Sy 1(e) # 0.
Now, insofar as d,(B(0,1)) < 14 6, we can find a ball B = B(z,s) € Sp,1(¢) with

1 ~ ~ ~ ~
5h Sou(B) <1+0+ e? and @, (30B) < €6,(B) < €6,(30B).
k

Since s ~ 1, Lemma 4.3% ensures that d(z, D) < £!/2. Therefore, we can inscribe in B a
ball B centered on D of radius (1 — C\/¢)s, and so 0,(B) > (1 — C/¢)d,(B). But now
part (2) of Lemma 4.2 ensures that

3,(B) > (1 - CVEIL(BO.1) > (1~ OVE) (1404 Z).
Finally, for large enough L,
5, (B)>1+0+ %51/8,
reaching our desired contradiction. O
6. The Main Lemma and the proof of Theorem 1.5

Now we are ready to state the Main Lemma.

Main Lemma 6.1. Fiz M > 1, £ € (0,1), and 6 € (0,1). Let By = B(xo,70) be an open
ball and F a compact subset with F' C 10By satisfying

(a) 6,(Bo) =1, au(30By) <€, and u(10By \ F') < erg,

8 Applied with r and s replaced by 30r and 30s respectively, o = Hl\D, v equal a line measure with

@, (30B) < €6, (30B), and § replaced by by 2 L
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(b) g#(B(x,r)) <1+62% forallz € F and r € (0,90r¢),

(c) a,(ik)(B(x,r)) < &2 for every ball B(z,r) where z € F and r € (0,6007),
(@) 1 Tullz2guy,z2 < M,
(

~

e) |Trym(p)(x)] < forallx € F and r1,r2 € (0,907).

There exists an absolute constant co > 0 such that if 0 is chosen small enough depending
on M, and € is chosen small enough in terms of @ and M, then there is a Lipschitz graph
T such that W/(Bo N FNT) > copu(Bo).

6.1. Proof of Theorem 1.5

We first use Lemma 6.1 to give the

Proof of Theorem 1.5. Suppose that p is a non-atomic measure satisfying the assump-
tions of Theorem 1.5. As we discussed in the introduction (see [4]), since the Huovinen
transform is bounded in L?(p), it follows that

sup 0, (B(z,r)) < oo,
zeC,r>0

and, therefore, insofar as H*(supp(u)) < oo,

Oy, (z) == limsup,(z,r) € (0,00) for p-a.e. x € C. (6.1)
r—0

From Theorem C we have that the Huovinen transform exists in principal value (i.e.
(1.2) exists). Appealing to Lemma 2.1 we therefore infer that

”f”N(u),Lz(u) < oo and lim Ofm,m (u)(x) =0 for p-a.e. z € C. (6.2)

T1,72—>

Take an arbitrary subset £ C supp(p) with M(E) > 0. Our goal is to show that there
is a Lipschitz curve that intersects E in a set of positive p-measure. It is well known
that this implies rectifiability — For instance, by implying that the purely unrectifiable
component of supp(u) has zero length, see e.g. Léger [14, p. 836].

Firstly, for each ¢ € Z, define
Ei={zeE:270") <o(zx) <27} (6.3)

The property (6.1) ensures that u(E \U; Ei) =0.
With a density threshold established, we now introduce 0 < ¢; < 1, and put

E,j={z€E;: sup | Ty o it()] < — ;27178
0<r1<ra<1/j Cy,
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and

1 )
Eijm={r€E;j: sup a/(f)(B(m,r)) < 2273, (6.4)
0<r<1/m Ck

for (j,m) € N2. Here O > 1 is the constant appearing in Lemma 5.1.
The assumption that lim,_q aLk)(B(x, r)) = 0 for p-a.e. x € C, together with (6.2),
imply that for every i € Z

w(BN U Bigm)=0.

(4,m)eN?
Next we show that if x € E; j ., then

9—(i+2)

< limsup SH(B($7T)) <27y (6.5)

k r—0

Indeed, let r € (0,35-) be such that 27(+2 < §,(B(z,r)) < 27"l Then
aﬁk)(B(z,Z%Or)) < €26,(B(z,r)), and Lemma 5.1 is applicable (¢; < 1). Consequently,

S;c,r(f':i) # @ and

9—(i+2)
Ck

< 6,(B(z,r)) < 2710y,

so the lower bound in (6.5) follows. For the upper bound, recall that Cj, > 2/, and so

we infer from (5.1) that limsup, o 6,(B(z,r)) < CpO%(x) < Cx27"
Next, we introduce 6; € (0,1) with 6; < 1. Given n € Z, we define the sets E; j m n

as
9—(i+2) ) ~
Ei,j,m,n = {13 S Ei,j,m . (1 =+ 01 )n S hIIl sup 5H(B(£C, ’I"))
Ck r—0
9—(i+2)
< (1+ 93)"+1}.
k

Fixing a sufficiently large integer N (depending on Cy, and 6;), we obtain from (6.5) the
following decomposition:

N
Eijm = Eijmn-
n=0
Our final step is to further decompose E; j .. For p € N, set

~ 92— (i+2)
Eijmmp = {x €Eijmmn: sup 6,(B(z,1)) < c (L+67)"2 5.
0<r<1/p k
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Clearly,
Eijmmn = U Ei jmnp-
peN
Select Eijmmnp C Eijmmnp satisfying Eijmmnp O By jromi oty = ¢ whenever

p{EN U Bijmns | =0
ijom.n.p

Now fix 4, j,m, n,p with M(Ei7j,,,L7n,p) > 0. For each density point z of Ei,jml,n,p choose
r < gsmin(1/4,1/k,1/p,1/30m) satisfying

2= (+2) 2yn-1 - F 2-(+2) 2\n+2
. (1+07)" <6u(B(z,7)) < c (1+069)""2, (6.6)
and
~ 1
w(B(2,107) \ Ei jmonp) < mEiM(B(ZW)Y (6.7)

Consider the measure p := mu, where By isaballin S, ,(¢;) (recall that S, (&) #
). Our goal will be to apply Main Lemma 6.1 to the measure g with ball By and with F
taken to be a compact subset of 108y N Ei,j,myn,p with ¢(10BoN Eiyj,m,n,p\F) arbitrarily
small. Let us verify each of the assumptions of the lemma in turn:

(a) By definition 0;(Bo) = 1. Since By € S ,(;) it follows that v, (30By) < £;0,(Bo)
and therefore a;(30B)) < ;.

Next we proceed to check that z(10Bg \ F) < €;r9. Provided p(10By N Ei’j,m,n,p\F)
is small enough, (6.7) and the definition of S, ,.(¢;) ensure that

uw(10By \ F) < (B(z,7)) < eipu(Bo),

1 .
Ciln it
which is the same as 1(10Bg \ F') < g;70.

(b) Fix € F and 0 < 7/ < 90r¢. We need to show that

8i(B(z,r")) <1+6;. (6.8)
But since ' < 1/p

~ 9—(i+2)

8u(B(z,r")) < (1+67)"2 < (14 602)5,(B(z,7))

k
< (1467)°6,(Bo) < (14 6:)8,(Bo),
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where (6.6) was used in the second inequality, the third inequality follows from definition
of d,,, and the final inequality uses that 6; < 1. The inequality (6.8) is proved.
The assumptions (c) and (e) hold since for all x € F,
N —i—3 271'73 9

2
sup [Ty rppt(x)] < ——¢; and  sup a’(f)(B(ac,r)) <
0<r1<ra<1/j Ck 0<r<l/m Cr

while d,(By) > C%Z*i*?

(d) Finally, since 0,(By) > 2;;2, we have that ||Tﬁ7rf|\L2(ﬁ)7Lz(ﬁ)
2720 Tl L2 () 12y for every f € L?(u), so assumption (d) holds with M replaced
by M; = 2 2G| Tyl 22 ()= L2 (1) -

Therefore we have checked that the assumptions of Main Lemma 6.1 hold with ¢;, 6;

and M;. Provided that ; and 6; are sufficiently small in terms of max{1, M;}, with ¢;
much smaller than 6;, we infer that there is a Lipschitz graph that intersects E in a set
of positive measure. 0O

6.2. Proof of Theorem 1.1

In this section, we indicate how Theorem 1.1 follows from Theorem 1.5 by using
Corollary 1.4.

Proof of Theorem 1.1. Since p is a finite measure satisfying (1.1), supp(u) has o-finite
length. From Corollary 1.4 we may write supp(u) = F U J; Ej, where HY(F) = 0,
H(E;) < o0, and, with p; = |, , the Huovinen transform is bounded in L?(y;). On the
other hand, Theorem A ensures that lim,_,q aﬁk) (B(z,r)) =0 for p-almost everywhere.
From this it is a routine matter to see that lim,_q ozﬂj.) (B(z,r)) = 0 for p;-almost every
density point = of u;. But now we may apply Theorem 1.5 to the measure p;. Therefore
1, as a countable union of rectifiable measures, is rectifiable. O

7. Construction of the Lipschitz graph for the proof of the Main Lemma

Fix positive quantities J,¢,0 and « that will be determined later, satisfying loge <
logh < loga < logd <« —1.

