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H1
(

E \
∞⋃

i=1
fi(R)

)
= 0,

where H1 stands for the 1-dimensional Hausdorff measure. A locally finite Borel measure 
μ on C is rectifiable if there exist a rectifiable set E ⊂ C such that

μ(C \ E) = 0.

The goal of this paper is to prove the following result.

Theorem 1.1. Fix an odd number k ∈ N. Suppose that μ is a finite Borel measure for 
which

lim sup
r→0

μ(B(z, r))
r

∈ (0, ∞) for μ-a.e. z ∈ C. (1.1)

If the limit

lim
r→0

∫
|z−ω|>r

(z − ω)k

|z − ω|k+1 dμ(ω) exists for μ-a.e. z ∈ C, (1.2)

then μ is rectifiable.

If k = 1 then Theorem 1.1 was proved by Tolsa [27] using the Menger-Melnikov 
curvature method1; in this case the principal value integral is the Cauchy transform of 
the measure μ. The curvature method is no longer directly applicable to this problem 
for k ≥ 3, and it had been an open problem as to whether Theorem 1.1 holds in this 
case (see for instance [29]).

If one replaces the limsup condition in (1.1) with the condition of positive lower density

lim inf
r→0

μ(B(z, r))
r

> 0 for μ-a.e. z ∈ C, (1.3)

then the case k = 1 of Theorem 1.1 was proved earlier by Mattila [16], and subsequently 
for all k odd by Huovinen [9]. It is for this reason that we call the integral transform 
given by convolution of a measure with the singular kernel z �→ zk

|z|k+1 the Huovinen 
transform.

Under the assumption (1.3), much stronger criteria for rectifiability are available in 
terms of tangent measures that no longer hold under the condition (1.1), see [26, Section 
5.8]. Nevertheless, the tools introduced by Mattila and Huovinen are essential to our 
method.2

1 building upon a number of important results including [22,19,5,6,18,25].
2 More precisely, these techniques play an important role in Theorem A below.
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A natural higher dimensional generalization of Mattila’s result for k = 1 was proved 
by Mattila-Preiss [20], who showed that if d ∈ Z ∩ [2, ∞), s ∈ Z ∩ [1, d − 1] and 0 <
lim infr→0

μ(B(x,r))
rs < ∞ for μ-a.e. x ∈ Rd, then the existence of the s-Riesz transform 

in principal value implies s-rectifiability.3 Here the Riesz transform is the convolution of 
a measure in Rd with the kernel x

|x|s+1 where x ∈ Rd \ {0}. The positive lower density 
assumption was later removed by Tolsa [28], who introduced a very novel variation of a 
scheme of Legér [14] (which in turn has its origins in the work of David-Semmes [7]).

Villa [30] recently extended the results of [16] to perturbations of the Cauchy kernel, 
and it would be interesting to understand whether those results remain valid without 
the assumption of positive lower density. The Huovinen kernel does not fall within this 
perturbative theory, but our analysis does not appear to apply to perturbations in the 
generality that they are considered in [30].

Broadly speaking, we proceed by adapting the scheme implemented by in Tolsa [28], 
but doing so required overcoming a basic difficulty. A measure μ for which the Cauchy 
(or Riesz) transform exists in principal value enjoy some ‘local flattening’ properties4 on 
account of the fact that the only symmetric measures associated to these kernels with 
suitable growth are (the Hausdorff measures of) planes. However, there are symmetric 
measures associated to the Huovinen kernel which are not flat – the spike measures – 
which will appear often in our analysis. It appears that all variants of the Legér scheme 
(for instance in [14,2,29,13]) have relied on this local flattening property in one way or 
another. In this paper we circumvent these difficulties with a novel decomposition of a 
measure involving a modified density, relying significantly on our previous papers [10,11], 
which we recall in the next sections.

Any notation that the reader is unfamiliar with may be found in Section 2.

1.1. A first necessary condition for existence of principal value: small local action and 
transportation coefficients

In the paper [10] we studied the geometric consequences of a weaker notion than 
existence of principal value called small local action.

For a homogeneous Calderón-Zygmund operator, one can characterize the small local 
action property geometrically in terms of the transportation distance to the class of 
symmetric measures associated to the kernel (Theorem 1.1 of [10], building upon work 
of Mattila [16,17]). We do not define these terms here, but rather state what it means 
for the Huovinen transform.

Definition 1.2. A k-spike measure associated to a line D ∈ G0 (i.e. going through 0) and 
the vertex z ∈ C is a measure of the form, for some c > 0,

3 We say that a Borel measure μ is s-rectifiable if there exist Lipschitz maps fi : Rs → Rd, i = 0, 1, ..., 
such that μ(Rn \

⋃∞
i=0 fi(Rs)) = 0.

4 by this we mean that on a small scale either there is very little measure, or the support of the measure 
is close to a line/plane of appropriate dimension.
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νm,D,z = c
m−1∑
n=0

Heπin/mD+z,

where m divides k (henceforth m | k). We set Sk to be the collection of all such spike 
measures over D ∈ G0, z ∈ C.

Fix the Lipschitz continuous function ϕ that satisfies ϕ ≡ 1 on [0, 3), ‖ϕ‖Lip = 1, and 
supp(ϕ) ⊂ [0, 4).

Definition 1.3. Given a locally finite Borel measure μ, z ∈ C, and r > 0, we define the 
transportation distance as

α(k)
μ (B(z, r)) = inf

ν∈Sk:
z∈supp(ν)

αμ,ν(B(z, r)),

where, for a Borel measure ν,

αμ,ν(B(z, r)) = sup
f∈Lip0(B(z,4r))

‖f‖Lip≤ 1
r

∣∣∣1
r

∫
C

ϕ
( | · −z|

r

)
f d(μ − cμ,νν)

∣∣∣,
and with the normalizing constant cμ,ν

5

cμ,ν =

⎧⎨⎩
∫
C ϕ
( |·−z|

r

)
dμ
[∫

C ϕ
( |·−z|

r

)
dν
]−1

if
∫
C ϕ
( |·−z|

r

)
dν �= 0

0 otherwise.

The following result is an immediate consequence of Proposition A.1 and Theorem 1.5 
of [10], making essential use of the aforementioned work of Mattila [16] and Huovinen 
[9].

Theorem A. [10] Suppose that μ is a finite Borel measure satisfying (1.1) and (1.2) for 
some k ∈ N odd, then

lim
r→0

α(k)
μ (B(z, r)) = 0 for μ-a.e. z ∈ C. (1.4)

This result provides valuable geometric information without which we would not be 
able to prove Theorem 1.1, but the condition (1.4) alone does not imply that μ is recti-
fiable, even if k = 1 – see for instance the examples in Section 5.8 of [26].

5 For convenience, from now on we will suppress the dependence on both location and radius.
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1.2. A second necessary condition for the existence of principal value: operator 
boundedness

We set

Kk(z) = zk

|z|k+1 , for z ∈ C \ {0}.

For a non-atomic Borel measure μ, we say the Huovinen transform associated to μ is 
bounded in L2(μ) if there exists C > 0 such that

sup
κ>0

∫
C

∣∣∣ ∫
C\B(z,κ)

Kk(z − ω)f(ω)dμ(ω)
∣∣∣2dμ(z) ≤ C‖f‖2

L2(μ) (1.5)

for every f ∈ L2(μ).
A well-known consequence (see, for instance [4], page 56) of the L2-boundedness con-

dition (1.5) is that supz∈C,r>0
μ(B(z,r))

r < ∞.
A simple special case of much more general results of Nazarov-Treil-Volberg [25] and 

Tolsa [27] is the following theorem, valid for a wide class of Calderón-Zygmund operators.

Theorem B. [25] Suppose that μ is a finite Borel measure satisfying (1.2) and

lim sup
r→0

μ(B(z, r))
r

< ∞ for μ-a.e. z ∈ C. (1.6)

For every ε > 0 there is a set Eε and a constant C = C(ε) such that μ(C\Eε) < ε and 
the measure μ|Eε

satisfies the L2-boundedness condition (1.5).

The following Corollary is immediate from Theorem B.

Corollary 1.4. Suppose that μ is a finite Borel measure satisfying (1.2) and (1.6). There 
is a decomposition supp(μ) = F ∪

⋃∞
j=1 Ej, where μ(F ) = 0 and (1.5) holds with μ

replaced by μ|Ej
for a constant C = C(j).

We conclude that the notion of principal value is (although qualitative) stronger than 
the L2-boundedness of the operator. It is actually significantly stronger : In [12] an exam-
ple was constructed of a (purely unrectifiable) measure for which the Huovinen transform 
is bounded in L2, but fails to exist in principal value.6 Higher dimensional analogues of 
this example featuring kernels of spherical harmonics have recently been developed by 

6 This is another instance in which the Huovinen and Cauchy transforms behave very differently, since if 
μ is a non-atomic measure for which the Cauchy transform is bounded in L2, then the Cauchy transform 
exists in principal value (the same result here also holds for the (d − 1)-Riesz transform in Rd, as can be 
seen by stringing together the results of [8,23,24,21]).
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Mateu and Prat [15]. It would be very challenging to extend Theorem 1.1 to this higher 
dimensional setting – with the primary issue being to understand the structure of the set 
of symmetric measures associated to these higher dimensional kernels. Other examples 
of kernels for which L2-boundedness does not imply existence of principal value can be 
found in [1,3].

We have thus far recorded two necessary conditions for the existence of principal value 
in Theorems A and B. Taken individually, neither condition needs to imply the existence 
of principal value, but by building on prior work of Mattila-Verdera [21], we showed in 
[11] that when combined, these two necessary conditions are indeed sufficient:

Theorem C. [11, Theorem 1.5] Suppose that μ is a finite non-atomic Borel measure sat-
isfying the transportation coefficient condition (1.4), and the L2-boundedness condition 
(1.5) holds. Then the principal value limit (1.2) exists.

1.3. A revised statement

We conclude with a revised statement, which is essentially equivalent to Theorem 1.1, 
and which will be our focus:

Theorem 1.5. Let μ be a finite non-atomic Borel measure in the complex plane and whose 
support satisfies H1(supp(μ)) < ∞. Suppose that the Huovinen transform is bounded in 
L2(μ) and

lim
r→0

α(k)
μ (B(z, r)) = 0 for μ-a.e. z ∈ C.

Then μ is rectifiable.

This result is only new if k ≥ 3 (for k = 1 it is a consequence of [27]), but we 
will prove the statement for all odd k (although many of the statements of lemmas are 
automatically satisfied in the case k = 1). In the case k = 1, imposing the condition 
limr→0 α

(k)
μ (B(z, r)) = 0 for μ-a.e. z ∈ C is unnecessary – the result still holds if one 

removes this statement, which is a theorem due to David [5], see also David-Mattila 
[6]. However, for k ≥ 3 the conclusion of rectifiability may fail without the additional 
assumption on the transportation numbers (cf. [12]).

1.4. An overview of the proof

As we have already mentioned, the proof of Theorem 1.5 follows a similar scheme to 
the one in Tolsa [28]: We decompose our measure into different pieces, where an adapted 
version of the David-Léger-Semmes scheme [14,7] may be applied to construct a Lipschitz 
graph that approximates our measure. Finally, we revise Tolsa’s scheme in order to prove 
that the Lipschitz graph actually covers a good portion of our measure.
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In order to carry both Léger’s and Tolsa’s schemes in a given scale, one needs, besides 
of course the analytic properties of the singular integral operator, two specific features 
from the measure: flatness with respect to lines and nearly maximal density. A priori, we 
are only equipped with spike flatness, i.e. our measure is in concentration close to either 
a line or to a spike. However, spikes allow big oscillations in density, making harder the 
search for suitable scales with nearly maximal density.

These issues are mainly bypassed with the decomposition of the measure (see Sec-
tion 6) and the development of a modified density (see Sections 4 and 5). This new 
density moves us away from the center of the spikes (therefore it finds for us scales with 
regular flatness) and helps us to classify the spikes by the density in their rays.

In Sections 7 and 8 we carry out a variant of the Léger construction of an approxi-
mating Lipschitz curve, where the transportation coefficients play a central role.

The necessary geometric toolbox for Sections 4–8 is developed in Section 3.
Sections 9 and 10 closely follow Tolsa [28], and mainly concern the Calderón-Zygmund 

theory required to show that the approximate Lipschitz curve (constructed in Section 7) 
does not rotate too much.

2. Notation and preliminaries

In this section we include the basic notation that we will use throughout the paper and 
include some preliminaries that are relevant for the geometric constructions occupying 
the first half of the paper. Notation specific for the analytic part of the paper is included 
in Section 10.

2.1. Notation

• We shall denote by C > 0 and c > 0 respectively large and small constants that may 
change from line to line. By A � B, we shall mean that A ≤ CB for some constant 
C > 0. A ≈ B then means that both A � B and B � A. By A � B we shall mean 
that A ≤ c0B for some sufficiently small constant c0 > 0.

• Throughout the paper we will only consider locally finite Borel measures and they 
will simply be referred to as measures.

• An interval in R will be typically denoted by I. Set I0 = (−1, 1).
• B(z, r) denotes the open ball centered at z ∈ C with radius r > 0. Given an open 

ball B, we will denote its center by c(B) and its radius by r(B). Given Λ > 0 we 
denote by ΛB the ball with center c(B) and radius Λr(B).

• Gz denotes the collection of 1-dimensional affine linear subspaces of C going through 
z ∈ C.

• For E ⊂ C set

H1(E) = sup
δ>0

[
inf
{ ∞∑

2rj : E ⊂
∞⋃

B(xj , rj) and rj ≤ δ
}]

.

j=1 j=1
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With this normalization, for L ∈ Gz, H1
|L coincides with the usual one-dimensional 

Lebesgue measure on L.
• For a function f defined on an open set U ⊂ C, define

‖f‖Lip(U) = sup
x,y∈U, x �=y

|f(x) − f(y)|
|x − y| .

In the case U = C, we write ‖f‖Lip instead of ‖f‖Lip(C).
• For an open set U ⊂ C, define Lip0(U) to be the collection of functions f supported 

on a compact subset of U with

‖f‖Lip(U) < ∞.

• We denote by supp(μ) the closed support of the measure μ; that is,

supp(μ) = C \ {∪B : B is an open ball with μ(B) = 0}.

• δμ(B(z, r)) = μ(B(z,r))
2r is referred to as the density of μ at the scale B(z, r).

• We denote by Θ∗
μ(z) = lim supr→0

μ(B(z,r))
2r , the upper density of the measure μ at 

the point z.
• For x ∈ C, write x = �(x) + i�(x). Denote by π the projection from C → R:

π(x) = �(x).

• We will use the notation

ϕz,r(y) = ϕ
( |y − z|

r

)
, for y ∈ C.

• We define the class of functions Fz,r as follows:

Fz,r = {f : f ∈ Lip0(B(z, 4r)), ‖f‖Lip ≤ 1/r}.

• Given a ball B and a line D ∈ Gc(B), it will be convenient to write αμ,D(B) instead 
of αμ,H1

|D
(B). We will often refer to measures of the form cH1

|D for some c > 0 as 
line measures.

2.2. Two transportation numbers that will recur throughout the work

We will mainly work with two transportation numbers (Definition 1.3). Recall that 
Sk is the set of k-spike measures, and so S1 is the set of line measures in C. We set

• α
(k)
μ (B(z, r)) as the transportation coefficient with respect to spikes and

• αμ(B(z, r)) = α
(1)
μ (B(z, r)) as the transportation coefficient with respect to lines.
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2.3. Basic operator notation

For a kernel function K : C × C\{(z, ω) : z = ω} → C such that |K(z, ω)(z − ω)|
extends to a bounded function on C × C, we set

P.V.

