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Effect of electric fields on the director field and shape of nematic tactoids
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Tactoids are spindle-shaped droplets of a uniaxial nematic phase suspended in the coexisting isotropic
phase. They are found in dispersions of a wide variety of elongated colloidal particles, including actin, fd
virus, carbon nanotubes, vanadium peroxide, and chitin nanocrystals. Recent experiments on tactoids of chitin
nanocrystals in water show that electric fields can very strongly elongate tactoids even though the dielectric
properties of the coexisting isotropic and nematic phases differ only subtly. We develop a model for par-
tially bipolar tactoids, where the degree of bipolarness of the director field is free to adjust to optimize the
sum of the elastic, surface, and Coulomb energies of the system. By means of a combination of a scaling
analysis and a numerical study, we investigate the elongation and director field’s behavior of the tactoids as
a function of their size, the strength of the electric field, the surface tension, anchoring strength, the elastic
constants, and the electric susceptibility anisotropy. We find that tactoids cannot elongate significantly due
to an external electric field, unless the director field is bipolar or quasibipolar and somehow frozen in the
field-free configuration. Presuming that this is the case, we find reasonable agreement with experimental
data.
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I. INTRODUCTION

If an isotropic phase of rodlike colloidal particles under-
goes a phase transition leading to a coexisting, uniaxially
ordered nematic phase, then this typically happens via an
intermediate stage characterized by an isotropic background
phase in which are dispersed spindle-shaped droplets called
tactoids (see Fig. 1). These tactoids eventually sediment and
coalesce to form a macroscopic nematic phase, although this
may take a very long time [1–6]. First discovered in 1925 by
Zocher in vanadium pentoxide sols [7], who also coined the
term tactoids (“Taktoide” in German), they have since been
observed in a plethora of molecular, polymeric, and colloidal
lyotropic liquid crystals. These include dispersions of tobacco
mosaic virus particles [8], iron oxyhydroxide nanorods [9],
polypeptides [10], carbon nanotubes [5,11,12], fd virus par-
ticles [13,14], F-actin fibers [15], actin filaments [16,17],
chromonic liquid crystals [18], amyloid fibers [19] and cel-
lulose nanocrystals [20–23].

The peculiar, pointy, and elongated shape of the tactoids,
which reflects the underlying symmetry of the nematic phase,
was initially explained in terms of the surface anchoring of the
director field, presumed to be uniform [24]. The fact that the
degree of elongation depends on the volume of the droplets,
and that polarization microscopic images show their director
field to be bipolar rather than uniform, at least if they are
sufficiently large [5], reveals that this explanation is incom-
plete. In a bipolar configuration the director field conforms
to a bi-spherical coordinate system, illustrated in Fig. 1 and
in more detail in Fig. 2. If the focal points of the coordinate
system reside on the poles of the droplets, representing proper

surface defects known as boojums [25], the director field is
then properly bipolar.

Theoretical studies of van Kaznacheev et al. [26,27] and
Prinsen et al. [28–30] have revealed that the boojums are
by and large virtual, situated outside of the droplet in an
extrapolated director field, and that the director field is al-
most always incompletely bipolar and hence only quasibipolar
[4,26,28,31–33]. The smaller the droplet, the further the vir-
tual boojums move away from the poles of the droplets and the
more strongly the director field resembles that of a spatially
uniform director field that represents its ground state. The
full crossover from uniform to bipolar director fields has only
recently been observed experimentally for tactoids in disper-
sions of carbon nanotubes in chlorosulfonic acid, both in bulk
and sessile, that is, on planar surfaces [5,12] (see Fig. 1).