Throughout this section we will assume that p satisfies assumptions (a), (b) and (c)
of Main Lemma 6.1 with these choices of € and . The roles of § and « will be introduced
momentarily.

We will adapt a version of the construction developed by Léger in [14] (adapting
work by David-Semmes [7] to the non-homogeneous setting) involving a stopping time
construction. The most significant distinction between the assumptions we have made
in Main Lemma 6.1 and those in [14] is that we do not know that the measure y is flat
(meaning that, say, o, (B(x,7)) is small at every € F' and r < ), but rather we only

know that the measure yu is spike-flat (aLk)(B(a:,r)) is small if x € F and r < rp). Our
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main observation is that, due to the initial flatness assumption on By (assumption (a)
of Lemma 6.1) within the stopping time region the measure must not only be spike-flat
but truly flat (this is the content of Lemma 7.7), and so one can build an approximate
Lipschitz graph (Proposition 7.17) as in the David-Semmes-Léger scheme.

Without loss of generality, we put o =0, rg = 1.

Lemma 7.1. For every x € F' and r € (0, 30),

0u(B(z,r)) S 1.

~

Proof. The statement is clear if ¢,(B(z,7)) < 1, so we may assume otherwise. By as-
sumption (c) in Main Lemma 6.1, a,(f)(B(a:,r)) < e? < &%5,(B(x,r)), and the result
follows from Lemma 5.1 due to assumption (b) of Main Lemma 6.1. O

7.1. The stopping time region
We set By = B(0,1) and Dy to be a line such that
iy, (30By) < 2e.
Without loss of generality, we may (and will) assume that Dy = R x {0}.
Remark 7.2. An application of Lemma 4.2 tells us that since 6,,(By) = 1, we have that
0,(30By) ~ 1.

Definition 7.3. We define the region S;ota1 as the collection of pairs (x,t) € FNByx (0,20)
satisfying the following two properties

(1) 0,(B(z,t)) > 6 and
(2) there exists D € G, with o, p(B(z,t)) <e
and Z(D, Dy) < a.

Lemma 7.4. There is a constant C > 0 such that
(F N By) x [OVe/a,12] C Siotal-
Proof. Fix z € F N By. From assumption (c), ozftk)(B(z,ZO)) < €2, while trivially,

0,.(B(2,20)) 2 §,.(Bo) 2 1. Consequently, part (2) of Lemma 4.2 yields that there is
a constant C' > 0 such that ¢,(B(z,s)) 2 1 whenever s € [C/g,12].
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NG

Now further assume that s € (qFE, 12] for some ¢ > 1 to be determined momentarily.
Since a&k)(B(z,4s)) < e25,(B(z,s)) and a, p, (30By) < €6,(30By), Lemma 4.57 yields
that for some D’ € G,

a0 (B(2,5)) S €%0,(B(2,5)) < €6,(B(2, 5))
where Z(Dy, D’) < /&1 < a/q < a, provided that g is chosen appropriately. O
Definition 7.5. For € F' N By, we set
h(z) = sup{t € (0,12] : (z,t) ¢ Stotal };
and
S = {(x,t) S Stotal 0t Z h(.’ﬂ)}

Notice that if (z,t) € S, then (z,¢) € S for ¢ > ¢, making S a stopping time region.

On occasion we will abuse notation and write, for a ball B, B € S (respectively
B € Siotar) instead of (¢(B),r(B)) € S (respectively (¢(B),r(B)) € Siotal)-

We record a restatement of Lemma 7.4 that will be used later on.

Remark 7.6. For z € F'N By, h(z) < 2/
7.2. Properties of the stopping time region

It will be convenient to set

Lemma 7.7. Let (z,7) € S and"’ p € n(B(z,r)). Let D € G, satisfy that Z(D,Dy) < «
and a“’HllD(B(x,r)) <e. Then we have that

FnaY(B(p,r)) C B(z,3r)N {y eC:d(y,D) < )\"I"}.

Proof. Fix z € 77 1(B(p,7)) N F and set 7 = max(r, |z — z|). Since (x,7) € S, we have
that 6, (B(z,7)) > § and there exists D’ € G, such that

au,p (B(x,7)) <e < <0,(B(x,7)) and £(D', Dy) < a.

9 Applied with the role of § played by a constant > 1, and B(z,r) = 30B, so that B(z,4s) C 2B(z, ).
10 Recall that for x € C, 7(z) = R(x) (the real part of ).
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But then 6,,(B(z,2r)) 2 0 from which part 2 of Lemma 4.2 ensures that 6,(B(z,7)) 2 0
(note here that, as z € F, a&k)(B(z,Q?)) < %5#(3(2,2?'))). From here, Lemma 7.1
ensures that d,(B(z,7)) 2 0 - 0,(B(z,7)), and, since B(z,7) C B(xz,27) we may apply
Lemma 4.3'! to conclude that

dist(z, D') < VTE?. (7.1)

We next claim that 7 < 3r. If |x — z| > 3r, then since the line D' € G, satisfies
Z(D', Dy) < a, and dist(n(z), 7(2)) < 2r, it follows that

7= |z — z| <dist(z,D’),

but given (7.1) this is absurd, and so 7 € [r,3r]. In particular, we have proved that
7Y B(p,r)) C B(z,3r). Finally, Corollary 4.4 ensures that if we consider instead of D’
the line D (which satisfies v, p(B(z,7)) <& < $0,(B(x,7))), then Z(D,D") %, and
the result follows. O

Lemma 7.8. Suppose B;B’ € S, L > 1, LBNLB" # &, and r(B') < r(B). Let Dp
and Dp: be lines in Gopy and G.pry respectively satisfying that o, p,(B) < € and
au,p,, (B") <e. Then for ally € LB'N Dp,

dist(y, Dp) < L?X - r(B).
We will require the following simple result.

Lemma 7.9. Fiz A > 1. Suppose that B,AB € S. Let Dg and Dap be lines in G.(p)
satisfying that o, p(B) < € and a,ap(AB) < e, respectively. Then dist(y, Dap) <
AAr(B) for every y € BN Dpg.

Proof. Due to Lemma 7.1, 6,(B) 2 0 - §,(AB), so application of Corollary 4.4 (with B
playing the role of B(z,s) and AB playing the role of B(z,r)) readily yields that

min{r(B),dist(y, Dap)} < A- Ar(B) for every y € Dg N B.

But since ¢(B) lies on Dy g, we obtain dist(y, Dap) < r(B) for y € B, and the lemma is
proved. O

Proof of Lemma 7.8. If 3LB ¢ S then Lr(B) > 3 and we can replace L by L' < L
where 3L'B € S and L'BN L'B’ # &. (Recall that B, B’ have their centers on By.) We
therefore assume that 3LB € S.

' with ~ replaced by Ce/§, o = H‘lD/, and v a spike measure such that a,, . (B(z,7)) < €2 < £4,(B(2,7)).
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Now, fix A~ L T'(g,) such that both 3LB D AB’ and AB’ belongs to S (observe here

r(B)

that (3LB) ~ r(AB’)). We first apply Lemma 7.9 twice to conclude that

dist(y, D3rg) S LAr(B) for ally € DgN B (7.2)
and

dist(y, Dap') < LAr(B) for all y € D N B'. (7.3)

But now, since both 3LB and AB’ belong to S, have comparable radii, and 3LB D AB’,
we may use Corollary 4.4,'? from where

dist(y, D3rg) < LAr(B) for all y € Dy N AB'.

In combination with (7.3), the previous inequality ensures that for every y € Dp: N B,
there exists z € D3y, N3LB such that d(y, z) < LAr(B). Recalling that Dp/, Dyp: and
D3y p are lines, it follows that for every y € Dg N LB’, there exists z € D3y N4LB
such that d(y,2) < L?Mr(B). Now we infer from (7.2) that there exists w € Dp with
d(z,w) < L?Ar(B), and the result follows. 0O

Although By is not necessarily in S (0 may not be in F'), we still have the following
results

Corollary 7.10. Suppose that L > 1 and B € S, and let Dp € G.py satisfying
a, py(B) <e. Then

dist(y, Do) < L?\ for everyy € LBN Dp

and therefore

L2
Z(Dp,Dg) S ——A.
( B 0) ~ T(B)

Proof. By part (2) of Lemma 4.2, u(B(0,Cv%)) 2 /€ so F N B(0,C\e) # & (see
assumption (a) of Main Lemma 6.1). Pick Dp, € G, satisfying o, p,;, (B1) < €. Therefore
we can choose a ball By = B(z,10) € S with z € F and |z| < /. We infer from
Lemma 7.8 that

dist(y, Dp,) < L*\ for all y € LB N Dp.

But then it follows from Corollary 4.4 that dist(y, Dp,) < /e for all y € By N Dy, and
the Corollary follows. O

12 Here we appeal to Lemma 7.1, which ensures that §,(AB’) > 5, (3LB).
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The following Corollary follows from Lemma 7.7 in an analogous manner to how the
previous result follows from Lemma 7.8 (i.e. by finding a point € F' within a distance
< /€ from 0). Moreover let us recall that Iy = (—1,1).