∫
C

K(z, ω)f(ω)dμ(ω) = lim
r→0

∫
|z−ω|>r

K(z, ω)f(ω)dμ(ω)

provided that the right hand side exists. We say that K forms a principal value operator 
on Lp(μ) (1 < p < ∞) if there is a constant C > 0∫

C

∣∣∣P.V.

∫
C

K(z, ω)f(ω)dμ(ω)
∣∣∣pdμ(z) ≤ C‖f‖p

Lp(μ) (2.1)

for all f ∈ Lp(μ). We call the least constant C such that (2.1) holds as the principal 
value operator norm.

It will prove very useful to define operators with a smoother cut-off. Define a function 
Ψ : [0, ∞) → [0, ∞) such that Ψ is non-decreasing, Ψ(t) ≡ 0 on [0, 1/2] and Ψ(t) = 1 for 
t ≥ 1, and ‖Ψ′′‖∞ � 1. Put, for r > 0 and any measure ν

T̂rν(z) =
∫
C

Ψ
( |z − ω|

r

)
Kk(z − ω)dν(ω),

T̂ ⊥
r ν(x) =

∫
C

Ψ
( |z − ω|

r

)
K⊥

k (z − ω)dν(ω),

where K⊥
k (z) = �(zk)

|z|k+1 for z ∈ C \ {0},

T̂r1,r2ν(x) =
{

T̂r1ν(x) − T̂r2ν(x) if r1 < r2

0 if r2 ≤ r1,

and

T ⊥
r1,r2

ν(x) =
{

T̂ ⊥
r1

ν(x) − T̂ ⊥
r2

ν(x) if r1 < r2

0 if r2 ≤ r1.

Lemma 2.1. Suppose μ is a locally finite Borel measure.

1. If the principal value limit (1.2) exists at a given point z ∈ C, then limr→0 T̂r(μ)(z)
exists and is equal to the same limit.
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2. If the Huovinen transform is bounded in L2(μ) (in the sense that (1.5) holds), then 
there is a constant C such that

‖ sup
r>0

|T̂r(fμ)|‖2
L2(μ) ≤ C‖f‖2

L2(μ) for every f ∈ L2(μ) (2.2)

The proof of (1) is by direct calculation, while (2) is standard Calderón-Zygmund 
theory: one estimates the difference between the smooth and rough cut-off by a suitable 
maximal function, and applies a Cotlar type lemma to bound the maximal singular 
integral (see [29], Chapter 2).

In the event that there is a constant C such that (2.2) holds, we denote the least such 
constant by ‖T̂μ‖L2(μ),L2(μ).

We warn the reader here that, even if the associated principal value operator exists 
and is bounded in L2(μ), then ‖T̂μ‖L2(μ),L2(μ) need not be comparable with the principal 
value operator norm.

3. Transportation coefficients tool box

Now we proceed to record a series of estimates regarding the transportation coefficients 
that will be used throughout the paper.

Throughout this section, ν will denote a locally finite Borel measure, x, z ∈ C and 
r > 0.

Lemma 3.1. Let γ > 0 and suppose s ∈ (0, r), B(z, s) ⊂ B(x, 3r), dist(z, supp(ν)) ≥ 2s, 
and

αμ,ν(B(x, r)) ≤ γδμ(B(x, r)).

Then

δμ(B(z, s)) ≤ γ
(r

s

)2
δμ(B(x, r)).

Proof. Choose f ≡ 1 on B(z, s) with supp(f) ⊂ B(z, 2s) and ‖f‖Lip ≤ 1
s . Then s

r f ∈
Fx,r. Since αμ,ν(B(x, r)) ≤ γδμ(B(x, r)), but supp(f) ∩ supp(ν) = ∅,

1
r

· s

r
· μ(B(z, s)) ≤ γδμ(B(x, r)),

and the result follows. �
Lemma 3.2. Let γ > 0 and suppose s ∈ (0, r/2), B(z, 3s) ⊂ B(x, 3r), and

αμ,ν(B(x, r)) ≤ γδμ(B(x, r)).
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Then

αμ,ν(B(z, s)) � γ
(r

s

)2
δμ(B(x, r)).

Proof. Without loss of generality, suppose x = 0, r = 1 and μ(B(0, 1)) = 1. Insofar 
as B(z, 3s) ⊂ B(0, 3) and s < 1/2, supp(ϕz,s) ⊂ {ϕ0,1 ≥ 1

2} and so the function 
g = ϕz,s

ϕ0,1
∈ Lip0(B(0, 4)) with ‖g‖Lip � 1

s . For f ∈ Fz,s, the function s
C f · g ∈ F0,1 for a 

suitable constant C > 0, so testing the condition αμ,ν(B(0, 1)) ≤ γ yields that

∣∣∣∫ fϕz,sd

(
μ −

∫
ϕ0,1 dμ∫
ϕ0,1 dν

ν

) ∣∣∣� γ
1
s

.

On the other hand, testing the condition αμ,ν(B(0, 1)) ≤ γ with the function s
C g yields

∣∣∣∫ ϕz,sdμ −
∫

ϕ0,1 dμ∫
ϕ0,1 dν

∫
ϕz,sdν

∣∣∣� γ · 1
s

.

The required estimate is now obtained by combining these two inequalities. �
Lemma 3.3 (Continuity of transportation coefficients). Given a sequence {(xj, rj)}j≥0 ∈
C × (0, ∞) satisfying that xj → x0 and rj → r0, we have the following:

1. αμ(B(xj , rj)) → αμ(B(x0, r0)).
2. Moreover, given a sequence Dj ∈ Gxj

for all j ≥ 0 satisfying ∠(Dj , D0) → 0, then 
αμ,Dj

(B(xj , rj)) → αμ,D(B(x0, r0)).

We postpone the proof to the appendix.

4. Density ratio

For a non-zero measure ν we set

Dν = sup
r,s>0

x,z∈supp(ν)

δν(B(x, r))
δν(B(z, s)) . (4.1)

Observe that

• for any non-zero measure ν �≡ 0, Dν ≥ 1,
• if ν is a line measure, then Dν = 1, and
• if ν ∈ Sk, then Dν ≤ k.

Lemma 4.1. Given a measure ν and x ∈ C,

δν(B(x, r)) ≤ 3Dν · δν(B(z, s)) for every r, s > 0 and z ∈ supp(ν).
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Moreover, if ν is a line measure, then

δν(B(x, r)) ≤ δν(B(z, s)) for every r, s > 0 and z ∈ supp(ν).

Proof. If ν(B(x, r)) = 0 then there is nothing to prove. Otherwise r > dist(x, supp(ν)), 
and fix xν ∈ supp(ν) to be the closest point to x. The first statement follows from 
noticing that B(x, r) ⊂ B(xν , 3r). For the second statement, merely observe that if ν is 
a line measure, then B(x, r) ∩ supp(ν) ⊂ B(xν , r) ∩ supp(ν). �
Lemma 4.2. Let γ > 0 and suppose s ∈ (0, r], B(z, s) ⊂ B(x, 3r), and

αμ,ν(B(x, r)) ≤ γδμ(B(x, r)),

for some measure ν satisfying that x ∈ supp(ν). Then,

(1) if γ < 1
9 (s/r)2, one has

δμ(B(z, s)) ≤ 3Dν

(
1 + 8√

γ · r

s

)
δμ(B(x, r)),

and moreover, if ν is a line measure,

δμ(B(z, s)) ≤
(

1 + 8√
γ · r

s

)
δμ(B(x, r)).

(2) If γ < 1
9Dν

(s/r)2, and in addition, z ∈ supp(ν), then

δμ(B(z, s)) ≥ D−1
ν

(
1 − 8

√
Dνγ · r

s

)
δμ(B(x, r)).

Proof. The statements are both trivial if Dν = +∞, so we assume otherwise. Addi-
tionally, if δμ(B(x, r)) = 0, then μ = ν in B(x, r), but x ∈ supp(ν) so μ(B(x, r)) =
ν(B(x, r)) > 0, a contradiction. Therefore δμ(B(x, r)) > 0.

Now, without loss of generality we set x = 0, r = 1, and μ(B(0, 1)) = 1. Then 
0 ∈ supp(ν). We first prove (1). Fix η ∈ (0, 1/3). Pick two bump functions f1 and f2
satisfying

• f1 ≡ 1 on B(z, s), f1 ≡ 0 outside B(z, (1 + η)s),
0 ≤ f1 ≤ 1, and ‖f1‖Lip ≤ 1/(ηs).

• f2 ≡ 1 on B(0, 1 − η), f2 ≡ 0 outside B(0, 1),
0 ≤ f2 ≤ 1, and ‖f2‖Lip ≤ 1/η.

On one hand, observe that ηsf1 ∈ F0,1 and therefore testing the condition αμ,ν(B(0, 1)) ≤
γ with ηaf1 yields
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μ(B(z, s))
s

≤ ν(B(z, (1 + η)s))
s

∫
C

ϕdμ
[∫
C

ϕdν
]−1

+ γ

ηs2 . (4.2)

On the other hand, we notice that ηf2 ∈ F0,1, and hence by analogous reasoning,

1 = μ(B(0, 1)) ≥ ν(B(0, 1 − η))
∫
C

ϕdμ
[∫
C

ϕdν
]−1

−γ

η
. (4.3)

Set (cf. Lemma 4.1)

κ =
{

1 if ν is a line measure
3 otherwise

.

Bringing (4.2) and (4.3) together, we obtain

μ(B(z, s))
s

≤
(

1 + γ

η

)ν(B(z, (1 + η)s))
s · ν(B(0, 1 − η)) + γ

ηs2

=
(

1 + γ

η

)1 + η

1 − η

δν(B(z, (1 + η)s))
δν(B(0, 1 − η)) + γ

ηs2

≤
(

1 + γ

η

)1 + η

1 − η
κDν + γ

ηs2

≤
(1 + η

1 − η
+ 3γ

ηs2

)
κDν ,

where in the final inequality we have used the facts that 1+η
1−η ≤ 2, κ ≥ 1, Dν ≥ 1 and 

s ≤ 1. Put η−1 = s
√

2
3γ + 1 so that then

1 + η

1 − η
+ 3γ

ηs2 = 1 + 2
√

6
√

γ

s
+ 3γ

s2 ≤ 1 + (1 + 2
√

6)
√

γ

s
,

and (1) follows.
The proof of (2) follows an entirely analogous line of reasoning. Again fix η ∈ (0, 1/3). 

First notice that testing αμ,ν(B(0, 1)) ≤ γ with suitable test functions yields

μ(B(z, s))
s

≥
(

1 − γ

η

)ν(B(z, (1 − η)s))
sν(B(0, 1 + η)) − γ

ηs2 .

Next, observe that due to the fact that z ∈ supp(ν),

ν(B(z, (1 − η)s)
sν(B(0, 1 + η)) ≥ 1 − η

1 + η
D−1

ν ,

and so
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δμ(B(z, s)) ≥
(1 − η

1 + η
− 2γDν

ηs2

)
D−1

ν .

(Here we are using that 1−η
1+η ≤ 1, and Dν ≥ 1.) Choosing η−1 = s

√
2

3γDν
−1 we complete 

the proof of part (2) with some elementary manipulations. �
Lemma 4.3. Let δ, γ > 0 with δ ≤ 1 and suppose s ∈ (0, r], B(z, s) ⊂ B(x, 2r), 
δμ(B(z, s)) ≥ δ · δμ(B(x, r)), and

αμ,σ(B(x, r)) ≤ γδμ(B(x, r)), αμ,ν(B(z, s)) ≤ γδμ(B(z, s)),

where ν and σ are measures such that x ∈ supp(σ) and z ∈ supp(ν). Then for every 
y ∈ supp(ν) ∩ B(z, s),

min
{

s, dist(y, supp(σ))
}
�
√

γ · Dν

δ
· r.

Proof. Suppose x = 0, r = 1 and μ(B(0, 1)) = 1. Fix y ∈ B(z, s) ∩ supp(ν), and set 
t = min{s, 12 · dist(y, supp(σ))}. We may assume that t ≥ 16

√
Dνγ · s as otherwise the 

claimed estimate is clearly true.
Under this assumption on t, part (2) of Lemma 4.2 ensures that

δμ(B(y, t)) ≥ D−1
ν

(
1 − 8

√
Dνγ

s

t

)
δμ(B(z, s)) ≥ 1

2Dν
δμ(B(z, s)) ≥ δ

2Dν
.

On the other hand, by construction t ≤ 1, so B(y, t) ⊂ B(0, 3) and by Lemma 3.1,

δμ(B(y, t)) ≤ γ

t2 μ(B(0, 1)) = γ

t2 .

Joining these two chains of inequalities together, we obtain

δ ≤ 2Dν
γ

t2 ,

and this yields the desired upper bound on t. �
The following Corollary is an immediate consequence of this lemma in the case when 

ν and σ are line measures, but it will be used very often in what follows so we state it 
separately.

Corollary 4.4. Let γ > 0 and δ ∈ (0, 1]. Suppose s ∈ (0, r], B(z, s) ⊂ B(x, 2r), 
δμ(B(z, s)) ≥ δ · δμ(B(x, r)) and there exist D ∈ Gx and D′ ∈ Gz such that

αμ,D(B(x, r)) ≤ γδμ(B(x, r)), αμ,D′(B(z, s)) ≤ γδμ(B(z, s)).

Then
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min
{

s, dist(y, D)
}
�
√

γ

δ
· r for every y ∈ D′ ∩ B(z, s),

and therefore

∠(D, D′) �
√

γ

δ
· r

s
.

The next lemma will play a crucial role in the stopping time argument.

Lemma 4.5. Fix δ ∈ (0, 1] and γ > 0 with γ � δ. There is a constant C > 0 such that 
the following holds:
Suppose that B(z, 4s) ⊂ B(x, 2r) where s ∈ [C

√
γ
δ r, 14r], and additionally

• αμ,D(B(x, r)) ≤ γδμ(B(x, r)),
• α

(k)
μ (B(z, 4s)) ≤ γ2δμ(B(x, r)), and

• δμ(B(z, s)) ≥ δ · δμ(B(x, r)).

Then there exists D′ ∈ Gz such that

αμ,D′(B(z, s)) � γ2

δ
δμ(B(z, s)) and ∠(D′, D) �

√
γ

δ

r

s
.

Proof. Fix q ≥ 1 to be chosen momentarily, and suppose that s ∈ [q
√

γ
δ r, 14r]. Insofar as 

δμ(B(z, s)) ≥ δ · δμ(B(x, r)), there is a spike measure ν, with z ∈ supp(ν), satisfying

αμ,ν(B(z, 4s)) ≤ 2γ2

δ
δμ(B(z, s)).

There is a line D′ in supp(ν) that contains z. If ν|B(z,4s) = H1
|D′∩B(z,4s), then certainly the 

desired inequality holds (see Lemma 3.2). So suppose not and therefore there is another 
line D′′ in the support of ν which intersects B(z, 4s). But now since ∠(D′, D′′) ≥ π/k, 
there must be a point y ∈ B(z, 4s) ∩ (D′ ∪ D′′) ⊂ B(z, 4s) ∩ supp(ν) that is at a distance 
� s from the line D. On the other hand, B(z, 4s) ⊂ B(x, 2r) and y ∈ B(z, 4s) so 
Lemma 4.37 ensures that (recall Dν ≤ k)

min(s, dist(y, D)) �
√

γ

δ
r � s

q
.

But dist(y, D) � r, so we reach a contradiction if q is large enough. Therefore, setting 
C = q, we must have that αμ,D′(B(z, s)) � γ2

δ δμ(B(z, s)).
Since γ � δ, the second assertion of the lemma now follows from Corollary 4.4. �

7 Applied with σ 
→ H1|D, ν 
→ ν, and s replaced by 4s.
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5. Navigating through spikes: a modified density

We introduce a density that enables one to find a flat piece of a measure μ given that 
μ is close to a spike in transportation distance.