What has emerged is a picture in which there are two
length scales that predict the structure and shape of tactoids
of a certain size. Following de Gennes, these length scales
may perhaps be called extrapolation lengths, and are de-
fined as ratios of elastic constants and surface energies [34].
These surface energies are the bare surface tension between
the isotropic and nematic phases, and the surface anchoring
energy penalizing a deviation from the preferred planar an-
choring of the director field of elongated colloidal particles
along the interface [35]. Droplets that are smaller than the
smallest of these two length scales, that is, the length scale
associated with the surface anchoring, tend to have a uniform
director field and elongated shape. If a droplet is larger than
the larger extrapolation length, which is associated with the
bare surface tension, then it tends to be bipolar and nearly
spherical. Droplets of a size in-between these two length
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FIG. 1. (a) Polarized optical micrograph illustrating a number
of nematic tactoids of different size and extinction pattern associ-
ated with the director field conformation, in a solution of carbon
nanotubes in chlorosulfonic acid at 1000 ppm. Arrows show the
orientation of crossed polarizers. Schematics of (b) a bipolar tactoid
with boojum surface defects at the poles, (c) a homogeneous tactoid,
and (d) an intermediate tactoid described by virtual boojums outside
of the droplet. The parameters R and r represent the major and minor
axes of the tactoid, respectively. Adopted from Ref. [5].

scales remain elongated but have director field in-between
uniform and bipolar (see Fig. 1).

The situation becomes more complex if yet another length
scale enters the stage. For instance, if the nematic is not
uniaxial but chiral, that is, cholesteric, then the cholesteric
pitch interferes with these two length scales. This gives rise to
an additional regime separating uniaxial from twisted nematic
(cholesteric) configurations [30,36–38]. The same is true if an

FIG. 2. Cross section (solid) and director field (dashed) of a
tactoid presumed in our calculations. The droplet is cylindrically
symmetric about its main axis. 2R denotes the length of a tactoid and
2r its width. 2R̃ is the distance between the virtual boojums, which
are the focal points of the (extrapolated) director field. For R = R̃, the
virtual boojums become actual boojums, i.e., surface point defects.
Also indicated is α, the opening angle of the spindle-shaped droplet
(see also the main text).

external electric or magnetic field is applied to nematic rather
than cholesteric tactoids. The impact of a magnetic field on
tactoids of vanadium pentoxide fibers dispersed in water was
investigated experimentally and theoretically by Kaznacheev
et al., who found that an externally applied magnetic field
stretches tactoids, at least if they are sufficiently large [26].
This, indeed, points at the existence of another pertinent
length scale.

The existence of such a length scale was recently con-
firmed by Metselaar et al., who studied the impact of a
high-frequency electric ac field on tactoids of chitin fibers
dispersed in water [39]. These authors find very large elon-
gations of tactoids in the presence of an electric field, with
aspect ratios increasing from about 2 in zero field to about
20 for droplets larger than some critical size. Their numerical
simulations, based on the lattice Boltzmann method, mimic
this observation, showing that in order to obtain a very large
length-to-breath or aspect ratio for the droplets, a large an-
choring strength is required. Interestingly, large anchoring
strengths are also known to lead to quite elongated tactoids in
zero field, but the effect is apparently somehow dramatically
enhanced by an electric field that arguably aligns the fibers
and hence also the director field along the field direction.

If the planar anchoring of the director field to the interface
between the coexisting isotropic and nematic phases were
absolutely rigid and strictly bipolar, then the theory of Kaz-
nacheev and collaborators [26] would predict an in-principle
unbounded growth of the length of the tactoids with increasing
electric or magnetic field strength [40]. Actually, the chitin
tactoids are not actually strictly bipolar but quasibipolar, in
which case the anchoring would be imperfect.

Interestingly, in the lattice Boltzmann simulations of Met-
selaar et al., the director field seems to respond to the external
alignment field not by keeping the bispherical geometry and
simply stretching it, as is presumed in the calculations of
Kaznacheev and coworkers. Instead, the director field seems
to become uniform in the center of the droplet to bend sharply
close to the interface in order to accommodate planar anchor-
ing [41]. This is highly surprising because such a change in
the geometry of the director field would require very large
local deformation of the director field and associated with that
would be a large elastic free energy of deformation. We should
perhaps not exclude the possibility that the limited spatial
resolution of the simulations produces such a strong director
field deformation [41].