Corollary 7.11. One has
Fc {dist(-,Do) < A}.
7.3. Partition of the stopping scales
We define the following three disjoint subsets of F' N By:

Z={x € FNDBy:h(x) =0},
Fi={z € FNBy\ Z:6,(B(z,h(z))) <}, and

_ there is D € G, with Z(D, Dg) >
Fzz{xEFﬂBo\(ZUF1)' ere is D € G with £(D, Do) Q}

“and a,,p(B(z, h(z))) <e
Lemma 7.12. One has
F=ZUF,;UbF,.

Proof. Fix x € F\(Z U Fy). Therefore h(z) > 0 and 6,(B(x,h(z))) > J. Moreover,
(z,4h(x)) € Stotal SO there exists D € G, with

o, p(B(z,4h(z))) <e S =0,(B(z, 4h(z))).

7| ™

2

Since o\ (B(z,4h(z))) S 506,(B(z,4h(z))) and 8,(B(z,h(z))) 2 6.(B(z,4h(z)))

~

(the latter inequality holding, for instance, by part (1) of Lemma 4.2), we have from
Lemma 4.5 and Lemma 7.1 that there exists D’ € G, such that

2

0 (Bl h(x)) £ 550,(Bla. b)) S

[ V)

3

. (7.4)

[« 2]

Notice that if (z,h(z)) € Stotai, then by the definition of Siytq (Definition 7.3) we
have that Z(D’,Dy) > « and therefore z € F,. Consequently, we may assume that
(,h(x)) € Stotar- By the definition of h(x) there exists r; — h(x) with r; < h(z) such
that the balls B(z,r;) fail to satisfy one of the properties (1) or (2) in the definition of
Stotal -

But if a countable number of the balls B(xz,r;) were to satisfy that §,(B(z,7;)) <
0 then 0, (B(x,h(z))) < 6, which is not the case. Similarly, if a,(B(x,r;)) > ¢ for
infinitely many j then by continuity of the alpha numbers, see Lemma 3.3, we have
a,(B(z,h(x))) > €, contradicting (7.4). Therefore there exist lines D; through z and
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radii 7; — h(z) with r; < h(z), £(D;, Do) > «, and ay p,(B(z,7;)) < . We may
pass to a subsequence if necessary to obtain that D; converge (locally) to a line D with
4(5, Dy) > «. But then the continuity of the transportation coefficients (Lemma 3.3)
ensures that , 5(B(z, h(z))) < €, and hence x € F;. O

Remark 7.13. An application of Corollary 4.4 ensures that if z € F5 and D’ is any line
in G, for which o, p/(B(z,h(z))) < ¢, then Z(D', Do) > a - C1 > 5.

We shall show momentarily that Z lies in the zero set of a Lipschitz continuous
function. We will therefore want to show that the measure of the sets F} and F5 is small.

7.4. Regularization of h

The function h itself can be quite irregular, so, as is standard, we proceed to introduce
the functions d and D.

Definition 7.14. For x € C, we set

d(z)= inf (|X — t
() (xl,%es“ x| +t),

and for p € Dy,

D(p)= inf d(z)= inf (d(m(X),p)+1).
()= inf d@)= inf (d(r(X).p)+1)

Remark 7.15. Observe that

1. the functions d and D are 1-Lipschitz functions and
2. h(x) > d(x) for every x € F N By.

Lemma 7.16. We have that
Z={xeC:d(x)=0}={x € FNBy:d(z) =0}

Proof. If x ¢ By N F then d(x) > 0, so since d < h on the closed set F'N By, we have
Zc{rxeC:d(zx)=0}={x e FNBy:d(z)=0}.

Next, we prove that if € C satisfies d(z) = 0 then h(z) = 0. If d(z) = 0, then certainly
x € FNBy. Fix 7 > 0. We can find a sequence of pairs (z;,7;) € S with z; € F, z; — ,
and 7; — 0 with 7; < 7 for every j. In particular, (x;,7) € S for every j. Since for any
7€ (0,7), 6,(B(xj,7")) > 6 for sufficiently large j, it follows that 6, (B(z,7)) > 0.

Let D; € G;, be lines with a, p,(B(x;,7)) < € and Z(D;, Dg) < a. Appealing to
Lemma 3.3, we obtain that (after passing to a subsequence if necessary) there exists
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D € G, with Z(D,Dy) < « such that o p(B(z,7)) < €. Since 7 > 0 is arbitrary, the
statement follows. O

7.5. The Lipschitz mapping

The next step is to construct a Lipschitz mapping with Lipschitz constant < o whose
graph is close to points in F. Recall that Iy = (=1, 1).

Proposition 7.17. There exists a Lipschitz continuous function A : R — R satisfying
supp(A) C 31y, [|A|lLip S @, such that, with A(p) = (p, A(p)) and T' = {A(p) : p € R},
the following properties hold:

L |A"(p)| S pry for any p € R,
2. T C {dist(-,Do) < /\},
3. Ifx € F, then

[A(r(2)) — 2| S A~ D(n(x)).

(In particular, Z CT.)
4. If B(z,r) € S and D € G, satisfies oy, p(B(x,r)) < €, then for every p € n(B(x,7)),

dist(A(p), D) SA-r.

Given the strong flatness property proved in Lemma 7.7 (along with Lemma 7.8,
which informally states that good approximating lines for balls B € S do not change
much locally), the reader familiar with the Léger scheme will likely find few obstacles
in providing the proof of Proposition 7.17 for themselves by modifying either [14] or
Chapter 7 of [29]. However, since there are some minor changes required, we provide a
relatively detailed treatment in Appendix B.

7.6. Density of p under the projection to Dy
Our next lemma concerns the density of the projection of yr to Dg. This is a key
property required to run the scheme of Tolsa which will show that the set F5 has small
measure. Set o to be the Borel measure on R given by
o =7y(F), soo(E) = u(FN 77 1(E)) for a Borel set E C R.

Lemma 7.18. One has

o(B(p,r)) < (14 Ca®)2r, forpeR andr € (¢Y/*D(p),1). (7.5)
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Proof. Without loss of generality we may assume that p € 101, (recall that F' C 10By).
Case 1: r < %.
Fixt =r/{/e,s0t > D(p) and there is x € 7~ (p) with d(z) < t. Therefore we can find
(X,s) € S with |x — X|+ s < t, and so B(X, 3t) € S. Notice that 7(B(X, 3t)) D B(p, t),

and so appealing to Lemma 7.7,
FOrY(B(p,t)) C B(X,6)N {y e C : dist(y, D) < /\t}

for a line D through X with Z(D, Dy) < a.

Consequently, since r = ¢!/t then F N 7~'(B(p,r)) is contained in a strip of width
C’ﬁr < V/Ar around a line D with Z(D, Dg) < a. Therefore, if z = 7=*(p) N D, then
FnrY(B(p,r)) C B(z, R) where

r<R< (1+a2+0\f)\)r§(1+0a2)r.

Since X € F, assumption (b) in the Main Lemma ensures that gu(B(X, t) <149,
and since (X,t) € S, with ¢t < 1/50, we have that «,(B(X,30t)) < e. Since B(z,R) C
B(X,30t), Lemma 5.2 is applicable with x replaced by X, r replaced by ¢, and B’ =
B(z, R). From the conclusion of this lemma it follows (recall that § < o?) that

0u(B(z,R)) < 1+ 6+ Ce'/®,
so u(B(z, R)) < (1 + Ca?)2r, and the required statement follows.

Case 2: r > %. In this case we apply the argument above with the role of the ball
B(z,t) replaced by B(0,1). We have from Corollary 7.11 that F' C 10BN {dist(-, Dy) <
VAD(p)}. On the other hand, o, (30B,) < ¢, and, although 0 need not belong to F', the
fact that 6,,(By) = 1 implies g,u(BO) < 1, which suffices to apply Lemma 5.2. (One can
actually get a bound that only depends on A (and not «) in this case, but we will not

need this improvement.) 0O
8. Size of F;

The proof of the following result can be found as Proposition 3.19 in [14] or Lemma
7.33 in [29].

Proposition 8.1. One has
p(F) So< 1

Every point € Fy is the center of a ball B(z, h(z)) which is of low density (< §), but
x is also lies very close to the Lipschitz graph T' (in the sense that dist(z,T') < Ad(z) <
Ah(z) < h(x) for every z € Fy). From these observations the Besicovitch covering lemma
readily allows us to establish Proposition 8.1.
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9. The size of F,

Given Proposition 8.1, our goal is now to show that p(F») is also small.
Our goal will be to verify the following proposition.

Proposition 9.1. Provided o < 1 and loge < log a,

u(Fz) < Ve

We start by recording the following estimate that can be found as Lemma 10.1 in [27]
or Lemma 7.34 of [29]. See also Section 5 of [14]. We give a self-contained proof.
Set, ||f||i2(]R) = Jg |f|?dm1, where my is the Lebesgue measure on R.

Lemma 9.2. We have
w(Fs) S 0472HA/||2L2(R)~

Proof. Suppose x € Fs, so 0,(B(z,h(x))) > d. Recall from Remark 7.13 we have that
any D € G, for which

a,.p(B(z,h(x))) < € satisfies Z(D, Do) > a/2.