For ν ∈ Sk \ {ν �≡ 0}, set

λν = inf
x∈supp(ν)

r>0

1
r

sup

⎧⎪⎨⎪⎩t ∈ (0, r) :
there are B(z, t) ⊂ B(x, r), z ∈ supp(ν),
a line D ∈ Gz, and c > 0, such that
ν|B(z,4·30t) = cH1

|D∩(B(z,4·30t))

⎫⎪⎬⎪⎭ .

and

λk = inf
ν∈Sk,ν �≡0

λν .

We will often use the simple observation that λk � 1.
Now recall the density ratio (4.1). We define

Dk = sup
ν∈Sk, ν �≡0

Dν .

Observe that 1 ≤ Dk ≤ k � 1.
Fix ε � 1. For x ∈ C and r > 0, set

Sx,r(ε) =
{

B : B a ball, B ⊂ B(x, r), δμ(B) ≥ 1
2Dk

δμ(B(x, r)),
r(B) ≥ λk

2 r, and αμ(30B) ≤ εδμ(B)

}
.

We then define the modified density

δ̃μ,ε(B(x, r)) =
{

infB∈Sx,r(ε) δμ(B) if Sx,r(ε) �= ∅

0 otherwise.

We will usually just drop the subscript ε, and write δ̃μ(B(x, r)) instead of δ̃μ,ε(B(x, r)). 
Observe that we have, for any ball B(x, r) and B ∈ Sx,r(ε),

δμ(B) ≤ 2
λk

δμ(B(x, r)), and so δ̃μ(B(x, r)) ≤ 2
λk

δμ(B(x, r)). (5.1)

Lemma 5.1. Let x ∈ C and r > 0 be such that

α(k)
μ (B(x, 30r)) � εδμ(B(x, r)). (5.2)

Then we have that

Sx,r(ε) �= ∅
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and

1
Ck

δμ(B(x, r)) ≤ δ̃μ(B(x, r)) ≤ Ckδμ(B(x, r)) (5.3)

where Ck = max{2Dk, 2/λk}.

Proof. Without loss of generality, we assume that x = 0, r = 1 and μ(B(0, 1)) = 1. 
Choose ν ∈ Sk such that αμ,ν(B(0, 30)) ≤ κ · ε with κ � 1.

First, we note that it suffices to verify that S0,1(ε) �= ∅. Indeed, if this is the case, 
then the lower bound in (5.3) is given by the definition of S0,1(ε), while the upper bound 
follows from (5.1).

Now we proceed to prove that S0,1(ε) �= ∅. If the measure ν is a line, then the scale 
B(0, 1) itself belongs to S0,1(ε).

If ν is a spike, i.e. ν ∈ Sk \ S1, then by using the definition of λν , we can find 
z ∈ supp(ν) ∩ B(0, 1) and s > 0 satisfying s ≥ 1

2λν ≥ 1
2λk � 1, B(z, s) ⊂ B(0, 1), and 

such that ν|B(z,4·30s) = cH1
|L∩B(z,4·30s), for some line segment L and c > 0.

Now using Part 2 of Lemma 4.2, we have that

δμ(B(z, s)) ≥ 1
2Dν

δμ(B(0, 1)) ≥ 1
2Dk

,

and so δμ(B(z, s)) ≈ 1. On the other hand, B(z, 30s) ⊂ B(0, 30) and s � 1, so Lemma 3.2
ensures that

αμ(B(z, 30s)) � κε � κεδμ(B(z, s)) < εδμ(B(z, s)).

This proves that S0,1(ε) �= ∅. �
Our last preparatory lemma is an essential ingredient to push through an analogue 

of Tolsa’s scheme. It says, roughly, that for flat scales, control of δ̃μ prevents the density 
δμ from being too large.

Lemma 5.2. Fix θ ∈ (0, 1) and 0 < ε � θ. Suppose αμ(B(x, 30r)) ≤ ε and δ̃μ(B(x, r)) ≤
1 + θ. Then for every B′ ⊂ B(x, 30r) satisfying r(B′) ≥ 1

200 ε1/4r we have that

δμ(B′) ≤ 1 + θ + Cε1/8.

Proof. Without loss of generality, set x = 0 and r = 1. Fix D ∈ D0 with αμ,D(B(0, 30)) ≤
(1 +θ)ε. Assume there exists a ball B′ ⊂ B(0, 30) satisfying r(B′) ≥ 1

200 ε1/4 and δμ(B′) ≥
1 + θ + Lε1/8 for a large constant L. By monotonicity of the measure, this ensures that 
δμ(B(0, 30)) � ε1/4. Therefore,

αμ,D(B(0, 30)) � ε3/4δμ(B(0, 30)),
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and since ε3/4 � (r(B′))2, using parts (1) and (2) of Lemma 4.2 (in that order) results 
in the following chain of inequalities:

1 + θ + Lε1/8 ≤ δμ(B′) ≤ (1 + Cε1/8)δμ(B(0, 30)) ≤ (1 + Cε1/8)δμ(B(0, 1)).

Insofar as ε � 1, if L is large enough then

δμ(B(0, 1)) ≥ 1 + θ + L

2 ε1/8.

We notice that the previous trivially implies that

αμ,D(B(0, 30)) ≤ εδμ(B(0, 1)),

and so in particular S0,1(ε) �= ∅.
Now, insofar as δ̃μ(B(0, 1)) ≤ 1 + θ, we can find a ball B̃ = B(z, s) ∈ S0,1(ε) with

1
2Dk

≤ δμ(B̃) ≤ 1 + θ + ε2 and αμ(30B̃) ≤ εδμ(B̃) � εδμ(30B̃).

Since s ≈ 1, Lemma 4.38 ensures that d(z, D) � ε1/2. Therefore, we can inscribe in B̃ a 
ball B̂ centered on D of radius (1 − C

√
ε)s, and so δμ(B̃) ≥ (1 − C

√
ε)δμ(B̂). But now 

part (2) of Lemma 4.2 ensures that

δμ(B̂) ≥ (1 − C
√

ε)δμ(B(0, 1)) ≥ (1 − C
√

ε)
(

1 + θ + L

2 ε1/8
)

.

Finally, for large enough L,

δμ(B̃) ≥ 1 + θ + L

4 ε1/8,

reaching our desired contradiction. �
6. The Main Lemma and the proof of Theorem 1.5

Now we are ready to state the Main Lemma.

Main Lemma 6.1. Fix M > 1, ε ∈ (0, 1), and θ ∈ (0, 1). Let B0 = B(x0, r0) be an open 
ball and F a compact subset with F ⊂ 10B0 satisfying

(a) δμ(B0) = 1, αμ(30B0) ≤ ε, and μ(10B0 \ F ) ≤ εr0,

8 Applied with r and s replaced by 30r and 30s respectively, σ = H1|D, ν equal a line measure with 
αμ,ν (30B̃) � εδμ(30B̃), and δ replaced by 1

2D � 1.

k
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(b) δ̃μ(B(x, r)) ≤ 1 + θ2 for all x ∈ F and r ∈ (0, 90r0),
(c) α

(k)
μ (B(x, r)) < ε2 for every ball B(x, r) where x ∈ F and r ∈ (0, 600r0),

(d) ‖T̂μ‖L2(μ),L2(μ) ≤ M ,
(e) |T̂r1,r2(μ)(x)| < ε for all x ∈ F and r1, r2 ∈ (0, 90r0).

There exists an absolute constant c0 > 0 such that if θ is chosen small enough depending 
on M , and ε is chosen small enough in terms of θ and M , then there is a Lipschitz graph 
Γ such that μ(B0 ∩ F ∩ Γ) ≥ c0μ(B0).

6.1. Proof of Theorem 1.5

We first use Lemma 6.1 to give the

Proof of Theorem 1.5. Suppose that μ is a non-atomic measure satisfying the assump-
tions of Theorem 1.5. As we discussed in the introduction (see [4]), since the Huovinen 
transform is bounded in L2(μ), it follows that

sup
x∈C,r>0

δμ(B(x, r)) < ∞,

and, therefore, insofar as H1(supp(μ)) < ∞,

Θ∗
μ(x) := lim sup

r→0
δμ(x, r) ∈ (0, ∞) for μ-a.e. x ∈ C. (6.1)

From Theorem C we have that the Huovinen transform exists in principal value (i.e. 
(1.2) exists). Appealing to Lemma 2.1 we therefore infer that

‖T̂‖L2(μ),L2(μ) < ∞ and lim
r1,r2→0

T̂r1,r2(μ)(x) = 0 for μ-a.e. x ∈ C. (6.2)

Take an arbitrary subset Ẽ ⊂ supp(μ) with μ(Ẽ) > 0. Our goal is to show that there 
is a Lipschitz curve that intersects Ẽ in a set of positive μ-measure. It is well known 
that this implies rectifiability – For instance, by implying that the purely unrectifiable 
component of supp(μ) has zero length, see e.g. Léger [14, p. 836].

Firstly, for each i ∈ Z, define

Ei = {x ∈ Ẽ : 2−(i+1) ≤ Θ∗
μ(x) < 2−i}. (6.3)

The property (6.1) ensures that μ(Ẽ \
⋃

i Ei) = 0.
With a density threshold established, we now introduce 0 < εi � 1, and put

Ei,j = {x ∈ Ei : sup |T̂r1,r2μ(x)| ≤ 1
C

εi2−i−3},

0<r1≤r2<1/j k
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and

Ei,j,m = {x ∈ Ei,j : sup
0<r<1/m

α(k)
μ (B(x, r)) ≤ 1

Ck
ε2

i 2−i−3}, (6.4)

for (j, m) ∈ N2. Here Ck > 1 is the constant appearing in Lemma 5.1.
The assumption that limr→0 α

(k)
μ (B(x, r)) = 0 for μ-a.e. x ∈ C, together with (6.2), 

imply that for every i ∈ Z

μ
(

Ei \
⋃

(j,m)∈N2

Ei,j,m

)
= 0.

Next we show that if x ∈ Ei,j,m, then

2−(i+2)

Ck
≤ lim sup

r→0
δ̃μ(B(x, r)) ≤ 2−i+1Ck. (6.5)

Indeed, let r ∈ (0, 1
30m ) be such that 2−(i+2) < δμ(B(x, r)) < 2−i+1. Then 

α
(k)
μ (B(x, 30r)) < ε2

i δμ(B(x, r)), and Lemma 5.1 is applicable (εi � 1). Consequently, 
Sx,r(εi) �= ∅ and

2−(i+2)

Ck
≤ δ̃μ(B(x, r)) ≤ 2−i+1Ck,

so the lower bound in (6.5) follows. For the upper bound, recall that Ck ≥ 2/λk and so 
we infer from (5.1) that lim supr→0 δ̃μ(B(x, r)) ≤ CkΘ∗

μ(x) < Ck2−i.
Next, we introduce θi ∈ (0, 1) with θi � 1. Given n ∈ Z+, we define the sets Ei,j,m,n

as

Ei,j,m,n =
{

x ∈ Ei,j,m : 2−(i+2)

Ck
(1 + θ2

i )n ≤ lim sup
r→0

δ̃μ(B(x, r))

<
2−(i+2)

Ck
(1 + θ2

i )n+1
}

.

Fixing a sufficiently large integer N (depending on Ck and θi), we obtain from (6.5) the 
following decomposition:

Ei,j,m =
N⋃

n=0
Ei,j,m,n.

Our final step is to further decompose Ei,j,m,n. For p ∈ N, set

Ei,j,m,n,p =
{

x ∈ Ei,j,m,n : sup
0<r≤1/p

δ̃μ(B(x, r)) ≤ 2−(i+2)

Ck
(1 + θ2

i )n+2

}
.
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Clearly,

Ei,j,m,n =
⋃

p∈N

Ei,j,m,n,p.

Select Ẽi,j,m,n,p ⊂ Ei,j,m,n,p satisfying Ẽi,j,m,n,p ∩ Ẽi′,j′,m′,n′,p′ = ∅ whenever 
(i, j, m, n, p) �= (i′, j′, m′, n′, p′) but still

μ

⎛⎝Ẽ \
⋃

i,j,m,n,p

Ẽi,j,m,n,p

⎞⎠ = 0.

Now fix i, j, m, n, p with μ(Ẽi,j,m,n,p) > 0. For each density point z of Ẽi,j,m,n,p choose 
r < 1

90 min(1/j, 1/k, 1/p, 1/30m) satisfying

2−(i+2)

Ck
(1 + θ2

i )n−1 ≤ δ̃μ(B(z, r)) ≤ 2−(i+2)

Ck
(1 + θ2

i )n+2, (6.6)

and

μ(B(z, 10r) \ Ẽi,j,m,n,p) <
1

λkCk
εiμ(B(z, r)). (6.7)

Consider the measure μ̃ := 1
δμ(B0) μ, where B0 is a ball in Sz,r(εi) (recall that Sz,r(εi) �=

∅). Our goal will be to apply Main Lemma 6.1 to the measure μ̃ with ball B0 and with F
taken to be a compact subset of 10B0 ∩ Ẽi,j,m,n,p with μ(10B0 ∩ Ẽi,j,m,n,p\F ) arbitrarily 
small. Let us verify each of the assumptions of the lemma in turn:

(a) By definition δμ̃(B0) = 1. Since B0 ∈ Sz,r(εi) it follows that αμ(30B0) ≤ εiδμ(B0)
and therefore αμ̃(30B0) ≤ εi.

Next we proceed to check that μ̃(10B0 \ F ) < εir0. Provided μ(10B0 ∩ Ẽi,j,m,n,p\F )
is small enough, (6.7) and the definition of Sz,r(εi) ensure that

μ(10B0 \ F ) <
1

Ckλk
εiμ(B(z, r)) ≤ εiμ(B0),

which is the same as μ̃(10B0 \ F ) ≤ εir0.
(b) Fix x ∈ F and 0 < r′ ≤ 90r0. We need to show that

δ̃μ̃(B(x, r′)) ≤ 1 + θi. (6.8)

But since r′ < 1/p

δ̃μ(B(x, r′)) ≤ 2−(i+2)

Ck
(1 + θ2

i )n+2 ≤ (1 + θ2
i )3δ̃μ(B(z, r))

≤ (1 + θ2
i )3δμ(B0) ≤ (1 + θi)δμ(B0),
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where (6.6) was used in the second inequality, the third inequality follows from definition 
of δ̃μ, and the final inequality uses that θi � 1. The inequality (6.8) is proved.

The assumptions (c) and (e) hold since for all x ∈ F ,

sup
0<r1≤r2<1/j

|T̂r1,r2μ(x)| ≤ 2−i−3

Ck
εi and sup

0<r<1/m

α(k)
μ (B(x, r)) ≤ 2−i−3

Ck
ε2

i ,

while δμ(B0) ≥ 1
Ck

2−i−2.
(d) Finally, since δμ(B0) ≥ 2−i−2

Ck
, we have that ‖T̃μ̃,rf‖L2(μ̃),L2(μ̃) ≤

2i+2Ck‖Tμ‖L2(μ)→L2(μ) for every f ∈ L2(μ), so assumption (d) holds with M replaced 
by Mi = 2i+2Ck‖Tμ‖L2(μ)→L2(μ).

Therefore we have checked that the assumptions of Main Lemma 6.1 hold with εi, θi

and Mi. Provided that εi and θi are sufficiently small in terms of max{1, Mi}, with εi

much smaller than θi, we infer that there is a Lipschitz graph that intersects Ẽ in a set 
of positive measure. �
6.2. Proof of Theorem 1.1

In this section, we indicate how Theorem 1.1 follows from Theorem 1.5 by using 
Corollary 1.4.