In this paper we delve more deeply into the problem of
how external fields deform nematic tactoids, extending the
theory of Kaznacheev et al. [26] by allowing for imperfect
anchoring. By means of a combination of a scaling analy-
sis and a numerical minimization of a free energy with a
prescribed director field geometry and droplet shape, we con-
clude that the external field cannot produce aspect ratios that
exceed those in zero field. We find a highly complex behavior
characterized by no fewer than five different scaling regimes
for the level of elongation and director field deformation of
tactoids. If we fix the geometry of the equilibrium director
field at zero field, and let only the aspect ratio respond to
the external field, then we do find very large aspect ratios
for large field strengths. Our predictions agree qualitatively
with the experimental findings of Metselaar et al. [39]. This
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seems to suggest that the droplet shape and the director field
relax with different rates in response to an external field that is
suddenly switched on. In followup work, we intend to study a
two-mode relaxational dynamics model to investigate further
the observations of Metselaar et al. [39].

The remainder of the paper is structured as follows. In
Sec. II, we present our free energy that consists of a contribu-
tion of the Oseen-Frank elastic free energy, a Rapini-Papoular
surface free energy, and a Coulomb free energy associated
with the electric field. In Sec. III, we work out the scaling
theory of fully bipolar and quasibipolar droplets in the pres-
ence of an external field, producing the various relevant length
scales in the problem.

In Sec. IV, we compare the results of the variational theory
that we evaluate numerically with our findings of the scaling
theory, and find a very good agreement. Finally, in Sec. V
we summarize our findings, compare our predictions with the
experimental results of Metselaar et al. [39], and discuss the
potential implications for our understanding of the relaxation
dynamics of nematic tactoids.

II. FREE ENERGY

We consider a nematic droplet suspended in an isotropic
fluid medium. The free energy F describing the droplet in an
external electrical field consists of a sum of three terms

F = FE + FS + FC, (1)

representing the Frank elastic free energy associated with
a potentially deformed director field FE, an interfacial free
energy FS, and a Coulomb energy FC.

Focusing on twist-free bipolar director fields, the Frank
elastic free energy of the droplet reads as [42]

FE =
∫ [

1

2
K11( �∇ · �n)2 + 1

2
K33(�n × ( �∇ × �n))2

−1

2
K24 �∇ · (�n �∇ · �n + �n × ( �∇ × �n))

]

dV, (2)

where the integration is over the entire volume V of the
droplet, �n represents the position-dependent director field, and
K11, K33, and K24 are the elastic moduli of the splay, bend,
and saddle-splay deformations, respectively [34]. Here, we
do not allow for twisted director fields that may arise if the
bend elastic constant is sufficiently small [37]. Note that these
parity-broken structures are anyway suppressed if the tactoids
are elongated [30].

Within a Rapini-Papoular approximation [43], the interfa-
cial free energy can be written as

FS = σ

∫

[(1 + ω(�q · �n)2]dA, (3)

where σ is the interfacial tension between the nematic phase
of the droplet and isotropic medium, ω is a dimensionless
anchoring strength, and the integration is over the interfacial
area A of the droplet. We presume that ω > 0, implying that
the anchoring penalizes a director field �n that is not parallel
to the interface, that is, at right angles to the surface normal
�q. Rodlike particles prefer a planar anchoring of the nematic
at the interface with the coexisting isotropic phase for entropy

reasons [2,35,44]. In principle, both the surface tension and
anchoring strength could depend on the curvature of the inter-
face, but even for very small droplets the effect seems to be
very small [33].