Take a sequence of radii r, — h(x), r, > h(x) such that the associated lines D,, € G,
satisfying o, p,, (B(x, 7)) < € converge to a line D such that oy, p(B(x, h(z))) < € holds
(and so Z(D, Dy) > «/2).

Pick p € n(B(z, h(z))). We claim that

dist(A(p), D) S MAh(z) < a - h(z). (9.1)

To see this, note that B(x,r,) € S. Then by property (4) of Proposition 7.17,

dist(A(p), Dp) < Arp,

letting n — co we obtain the claimed inequality.
Choose p, q € 7(B(z, h(z))), with |p — ¢q| 2 h(z). Then since Z(D, Dy) 2 «,

(9.1)
ach@) S @) - A@ls [ A,
I(m(z),h(z))
where the second inequality is a straightforward consequence of the fundamental theorem

of calculus. Using the Cauchy-Schwarz inequality and Lemma 7.1, we therefore obtain
that



32 B. Jaye, T. Merchdn / Advances in Mathematics 400 (2022) 108297

o? - u(B(x, 30h(z))) < a?h(z) < / A2 dmy. 9.2)

~

I(m(z),h(x))

On the other hand, since (z,2h(z)) € S, it is immediate from Lemma 7.7 that if y € F
and B(z,6h(z)) N B(y,6h(y)) = &, then

I(7(x), 2h(z)) N I(7(y), 2h(y)) = 2.

From the Vitali covering lemma, we choose a subcollection of the balls B(z,6h(x)), say
B(z;,6h(z;)), that are pairwise disjoint, and satisfy (J; B(x;,30h(z;)) D F>. But then
the intervals I(m(x;), h(x;)) are pairwise disjoint, so by summing (9.2) we obtain

aQM(F)S/\A'Pdml.

31

The result is proved. O
10. Calderén-Zygmund operators on Lipschitz graphs with small constant

Like in Tolsa’s work [28], the behavior of Calderén-Zygmund operators on Lipschitz
graphs with small Lipschitz constant plays an important role in our work. Here we carry
out a suitable adaptation to the Huovinen kernels. The main point is that, on a Lipschitz
graph with small constant, the normal component of the Huovinen kernel behaves like a
small perturbation of the normal component of the Cauchy kernel.

Recall that

Kit(z) = Sz) for z € C.

J(2F
EGE

Throughout this section, we will denote by A : R — R a compactly supported Lip-
schitz continuous function with [|A’[ls < 1. We set A(t) = (£, A(t))(= t +iA(t) € C),
and I = {A(t) : t € R}.

The goal of the section is to derive the following result:

Theorem 10.1. There exists constants C,c > 0 and og > 0 depending on k such that if
A ||oo < g, and diam(supp(A)) < 1, then

1. for every p € (1,00), the principal value operator associated KkL has operator norm
at most Cpl||A'||co, and
2. we have the lower bound

2
/‘p.v. / KE (2 — w)dH ()| dH1(2) > | 4|22 g, — CIA|L. (10.1)
T T
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For t € R, we shall set

J(A) (1) = V1+ A(1)2,

so that for any f € LY(T),

/ﬂmﬂ%WFi/ﬂﬂmﬂ@@Mmﬁ) (10.2)

C R

Using (10.2), we shall prove bounds of the operator norm in L?(T") of the Calderén-
Zygmund operator

THHE) = PV. [ K = o) (@) (@)
C

by first considering the principal value operator norm in L?(R) of the operator

Ta)) = PV. [ K (A0) = Als)gls) dmas), ¢ € R
R
The following theorem is a well known result regarding Calderén commutators, see [4,
Chapter 2] for an exposition including several approaches to how it can be proved.

Theorem 10.2 (Boundedness of Calderén commutators). There exists C1 > 0 such that
for every p € (1,00) and £ € N, the CZO acting on LP(R) with kernel

K(t.s) 1 (A(t)—A(s))f

t—s t—s
is a bounded principal value operator in LP(R) with norm <, CY||A’||*.

We next recall an important tool in our argument, which is a special case of [28,
Theorem 1.3], relying ultimately on a Fourier analytic argument.

Theorem 10.3. There exists ag > 0 such that if ||A']|co < o, then

/‘P.V./% dm (s) 2dm1(t) 2 AN 2wy
R R

We now examine the difference between normal components of the Huovinen and
Cauchy transforms. For |s| < |t|, we may expand the kernel
%[(t =+ Zs)k] Z SZ

Kir(t+is) = ———m— = kTt (10.3)
(k+1)/2 A1 .
(t +57) 2eN,2 odd t
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where c; ¢ € R satisfy
k and L e<
ck1 = k an c - 1. 104
- > lenel (3) S (10.4)
[
Consequently, we see that

KiF (A(t) — A(s)) = pAD A | > o —A(S))Z. (10.5)

(t=s) £>3,¢ odd o (t = s)!
Now, if || A’||sc < g for a small enough ay, the kernel

(A(t) — A(s))*

_ S)E+1

Kuil(t,s) = Y Cre

£>3,0 odd (t

is a Calder6n-Zygmund kernel, and Theorem 10.2 ensures that, for any p € (1, 00),

the associated principal value operator is bounded in LP(R) with norm <, [|A]2.

Therefore

(a) the principal value operator with kernel K- (A(t) — A(s)) has LP(R) operator norm

Stp A oos
(b) employing a simple localization argument yields that

/‘\/Ktai](t,s) dmy(s) 2dm1(t) < ||A[|8, diam(supp(A)),

(c) if [|A"||oo is small enough and diam(supp(A)) < 1, then part (b) and Theorem 10.3
ensures that there are constants C, ¢ depending on k such that

J1 [ A0 = A dm )] dmn®) = | AT wy - CIA
R R

Finally, observe that |J(A)(t) — 1| = [\/1+ [A(#)]Z — 1| < |A(t)]2. Consequently,
Theorem 10.1 now follows from the change of variable formula (10.2), employing the
bound on the operator norm (a) to bound the errors accumulated from passing from R
to I'.

11. The main comparison estimates
Recall that our main goal is to prove Proposition 9.1. We therefore assume that

1 satisfies the assumptions of Main Lemma 6.1, and introduce 6,¢,60 and « satisfying
loge < logf < log a < logd < —1, so that the construction of Section 7 is valid.



B. Jaye, T. Merchdn / Advances in Mathematics 400 (2022) 108297 35

For z € C, set
We recall that we set

so that (see (b) and (c) of Proposition 7.17)

' c {z € C :dist(z, Dy) < A} and (11.1)
F C {z e C :dist(z, A(r(z))) < M(z)}. (11.2)

Denote for any measure v
TéJ(_-),IV(x) = TeL(z)V(m) — T v(x).

Put Iy = (—1, 1) C Dyg.
The goal of this section will be to prove the following result:

Proposition 11.1. There is a constant C > 0 such that, as long as o < 1, and log A\ <
log v,

1Ty 1 U 22 1 1) 2 1A 22y — Ca?.

We shall set || f[72) = Jp [f[?dH".
Recall that, since || Ao < @, applying Theorem 10.1 yields

HA/HL2(R) —Ca? S ||PV TL'H|1F||L2(F), (11.3)

provided that o <« 1. Comparing this estimate with Proposition 11.1, our goal is to
(essentially) replace H'|p with by pp on the right hand side of (11.3).

11.1. Localization estimates
Lemma 11.2 (Localization lemma). For every p € (1,00),

2
Sp ot

T io)llaery = 1Ty () o oem— arop | S

Proof. We recall that supp(.A) C 7(3By). Observe that

‘HTL(H?F)HLTJ(F) - |TL(,H|1F)||LP(FH7T*1(4IO))‘S Ixr\r-1 (420 T (Hpy L o)
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Take x € T'\ 7~ 1(4Iy) = Dy \ 41y (so 7t (x) = 0), and we set

dist(y, Do) dist(y, Do)
T+ (M} xg/i’dﬂly: / — 2 dHY (y
yel yel'nm—1(31p)
(11.1)
1 dist(y. Do) dH'(y) S

< A —
~ (LA f=])? ~ (1 =)?

yelnr—1(31o)

Raising this inequality to the power p and integrating on Dy \ 41y, we obtain

Ixrve- a1 T (H ) Loy S A-
For z = A(t) for t € 41y, write
T (M) (2) = Ty s (i) (@)] < [S(@)] + [T1 (M) ()],

with!3

AW®) — A)\) SAW® — A | 5
S(x) = / (1-w( D10 ))M(t)—j(s)wﬂ J(A)(s) dma(s),

where J(A) = /1 + [A]2, z = A(t), y € A(s), with t, s € R.

The estimate for second term is straightforward:

- 7TL €T —7'1'l
frogels [ =R e
er:
ly—z|>1/2
|7 ()] / W) o0
supp(A) C 31p) <
(supp(4) € 31p) £ / T i) + =)
yel: 7~ 1(3Io)NT
ly—=z|>1/2 ye\:c—y%>1/);

< dist(z, Do) + / dist(y, Do)dH" (y)
I'nr—1(31p)

(11.1) < dist(z, Do) + A.