Proof of Theorem 1.1. Since μ is a finite measure satisfying (1.1), supp(μ) has σ-finite 
length. From Corollary 1.4 we may write supp(μ) = F ∪

⋃
j Ej , where H1(F ) = 0, 

H1(Ej) < ∞, and, with μj = μ|Ej
, the Huovinen transform is bounded in L2(μj). On the 

other hand, Theorem A ensures that limr→0 α
(k)
μ (B(x, r)) = 0 for μ-almost everywhere. 

From this it is a routine matter to see that limr→0 α
(k)
μj (B(x, r)) = 0 for μj-almost every 

density point x of μj . But now we may apply Theorem 1.5 to the measure μj. Therefore 
μ, as a countable union of rectifiable measures, is rectifiable. �
7. Construction of the Lipschitz graph for the proof of the Main Lemma

Fix positive quantities δ, ε, θ and α that will be determined later, satisfying log ε �
log θ � log α � log δ � −1.

Throughout this section we will assume that μ satisfies assumptions (a), (b) and (c) 
of Main Lemma 6.1 with these choices of ε and θ. The roles of δ and α will be introduced 
momentarily.

We will adapt a version of the construction developed by Léger in [14] (adapting 
work by David-Semmes [7] to the non-homogeneous setting) involving a stopping time 
construction. The most significant distinction between the assumptions we have made 
in Main Lemma 6.1 and those in [14] is that we do not know that the measure μ is flat 
(meaning that, say, αμ(B(x, r)) is small at every x ∈ F and r < r0), but rather we only 
know that the measure μ is spike-flat (α(k)

μ (B(x, r)) is small if x ∈ F and r < r0). Our 
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main observation is that, due to the initial flatness assumption on B0 (assumption (a) 
of Lemma 6.1) within the stopping time region the measure must not only be spike-flat 
but truly flat (this is the content of Lemma 7.7), and so one can build an approximate 
Lipschitz graph (Proposition 7.17) as in the David-Semmes-Léger scheme.

Without loss of generality, we put x0 = 0, r0 = 1.

Lemma 7.1. For every x ∈ F and r ∈ (0, 30),

δμ(B(x, r)) � 1.

Proof. The statement is clear if δμ(B(x, r)) ≤ 1, so we may assume otherwise. By as-
sumption (c) in Main Lemma 6.1, α

(k)
μ (B(x, r)) ≤ ε2 ≤ ε2δμ(B(x, r)), and the result 

follows from Lemma 5.1 due to assumption (b) of Main Lemma 6.1. �
7.1. The stopping time region

We set B0 = B(0, 1) and D0 to be a line such that

αμ,H1
|D0

(30B0) ≤ 2ε.

Without loss of generality, we may (and will) assume that D0 = R × {0}.

Remark 7.2. An application of Lemma 4.2 tells us that since δμ(B0) = 1, we have that

δμ(30B0) ≈ 1.

Definition 7.3. We define the region Stotal as the collection of pairs (x, t) ∈ F ∩B0×(0, 20)
satisfying the following two properties

(1) δμ(B(x, t)) ≥ δ and
(2) there exists D ∈ Gx with αμ,D(B(x, t)) ≤ ε

and ∠(D, D0) ≤ α.

Lemma 7.4. There is a constant C > 0 such that

(F ∩ B0) × [C
√

ε/α, 12] ⊂ Stotal.

Proof. Fix z ∈ F ∩ B0. From assumption (c), α
(k)
μ (B(z, 20)) < ε2, while trivially, 

δμ(B(z, 20)) � δμ(B0) � 1. Consequently, part (2) of Lemma 4.2 yields that there is 
a constant C > 0 such that δμ(B(z, s)) � 1 whenever s ∈ [C

√
ε, 12].
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Now further assume that s ∈ (q
√

ε
α , 12] for some q > 1 to be determined momentarily. 

Since α(k)
μ (B(z, 4s)) � ε2δμ(B(z, s)) and αμ,D0(30B0) � εδμ(30B0), Lemma 4.59 yields 

that for some D′ ∈ Gx

αμ,D′(B(z, s)) � ε2δμ(B(z, s)) < εδμ(B(z, s))

where ∠(D0, D′) � √
ε 1

s � α/q < α, provided that q is chosen appropriately. �
Definition 7.5. For x ∈ F ∩ B0, we set

h(x) = sup{t ∈ (0, 12] : (x, t) /∈ Stotal};

and

S = {(x, t) ∈ Stotal : t ≥ h(x)}.

Notice that if (x, t) ∈ S, then (x, t′) ∈ S for t′ > t, making S a stopping time region.
On occasion we will abuse notation and write, for a ball B, B ∈ S (respectively 

B ∈ Stotal) instead of (c(B), r(B)) ∈ S (respectively (c(B), r(B)) ∈ Stotal).
We record a restatement of Lemma 7.4 that will be used later on.

Remark 7.6. For x ∈ F ∩ B0, h(x) � √
ε/α.

7.2. Properties of the stopping time region

It will be convenient to set

λ =
√

ε

δ
.

Lemma 7.7. Let (x, r) ∈ S and10 p ∈ π(B(x, r)). Let D ∈ Gx satisfy that ∠(D, D0) ≤ α

and αμ,H1
|D

(B(x, r)) ≤ ε. Then we have that

F ∩ π−1(B(p, r)) ⊂ B(x, 3r) ∩
{

y ∈ C : d(y, D) � λ · r
}

.

Proof. Fix z ∈ π−1(B(p, r)) ∩ F and set r̃ = max(r, |x − z|). Since (x, ̃r) ∈ S, we have 
that δμ(B(x, ̃r)) ≥ δ and there exists D′ ∈ Gx such that

αμ,D′(B(x, r̃)) ≤ ε � ε

δ
δμ(B(x, r̃)) and ∠(D′, D0) ≤ α.

9 Applied with the role of δ played by a constant � 1, and B(x, r) = 30B0 so that B(z, 4s) ⊂ 2B(x, r).
10 Recall that for x ∈ C, π(x) = �(x) (the real part of x).
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But then δμ(B(z, 2r̃)) � δ from which part 2 of Lemma 4.2 ensures that δμ(B(z, ̃r)) � δ

(note here that, as z ∈ F , α
(k)
μ (B(z, 2r̃)) � ε2

δ δμ(B(z, 2r̃))). From here, Lemma 7.1
ensures that δμ(B(z, ̃r)) � δ · δμ(B(x, ̃r)), and, since B(z, ̃r) ⊂ B(x, 2r̃) we may apply 
Lemma 4.311 to conclude that

dist(z, D′) �
√

ε

δ
r̃. (7.1)

We next claim that r̃ ≤ 3r. If |x − z| > 3r, then since the line D′ ∈ Gx satisfies 
∠(D′, D0) ≤ α, and dist(π(x), π(z)) < 2r, it follows that

r̃ = |x − z| � dist(z, D′),

but given (7.1) this is absurd, and so r̃ ∈ [r, 3r]. In particular, we have proved that 
π−1(B(p, r)) ⊂ B(x, 3r). Finally, Corollary 4.4 ensures that if we consider instead of D′

the line D (which satisfies αμ,D(B(x, r)) ≤ ε � ε
δ δμ(B(x, r))), then ∠(D, D′) �

√
ε

δ , and 
the result follows. �
Lemma 7.8. Suppose B, B′ ∈ S, L > 1, LB ∩ LB′ �= ∅, and r(B′) ≤ r(B). Let DB

and DB′ be lines in Gc(B) and Gc(B′) respectively satisfying that αμ,DB
(B) ≤ ε and 

αμ,DB′ (B′) ≤ ε. Then for all y ∈ LB′ ∩ DB′ ,

dist(y, DB) � L2λ · r(B).

We will require the following simple result.

Lemma 7.9. Fix Λ > 1. Suppose that B, ΛB ∈ S. Let DB and DΛB be lines in Gc(B)
satisfying that αμ,D(B) ≤ ε and αμ,ΛD(ΛB) ≤ ε, respectively. Then dist(y, DΛB) �
λΛr(B) for every y ∈ B ∩ DB.

Proof. Due to Lemma 7.1, δμ(B) � δ · δμ(ΛB), so application of Corollary 4.4 (with B
playing the role of B(z, s) and ΛB playing the role of B(x, r)) readily yields that

min{r(B), dist(y, DΛB)} � λ · Λr(B) for every y ∈ DB ∩ B.

But since c(B) lies on DΛB , we obtain dist(y, DΛB) � r(B) for y ∈ B, and the lemma is 
proved. �
Proof of Lemma 7.8. If 3LB /∈ S then Lr(B) ≥ 3 and we can replace L by L′ ≤ L

where 3L′B ∈ S and L′B ∩ L′B′ �= ∅. (Recall that B, B′ have their centers on B0.) We 
therefore assume that 3LB ∈ S.

11 with γ replaced by Cε/δ, σ = H1
|D′ , and ν a spike measure such that αμ,ν(B(z, ̃r)) < ε2 � ε

δ δμ(B(z, ̃r)).
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Now, fix Λ ≈ L r(B)
r(B′) such that both 3LB ⊃ ΛB′ and ΛB′ belongs to S (observe here 

that r(3LB) ≈ r(ΛB′)). We first apply Lemma 7.9 twice to conclude that

dist(y, D3LB) � Lλr(B) for all y ∈ DB ∩ B (7.2)

and

dist(y, DΛB′) � Lλr(B) for all y ∈ DB′ ∩ B′. (7.3)

But now, since both 3LB and ΛB′ belong to S, have comparable radii, and 3LB ⊃ ΛB′, 
we may use Corollary 4.4,12 from where

dist(y, D3LB) � Lλr(B) for all y ∈ DΛB′ ∩ ΛB′.

In combination with (7.3), the previous inequality ensures that for every y ∈ DB′ ∩ B′, 
there exists z ∈ D3LB ∩ 3LB such that d(y, z) � Lλr(B). Recalling that DB′ , DΛB′ and 
D3LB are lines, it follows that for every y ∈ DB′ ∩ LB′, there exists z ∈ D3LB ∩ 4LB

such that d(y, z) � L2λr(B). Now we infer from (7.2) that there exists w ∈ DB with 
d(z, w) � L2λr(B), and the result follows. �

Although B0 is not necessarily in S (0 may not be in F ), we still have the following 
results

Corollary 7.10. Suppose that L > 1 and B ∈ S, and let DB ∈ Gc(B) satisfying 
αμ,DB

(B) ≤ ε. Then

dist(y, D0) � L2λ for every y ∈ LB ∩ DB

and therefore

∠(DB , D0) � L2

r(B)λ.

Proof. By part (2) of Lemma 4.2, μ(B(0, C
√

ε)) � √
ε so F ∩ B(0, C

√
ε) �= ∅ (see 

assumption (a) of Main Lemma 6.1). Pick DB1 ∈ Gx satisfying αμ,DB1
(B1) ≤ ε. Therefore 

we can choose a ball B1 = B(x, 10) ∈ S with x ∈ F and |x| � √
ε. We infer from 

Lemma 7.8 that

dist(y, DB1) � L2λ for all y ∈ LB ∩ DB .

But then it follows from Corollary 4.4 that dist(y, DB1) � √
ε for all y ∈ B0 ∩ D0, and 

the Corollary follows. �
12 Here we appeal to Lemma 7.1, which ensures that δμ(ΛB′) � δδμ(3LB).
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The following Corollary follows from Lemma 7.7 in an analogous manner to how the 
previous result follows from Lemma 7.8 (i.e. by finding a point x ∈ F within a distance 
� √

ε from 0). Moreover let us recall that I0 = (−1, 1).

Corollary 7.11. One has

F ⊂
{

dist(·, D0) � λ
}

.

7.3. Partition of the stopping scales

We define the following three disjoint subsets of F ∩ B0:

Z = {x ∈ F ∩ B0 : h(x) = 0},

F1 = {x ∈ F ∩ B0 \ Z : δμ(B(x, h(x))) ≤ δ}, and

F2 =
{

x ∈ F ∩ B0 \ (Z ∪ F1) : there is D ∈ Gx with ∠(D, D0) ≥ α

and αμ,D(B(x, h(x))) ≤ ε

}
.

Lemma 7.12. One has

F = Z ∪ F1 ∪ F2.

Proof. Fix x ∈ F\(Z ∪ F1). Therefore h(x) > 0 and δμ(B(x, h(x))) > δ. Moreover, 
(x, 4h(x)) ∈ Stotal so there exists D ∈ Gx with

αμ,D(B(x, 4h(x))) ≤ ε � ε

δ
δμ(B(x, 4h(x))).

Since α
(k)
μ (B(x, 4h(x))) � ε2

δ δμ(B(x, 4h(x))) and δμ(B(x, h(x))) � δμ(B(x, 4h(x)))
(the latter inequality holding, for instance, by part (1) of Lemma 4.2), we have from 
Lemma 4.5 and Lemma 7.1 that there exists D′ ∈ Gx such that

αμ,D′(B(x, h(x))) � ε2

δ2 δμ(B(x, h(x))) � ε2

δ2 . (7.4)

Notice that if (x, h(x)) /∈ Stotal, then by the definition of Stotal (Definition 7.3) we 
have that ∠(D′, D0) > α and therefore x ∈ F2. Consequently, we may assume that 
(x, h(x)) ∈ Stotal. By the definition of h(x) there exists rj → h(x) with rj < h(x) such 
that the balls B(x, rj) fail to satisfy one of the properties (1) or (2) in the definition of 
Stotal.

But if a countable number of the balls B(x, rj) were to satisfy that δμ(B(x, rj)) <
δ then δμ(B(x, h(x))) ≤ δ, which is not the case. Similarly, if αμ(B(x, rj)) ≥ ε for 
infinitely many j then by continuity of the alpha numbers, see Lemma 3.3, we have 
αμ(B(x, h(x))) ≥ ε, contradicting (7.4). Therefore there exist lines Dj through x and 
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radii rj → h(x) with rj < h(x), ∠(Dj , D0) > α, and αμ,Dj
(B(x, rj)) ≤ ε. We may 

pass to a subsequence if necessary to obtain that Dj converge (locally) to a line D̃ with 
∠(D̃, D0) ≥ α. But then the continuity of the transportation coefficients (Lemma 3.3) 
ensures that αμ,D̃(B(x, h(x))) ≤ ε, and hence x ∈ F2. �
Remark 7.13. An application of Corollary 4.4 ensures that if x ∈ F2 and D′ is any line 
in Gx for which αμ,D′(B(x, h(x))) ≤ ε, then ∠(D′, D0) ≥ α − Cτ ≥ α

2 .

We shall show momentarily that Z lies in the zero set of a Lipschitz continuous 
function. We will therefore want to show that the measure of the sets F1 and F2 is small.

7.4. Regularization of h

The function h itself can be quite irregular, so, as is standard, we proceed to introduce 
the functions d and D.

Definition 7.14. For x ∈ C, we set

d(x) = inf
(X,t)∈S

(|X − x| + t),

and for p ∈ D0,

D(p) = inf
x∈π−1(p)

d(x) = inf
(X,t)∈S

(d(π(X), p) + t).

Remark 7.15. Observe that

1. the functions d and D are 1-Lipschitz functions and
2. h(x) ≥ d(x) for every x ∈ F ∩ B0.

Lemma 7.16. We have that

Z = {x ∈ C : d(x) = 0} = {x ∈ F ∩ B0 : d(x) = 0}.

Proof. If x /∈ B0 ∩ F then d(x) > 0, so since d ≤ h on the closed set F ∩ B0, we have

Z ⊂ {x ∈ C : d(x) = 0} = {x ∈ F ∩ B0 : d(x) = 0}.

Next, we prove that if x ∈ C satisfies d(x) = 0 then h(x) = 0. If d(x) = 0, then certainly 
x ∈ F ∩B0. Fix τ > 0. We can find a sequence of pairs (xj, τj) ∈ S with xj ∈ F , xj → x, 
and τj → 0 with τj < τ for every j. In particular, (xj, τ) ∈ S for every j. Since for any 
τ ′ ∈ (0, τ), δμ(B(xj , τ ′)) ≥ δ for sufficiently large j, it follows that δμ(B(x, τ)) ≥ δ.

