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ABSTRACT: Flavodiiron NO reductases (FNORs) are important enzymes in microbial 
pathogenesis, as they equip microbes with resistance to the human immune defense agent nitric 
oxide (NO). DFT calculations predict that a network of second coordination sphere (SCS) 
hydrogen bonds is critical for the key N-N coupling step in the NO reduction reaction catalyzed 
by FNORs. In this study, we report the synthesis of a model complex of FNORs with pendant 
hydrogen bond donors. For this purpose, the ligand H[BPMP] (= 2,6-bis[[bis(2-
pyridylmethyl)amino]methyl]-4-methylphenol) was modified with two amide groups in the SCS. 
Reaction of the precursor complex [Fe2(BPMP(NHCOtBu)2)(OAc)](OTf)2 (1) (OTf = triflate 
anion) with NO in the presence of base led to the surprising isolation of a diiron mononitrosyl 
complex, [Fe2(BPMP(NHCOtBu)(NCOtBu))(OAc)(NO)](OTf) (2) and a triiron decomposition 
product, [Fe3(BPMP(NHCOtBu)2(OAc)2(μ-O)2(ONO)](OTf) (3), which were both structurally 
characterized. Complex 2 models the corresponding mononitrosyl adduct in FNORs. This result 
points towards a strategy that can be used to stabilize mononitrosyl diiron complexes, using the 
SCS.  

 

 

 



 2

Nitric oxide (NO) is an important molecule in biology, and the discovery of its relevance in many 
physiological and pathological events in mammals paved the way for important applications of 
NO in human health.1-4 At higher, micromolar concentration, NO is an important immune defense 
agent that the human body uses to fight off pathogens.5 Typically after infecting the human body, 
pathogens are weakened by NO and other toxic agents, generated, for example, by activated 
macrophages.5,6 However, some pathogens (e.g. Escherichia coli, Desulfovibrio gigas, Moorella 
thermoacetica, Trichomonas vaginalis, Klebsiella pneumoniae, Salmonella typhimurium, etc.)7-13 
have evolved flavodiiron NO reductases (FNORs) to protect themselves from NO toxicity. These 
enzymes belong to the larger class of flavodiiron proteins (FDPs). FNORs degrade NO following 
the reaction:  

                    2NO + 2e + 2H   N2O + H2O              (1) 
In this way, FNORs support microbial pathogenesis, leading to chronic infections that are harder 
to cure for our immune system. 
 
Recent studies suggest that hydrogen bonding interactions by second coordination sphere (SCS) 
groups in the active sites of FNORs play a key role in catalysis, and enable direct NO reduction 
by these enzymes.14-15 Specifically, mutagenesis studies using M. thermoacetica (Mt) FDP 
revealed a ~7-fold and ~34-fold reduction in NO reductase activity when the tyrosine and histidine 
residues (Y195 and H25l, respectively) in the active site are substituted for non-hydrogen bonding 
residues.11 Results by Biswas et al. show that the variant Y197F of Thermotoga maritima (Tm) 
FDP with the hydrogen-bond donating Tyr in the active site removed has a similar affinity for NO 
as the wild type enzyme, leading to the formation of the critical [hs-{FeNO}7]2 intermediate (hs = 
high-spin). Here, we use the Enemark-Feltham notation {FeNO}n, with n being the total number 
of valence electrons from the Fe(d) and NO(*) orbitals.16 However, at this point, the reaction 
stops, and the variant cannot go on to produce N2O. These studies support the important role of 
hydrogen bonding interactions in the SCS in FNORs for NO reductase activity. However, 
structural characterization of the NO intermediates in the enzymes is challenging. Previous studies 
on model complexes have shown that synthetic inorganic model systems can mimic FNOR 
reactivity and allow for the stabilization and study of important intermediates; therefore, we set 
out to study these SCS interactions in well-defined diiron model complexes.14-15, 17-21 
 
The ligand H[BPMP(NHCOtBu)2], a variation of the ligand H[BPMP] (2,6-bis[[bis(2-
pyridylmethyl)amino]methyl]-4-methylphenol), was synthesized based on a reported procedure 
with a modified workup as described in the Experimental Section in the SI.22 This ligand was 
chosen due to the acidic proton present in the amide functional groups and the steric protection 
provided by the tert-butyl groups.  
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Scheme 1. Metallation of the H[BPMP(NHCOtBu)2] ligand, resulting in the diiron complex 1. We 
posit that the amide groups are coordinated to the iron centers in the precursor, as shown on the 
right. 
 
The ligand H[BPMP(NHCOtBu)2] is first deprotonated by one equivalent of KOMe in methanol, 
then metallated with two equivalents of iron(II) triflate, Fe(OTf)22CH3CN, and finally, one 
equivalent of NaOAc is added for acetate to act as an additional bridge between the iron 
centers (see Scheme 1). The product is then worked up using the procedure mentioned in the SI 
and recrystallized to yield the precursor complex [Fe2(BPMP(NHCOtBu)2)(OAc)](OTf)2 (1). 
Further characterization of this complex by UV-Vis spectroscopy shows a band at 389 nm, which 
shifts to 442 nm upon nitrosylation (see Figure S10). The 4.2-K/53-mT Mössbauer spectrum of 
this complex shows a single quadrupole doublet with an isomer shift ( of 1.19 mm/s and a 
quadrupole splitting parameter (EQ) of 2.85 mm/s, indicative of the presence of hs-FeII centers in 
this compound (see Figure 1). 
 