Therefore, using (11.1) once again

~ 1/p
T e erescamery S ([ disln Dot @) eA S A

rndn—1(Io)

13 The integral S is a principal value integral, but we shall suppress the P.V. notation in principal value
integrals whenever it is clear from context (in order to save line space).
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The estimate of S(z) will take more work. We split

—s S((A(t A(s))k
/(1 q;( tt /10)) |§(t)()A<S§|/f))1) dm (s)

@ t—s (|ﬁ<t>—A<s>|)) S((A®) — A(s))")

+/( /10 D(t)/10 |A() A(s)|k+1 dmu(s)

& k
o f (1w A SR DD ) 1y
= 51(z) + S2(x) + S3(x).

Notice that
1T(A) =1, S 1A%

Consequently, using the LP boundedness of T+ on Lipschitz graphs (Theorem 10.1) we
get

1S3, < @,
Now we focus on Ss. First observe that, since o < 1,
[t — 5| < JA(t) — A(s)| < 2/t —s|.

Since U(z) =0 if |z| < 1/2 and ¥(z) =1 if |z| > 1, we deduce that

‘I’(Dt(t_)/sm) ~u( lA(zt))(t_)/féS”): 0

if |t —s| < D(¢)/40 or |t — s| > D(t)/5. Additionally, the mean value theorem ensures
that

s A(t) — A(s alt — s
“I’(m)_‘yc (z?(t)/ug )l)‘f Ozljt(t) :

Consequently,

alt — sl IS((A(H) — A(s)k
1S2(z)| < |t —s| [S((A®) — A(s))")]

2
D(t) |t — 5[kt dma(s) S o7,

D(t)/40<|t~s|<D(1)/5

and therefore

1521l < o®.
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We focus now on S1(z). Recall from (10.3) that

~ - _ s ¢
KEAD - As) = Y e AN ZAG)T

By the second order Taylor formula,

A(t) — A(s) = A(t)(t — s) + A”z(z) (t — s)? for some z € [t, s].

For s € B(t,D(t)/5), we have that D(z) =~ D(t) ~ D(s), and so the second derivative
estimate given in part 1 of Proposition 7.17 (and recalling the definition of A) yields that

A”(Z)
2

(t—9)*

Now, employing the inequality |(a + b)* — a‘| < 2°bmax(|al, |b])*~! we arrive at

‘t _ S‘f-i—l

(A(D) = A = &)1 =)' < o'~ AEFr—,

where we have used that )‘E(_t)s | < «a. Next, we notice that for any k > 0,

— s\ A1)
R\B(t,5) [1 \P(tD(t))]?Et‘)gdmds) =0,

while [p {1 — \Il(fj_(f))} dmy(s) < D(t). Consequently,

[ e A o et
R\ B(t,x)

Therefore, using (10.4), we have that since a@ < 1,

T t—s e ~
sl =tim| [ (1= 9 (o) )k A - A) ()
R\ B(t,x)
S Z ek e|CN T S A <
LeN £ odd

From here, and joining the previous estimates we conclude that
1] Lo (rrm—1(ar0)) S @7

The lemma follows. O
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11.2. The main comparison estimates

Let 77 : [0,00) — R be a smooth non-increasing function with |||y = 1/2 such that
supp 7 C [0,1] and 7 equals 1 on [0,1/4]. For p > 0, we denote

1. |t|>
Np(t z—n(— for t € R.
plt) =0 {

Therefore ||n,|1 = 1.

We wish to show that o = myp p is close to a constant multiple of the Lebesgue
measure, at least within 81y. In order to accomplish this, we introduce the function
g : R — R given by

g(t) = VD) * 0

Observe from (7.5) that we can rudely estimate
l9lloe < 3. (11.4)

We will aim to prove more refined LP estimates on the function g, with (7.5) our primary
tool.

We will make use of the following elementary bound which appears as [27], Lemma
10.3 (the proof merely uses of the fact that D is a Lipschitz continuous function).

Lemma 11.3. For allt,s € R,

|<£

nvxpw (=) = yxpes) (= 9) D(s) XB(s,cv/aD(s)) (8-

The next lemma is another estimate found in [27], and is a simple consequence of (7.5).
(We recall that the proof of (7.5) used properties of the transportation coefficients, and
was necessarily quite different from the proof in [27].)

Lemma 11.4. If ¢ and 0 have been chosen small enough with respect to «, then we have
0<g(t)<1+Ca? forallt € R, (11.5)
and

Ixs1,(9 — D)[l2 < e (11.6)

Proof. The lemma follows from integrating (7.5). For ¢t € R, let ¢ : [0,00) — R be
defined by 9 (s) = 77\/XD(t)(3) and we denote o = T () r).
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Observe that

VAD(t)

o(t) = / o (B(t,r)! (r) dma (1),
VAD(t)/4

where we have used that supp(¢’) C [VAD(t)/4,V/AD(t)]. Consequently, since /& <
VA, from (7.5) (and that 1 is monotone on [0, 00)), we infer that

VAD(t)
9(®)] < (1 + Ca?) / o ()] dr < 1 + Ca?.
VAD(t)/4

The inequality (11.5) is proved. We next will show that

lIxsz (g — Dl S o (11.7)

To this end, we will prove
/g(t) dmi(t) > (1 — CVA)m1(8By NR). (11.8)
810

To verify (11.8), first observe that since D(t) <9 for all ¢t € 7(8By), we have

/ o) dma (£) = / Ny *o(t) dm(t)
(8+9vVN) 1o (8+9vN\)Io

//”fDm (t — s)dmy(t) do(s).

8Ip R

Using Lemma 11.3,

1
Nyt =) = Nyape =9 S WXB(S,C\/XD(S))@)

Combining these two inequalities results in

[ swamo= [ [aspu - dm o)

(8+9vV\) 1o qe8Ip R

ma(B(s, CVAD(s)))
o D(s)

> (1 —CVN)a(8Iy) > (1 — CVN)mq (81).

do(s)
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In the final inequality we have used that
o(81) = u(8By) = 16-5,(8Bo) = 16(1 — CVZ)5,(Bo) = 16(1 — Cv/2),

where part (2) of Lemma 4.2 has been used in the inequality. The inequality (11.8) now
follows from the fact that ||g]lcc < 3 (recall (11.5)).
But now, for suitable constant C' > 0,

(11.5)

[+ ca? = golamo = [ (@ +ca?) - gt dmo)

81 81¢

< (1 + Ca®)my(8Iy) — /g(t) dmy(t) < (Ca® + CVA)m1(8By),

81y

and hence

/ 11— g(8)] dma(t) < (Ca® + CVN)ma (8T),

81

achieving (11.7) as A < 2. Finally, recalling (11.4),

[ 1= goF amo < 1+ lgle) [ 1= g0l dm(® 5 o®

81 81y

proving (11.6). O
Going forward, will be convenient to make three definitions:
Definition. (1) Denote by P : C — T' the mapping
P(z) = A(n(z)) for z € C.
(2) Denote by h: T' — R the function

R i)

== , forx el
JA(7(x))
(3) Define the Borel measure i on C by
,E = K F,

so that o is the pushforward of g under the projection .
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From these definitions we have that, for a Borel set £ C 10l and a Borel function

f:C =R,
/ fOPdﬁ:/fOAde' and /gdm1: / hdH?.
E

T-1(E) E r=1(BE)nT
We will use these identities quite often in what follows.

Lemma 11.5. There is a constant C > 0 such that for any k € [4,8], and any Borel
measurable function f: C — R.

/ fd(p — hdHﬂr)‘ < /{OSCB(X(t),Cﬁé(t)) f}do(t)

Tr_l(k}I[)) k?[()

+ / |f o Al dmy (11.9)

(k+CVX)Io\kIo

+ [ (¢ o Dpam,

ko
where b: R — R satisfies supp(b) C (k + 1)1y and [|b]|oe < V.

Proof. Write

fldp — hdH )]

‘n'*l(ktlo)

_ / (f_fop)dﬁ+/foﬁ(da—g-dml).

7=1(kIo) KTo
Recall from (11.2) that T' = {A(t) : t € R} and
F C {z e C:dist(z, A(r(z))) < M(z)}. (11.10)

Therefore

/ (f = o P)di% /{OSCBd(t),C\/Xé(t)) [} dot).

m=1(klo) klo

For the remaining term, we first observe that the function

9Xkly — [77\/Xe(.) * (Xk1,0)]
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is supported in (k + CvVA)Io\(k — Cv/\) Iy, and therefore
[0 ) {oxan, g * Caurgo s
R

< / f o A gdma.
(k+CVN) Io\ (k—CVN) o

But now, using (11.5), and that £(t) > 1 for t € kIy\(k — CvVA)Io,
/ ‘f © j‘ gdmy S /{OSCB(A(,:),C\FM@)) f}g(t) dml(t)

kIo\(k—CvVX) 1o klo

+ / |f o Al dmy

(k+CVN)Io\kIo

< [ Hoseniigcvma THao)
ko

+ / 1 o A dmy.