Let Dj ∈ Gxj
be lines with αμ,Dj

(B(xj , τ)) ≤ ε and ∠(Dj , D0) ≤ α. Appealing to 
Lemma 3.3, we obtain that (after passing to a subsequence if necessary) there exists 
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D ∈ Gx with ∠(D, D0) ≤ α such that αμ,D(B(x, τ)) ≤ ε. Since τ > 0 is arbitrary, the 
statement follows. �
7.5. The Lipschitz mapping

The next step is to construct a Lipschitz mapping with Lipschitz constant � α whose 
graph is close to points in F . Recall that I0 = (−1, 1).

Proposition 7.17. There exists a Lipschitz continuous function A : R → R satisfying 
supp(A) ⊂ 3I0, ‖A‖Lip � α, such that, with Ã(p) = (p, A(p)) and Γ = {A(p) : p ∈ R}, 
the following properties hold:

1. |A′′(p)| � λ
D(p) for any p ∈ R,

2. Γ ⊂
{

dist(·, D0) � λ
}

,
3. If x ∈ F , then

|Ã(π(x)) − x| � λ · D(π(x)).

(In particular, Z ⊂ Γ.)
4. If B(x, r) ∈ S and D ∈ Gx satisfies αμ,D(B(x, r)) ≤ ε, then for every p ∈ π(B(x, r)),

dist(Ã(p), D) � λ · r.

Given the strong flatness property proved in Lemma 7.7 (along with Lemma 7.8, 
which informally states that good approximating lines for balls B ∈ S do not change 
much locally), the reader familiar with the Léger scheme will likely find few obstacles 
in providing the proof of Proposition 7.17 for themselves by modifying either [14] or 
Chapter 7 of [29]. However, since there are some minor changes required, we provide a 
relatively detailed treatment in Appendix B.

7.6. Density of μ under the projection to D0

Our next lemma concerns the density of the projection of μ|F to D0. This is a key 
property required to run the scheme of Tolsa which will show that the set F2 has small 
measure. Set σ to be the Borel measure on R given by

σ = π#(μ|F ), so σ(E) = μ(F ∩ π−1(E)) for a Borel set E ⊂ R.

Lemma 7.18. One has

σ(B(p, r)) ≤ (1 + Cα2)2r, for p ∈ R and r ∈ (ε1/4D(p), 1). (7.5)
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Proof. Without loss of generality we may assume that p ∈ 10I0 (recall that F ⊂ 10B0).
Case 1: r <

4√ε
100 .

Fix t = r/ 4
√

ε, so t > D(p) and there is x ∈ π−1(p) with d(x) < t. Therefore we can find 
(X, s) ∈ S with |x − X| + s < t, and so B(X, 3t) ∈ S. Notice that π(B(X, 3t)) ⊃ B(p, t), 
and so appealing to Lemma 7.7,

F ∩ π−1(B(p, t)) ⊂ B(X, 6t) ∩
{

y ∈ C : dist(y, D) � λt
}

for a line D through X with ∠(D, D0) ≤ α.
Consequently, since r = ε1/4t, then F ∩ π−1(B(p, r)) is contained in a strip of width 

C λ
ε1/4 r �

√
λr around a line D with ∠(D, D0) ≤ α. Therefore, if z = π−1(p) ∩ D, then 

F ∩ π−1(B(p, r)) ⊂ B(z, R) where

r ≤ R ≤
(
1 + α2 + C

√
λ
)
r ≤ (1 + Cα2)r.

Since X ∈ F , assumption (b) in the Main Lemma ensures that δ̃μ(B(X, t)) ≤ 1 + θ, 
and since (X, t) ∈ S, with t < 1/50, we have that αμ(B(X, 30t)) ≤ ε. Since B(z, R) ⊂
B(X, 30t), Lemma 5.2 is applicable with x replaced by X, r replaced by t, and B′ =
B(z, R). From the conclusion of this lemma it follows (recall that θ � α2) that

δμ(B(z, R)) ≤ 1 + θ + Cε1/8,

so μ(B(z, R)) ≤ (1 + Cα2)2r, and the required statement follows.

Case 2: r ≥ 4√ε
100 . In this case we apply the argument above with the role of the ball 

B(x, t) replaced by B(0, 1). We have from Corollary 7.11 that F ⊂ 10B0 ∩ {dist(·, D0) �√
λD(p)}. On the other hand, αμ(30B0) ≤ ε, and, although 0 need not belong to F , the 

fact that δμ(B0) = 1 implies δ̃μ(B0) ≤ 1, which suffices to apply Lemma 5.2. (One can 
actually get a bound that only depends on λ (and not α) in this case, but we will not 
need this improvement.) �
8. Size of F1

The proof of the following result can be found as Proposition 3.19 in [14] or Lemma 
7.33 in [29].

Proposition 8.1. One has

μ(F1) � δ � 1.

Every point x ∈ F1 is the center of a ball B(x, h(x)) which is of low density (≤ δ), but 
x is also lies very close to the Lipschitz graph Γ (in the sense that dist(x, Γ) � λd(x) �
λh(x) � h(x) for every x ∈ F1). From these observations the Besicovitch covering lemma 
readily allows us to establish Proposition 8.1.
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9. The size of F2

Given Proposition 8.1, our goal is now to show that μ(F2) is also small.
Our goal will be to verify the following proposition.

Proposition 9.1. Provided α � 1 and log ε � log α,

μ(F2) ≤
√

α.

We start by recording the following estimate that can be found as Lemma 10.1 in [27]
or Lemma 7.34 of [29]. See also Section 5 of [14]. We give a self-contained proof.

Set ‖f‖2
L2(R) =

∫
R |f |2dm1, where m1 is the Lebesgue measure on R.

Lemma 9.2. We have

μ(F2) � α−2‖A′‖2
L2(R).

Proof. Suppose x ∈ F2, so δμ(B(x, h(x))) ≥ δ. Recall from Remark 7.13 we have that 
any D ∈ Gx for which

αμ,D(B(x, h(x))) ≤ ε satisfies ∠(D, D0) ≥ α/2.

Take a sequence of radii rn → h(x), rn > h(x) such that the associated lines Dn ∈ Gx

satisfying αμ,Dn
(B(x, rn)) ≤ ε converge to a line D such that αμ,D(B(x, h(x))) ≤ ε holds 

(and so ∠(D, D0) ≥ α/2).
Pick p ∈ π(B(x, h(x))). We claim that

dist(Ã(p), D) � λh(x) � α · h(x). (9.1)

To see this, note that B(x, rn) ∈ S. Then by property (4) of Proposition 7.17,

dist(Ã(p), Dn) � λrn,

letting n → ∞ we obtain the claimed inequality.
Choose p, q ∈ π(B(x, h(x))), with |p − q| � h(x). Then since ∠(D, D0) � α,

α · h(x)
(9.1)
� |A(p) − A(q)| �

∫
I(π(x),h(x))

|A′| dm1,

where the second inequality is a straightforward consequence of the fundamental theorem 
of calculus. Using the Cauchy-Schwarz inequality and Lemma 7.1, we therefore obtain 
that



32 B. Jaye, T. Merchán / Advances in Mathematics 400 (2022) 108297
α2 · μ(B(x, 30h(x))) � α2h(x) �
∫

I(π(x),h(x))

|A′|2 dm1. (9.2)

On the other hand, since (x, 2h(x)) ∈ S, it is immediate from Lemma 7.7 that if y ∈ F

and B(x, 6h(x)) ∩ B(y, 6h(y)) = ∅, then

I(π(x), 2h(x)) ∩ I(π(y), 2h(y)) = ∅.

From the Vitali covering lemma, we choose a subcollection of the balls B(x, 6h(x)), say 
B(xj , 6h(xj)), that are pairwise disjoint, and satisfy 

⋃
j B(xj , 30h(xj)) ⊃ F2. But then 

the intervals I(π(xj), h(xj)) are pairwise disjoint, so by summing (9.2) we obtain

α2μ(F ) �
∫

3I0

|A′|2 dm1.

The result is proved. �
10. Calderón-Zygmund operators on Lipschitz graphs with small constant

Like in Tolsa’s work [28], the behavior of Calderón-Zygmund operators on Lipschitz 
graphs with small Lipschitz constant plays an important role in our work. Here we carry 
out a suitable adaptation to the Huovinen kernels. The main point is that, on a Lipschitz 
graph with small constant, the normal component of the Huovinen kernel behaves like a 
small perturbation of the normal component of the Cauchy kernel.

Recall that

K⊥
k (z) = �(zk)

|z|k+1 for z ∈ C.

Throughout this section, we will denote by A : R → R a compactly supported Lip-
schitz continuous function with ‖A′‖∞ ≤ 1. We set Ã(t) = (t, A(t))(= t + iA(t) ∈ C), 
and Γ = {Ã(t) : t ∈ R}.

The goal of the section is to derive the following result:

Theorem 10.1. There exists constants C, c > 0 and α0 > 0 depending on k such that if 
‖A′‖∞ ≤ α0, and diam(supp(A)) � 1, then

1. for every p ∈ (1, ∞), the principal value operator associated K⊥
k has operator norm 

at most Cp‖A′‖∞, and
2. we have the lower bound∫ ∣∣∣P.V.

∫
K⊥

k (z − ω)dH1(ω)
∣∣∣2dH1(z) ≥ c‖A′‖2

L2(R) − C‖A′‖4
∞. (10.1)
Γ Γ
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For t ∈ R, we shall set

J(Ã)(t) =
√

1 + A′(t)2,

so that for any f ∈ L1(Γ),∫
C

f(ω)dH1
|Γ(ω) =

∫
R

f(Ã(t))J(Ã)(t) dm1(t). (10.2)

Using (10.2), we shall prove bounds of the operator norm in L2(Γ) of the Calderón-
Zygmund operator

T ⊥(fH1
|Γ)(z) = P.V.

∫
C

K⊥
k (z − ω)f(ω)dH1

|Γ(ω)

by first considering the principal value operator norm in L2(R) of the operator

TA(g)(t) = P.V.

∫
R

K⊥
k (Ã(t) − Ã(s))g(s) dm1(s), t ∈ R.

The following theorem is a well known result regarding Calderón commutators, see [4, 
Chapter 2] for an exposition including several approaches to how it can be proved.

Theorem 10.2 (Boundedness of Calderón commutators). There exists C1 > 0 such that 
for every p ∈ (1, ∞) and � ∈ N, the CZO acting on Lp(R) with kernel

K(t, s) = 1
t − s

(A(t) − A(s)
t − s

)


is a bounded principal value operator in Lp(R) with norm �p C

1‖A′‖
.

We next recall an important tool in our argument, which is a special case of [28, 
Theorem 1.3], relying ultimately on a Fourier analytic argument.

Theorem 10.3. There exists α0 > 0 such that if ‖A′‖∞ ≤ α0, then∫
R

∣∣∣P.V.

∫
R

A(t) − A(s)
(t − s)2 dm1(s)

∣∣∣2 dm1(t) � ‖A′‖2
L2(R).

We now examine the difference between normal components of the Huovinen and 
Cauchy transforms. For |s| < |t|, we may expand the kernel

K⊥
k (t + is) = �[(t + is)k]

(t2 + s2)(k+1)/2 =
∑

ck,

s


t
+1 , (10.3)


∈N,
 odd
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where ck,
 ∈ R satisfy

ck,1 = k and
∑




|ck,
|
(1

2

)


�k 1. (10.4)

Consequently, we see that

K⊥
k (Ã(t) − Ã(s)) = k

A(t) − A(s)
(t − s)2 +

∑

≥3,
 odd

ck,

(A(t) − A(s))


(t − s)
+1 . (10.5)

Now, if ‖A′‖∞ ≤ α0 for a small enough α0, the kernel

Ktail(t, s) =
∑


≥3,
 odd

ck,

(A(t) − A(s))


(t − s)
+1

is a Calderón-Zygmund kernel, and Theorem 10.2 ensures that, for any p ∈ (1, ∞), 
the associated principal value operator is bounded in Lp(R) with norm �p,k ‖A′‖3

∞. 
Therefore

(a) the principal value operator with kernel K⊥
k (Ã(t) − Ã(s)) has Lp(R) operator norm 

�k,p ‖A′‖∞,
(b) employing a simple localization argument yields that∫

R

∣∣∣∫
R

Ktail(t, s) dm1(s)
∣∣∣2 dm1(t) � ‖A′‖6

∞ diam(supp(A)),

(c) if ‖A′‖∞ is small enough and diam(supp(A)) � 1, then part (b) and Theorem 10.3
ensures that there are constants C, c depending on k such that∫

R

∣∣∣∫
R

K⊥
k (Ã(t) − Ã(s)) dm1(s)

∣∣∣2 dm1(t) ≥ c‖A′‖2
L2(R) − C‖A′‖6

∞.

Finally, observe that |J(Ã)(t) − 1| = |
√

1 + |A′(t)|2 − 1| � |A′(t)|2. Consequently, 
Theorem 10.1 now follows from the change of variable formula (10.2), employing the 
bound on the operator norm (a) to bound the errors accumulated from passing from R
to Γ.

11. The main comparison estimates

Recall that our main goal is to prove Proposition 9.1. We therefore assume that 
μ satisfies the assumptions of Main Lemma 6.1, and introduce δ, ε, θ and α satisfying 
log ε � log θ � log α � log δ � −1, so that the construction of Section 7 is valid.
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For x ∈ C, set

�(x) = 1
10D(π(x)).

We recall that we set

λ =
√

ε

δ
,

so that (see (b) and (c) of Proposition 7.17)

Γ ⊂ {x ∈ C : dist(x, D0) � λ} and (11.1)

F ⊂ {x ∈ C : dist(x, Ã(π(x))) � λ�(x)}. (11.2)

Denote for any measure ν

T ⊥

(·),1ν(x) = T̂ ⊥


(x)ν(x) − T̂ ⊥
1 ν(x).

Put I0 = (−1, 1) ⊂ D0.
The goal of this section will be to prove the following result:

Proposition 11.1. There is a constant C > 0 such that, as long as α � 1, and log λ �
log α,

‖T ⊥

(x),1(μ)‖L2(μ|F ∩π−1(4I0)) � ‖A′‖L2(R) − Cα2.

We shall set ‖f‖2
L2(Γ) =

∫
Γ |f |2dH1.

Recall that, since ‖A′‖∞ � α, applying Theorem 10.1 yields

‖A′‖L2(R) − Cα2 � ‖P.V. T ⊥H1
|Γ‖L2(Γ), (11.3)

provided that α � 1. Comparing this estimate with Proposition 11.1, our goal is to 
(essentially) replace H1|Γ with by μ|F on the right hand side of (11.3).

11.1. Localization estimates

Lemma 11.2 (Localization lemma). For every p ∈ (1, ∞),∣∣∣‖T ⊥(H1
|Γ)‖Lp(Γ) − ‖T ⊥


(·),1(H1
|Γ)‖Lp(Γ∩π−1(4I0))

∣∣∣�p α2.

Proof. We recall that supp(A) ⊂ π(3B0). Observe that∣∣∣‖T ⊥(H1
|Γ)‖Lp(Γ) − ‖T ⊥(H1

|Γ)‖Lp(Γ∩π−1(4I0))

∣∣∣≤ ‖χΓ\π−1(4I0)T
⊥(H1

|Γ)‖Lp(Γ)
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Take x ∈ Γ \ π−1(4I0) = D0 \ 4I0 (so π⊥(x) = 0), and we set

|T ⊥(H1
|Γ)(x)| ≤

∫
y∈Γ

dist(y, D0)
|x − y|2 dH1(y) =

∫
y∈Γ∩π−1(3I0)

dist(y, D0)
|x − y|2 dH1(y)

� 1
(1 + |x|)2

∫
y∈Γ∩π−1(3I0)

dist(y, D0) dH1(y)
(11.1)
� λ

(1 + |x|)2 .