 
 

Figure 1. The Mössbauer spectrum of complex 1 shows a quadrupole doublet with  = 1.19 mm/s 
and EQ = 2.85 mm/s, collected at 4.2 K and an applied magnetic field of 53 mT oriented parallel 
to the direction of propagation of the  beam.  
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Figure 2. Overlay of the IR spectra of complex 1 and the corresponding reaction product with NO 
(1/NO) in dichloromethane (DCM), showing the formation of a new band at 1748 cm-1, 
characteristic of the N-O stretch of hs-{FeNO}7 complexes (green line). In the presence of 
triethylamine as a base, the N-O stretching band shifts to lower energy (dark purple line) with 
distinct features at 1732 and 1717 cm-1. 
 
Reaction of complex 1 with an excess amount of NO gas in CH2Cl2 at 25 oC yielded a brown 
crystalline material after recrystallization (complex 1/NO). IR spectroscopy shows a new signal at 
1747 cm-1 for the resulting solid, indicating the formation of a hs-{FeNO}7 complex (see Figures 
S3 and S4). Reaction of complex 1 with NO in the presence of base produced a new hs-{FeNO}7 
complex, evident from a shift of the N-O stretch from 1748 cm-1 (in solution) to lower energy, 
with two prominent features at 1732 and 1717 cm-1 (see Figure 2). A 15NO experiment further 
supports the assignment of these peaks as N-O stretches (see Figure S9). This indicates that the 
amide groups can be deprotonated. Interestingly, X-ray crystallography of the product from the 
nitrosylation reaction of 1 in the presence of base revealed a new diiron mononitrosyl complex 
[Fe2(BPMP(NHCOtBu)(NCOtBu))(OAc)(NO)](OTf) (2; see Figure 3).  
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Figure 3. Crystal structure of complex 2 with ellipsoids drawn at 50% probability (CCDC# 
2084747). The triflate counter anion, solvent molecules, and hydrogen atoms (except for N-H) are 
omitted for clarity.  
 
EPR data of complex 1 in the presence of NO support the formation of a dinitrosyl species in 
solution after nitrosylation (EPR silent), which transforms into a mononitrosyl species upon the 
addition of base, evident from the appearance of an EPR signal around g = 2, typical for these 
species (see Figure S14).23 These results strongly support the idea that upon deprotonation, the 
amide group coordinates strongly to one of the iron centers, stabilizing the diiron mononitrosyl 
core in 2. In the EPR data, we frequently noticed a g = ~4.3 signal, indicating some kind of 
decomposition or oxidation of the complex. Characterization of this compound by X-ray 
crystallography yielded a surprising all-ferric triiron complex (3) as shown in Figure 4. EPR 
spectroscopy shows that this species indeed gives rise to the g = ~4.3 signal, as shown in Figure 
S15. Notably, in complex 3 the two oxo bridges are stabilized by hydrogen bonding to the amide 
groups in the SCS of the ligand, as indicated in Figure 4. 
 
We further hypothesize that complex 1 binds NO only weakly in solution, due to the competitive 
ligation of the oxygen atoms of the amide groups, leading to a mixture of species, as indicated in 
Figure S7. The presence of multiple NO complexes in solution in these reactions is further 
suggested by the solution IR data in Figure 2, showing broad N-O stretching bands for both 1/NO 
and 2. The diiron mononitrosyl complex 2 was then recrystallized with NO-saturated DCM and 
NO-saturated hexanes. 
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Figure 4. Crystal structure of the triiron complex [Fe3(BPMP(NHCOtBu)2(OAc)2(μ-
O)2(ONO)](OTf) (3) with ellipsoids drawn at 50% probability (CCDC# 2126171).  The triflate 
counter anion, solvent molecules, and hydrogen atoms (except for N-H) are omitted for clarity. 
The hydrogen bond (NHO) distance is ~2.0 Å for both amides. 
 
Complex 2 has a bent FeNO moiety typical for hs-{FeNO}7 complexes.18, 23-27 It is important to 
note that the formation of diiron mononitrosyl complexes is rare in diiron systems. Complex 2 is 
only the second example of such a complex in the literature, the other example is the complex 
[Fe2(N-Et-HPTB)(NO)(DMF)3](BF4)3 reported by Majumdar and coworkers, which was 
generated by using a redox controlled strategy with a thioacetate-bridged precursor.18, 23 The NO 
and FeNO bond distances of complex 2 are 1.16(5) and 1.82(4) Å, respectively, which are very 
similar to those of the parent dinitrosyl complex, [Fe2(BPMP)(OPr)(NO)2](BPh4)2 (OPr = 
propionate) (1.17 and 1.79 Å) without the amide groups in the SCS.25 The FeFe distance of 
complex 2 is 3.57 Å. FeO bond distances of the bridging phenolate are 2.02(3) and 2.10(3) Å, 
whereas those of the bridging acetate are 2.02(3) and 2.11(3) Å for the hs-{FeNO}7 moiety and 
the hs-FeII center, respectively. The Fe-O(amide) bond distance is 2.06(3) Å. The pendant amide 
forms a strong hydrogen bond with the bridging acetate ligand (NHO distance: 2.10 Å; NO 
distance: 2.95 Å). A similar hydrogen bond to the bridging carboxylate is also observed in the 
active site of T. maritima FDP, with residue Y197 proposed to be the hydrogen bond donor to the 
bridging carboxylate.11  
 
In conclusion, we have synthesized a new model system for FNORs that can form a rare diiron 
mononitrosyl complex. The SCS amide groups in the ligand scaffold are versatile and can form a 
hydrogen bond to the bridging acetate ligand and/or affect the primary coordination sphere of the 
iron centers by coordinating to iron via their carbonyl oxygens. Deprotonation enhances binding 
to iron, blocking NO coordination, which allowed us to isolate a pure diiron mononitrosyl 
complex. Future studies will focus on exploring the potentially interesting electronic structure of 
2, and on designing a model system that allows for hydrogen bonding of the SCS groups to the 
NO ligand, without competing with NO for binding to the iron centers. 
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