(k+CVX)Io\kIo

It remains to consider

/ fo j(da — Ny ) * (Xk1,0) dmy).
ko
First, using Fubini’s theorem, observe that

10 A O 5,0, * Couto)] (1
R

= [ [ st = 97 0 A)s) dma(s)dot
R

kIo

In order to obtain a convolution structure, we wish to replace £(s) in the right hand
integral with £(¢). To this end, recall Lemma 11.3:

VA
‘”ﬁe(s)(t —5)— ’R/Xe(t)(t -9 < MXB@,C\/X@(Q)- (11.11)

Crudely employing this bound, the difference
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/ / Mo (t = 9)(f 0 A)(s) dm (s)dor(t)

kIp R

- / / Mot — 9)(f 0 A)(s) dma (s)do(t)

k]o R
can be bounded in absolute value by
~ A
/ fo A(t){é(%a(klo N B(t, CVH) } dma (1)
(k+CVX) 1o
Labeling the function in the brackets { - - - } appearing in this integral as b, we find from

(7.5) that [olsc S VA

Finally, notice that

| [rodan— | / Mot = 5)(F 0 A)(s) dma (s)do(y)

klo kI, R
< | / Mot — $)I(F 0 At) = (f 0 A)(s)| dms (5)dor(t)
kI, R

< /{OSCB(/T(t),c\/Xe(t))f}d"(t)
kly

The proof is complete. O

The following lemmas correspond with Lemma 10.7 and Lemma 10.8 in Tolsa’s paper

([27]).

Lemma 11.6. It holds that

||T£L(-),1(N\F) Te( (hH\F)HLQ(FDTr—l(4IO)) ~ V.
Proof. For t € 41, the function
Yy Ky 1 (A(t) —y), y € C

is supported on 6By C m~*(61). We apply the comparison lemma Lemma 11.5 with this
function taking the place of f, and k = 6. Now, for s € 61,
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t(s)
0S¢ g A(s),cve(s) () S \/Xg(tp A AP

<\/_ ()

T+ s 12
«s)
S s

where in the last inequality we have used that ¢ is a Lipschitz function, and so £(s) <
L(t) + |s — t|. We are thus led to estimate

J (] dri=ets) o).

41y 61

To bound this integral we follow a standard path. Observe that, for any s € R,

—6(8) m S
| (e) dm (6) £ N ()(5),

24|t — s/?
4T,

where N (f)(s) 1= sup, () = fB(s »y f dmy. Since o(D(s,r)) < r for any r > £(s) (see
Property 7.5 in Lemma 7.18), one verifies via the usual weak-type bound and interpo-
lation'* that N : L?(my) — L?*(0g1,) has operator norm < 1. Duality therefore gives

that
z»é(—s)_sz(S) 2dml(t)Sl-
WP +ls—1)

41, 6Io
Regarding the remaining terms in the comparison lemma, the second term equals zero
due to the compact support of f, so we need to bound
~ ~ 2
J| [ #o1(A0) = Asppis) dma (o) dmao)

41y 61p

where ||bl2 < v/A. However, the operator boundedness of the Huovinen transform on
Lipschitz graphs ensures that this double integral is < A. O

4 To be completely transparent we bketch the proof: For A > 0, choose intervals B; = B(s;,r;) with
r; > £(s;) such that B; are disjoint, 2T fB fdmq > 3, and E,. := {N(f) > s} C U; 3B;. We arrive
at the weak type bound o(E,.) < Z < Z m(B;) < L ffdml, where in the second inequality

it is used that r; > £(s;). Now, 1nsofar as HNfHoo < || flloo, the subadditivity of N yields that E,. C
{N(FX{If1>5/2}) > 2/2}. Therefore, applying the weak type bound to fx{|f|>s/2} yields that

fdml.
{f>»/2}

The desired inequality follows from integrating both sides over 3 with respect to the measure
2X(0,00) dM(3¢).
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Observe that, as a particular consequence of Lemma 11.6 and part (1) of Theorem 10.1,
we have that

”TZL(-),l(:“\F)||L2(Fﬁ7r*1(410)) SL (11.12)

In fact we can say this bound is of order o by further appealing to Lemma 11.2, but this
gain will not be of use.

Lemma 11.7.

||T€l(~),1(M\F)”%2(hdH1 )~ ”TZL(-),l(N\F)H%? ) S (M + VA

IPAx—1(41g) (B par—1arg

Proof. We apply the comparison estimate (Lemma 11.5) with ¥ = 4 and f =
|ng(_.)71(/l\F)|2‘ Now,
L 1
OSCp(A(x),cvVNe(x)) |Té(-),1(r“|F)| S 2y

Therefore,

0SCp( i(n " 1T () < VA inf T35 ()| + A
B(A(z),CVAL(x)) 1 €(-),1\F] BA(z).CVR(E)) ()1 \H

But now, using (11.2) once again, we have
[t T e S [ T e ldie
B(A(-) )

LCVXL(-)
410 5BO

and the term on the right hand side is < M due to the operator boundedness of the
Huovinen transform on L?(u) (assumption (d) in Main Lemma 6.1).

For the second term appearing in the comparison estimate, observe that since £(¢) 2 1
for ¢ ¢ 41y,

I(f o A)(t)| < 1 for t ¢ 4l (11.13)

and therefore

/ 1f o Al dmiy < VA,

(k+CVX)Io\kIo

Finally, for the third term appearing in Lemma 11.5, recall that ||b||os < VA, and there-
fore

/ |Tél(t),1(N\F)(-’Z(t))|2b(t) dmy (t) S VL3 2 rom1 1)) -

510
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We split ”fH%?(Fmr—l(mo)) = Hf||2L2(Fmr—1(4Io)) + ||f|\%2(rmﬂ_1(510\410)). The first term is
controlled by (11.12), while the second is controlled by (11.13). O

The final step required to prove Proposition 11.1 is the following lemma

Lemma 11.8. We have

||TEJ(_~),1(hH\1F)||2L2(hd’H‘1F y ||T£L(-),1(7{\1r)||%2(rmrl(410)) S’

nr—1(41g)

Proof. First observe that, as a consequence of (11.6) in Lemma 11.4,

1A = Dllz2(rae—1(610)) S @7, (11.14)
SO
Ty 1 (RH[p) — Tzf),1(7'l|1r)||L2(hdﬂllrw,1(410>)
S Tiey 1 ((h = DH )| L2 (a1 (a10))
S Tiey 1 ((h = VHjpar—1 610yl L20nm 1 (a10))
SN =12 rrn-1610)) S @2
Secondly,

1Ty L3 s ) = 1Ty (3 (s 4|

ITn7—1(41g)
= | [ 17y A i) = DM |
<N Ty 2 7 orm—1 aroy (B = Dl 2rnn—1 (ao))

Appealing to Lemma 11.2 and part (1) from Theorem 10.1 (with p = 4), we get

||TZJ(_~),1(H|1F)||2L4(me—1(410)) S a®.

On the other hand, from (11.14), [|(h — 1)l 2(rar—1(410)) S a?. Therefore,

IT50 )0 (Hio) 12 (harer ) = T a2 rrm1an | S @

ITnw—1(41qg)
and the lemma follows. O
Proof of Proposition 11.1. Notice that employing (11.3), followed by applying Lemma

11.2, then Lemma 11.8, Lemma 11.6 (observing that h < 1 on T' as a consequence of
(11.5)), and then finally Lemma 11.7, leads to the following estimate
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ITa0) 1 (o 22 st a1 ) 2 1A |22 (R) — Ca®.

Since (10Bo\F) is small, the proposition follows from L?(u) boundedness of the Huovi-
nen transform (see (a) and (d) from Main Lemma 6.1). O

12. The final contradiction: the proof of Proposition 9.1

Proof of Proposition 9.1. Assume that p(Fy) > o'/2. Then by Lemma 9.2,

||AIH%2(R) 2 a2,

Therefore, Proposition 11.1 yields that

HTZJ(_-),l(M)”%% 2 a2,

“\Frw*l(uo))

This contradicts assumption (e) of the Main Lemma. O
Appendix A. Continuity of the transportation coefficients

In this appendix we prove Lemma 3.3.
We start with a simple remark.

Remark A.1. Given two pairs (z,7), (z1,71) € C x R*, we define the map

Yy—I
1

O(y) =

r—+x.

The map O satisfies O(B(z1,4r1)) = B(z,4r) and [|O|1ip = = = (|07 | £ip) ~"+ More-
over, O establishes a bijection between F, , and F, ,,. Given f € F, , we will denote
by fo() = (f 0 O)(-) € Fay .

Below, given a sequence {(x;,7;)};>1 relative to (z,7), we will denote by O; := O the
function corresponding to the pairs (z,7) and (x;,7;). Furthermore, we will write f; in

place of fo.