Raising this inequality to the power p and integrating on D0 \ 4I0, we obtain

‖χΓ\π−1(4I0)T
⊥(H1

|Γ)‖Lp(Γ) � λ.

For x = Ã(t) for t ∈ 4I0, write

|T ⊥(H1
|Γ)(x) − T ⊥


(x),1(H1
|Γ)(x)| ≤ |S(x)| + |T̂ ⊥

1 (H1
|Γ)(x)|,

with13

S(x) =
∫ (

1 − Ψ
( |Ã(t) − Ã(s)|

D(t)/10

))�(Ã(t) − Ã(s))k

|Ã(t) − Ã(s)|k+1
J(Ã)(s) dm1(s),

where J(Ã) =
√

1 + |A′|2, x = Ã(t), y ∈ Ã(s), with t, s ∈ R.
The estimate for second term is straightforward:

|T̂ ⊥
1 (H1

|Γ)(x)| �
∫

y∈Γ:
|y−x|≥1/2

|π⊥(x) − π⊥(y)|
|x − y|2 dH1(y)

(supp(A) ⊂ 3I0) �
∫

y∈Γ:
|y−x|≥1/2

|π⊥(x)|
|x − y|2 dm1(y) +

∫
y∈π−1(3I0)∩Γ

|x−y|>1/2

|π⊥(y)|
|x − y|2 dH1(y)

� dist(x, D0) +
∫

Γ∩π−1(3I0)

dist(y, D0)dH1(y)

(11.1) � dist(x, D0) + λ.

Therefore, using (11.1) once again

‖T̂ ⊥
1 (H1

|Γ)‖Lp(π−1(4I0)∩Γ) �
( ∫
Γ∩4π−1(I0)

dist(x, D0)pdH1(x)
)1/p

+λ � λ.

13 The integral S is a principal value integral, but we shall suppress the P.V. notation in principal value 
integrals whenever it is clear from context (in order to save line space).
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The estimate of S(x) will take more work. We split

S(x) =
∫ (

1 − Ψ
( t − s

D(t)/10

))�((Ã(t) − Ã(s))k)
|Ã(t) − Ã(s)|k+1

dm1(s)

+
∫ (

Ψ
( t − s

D(t)/10

)
−Ψ
( |Ã(t) − Ã(s)|

D(t)/10

))�((Ã(t) − Ã(s))k)
|Ã(t) − Ã(s)|k+1

dm1(s)

+
∫ (

1 − Ψ
( |Ã(t) − Ã(s)|

D(t)/10

))�({Ã(t) − Ã(s)}k)
|Ã(t) − Ã(s)|k+1

(J(Ã)(s) − 1) dm1(s)

= S1(x) + S2(x) + S3(x).

Notice that

‖J(Ã) − 1‖p � ‖A′‖2
∞.

Consequently, using the Lp boundedness of T ⊥ on Lipschitz graphs (Theorem 10.1) we 
get

‖S3‖p ≤ α2.

Now we focus on S2. First observe that, since α � 1,

|t − s| ≤ |Ã(t) − Ã(s)| ≤ 2|t − s|.

Since Ψ(z) = 0 if |z| ≤ 1/2 and Ψ(z) = 1 if |z| ≥ 1, we deduce that

Ψ
( t − s

D(t)/10

)
−Ψ
( |Ã(t) − Ã(s)|

D(t)/10

)
= 0

if |t − s| ≤ D(t)/40 or |t − s| ≥ D(t)/5. Additionally, the mean value theorem ensures 
that

∣∣∣Ψ( t − s

D(t)/10

)
−Ψ
( |Ã(t) − Ã(s)|

D(t)/10

)∣∣∣≤ Cα|t − s|
D(t) .

Consequently,

|S2(x)| �
∫

D(t)/40≤|t−s|≤D(t)/5

α|t − s|
D(t)

|�((Ã(t) − Ã(s))k)|
|t − s|k+1 dm1(s) � α2,

and therefore

‖S2‖p � α2.
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We focus now on S1(x). Recall from (10.3) that

K⊥
k (Ã(t) − Ã(s)) =

∑

∈N,
 odd

ck,

(A(t) − A(s))


(t − s)
+1 .

By the second order Taylor formula,

A(t) − A(s) = A′(t)(t − s) + A′′(z)
2 (t − s)2 for some z ∈ [t, s].

For s ∈ B(t, D(t)/5), we have that D(z) ≈ D(t) ≈ D(s), and so the second derivative 
estimate given in part 1 of Proposition 7.17 (and recalling the definition of λ) yields that

∣∣∣A′′(z)
2 (t − s)2

∣∣∣� λ
(t − s)2

D(t) .

Now, employing the inequality |(a + b)
 − a
| ≤ 2
b max(|a|, |b|)
−1 we arrive at

|(A(t) − A(s))
 − A′(t)
(t − s)
| ≤ C
α
−1λ
|t − s|
+1

D(t) ,

where we have used that λ|t−s|
D(t) ≤ α. Next, we notice that for any κ > 0,

∫
R\B(t,κ)

[
1 − Ψ

( t − s

D(t)

)]A′(t)


t − s
dm1(s) = 0,

while 
∫
R

[
1 − Ψ

(
t−s
D(t)

)]
dm1(s) � D(t). Consequently,

∣∣∣ ∫
R\B(t,κ)

[
1 − Ψ

( t − s

D(t)

)] (A(t) − A(s))


(t − s)
+1 dm1(s)
∣∣∣� C
α
−2λ.

Therefore, using (10.4), we have that since α � 1,

|S1(x)| = lim
κ→0

∣∣∣ ∫
R\B(t,κ)

(
1 − Ψ

( t − s

D(t)/10

))
K⊥

k (Ã(t) − Ã(s)) dm1(s)
∣∣∣

�
∑


∈N,
 odd

|ck,
|C
λα
−1 � λ � α2.

From here, and joining the previous estimates we conclude that

‖S‖Lp(Γ∩π−1(4I0)) � α2.

The lemma follows. �
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11.2. The main comparison estimates

Let η̃ : [0, ∞) → R be a smooth non-increasing function with ‖η̃‖1 = 1/2 such that 
supp η̃ ⊂ [0, 1] and η̃ equals 1 on [0, 1/4]. For p > 0, we denote

ηp(t) = 1
p

η̃

(
|t|
p

)
for t ∈ R.

Therefore ‖ηp‖1 = 1.
We wish to show that σ = π#μ|F is close to a constant multiple of the Lebesgue 

measure, at least within 8I0. In order to accomplish this, we introduce the function 
g : R → R given by

g(t) = η√
λD(t) ∗ σ.

Observe from (7.5) that we can rudely estimate

‖g‖∞ ≤ 3. (11.4)

We will aim to prove more refined Lp estimates on the function g, with (7.5) our primary 
tool.

We will make use of the following elementary bound which appears as [27], Lemma 
10.3 (the proof merely uses of the fact that D is a Lipschitz continuous function).

Lemma 11.3. For all t, s ∈ R,

|η√
λD(t)(t − s) − η√

λD(s)(t − s)| �
√

λ

D(s)χB(s,C
√

λD(s))(t).

The next lemma is another estimate found in [27], and is a simple consequence of (7.5). 
(We recall that the proof of (7.5) used properties of the transportation coefficients, and 
was necessarily quite different from the proof in [27].)

Lemma 11.4. If ε and θ have been chosen small enough with respect to α, then we have

0 ≤ g(t) ≤ 1 + Cα2 for all t ∈ R, (11.5)

and

‖χ8I0(g − 1)‖2 � α. (11.6)

Proof. The lemma follows from integrating (7.5). For t ∈ R, let ψ : [0, ∞) → R be 
defined by ψ(s) = η√

λD(t)(s) and we denote σ = π#(μ|F ).
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Observe that

g(t) = −

√
λD(t)∫

√
λD(t)/4

σ(B(t, r))ψ′(r) dm1(r),

where we have used that supp(ψ′) ⊂ [
√

λD(t)/4, 
√

λD(t)]. Consequently, since 4
√

ε �√
λ, from (7.5) (and that ψ is monotone on [0, ∞)), we infer that

|g(t)| ≤ (1 + Cα2)

√
λD(t)∫

√
λD(t)/4

2r|ψ′(r)| dr ≤ 1 + Cα2.

The inequality (11.5) is proved. We next will show that

‖χ8I0(g − 1)‖1 � α2. (11.7)

To this end, we will prove∫
8I0

g(t) dm1(t) ≥ (1 − C
√

λ)m1(8B0 ∩ R). (11.8)

To verify (11.8), first observe that since D(t) ≤ 9 for all t ∈ π(8B0), we have∫
(8+9

√
λ)I0

g(t) dm1(t) =
∫

(8+9
√

λ)I0

η√
λD(t) ∗ σ(t) dm1(t)

≥
∫

8I0

∫
R

η√
λD(t)(t − s) dm1(t) dσ(s).

Using Lemma 11.3,

|η√
λD(t)(t − s) − η√

λD(s)(t − s)| � 1
D(s)χB(s,C

√
λD(s))(t).

Combining these two inequalities results in∫
(8+9

√
λ)I0

g(t) dm1(t) ≥
∫

q∈8I0

∫
R

η√
λD(s)(t − s) dm1(t) dσ(s)

−
∫

8I0

m1(B(s, C
√

λD(s)))
D(s) dσ(s)

≥ (1 − C
√

λ)σ(8I0) ≥ (1 − C
√

λ)m1(8I0).
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In the final inequality we have used that

σ(8I0) ≥ μ(8B0) = 16 · δμ(8B0) ≥ 16(1 − C
√

ε)δμ(B0) = 16(1 − C
√

ε),

where part (2) of Lemma 4.2 has been used in the inequality. The inequality (11.8) now 
follows from the fact that ‖g‖∞ ≤ 3 (recall (11.5)).

But now, for suitable constant C > 0,∫
8I0

|1 + Cα2 − g(t)| dm1(t) (11.5)=
∫

8I0

((1 + Cα2) − g(t)) dm1(t)

≤ (1 + Cα2)m1(8I0) −
∫

8I0

g(t) dm1(t) ≤ (Cα2 + C
√

λ)m1(8B0),

and hence ∫
8I0

|1 − g(t)| dm1(t) ≤ (Cα2 + C
√

λ)m1(8I0),

achieving (11.7) as λ � α2. Finally, recalling (11.4),∫
8I0

|1 − g(t)|2 dm1(t) ≤ (1 + ‖g‖∞)
∫

8I0

|1 − g(t)| dm1(t) � α2

proving (11.6). �
Going forward, will be convenient to make three definitions:

Definition. (1) Denote by P : C → Γ the mapping

P (x) = Ã(π(x)) for x ∈ C.

(2) Denote by h : Γ → R the function

h(x) = g(π(x))
JÃ(π(x))

, for x ∈ Γ.

(3) Define the Borel measure μ̃ on C by

μ̃ = μ|F ,

so that σ is the pushforward of μ̃ under the projection π.



42 B. Jaye, T. Merchán / Advances in Mathematics 400 (2022) 108297
From these definitions we have that, for a Borel set E ⊂ 10I0 and a Borel function 
f : C → R, ∫

π−1(E)

f ◦ P dμ̃ =
∫
E

f ◦ Ã dσ and
∫
E

g dm1 =
∫

π−1(E)∩Γ

h dH1.

We will use these identities quite often in what follows.

Lemma 11.5. There is a constant C > 0 such that for any k ∈ [4, 8], and any Borel 
measurable function f : C → R.

∣∣∣ ∫
π−1(kI0)

fd(μ̃ − hdH1
|Γ)
∣∣∣ � ∫

kI0

{
oscB(Ã(t),C

√
λ
(t)) f

}
dσ(t)

+
∫

(k+C
√

λ)I0\kI0

|f ◦ Ã| dm1

+
∫

kI0

(f ◦ Ã)b dm1,

(11.9)

where b : R → R satisfies supp(b) ⊂ (k + 1)I0 and ‖b‖∞ �
√

λ.

Proof. Write ∫
π−1(kI0)

f
[
dμ̃ − hdH1

|Γ)
]

=
∫

π−1(kI0)

(f − f ◦ P ) dμ̃ +
∫

kI0

f ◦ Ã (dσ − g · dm1).

Recall from (11.2) that Γ = {Ã(t) : t ∈ R} and

F ⊂ {x ∈ C : dist(x, Ã(π(x))) � λ�(x)}. (11.10)

Therefore ∣∣∣ ∫
π−1(kI0)

(f − f ◦ P ) dμ̃
∣∣∣� ∫

kI0

{
oscB(Ã(t),C

√
λ
(t)) f

}
dσ(t).

For the remaining term, we first observe that the function

gχkI0 − [η√
λ
( · ) ∗ (χkI0σ)]
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is supported in (k + C
√

λ)I0\(k − C
√

λ)I0, and therefore

∣∣∣∫
R

(f ◦ Ã) {gχkI0 − [η√
λ
( · ) ∗ (χkI0σ)]}dm1

∣∣∣
�

∫
(k+C

√
λ)I0\(k−C

√
λ)I0

|f ◦ Ã| g dm1.

But now, using (11.5), and that �(t) � 1 for t ∈ kI0\(k − C
√

λ)I0,

∫
kI0\(k−C

√
λ)I0

|f ◦ Ã| g dm1 �
∫

kI0

{oscB(Ã(t),C
√

λ
(t)) f} g(t) dm1(t)

+
∫

(k+C
√

λ)I0\kI0

|f ◦ Ã| dm1

�
∫

kI0

{oscB(Ã(t),C
√

λ
(t)) f} dσ(t)

+
∫

(k+C
√

λ)I0\kI0

|f ◦ Ã| dm1.

It remains to consider ∫
kI0

f ◦ Ã
(
dσ − η√

λ
( · ) ∗ (χkI0σ) dm1
)
.

First, using Fubini’s theorem, observe that∫
R

[f ◦ Ã(t)η√
λ
(t) ∗ (χkI0σ)]} dm1(t)

=
∫

kI0

∫
R

η√
λ
(s)(t − s)(f ◦ Ã)(s) dm1(s)dσ(t)

In order to obtain a convolution structure, we wish to replace �(s) in the right hand 
integral with �(t). To this end, recall Lemma 11.3:

|η√
λ
(s)(t − s) − η√

λ
(t)(t − s)| �
√

λ

�(t)χB(t,C
√

λ
(t)). (11.11)

Crudely employing this bound, the difference
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∫
kI0

∫
R

η√
λ
(s)(t − s)(f ◦ Ã)(s) dm1(s)dσ(t)

−
∫

kI0

∫
R

η√
λ
(t)(t − s)(f ◦ Ã)(s) dm1(s)dσ(t)

can be bounded in absolute value by

∫
(k+C

√
λ)I0

f ◦ Ã(t)
{√

λ

�(t)σ(kI0 ∩ B(t, C
√

λ�(t)))
}

dm1(t).

Labeling the function in the brackets { · · · } appearing in this integral as b, we find from 
(7.5) that ‖b‖∞ �

√
λ.

Finally, notice that

∣∣∣∫
kI0

f ◦ Ã dσ −
∫

kI0

∫
R

η√
λ
(t)(t − s)(f ◦ Ã)(s) dm1(s)dσ(y)

∣∣∣
≤
∫

kI0

∫
R

η√
λ
(t)(t − s)|(f ◦ Ã(t) − (f ◦ Ã)(s)| dm1(s)dσ(t)

≤
∫

kI0

{
oscB(Ã(t),C

√
λ
(t)) f

}
dσ(t).