Lemma A.2. (Continuity of transportation coefficients) Given a sequence {(x;,7;)}j>0 €
C x R satisfying that x; — o € C and r; — ro, we have the following:

1. a,(B(xj,7rj) = au(B(xo,ro)).
2. Given a sequence Dj € G, for all j > 0 satisfying Z(Dj, Do) — 0, then
iy, (B(aj,15)) = aym, (B(xo, 70))-

Proof. With this in mind, both parts (1) and (2) of the lemma are consequences of the
following statement: If x; — xo and r; — 79, then for every n > 0, we can find 6 > 0
and jo > 1 such that for every j > jo we have that:
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sup |a,,p(B(zo,70)) —ay,p (B(zs,r5))| <ndu(B(zo, 5r0)).
(D,D")€Gug %G, (A.1)
£(D,D")<s

We focus on proving (A.1). Fix n > 0. We will use the following two facts, which are
routinely verified:

1. There exists jo > 1 such that for every j > j, we have that

’/%j,rjfj du—/%o,mfdu’S np(B(zo, 5r9)),

for every f € Fgyr,- (For this one needs to observe that the collection Fg, r, is
relatively compact in the uniform topology.)

2. There exists § > 0 and jo > 1 such that for every j > jg and for any two lines D € G,
and D' € G, satisfying Z(D,D’) <4,

1 1
_/80$07TodeﬂD - F/prj7rjfj d%‘lD/
J

To

<n

for every f € Fagro-

Given D € G, and D’ € G, we put

1 / 1
C= 7 1 Pzo,r dﬂ7 and c¢; = 7/(,0%7” d/J,.
f SOZO’TO dHllD o ! f SDQ:]VTJ‘ dH‘lD/

Since the denominators in the fractions appearing in ¢ and c; coincide, we can choose
Jo larger if necessary to ensure that |c; — ¢| < 1, (B(xo,5r9)) for all j > jo. Together
with fact (2), this remark ensures that given any two lines D € G, and D’ € G.; with
Z(D,D") < § and j > jo we have that

c

Co
— /‘P%J‘ofd,H\lD - ﬁ/@mj7rjfj dH|1D’
J

To

S 10u(B(z0,570)),

for every f € Fy,r,- Combining the previous inequality with fact (1) above yields that
it Z(D,D") < § and j > jo, then for any f € Fyy 1o,

1 1
’E/Somoﬂ”ofd(/uf - CIH\ID) - ;/(ij,rj fj d('u’ - CjH|1D/)

J
S n6u(B(z0,570))-

The claimed estimate (A.1) now follows from (several applications of) the triangle in-
equality. O
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Appendix B. The proof of Proposition 7.17
This appendix gives a detailed proof of Proposition 7.17. We follow [14] quite closely.
B.1. Constructing the map A on 7(Z)
Lemma B.1. Let (z,t1), (y,t2) € S be such that
|z —y| > VAmax(ty, t2).
Then
7t (2) =7 (y)] < (@ + CVA)[n(z) — = (y)]. (B.1)

Proof. Put r = min(A~'/2|z — y|,10). Then (z,7) € S and 7(y) € 7(B(z,2|z — yl)), so
we infer from Lemma 7.7 that

dist(y, D) < \/X|:r —

for some line D € G, with Z(D, Dy) < a. In particular, if Y denotes the projection of
Y onto D, then

(1+CVA)|z —y| > |z —yp| > (1 - CVN)|z —y. (B.2)
But, since Z(D, Dy) < «,
|7 (x) — 7 (yp)| < alm(z) —m(yp)|.
Projections contract distances, so we conclude from (B.2) that
|7t (2) = 7t ()] < aln(z) = 7(y)] + CVAz —y|.

Finally, since |z —y| < |7+ (z) — 71 (y)| + |7 (x) — 7 (y)|, we arrive at the desired statement
after noting that A < 1. O

Corollary B.2. Suppose xz,y € C and t > 0 are such that
|m(x) —7(y)| <t d(z) <t, andd(y) <t.
Then |z —y| S t.

Proof. We may assume |x—y| > 3t since otherwise there is nothing to prove. By definition
we can find (X, s1) and (Y, s2) belonging to .S, with |z — X|+s1 <t and |[y—Y|+s2 < t.
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But then (X,¢) and (Y,t) both belong to S and |X — Y| > t. Therefore, Lemma B.1
yields that

[ (X) = 7 (V)] € w(X) = 7 (Y)]. (B.3)

But by the triangle inequality, |7(X) — 7(Y))| < 3t, and therefore from (B.3) we infer
that |71 (X) — 7+(Y)| < t. Appealing to the triangle inequality again we conclude that

7 (2) =7 (y)| St
Given that we are assuming that |7(z) — 7(y)| < ¢, the corollary follows. O
Corollary B.3. Let z,y € Z. Then

7+ (2) = 7 ()] < 2alm(2) — 7 (y)].

Proof. Assume z # y. Given t € (0, |x —y]|), we can find pairs (X, t) and (Y, t) € S where
X and Y are arbitrarily close to = and y respectively, and d(X,Y’) > ¢. Since VI < a,
Lemma B.1 now yields that

[ (X) — (V)] < 2alm(X) = m(Y)),
and the statement follows since projections are continuous. 0O
Define the function A on (Z) by setting
A(n(z)) = 7t (z) for z € Z.

Keeping in mind Corollary B.3, we see that A is well defined on 7 (Z), and moreover,
A:7(Z) — Dy is 2a-Lipschitz:

[A(m(x)) = A7 (y))| < 2alm(x) — 7 (y)]. (B.4)
B.2. Extending A over Dy

We now select a Whitney cover relative to the function D. Set Z to be a collection of
dyadic intervals in R.

For p € 10Ip\n(Z) we have D(p) > 0. Set I, to be the largest dyadic interval in Z
containing p satisfying

1
i < — i .
diam I,, < 50 ulgi D(u)

The interval I, exists because D(p) > 0 and D is Lipschitz.
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Consider the collection of these intervals and relabel them Z,,x = {I j } j- The intervals
I; are disjoint and the collection of 2I; is a cover of 101 \ 7(2).

The following lemma collects standard properties regarding this collection of intervals
and follows immediately from the definitions (and using that D is 1-Lipschitz), see [14]
page 847 or [29], page 248.

Lemma B.4. The following assertions hold.

1. If p € 101, then 10diam I; < D(p) < 60 diam I;.
2. Whenever 10I; N 10I; # 0, then

diam I; < diam I; < diam I;.

3. There exists N > 0 (an absolute constant) such that for every i, at most N intervals
I; satisfy 10I; N 101; # 0.

Lemma B.5. For any I; € Tyax, there exist a ball B; € S such that

1. diam I; < r(B;) < diam I;,
2. d(w(e(By)), I;) < 120diam I;, and

Proof. Let p € I;. We can find (z,t) € S such that d(p, 7(x)) +t < 2D(p) < 120diam I;
(see part (1) of Lemma B.4). The ball B(z, max{t, diam([l;)}) satisfies properties (1) and
(2), from which (3) immediately follows. O

Definition (The function A;). For each of the balls B; € S, we set D; € G.(p,) to be such
that o, p,(B;) < e with Z(D;, Do) < .

Put A; to be the affine function A; : Dy — DOl whose graph is D; = Dp,. Then
certainly A; is Lipschitz of constant < 2a.

Lemma B.6. Whenever 10I; N 101; # 0,

1. d(BZ,BJ) Sdiamlj,
2. for any L > 1, |A;i(q) — A;(¢)| £ L?Xdiam I; for any q € LI;, and
3. dist(D;, D; N B;) S Adiam([;) and [(A; — A;j)'| S A

Proof. For (1) we apply Corollary B.2: If 10f; N 10I; # 0, then ((R;) =~ ((R;), so
U(B;) =~ £(B;) (see part (1) of Lemma B.5). But then d(w(B;),n(B;)) < £(I;) (see part
(3) of Lemma B.5). Therefore applying Corollary B.2 with z,y to be the centers of B;
and Bj, and ¢ a suitable constant multiple of diam(/;) yields the required inequality.

Given (1), the balls B;, B; both lie in S, satisfy r(B;) ~ r(B;) and CB; N CB; # &,
for some absolute constant C' > 0. We may therefore infer from Lemma 7.8 that
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dist(y, D;) S A-r(B;) for all y € D; N By, (B.5)

from which property (3) is an immediate consequence (recalling that r(B;) ~ r(B;)).
Finally, since D; and D; both form an angle < a with Dy, statement (2) also follows
from (B.5) and parts (1) and (3) of Lemma B.5. O

Lemma B.7. There exists C > 1 such that if © € F\Z then w(x) € 3I; and x € CB; for
some I; € Tiax.

Proof. Let x € F'\ Z. We have that either

1. w(z) € 7(Z) and there exists y € Z such that w(y) = n(x),
2. or w(x) € 31, for some i and by part (3) of Lemma B.5, there exists C' > 1 such that
7(z) € m(CBy).

We first will rule out that possibility (1) can occur. To this end, we notice that B(y, 2|z —
y|) belongs to S, and x € w(B), so by Lemma 7.7, dist(z, D) < Az — y| where D € G,
satisfies Z(D, D) < «a. On the other hand, m(z) = 7(y) and so |z — y| S dist(z, D),
which is absurd given that A\ < 1.

We may therefore assume that (2) holds. Then CB; € S and 7(z) € 7(CB;). There-
fore, Lemma 7.7 ensures that x € 3C'B;, and the proof is complete. O

The previous lemma has the following useful consequence.
Corollary B.8. For any x € F,

d(z) < D(w(x)) < d(x).