The proof is complete. �
The following lemmas correspond with Lemma 10.7 and Lemma 10.8 in Tolsa’s paper 

([27]).

Lemma 11.6. It holds that

‖T ⊥

(·),1(μ|F ) − T ⊥


(·),1(hH1
|Γ)‖L2(Γ∩π−1(4I0)) �

√
λ.

Proof. For t ∈ 4I0, the function

y �→ K⊥

(t),1(Ã(t) − y), y ∈ C

is supported on 6B0 ⊂ π−1(6I0). We apply the comparison lemma Lemma 11.5 with this 
function taking the place of f , and k = 6. Now, for s ∈ 6I0,
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oscB(Ã(s),C
√

λ
(s))(f) �
√

λ
�(s)

�(t)2 + |Ã(s) − Ã(t)|2

�
√

λ
�(s)

�(t)2 + |s − t|2

�
√

λ
�(s)

�(s)2 + |s − t|2 ,

where in the last inequality we have used that � is a Lipschitz function, and so �(s) �
�(t) + |s − t|. We are thus led to estimate∫

4I0

(∫
6I0

�(s)
�(s)2 + |s − t|2 dσ(s)

)2
dm1(t).

To bound this integral we follow a standard path. Observe that, for any s ∈ R,∫
4I0

�(s)
�(s)2 + |t − s|2 h(t) dm1(t) � N (h)(s),

where N (f)(s) := supr>
(s)
1

2r

∫
B(s,r) f dm1. Since σ(D(s, r)) � r for any r ≥ �(s) (see 

Property 7.5 in Lemma 7.18), one verifies via the usual weak-type bound and interpo-
lation14 that N : L2(m1) → L2(σ|6I0) has operator norm � 1. Duality therefore gives 
that ∫

4I0

(∫
6I0

�(s)
�(s)2 + |s − t|2 dσ(s)

)2
dm1(t) � 1.

Regarding the remaining terms in the comparison lemma, the second term equals zero 
due to the compact support of f , so we need to bound∫

4I0

∣∣∣∫
6I0

K⊥

(t),1(Ã(t) − Ã(s))b(s) dm1(s)

∣∣∣2 dm1(t),

where ‖b‖2 �
√

λ. However, the operator boundedness of the Huovinen transform on 
Lipschitz graphs ensures that this double integral is � λ. �
14 To be completely transparent we sketch the proof: For λ > 0, choose intervals Bj = B(sj , rj) with 
rj ≥ 
(sj) such that Bj are disjoint, 1

2rj

∫
Bj

f dm1 > κ, and Eκ := {N (f) > κ} ⊂
⋃

j 3Bj . We arrive 
at the weak type bound σ(Eκ) ≤

∑
j σ(3Bj) � ∑

j m(Bj) � 1
κ

∫
f dm1, where in the second inequality 

it is used that rj ≥ 
(sj). Now, insofar as ‖N f‖∞ ≤ ‖f‖∞, the subadditivity of N yields that Eκ ⊂
{N (fχ{|f|>κ/2}) > κ/2}. Therefore, applying the weak type bound to fχ{|f|>κ/2} yields that

σ(Eκ) � 1
κ

∫
{f>κ/2}

f dm1.

The desired inequality follows from integrating both sides over κ with respect to the measure 
κχ(0,∞) dm1(κ).
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Observe that, as a particular consequence of Lemma 11.6 and part (1) of Theorem 10.1, 
we have that

‖T ⊥

(·),1(μ|F )‖L2(Γ∩π−1(4I0)) � 1. (11.12)

In fact we can say this bound is of order α by further appealing to Lemma 11.2, but this 
gain will not be of use.

Lemma 11.7.

‖T ⊥

(·),1(μ|F )‖2

L2(hdH1
|Γ∩π−1(4I0)

) − ‖T ⊥

(·),1(μ|F )‖2

L2(μ|F ∩π−14I0
) � (M + 1)

√
λ.

Proof. We apply the comparison estimate (Lemma 11.5) with k = 4 and f =
|T ⊥


(·),1(μ|F )|2. Now,

oscB(Ã(x),C
√

λ
(x)) |T ⊥

( · ),1(μ|F )| �

√
λ.

Therefore,

oscB(Ã(x),C
√

λ
(x)) |T ⊥

( · ),1(μ|F )|2 �

√
λ inf

B(Ã(x),C
√

λ
(x))
|T ⊥


( · ),1(μ|F )| + λ.

But now, using (11.2) once again, we have∫
4I0

inf
B(Ã( · ),C

√
λ
( · ))

|T ⊥

( · ),1(μ|F )|dσ �

∫
5B0

|T ⊥

( · ),1(μ|F )|dμ|F

and the term on the right hand side is � M due to the operator boundedness of the 
Huovinen transform on L2(μ) (assumption (d) in Main Lemma 6.1).

For the second term appearing in the comparison estimate, observe that since �(t) � 1
for t /∈ 4I0,

|(f ◦ Ã)(t)| � 1 for t /∈ 4I0 (11.13)

and therefore ∫
(k+C

√
λ)I0\kI0

|f ◦ Ã| dm1 �
√

λ.

Finally, for the third term appearing in Lemma 11.5, recall that ‖b‖∞ �
√

λ, and there-
fore ∫

|T ⊥

(t),1(μ|F )(Ã(t))|2b(t) dm1(t) �

√
λ‖f‖2

L2(Γ∩π−1(5I0)).
5I0
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We split ‖f‖2
L2(Γ∩π−1(5I0)) = ‖f‖2

L2(Γ∩π−1(4I0)) + ‖f‖2
L2(Γ∩π−1(5I0\4I0)). The first term is 

controlled by (11.12), while the second is controlled by (11.13). �
The final step required to prove Proposition 11.1 is the following lemma

Lemma 11.8. We have∣∣∣‖T ⊥

(·),1(hH1

|Γ)‖2
L2(hdH1

|Γ∩π−1(4I0)
) − ‖T ⊥


(·),1(H1
|Γ)‖2

L2(Γ∩π−1(4I0))

∣∣∣� α2.

Proof. First observe that, as a consequence of (11.6) in Lemma 11.4,

‖(h − 1)‖L2(Γ∩π−1(6I0)) � α2, (11.14)

so

‖T ⊥

(·),1(hH1

|Γ) − T ⊥

(·),1(H1

|Γ)‖L2(hdH1
|Γ∩π−1(4I0)

)

� ‖T ⊥

(·),1((h − 1)H1

|Γ)‖L2(Γ∩π−1(4I0))

� ‖T ⊥

(·),1((h − 1)H1

|Γ∩π−1(6I0))‖L2(Γ∩π−1(4I0))

� ‖h − 1‖L2(Γ∩π−1(6I0)) � α2.

Secondly, ∣∣∣‖T ⊥

(·),1(H1

|Γ)‖2
L2(hdH1

|Γ∩π−1(4I0)
) − ‖T ⊥


(·),1(H1
|Γ)‖2

L2(Γ∩π−1(4I0))

∣∣∣
=
∣∣∣∫ |T ⊥


(·),1(H1
|Γ)|2(h − 1)dH1

Γ∩π−1(4I0))

∣∣∣
≤ ‖T ⊥


(·),1(H1
|Γ)‖2

L4(Γ∩π−1(4I0))‖(h − 1)‖L2(Γ∩π−1(4I0))

Appealing to Lemma 11.2 and part (1) from Theorem 10.1 (with p = 4), we get

‖T ⊥

(·),1(H1

|Γ)‖2
L4(Γ∩π−1(4I0)) � α2.

On the other hand, from (11.14), ‖(h − 1)‖L2(Γ∩π−1(4I0)) � α2. Therefore,∣∣∣‖T ⊥

( · ),1(H1

|Γ)‖2
L2(hdH1

|Γ∩π−1(4I0)
) − ‖T ⊥


( · ),1(H1
|Γ)‖2

L2(Γ∩π−1(4I0))

∣∣∣ � α4,

and the lemma follows. �
Proof of Proposition 11.1. Notice that employing (11.3), followed by applying Lemma 
11.2, then Lemma 11.8, Lemma 11.6 (observing that h � 1 on Γ as a consequence of 
(11.5)), and then finally Lemma 11.7, leads to the following estimate



48 B. Jaye, T. Merchán / Advances in Mathematics 400 (2022) 108297
‖T ⊥

(·),1(μ|F )‖L2(μ|F ∩π−1(4I0)) � ‖A′‖L2(R) − Cα2.

Since μ(10B0\F ) is small, the proposition follows from L2(μ) boundedness of the Huovi-
nen transform (see (a) and (d) from Main Lemma 6.1). �
12. The final contradiction: the proof of Proposition 9.1

Proof of Proposition 9.1. Assume that μ(F2) > α1/2. Then by Lemma 9.2,

‖A′‖2
L2(R) � α5/2.

Therefore, Proposition 11.1 yields that

‖T ⊥

(·),1(μ)‖2

L2(μ|F ∩π−1(4I0)) � α5/2.

This contradicts assumption (e) of the Main Lemma. �
Appendix A. Continuity of the transportation coefficients

In this appendix we prove Lemma 3.3.
We start with a simple remark.

Remark A.1. Given two pairs (x, r), (x1, r1) ∈ C × R+, we define the map

O(y) = y − x1

r1
r + x.

The map O satisfies O(B(x1, 4r1)) = B(x, 4r) and ‖O‖Lip = r
r1

= (‖O−1‖Lip)−1. More-
over, O establishes a bijection between Fx,r and Fx1,r1 . Given f ∈ Fx,r we will denote 
by fO(·) = (f ◦ O)(·) ∈ Fx1,r1 .

Below, given a sequence {(xj , rj)}j≥1 relative to (x, r), we will denote by Oj := O the 
function corresponding to the pairs (x, r) and (xj , rj). Furthermore, we will write fj in 
place of fO.

Lemma A.2. (Continuity of transportation coefficients) Given a sequence {(xj, rj)}j≥0 ∈
C × R+ satisfying that xj → x0 ∈ C and rj → r0, we have the following:

1. αμ(B(xj , rj) → αμ(B(x0, r0)).
2. Given a sequence Dj ∈ Gxj

for all j ≥ 0 satisfying ∠(Dj , D0) → 0, then 
αμ,H1

|Dj
(B(xj , rj)) → αμ,H1

|D
(B(x0, r0)).

Proof. With this in mind, both parts (1) and (2) of the lemma are consequences of the 
following statement: If xj → x0 and rj → r0, then for every η > 0, we can find δ > 0
and j0 ≥ 1 such that for every j ≥ j0 we have that:
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sup
(D,D′)∈Gx0 ×Gxj

,

∠(D,D′)≤δ

|αμ,D(B(x0, r0))−αμ,D′(B(xj , rj))|≤ηδμ(B(x0, 5r0)).
(A.1)

We focus on proving (A.1). Fix η > 0. We will use the following two facts, which are 
routinely verified:

1. There exists j0 ≥ 1 such that for every j ≥ j0 we have that

∣∣∣∫ ϕxj ,rj
fj dμ −

∫
ϕx0,r0f dμ

∣∣∣≤ ημ(B(x0, 5r0)),

for every f ∈ Fx0,r0 . (For this one needs to observe that the collection Fx0,r0 is 
relatively compact in the uniform topology.)

2. There exists δ > 0 and j0 ≥ 1 such that for every j ≥ j0 and for any two lines D ∈ Gx

and D′ ∈ Gxj
satisfying ∠(D, D′) ≤ δ,

∣∣∣∣ 1
r0

∫
ϕx0,r0f dH1

|D − 1
rj

∫
ϕxj ,rj

fj dH1
|D′

∣∣∣∣ ≤ η,

for every f ∈ Fx0,r0 .

Given D ∈ Gx0 and D′ ∈ Gxj
, we put

c = 1∫
ϕx0,r0 dH1

|D

∫
ϕx0,r0 dμ, and cj = 1∫

ϕxj ,rj
dH1

|D′

∫
ϕxj ,rj

dμ.

Since the denominators in the fractions appearing in c and cj coincide, we can choose 
j0 larger if necessary to ensure that |cj − c| � ηδμ(B(x0, 5r0)) for all j ≥ j0. Together 
with fact (2), this remark ensures that given any two lines D ∈ Gx and D′ ∈ Gxj

with 
∠(D, D′) ≤ δ and j ≥ j0 we have that∣∣∣∣ c

r0

∫
ϕx0,r0f dH1

|D − cj

rj

∫
ϕxj ,rj

fj dH1
|D′

∣∣∣∣ � ηδμ(B(x0, 5r0)),

for every f ∈ Fx0,r0 . Combining the previous inequality with fact (1) above yields that 
if ∠(D, D′) ≤ δ and j ≥ j0, then for any f ∈ Fx0,r0 ,

∣∣∣ 1
r0

∫
ϕx0,r0f d(μ − cH1

|D) − 1
rj

∫
ϕxj ,rj

fj d(μ − cjH1
|D′)
∣∣∣

� ηδμ(B(x0, 5r0)).

The claimed estimate (A.1) now follows from (several applications of) the triangle in-
equality. �
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Appendix B. The proof of Proposition 7.17

This appendix gives a detailed proof of Proposition 7.17. We follow [14] quite closely.

B.1. Constructing the map A on π(Z)

Lemma B.1. Let (x, t1), (y, t2) ∈ S be such that

|x − y| ≥
√

λ max(t1, t2).

Then

|π⊥(x) − π⊥(y)| ≤
(
α + C

√
λ
)
|π(x) − π(y)|. (B.1)

Proof. Put r = min(λ−1/2|x − y|, 10). Then (x, r) ∈ S and π(y) ∈ π(B(x, 2|x − y|)), so 
we infer from Lemma 7.7 that

dist(y, D) �
√

λ|x − y|

for some line D ∈ Gx with ∠(D, D0) ≤ α. In particular, if YD denotes the projection of 
Y onto D, then (

1 + C
√

λ
)
|x − y| ≥ |x − yD| ≥

(
1 − C

√
λ
)
|x − y|. (B.2)

But, since ∠(D, D0) ≤ α,

|π⊥(x) − π⊥(yD)| ≤ α|π(x) − π(yD)|.

Projections contract distances, so we conclude from (B.2) that

|π⊥(x) − π⊥(y)| ≤ α|π(x) − π(y)| + C
√

λ|x − y|.

Finally, since |x −y| ≤ |π⊥(x) −π⊥(y)| + |π(x) −π(y)|, we arrive at the desired statement 
after noting that λ � 1. �
Corollary B.2. Suppose x, y ∈ C and t ≥ 0 are such that

|π(x) − π(y)| ≤ t, d(x) ≤ t, and d(y) ≤ t.

Then |x − y| � t.

Proof. We may assume |x −y| > 3t since otherwise there is nothing to prove. By definition 
we can find (X, s1) and (Y, s2) belonging to S, with |x −X| +s1 ≤ t and |y −Y | +s2 ≤ t. 
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But then (X, t) and (Y, t) both belong to S and |X − Y | > t. Therefore, Lemma B.1
yields that

|π⊥(X) − π⊥(Y )| � |π(X) − π(Y )|. (B.3)

But by the triangle inequality, |π(X) − π(Y ))| ≤ 3t, and therefore from (B.3) we infer 
that |π⊥(X) − π⊥(Y )| � t. Appealing to the triangle inequality again we conclude that

|π⊥(x) − π⊥(y)| � t.

Given that we are assuming that |π(x) − π(y)| ≤ t, the corollary follows. �
Corollary B.3. Let x, y ∈ Z. Then

|π⊥(x) − π⊥(y)| ≤ 2α|π(x) − π(y)|.

Proof. Assume x �= y. Given t ∈ (0, |x −y|), we can find pairs (X, t) and (Y, t) ∈ S where 
X and Y are arbitrarily close to x and y respectively, and d(X, Y ) > t. Since 

√
λ � α, 

Lemma B.1 now yields that

|π⊥(X) − π⊥(Y )| ≤ 2α|π(X) − π(Y )|,

and the statement follows since projections are continuous. �
Define the function A on π(Z) by setting

A(π(x)) = π⊥(x) for x ∈ Z.

Keeping in mind Corollary B.3, we see that A is well defined on π(Z), and moreover, 
A : π(Z) → D⊥

0 is 2α-Lipschitz:

|A(π(x)) − A(π(y))| ≤ 2α|π(x) − π(y)|. (B.4)

B.2. Extending A over D0

We now select a Whitney cover relative to the function D. Set I to be a collection of 
dyadic intervals in R.

For p ∈ 10I0\π(Z) we have D(p) > 0. Set Ip to be the largest dyadic interval in I
containing p satisfying

diam Ip ≤ 1
20 inf

u∈Ip

D(u).

The interval Ip exists because D(p) > 0 and D is Lipschitz.
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Consider the collection of these intervals and relabel them Imax = {Ij}j . The intervals 
Ij are disjoint and the collection of 2Ij is a cover of 10I0 \ π(Z).

The following lemma collects standard properties regarding this collection of intervals 
and follows immediately from the definitions (and using that D is 1-Lipschitz), see [14]
page 847 or [29], page 248.

Lemma B.4. The following assertions hold.

1. If p ∈ 10Ij then 10 diam Ij ≤ D(p) ≤ 60 diam Ij.
2. Whenever 10Ii ∩ 10Ij �= ∅, then

diam Ij � diam Ii � diam Ij .

3. There exists N > 0 (an absolute constant) such that for every i, at most N intervals 
Ij satisfy 10Ii ∩ 10Ij �= ∅.

Lemma B.5. For any Ii ∈ Imax, there exist a ball Bi ∈ S such that

1. diam Ii ≤ r(Bi) � diam Ii,
2. d(π(c(Bi)), Ii) ≤ 120 diam Ii, and
3. d(π(Bi), Ii) � diam Ii.

Proof. Let p ∈ Ii. We can find (x, t) ∈ S such that d(p, π(x)) + t ≤ 2D(p) ≤ 120 diam Ii

(see part (1) of Lemma B.4). The ball B(x, max{t, diam(Ii)}) satisfies properties (1) and 
(2), from which (3) immediately follows. �
Definition (The function Ai). For each of the balls Bi ∈ S, we set Di ∈ Gc(Bi) to be such 
that αμ,Di

(Bi) ≤ ε with ∠(Di, D0) ≤ α.
Put Ai to be the affine function Ai : D0 → D⊥

0 whose graph is Di = DBi
. Then 

certainly Ai is Lipschitz of constant ≤ 2α.

Lemma B.6. Whenever 10Ii ∩ 10Ij �= ∅,

1. d(Bi, Bj) � diam Ij,
2. for any L > 1, |Ai(q) − Aj(q)| � L2λ diam Ij for any q ∈ LIj, and
3. dist(Di, Dj ∩ Bj) � λ diam(Ii) and |(Ai − Aj)′| � λ.

Proof. For (1) we apply Corollary B.2: If 10Ii ∩ 10Ij �= ∅, then �(Ri) ≈ �(Rj), so 
�(Bi) ≈ �(Bj) (see part (1) of Lemma B.5). But then d(π(Bi), π(Bj)) � �(Ii) (see part 
(3) of Lemma B.5). Therefore applying Corollary B.2 with x, y to be the centers of Bi

and Bj , and t a suitable constant multiple of diam(Ij) yields the required inequality.
Given (1), the balls Bi, Bj both lie in S, satisfy r(Bi) ≈ r(Bj) and CBi ∩ CBj �= ∅, 

for some absolute constant C > 0. We may therefore infer from Lemma 7.8 that
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dist(y, Di) � λ · r(Bi) for all y ∈ Dj ∩ Bj , (B.5)

from which property (3) is an immediate consequence (recalling that r(Bi) ≈ r(Bj)).
Finally, since Di and Dj both form an angle ≤ α with D0, statement (2) also follows 

from (B.5) and parts (1) and (3) of Lemma B.5. �
Lemma B.7. There exists C > 1 such that if x ∈ F\Z then π(x) ∈ 3Ii and x ∈ CBi for 
some Ii ∈ Imax.

Proof. Let x ∈ F \ Z. We have that either

1. π(x) ∈ π(Z) and there exists y ∈ Z such that π(y) = π(x),
2. or π(x) ∈ 3Ii for some i and by part (3) of Lemma B.5, there exists C > 1 such that 

π(x) ∈ π(CBi).

We first will rule out that possibility (1) can occur. To this end, we notice that B(y, 2|x −
y|) belongs to S, and x ∈ π(B), so by Lemma 7.7, dist(x, D) � λ|x − y| where D ∈ Gy

satisfies ∠(D, D0) ≤ α. On the other hand, π(x) = π(y) and so |x − y| � dist(x, D), 
which is absurd given that λ � 1.

We may therefore assume that (2) holds. Then CBi ∈ S and π(x) ∈ π(CBi). There-
fore, Lemma 7.7 ensures that x ∈ 3CBi, and the proof is complete. �

The previous lemma has the following useful consequence.

Corollary B.8. For any x ∈ F ,

d(x) � D(π(x)) ≤ d(x).

Proof. If d(x) = 0, the conclusion is obvious. Otherwise, π(x) ∈ 3Ii for some i. It follows 
from the definition of the intervals Ii, and Lemmas B.4 and B.5 that D(π(x)) � r(Bi). 
On the other hand, by Lemma B.7) x ∈ CBi, and so d(x) � r(Bi). �
Definition. Choose a partition of unity ψi subordinate to the cover (2Ii)i satisfying

‖ψ′
i‖∞ � 1

diam Ii
, and ‖ψ′′

i ‖∞ � 1
(diam Ii)2 .

For p ∈ D0\π(Z), we define A as

A =
∑

Ii∈Imax

ψi · Ai,

Lemma B.9. For every p ∈ 3I0,

|A(p)| � λ.
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Proof. From Corollary 7.11, we have

F ∩ π−1(10I0) ⊂
{

dist(·, D0) � λ
}

.

Since Z ⊂ F , we may assume that (p, A(p)) /∈ Z. We want to prove that A(p) =∑
k ψk(p)Ak(p) satisfies |A(p)| � λ. Since 

∑
k ψk(p) ≤ 1, it suffices to prove that

|Ak(p)| � λ whenever ψk(p) �= 0.

Fix such a k. Consider the ball Bk for which Dk is the graph of Ak, then (p, Ak(p)) ∈ CBk

for some C > 0 (Lemma B.5). But now we may apply Corollary 7.10 to find that 
|Ak(p)| = dist((p, Ak(p)), D0) � λ. �
Lemma B.10. A : 3I0 → D⊥

0 is a Cα-Lipschitz function.

Proof. Fix p, q ∈ 3I0.
If p, q ∈ π(Z) this has already been proved (recall (B.4), so we will assume that 

p /∈ π(Z), and so p ∈ 2Ii for some i.
First suppose that q /∈ π(Z), so q ∈ 2Ik for some k, and 

∑
k ψk(p) =

∑
k ψk(q) = 1.

Case 1: q ∈ 1000Ii. Then write

|A(p) − A(q)| ≤
∑

j

ψj(p)|Aj(p) − Aj(q)]|

+
∑

j

|ψj(p) − ψj(q)||Aj(q) − Ak(q)|

The first term is bounded by 2α|p − q|. For the second term, we infer from part (2) of 
Lemma B.6 (and Lemmas B.4, B.5) that for any j where ψj(p) or ψj(q) is non-zero,

|Aj(q) − Ak(q)| � λ�(Rj).

On the other hand, |ψj(p) − ψj(q)| � 1

(Ij) , so, insofar as the number of j with either 

ψj(p) or ψj(q) is non-zero is bounded by an absolute constant,

|A(p) − A(q)| ≤ 2α|p − q| + Cλ|p − q| ≤ 3α|p − q|. (B.6)

Case 2: q /∈ 1000Ii. Then |p − q| � max{diam(Ii), diam(Ik)}. Consider the pair x =
c(Bk) and t = r(Bk). Then |x − c(Bi)| � max(r(Bi), t) �

√
λ max(r(Bi), t), and so 

Lemma B.1 yields that

|Ak(π(c(Bk))) − Ai(π(c(Bi)))| = |π⊥(x) − π⊥(c(Bi))|
� α|π(c(B )) − π(c(B ))|.

(B.7)

k i
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However, Part (2) of Lemma B.6 ensures that for every � with π(c(Bi)) ∈ 2I
,

|A
(π(c(Bi))) − Ai(π(c(Bi)))| � λr(Bi).

By the same logic this inequality also holds with i replaced by k. Therefore,

|Ak(π(c(Bk))) − Ai(π(c(Bi)))| � α|π(c(Bk)) − π(c(Bi))|

But, c(Bi) ∈ 1000Ii (property (2) of Lemma B.5), so we may use the calculation (B.6)
to infer that

|A(p) − A(π(c(Bi)))| = |A(p) − π⊥(c(Bi))| � α diam(Ii),

and, similarly,

|A(q) − A(π(c(Bk)))| � |A(q) − π⊥(c(Bk))| � α diam(Ik).

So by the triangle inequality we get

|A(p) − A(q)| � α
[
|π(c(B
)) − π(c(Bk))| + diam(I
) + diam(Ik)

]
� α|p − q|.

If instead it holds that q ∈ π(Z) then recall that A(q) = π⊥(x) for q = π(x), and in 
the previous calculation we may replace the role of (c(Bk), r(Bk)) with the pair (x, t)
where q = π(x) and t < diam(Ii). Then Lemma B.1 yields that |Ai(π(c(Bi))) − A(q)| �
α|c(Bi) − q| and the desired estimate follows from repeating estimates from Case 2 
above. �
Lemma B.11. If p ∈ 2Ii then

|A′′(p)| � λ

diam Ii
� λ

D(p) .

Proof. We mimic the calculation in Lemma 3.13 of [14]. Observe that

A′′(p) =
∑

j

A′
j(p)ψ′

j(p) +
∑

j

Aj(p)ψ′′
j (p).

Since 
∑

j ψ′
j =

∑
j ψ′′

j = 0, we have

|A′′(p)| ≤
∑

j

|A′
j(p) − A′

i(p)||ψ′
j(p)| +

∑
j

|Aj(p) − Ai(p)||ψ′′
j (p)|

For each j with 2Ij ∩ 2Ii �= ∅, part (3) of Lemma B.6 ensures

|(Aj − Ai)′| � λ, and |(Aj(p) − Ai(p))| � λ diam(Ij).
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The result follows using the fact that the intervals 2Ij have bounded overlap, and the 
properties of the partition of unity ψj . �
B.3. Localization of A

We set ψ ≡ 1 on 3
2I0 with supp(ψ) ⊂ 2I0.

We define the function A : D0 → D⊥
0 ,

A =
{

ψ · A on 3I0,

0 on D0 \ 3I0.

Lemma B.12. The function A is Cα-Lipschitz, and

|A′′(p)| � λ

D(p) .

This result verifies property (1) of Proposition 7.17.

Proof. The function A is Cα-Lipschitz on 3I0, and supp∈3I0
|A(p)| � λ (see Lemma B.9). 

Since ‖ψ‖Lip � 1 and supp(ψ) ⊂ 2I0, we infer that A is Cα-Lipschitz (λ � α). Regarding 
the second derivative property, if ψ′(p) �= 0 or ψ′′(p) �= 0, then dist(p, I0) � 1, so 
diam(Ii) � 1 for any Ii with p ∈ 2Ii. But then if Bi ∈ S is the ball associated to Ii, 
r(Bi) � 1 and so Corollary 7.10 ensures that both

|A′
i(p)| � λ and |Ai(p)| � λ.

There are at most a constant number of intervals Ii such that p ∈ 2Ii so we get that

|A(p)| � λ and |A′(p)| � λ.

(The first property of course also follows from Lemma B.9.) Since ‖ψ′‖∞ + ‖ψ′′‖∞ � 1, 
we obtain the desired bound from Lemma B.11. �
B.4. Concentration around the graph of A

In this section we prove that every point in F will be very close to the graph Γ of Ã, 
defined as Ã(p) = (p, A(p)) for p ∈ R. Let us first record an immediate consequence of 
Lemma B.9.

Corollary B.13. One has

Γ ⊂
{

dist(·, D0) � λ
}

.
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Indeed, Lemma B.9 ensures that Γ ∩ π−1(3I0) ⊂ {dist(·, D0) � λ}, but outside of 3I0
we have that A(p) = 0. This result verifies property (2) of Proposition 7.17.

We now move onto verifying property (3) of Proposition 7.17. In view of Lemma B.8, 
this property is an immediate consequence of the following lemma.

Lemma B.14. For every x ∈ F the following is satisfied:

|x − Ã(π(x))| � λd(x).

Proof. Certainly Z ⊂ Γ, and so we may assume that x ∈ F\Z. Lemma B.7 then ensures 
that π(x) /∈ π(Z). First suppose p ∈ 3

2I0, so that

|x − Ã(π(x))| = |π⊥(x) − A(π(x))|

=
∣∣∣π⊥(x) −

∑
i

ψi(π(x))Ai(π(x))
∣∣∣

≤
∑

i

ψi(π(x))
∣∣∣π⊥(x) − Ai(π(x))

∣∣∣.
If ψi(π(x)) �= 0 then π(x) ∈ 3Ii and Lemma B.7 ensures that x ∈ CBi, while from 

the definition of Ii and Lemma B.8 we find that �(Ii) ≈ r(Bi) ≈ d(x).
Since CBi ∈ S we can find a line D in Gc(Bi) such that ∠(D, D0) ≤ α and αμ,D(CBi) ≤

ε. Lemma 7.8 (applied with L an absolute constant) yields that

∠(D, Di) � λ.

On the other hand, since x ∈ F , Lemma 7.7 ensures that dist(x, D) � λr(Bi). Thus, 
combining these observations yields

dist(x, Di) � λr(Bi) � λd(x).

Since ∠(Di, D0) ≤ α, this in turn implies that∣∣∣π⊥(x) − Ai(π(x))
∣∣∣� λd(x).

On the other hand, if p /∈ 3
2I0, we have that d(x) � 1, so the desired estimate is an 

immediate consequence of Corollaries 7.11 and B.13. The proposition is proved. �
It remains to verify the final property in Proposition 7.17, which we restate here:

Lemma B.15. If B(x, r) ∈ S and D ∈ Gx satisfies ∠(D, D0) ≤ α and αμ,D(B(x, r)) ≤ ε, 
then for every p ∈ π(B(x, r)),

dist(Ã(p), D) � λ · r.
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Proof. We first consider the case when p ∈ π(Z). Then A(p) ∈ F and so Lemma 7.7
ensures that dist(A(p), D) � λ · r. If p /∈ π(Z), then p ∈ 2Ii for some i. First suppose 
that p ∈ 3

2I0. Notice that r ≥ d(x) � D(π(x)) (where Corollary B.8 has been used in 
the second inequality). Since the function D(p) is 1-Lipschitz, it follows that D(p) � r

and so by construction �(Ii) � r. Therefore, from Lemma B.5, π(Bi) ⊂ π(B(x, Cr)) and 
therefore from Lemma 7.7 Bi ∩ B(x, 3Cr) �= ∅. But now from Lemma 7.8, dist(y, D) �
λ · r for every y ∈ Di ∩ Bi. Insofar as p ∈ 3

2I0, Ã(p) is a convex combination of points on 
the lines Di where p ∈ 2Ii, the result follows.

Finally, if p /∈ 3
2I0, then r � 1 (x ∈ B0). In this case the result follows from Corol-

lary B.13 and Corollary 7.10. �
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