~

Proof. If d(x) = 0, the conclusion is obvious. Otherwise, w(z) € 3I; for some i. It follows
from the definition of the intervals I;, and Lemmas B.4 and B.5 that D(w(x)) 2 r(B;).
On the other hand, by Lemma B.7) © € CB;, and so d(z) < r(B;). O

Definition. Choose a partition of unity ; subordinate to the cover (21;); satisfying

1

"
||¢ﬂ|oo S , and W’i loo S m

diam I;

For p € Do\7(Z), we define A as

A= > i A,

I; €Lmax

Lemma B.9. For every p € 31,

[A(p)] < A
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Proof. From Corollary 7.11, we have
Fnr'(101) < {dist(-, Do) S A}.

Since Z C F, we may assume that (p, A(p)) ¢ Z. We want to prove that A(p) =
>k Yr(p)Ar(p) satisfies |A(p)| < A. Since Y, 9r(p) < 1, it suffices to prove that

|Ak(p)| S A whenever 1 (p) # 0.

Fix such a k. Consider the ball By, for which Dy, is the graph of Ay, then (p, Ax(p)) € CBy
for some C' > 0 (Lemma B.5). But now we may apply Corollary 7.10 to find that

[ Ak (p)| = dist((p, Ak(p)), Do) S A. O
Lemma B.10. A : 31y — Dy is a Ca-Lipschitz function.

Proof. Fix p,q € 31j.
If p,q € w(Z) this has already been proved (recall (B.4), so we will assume that
p ¢ 7(2), and so p € 2I; for some 1.
First suppose that ¢ ¢ 7(Z2), so q € 2I}, for some k, and Y, ¢¥i(p) = >, ¥r(q) = 1.
Case 1: ¢ € 10007;. Then write

[A(p) — Alg)] < ij(p)lAj(p) = 4;(a)]]

+ D 150) = 5(@)l|A; (@) ~ Ax(a)]

The first term is bounded by 2a|p — ¢|. For the second term, we infer from part (2) of
Lemma B.6 (and Lemmas B.4, B.5) that for any j where v;(p) or 1;(¢) is non-zero,

|4;(q) — Ax(q)] S M(Ry).

On the other hand, [¢;(p) — ©¥;(q)] < ﬁ, so, insofar as the number of j with either

1;(p) or ©¥;(g) is non-zero is bounded by an absolute constant,
[A(p) — Alg)] < 2alp — q| + CAlp — q| < 3alp —q. (B.6)
Case 2: ¢ ¢ 1000I;. Then |p — ¢| 2 max{diam(I;),diam(l)}. Consider the pair z =

¢(By) and t = r(By). Then |z — ¢(B;)| = max(r(B;),t) > VAmax(r(B;),t), and so
Lemma B.1 yields that

|7 (@) — 7 (c(By))]
S alm(e(Br)) — w(c(Bi))l-

|Ag(m(c(Bg))) — Ai(m(c(By)))| (B.7)
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However, Part (2) of Lemma B.6 ensures that for every ¢ with w(c(B;)) € 21y,
|Ae(m(e(Bi))) — Ai(m(c(Bi)))| S Ar(Bi).
By the same logic this inequality also holds with ¢ replaced by k. Therefore,
|Ak(m(e(B))) — Ai(m(e(Bi))| S alm(c(Br)) — 7(c(Bi))|

But, ¢(B;) € 1000I; (property (2) of Lemma B.5), so we may use the calculation (B.6)
to infer that

[A(p) = A(m(c(B)))| = |Alp) — 7+ (c(By))| £ e diam(1y),
and, similarly,
|A(q) = A(m(c(Bu))| < |Alg) — 7 (e(Br))| S ardiam(Iy).
So by the triangle inequality we get
[A(p) — A9)| S e[lm(e(By)) — m(e(B))| + diam(Zy) + diam(I)] < alp — gl

If instead it holds that ¢ € m(Z) then recall that A(q) = 7+ (x) for ¢ = n(z), and in
the previous calculation we may replace the role of (¢(By),r(By)) with the pair (z,t)
where ¢ = m(z) and ¢ < diam([;). Then Lemma B.1 yields that |A;(7(¢(B;))) — A(q)| <
ale(B;) — q| and the desired estimate follows from repeating estimates from Case 2
above. O

Lemma B.11. If p € 21; then

Ao A
diamZ; ~ D(p)

A" (p) <
Proof. We mimic the calculation in Lemma 3.13 of [14]. Observe that
A(p Z A5 ()5 (0) + Y A (0)¥] ()
J
Since >, =>4 =0, we have

|A” (p |<Z|A’ )| (p \+Z|A p)I[v] (p)]

For each j with 2I; N 2I; # @, part (3) of Lemma B.6 ensures

(4; = A)'[ S A, and [(4;(p) — Ai(p))] S Adiam(1;).
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The result follows using the fact that the intervals 2/; have bounded overlap, and the
properties of the partition of unity ¢;. O

B.3. Localization of A

We set ¢ = 1 on 21, with supp(y) C 21o.
We define the function A : Dy — Dy,

A 1 - A on 3,
OOHD()\?)I().

Lemma B.12. The function A is Ca-Lipschitz, and

" A
|A (p)| S W

This result verifies property (1) of Proposition 7.17.
Proof. The function A is Ca-Lipschitz on 31y, and sup,c37, |A(p)| S A (see Lemma B.9).
Since || ||Lip S 1 and supp(v)) C 21y, we infer that A is Ca-Lipschitz (A < «). Regarding
the second derivative property, if ¢'(p) # 0 or ¢”(p) # 0, then dist(p,Ip) = 1, so
diam(I;) 2 1 for any I; with p € 2I;. But then if B; € S is the ball associated to I,
r(B;) 2 1 and so Corollary 7.10 ensures that both
[4i(p)] S A and |Ai(p)] < A.
There are at most a constant number of intervals I; such that p € 2I; so we get that

[A(p)| S A and |A'(p)] S A

(The first property of course also follows from Lemma B.9.) Since |9/ || oo + [|#" |0 < 1,
we obtain the desired bound from Lemma B.11. 0O

B.4. Concentration around the graph of A
In this section we prove that every point in F' will be very close to the graph I' of ./T,

defined as A(p) = (p, A(p)) for p € R. Let us first record an immediate consequence of
Lemma B.9.

Corollary B.13. One has

rc {dist(-,Do) < )\}.
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Indeed, Lemma B.9 ensures that T N7 ~1(31y) C {dist(-, Dy) < A}, but outside of 31
we have that A(p) = 0. This result verifies property (2) of Proposition 7.17.

We now move onto verifying property (3) of Proposition 7.17. In view of Lemma B.8,
this property is an immediate consequence of the following lemma.

Lemma B.14. For every x € F' the following is satisfied:
@ — A(m())] S Ad(x).

Proof. Certainly Z C T, and so we may assume that 2 € F\ Z. Lemma B.7 then ensures
that 7(x) ¢ 7(Z). First suppose p € 31y, so that

v = Alr(@))| = |t (@) = A(r(2))]
= |t (@) = Y il (@) Ai(w(a))

< Y wilr(@) (@) - Aulm(@)|

If ¢;(w(z)) # 0 then m(x) € 3I; and Lemma B.7 ensures that 2 € C'B;, while from
the definition of I; and Lemma B.8 we find that ¢(I;) ~ r(B;) ~ d(x).

Since CB; € S we can find a line D in G,(p,) such that Z(D, Dy) < a and a,, p(CB;) <
e. Lemma 7.8 (applied with L an absolute constant) yields that

£(D,D;) < A

On the other hand, since x € F, Lemma 7.7 ensures that dist(x, D) < Ar(B;). Thus,
combining these observations yields

dist(z, D;) < Ar(B;) S Ad(z).

Since Z(D;, Dgy) < «, this in turn implies that

On the other hand, if p ¢ 21y, we have that d(z) 2 1, so the desired estimate is an
immediate consequence of Corollaries 7.11 and B.13. The proposition is proved. O

It remains to verify the final property in Proposition 7.17, which we restate here:

Lemma B.15. If B(z,r) € S and D € G, satisfies Z(D, Do) < o and o, p(B(x,r)) <e,
then for every p € m(B(x,r)),

dist(A(p), D) S A-r.
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Proof. We first consider the case when p € 7(Z2). Then A(p) € F and so Lemma 7.7
ensures that dist(A(p),D) S A-r. If p ¢ n(Z), then p € 2I; for some i. First suppose
that p € 21Iy. Notice that r > d(x) 2 D(r(x)) (where Corollary B.8 has been used in
the second inequality). Since the function D(p) is 1-Lipschitz, it follows that D(p) < r
and so by construction ¢(I;) < r. Therefore, from Lemma B.5, n(B;) C n(B(z,Cr)) and
therefore from Lemma 7.7 B; N B(z,3Cr) # &. But now from Lemma 7.8, dist(y, D) <

~

A-r for every y € D; N B;. Insofar as p € %Io, ﬁ(p) is a convex combination of points on
the lines D; where p € 2I;, the result follows.

Finally, if p ¢ 21y, then r > 1 (z € By). In this case the result follows from Corol-
lary B.13 and Corollary 7.10. O
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