Finally, the Coulomb energy of a nematic droplet in an
electric field �E can be written as [34,45]

FC = − 1

8π
εa

∫

(�n · �E )2dV, (4)

where εa = ε‖ − ε⊥ � 0 is the dielectric susceptibility
anisotropy of the dispersion of rodlike particles, which can
be described as a second-rank tensor with components ε‖ and
ε⊥ parallel and perpendicular to the droplet axis [46]. Note
that we ignore a potential permanent dipole moment on the
particles and that we have not explicitly written a constant
term that is not a function of the director field. It is important
to note that both ε‖ and ε⊥ are not all that different from the
dielectric constant of the isotropic phase because the dielectric
response of the suspension is dominated by that of the solvent
[39]. This means that any elongation of the droplets caused by
an electric field is not due to a difference between the dielec-
tric properties of the isotropic and nematic phases, as would
be the case for a thermotropic nematic tactoid suspended in a
polymeric fluid [47], but due to the anisotropy of the dielectric
response of the nematic phase itself.

Having collected all contributions to the free energy, we
need to address an issue of some contention, which is whether
or not the susceptibility anisotropy, the surface energies, and
the elastic constants depend on the strength of the electric
field. In principle, they do. The reason is that these quan-
tities depend on the level of alignment of the particles in
the coexisting isotropic and nematic phases [35,48–50]. We
also note that, strictly speaking, the isotropic phase becomes
paranematic in the presence of an alignment field. In fact, the
isotropic-to-nematic phase transition ends in a critical point,
at which both the interfacial tension and anchoring should
vanish [6,51–53]. To keep our analysis as simple as possible,
and within the philosophy of linear response theory, we shall
ignore any impact of the electric field on the elastic constants
and surface energies, and presume the external field in some
sense to be sufficiently weak not to affect these quantities, yet
sufficiently strong to deform the tactoids.

To find the equilibrium shape and director field configu-
ration of tactoids, we would need to solve the appropriate
Euler-Lagrange equations that result from a minimization of
the free energy, given in Eq. (1). The minimization is with
respect to the director field �n(�r), which depends on the spatial
coordinate �r as well as on the droplet shape. This has to be
done subject to the conditions of a constant droplet volume
and a constant unit length of the director, |�n| ≡ 1 [42], which
produces a quite complex mathematical problem, also numer-
ically, in view of the free boundary [28,37].

Hence, we follow the earlier work of Kaznacheev et al.

[26,27] and Prinsen et al. [28–30], and restrict the geometry
of both the director field and droplet shape. For the shapes of
the droplets we use circle sections rotated about their chord,
producing potentially elongated droplets with sharp ends that
are very similar to the tactoid shapes found in a wide variety
of experiments, including those of Metselaar et al. [39]. We
are aware that the equilibrium shape of the poles is a cusp if
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0 � ω < 1 and the director field (nearly) uniform, which in
that case has a more rounded form. However, as we showed
in [28], the free energy difference between the exact Wulff
shape, the spindle shape, and ellipsoids of revolution is minute
for ω < 1, so we deem the approximation not to be a grave
one.

For the director field we employ a bispherical coordinate
system first used by Williams to describe spherical bipolar
droplets [37], and more recently by Prinsen et al. [28–30], Ja-
mali et al. [5,12], and Kaznacheev et al. [26,27] for elongated
bipolar droplets. We do not fix the position of the foci of the
bispherical director field to the poles of the tactoid to allow for
a smooth interpolation between a uniform and bipolar director
field, although we do prescribe them to reside on the main axis
of revolution of the tactoid. See also Fig. 2.

Within this prescription, the shape and director field
configuration of a tactoid is completely described by two
parameters, at least if the volume of the droplet is known.
These two parameters are the opening angle α and the ratio
y ≡ R̃/R of the distance between the virtual boojums, 2R̃,
and length of the droplet, 2R. The former quantity describes
the aspect ratio x ≡ R/r = cot(α/2) of the droplet, with r

the half-width of the droplet, and the latter the degree of
“bipolarness” of the director field. For a spherical droplet, we
have x = 1 and α = π/2, while for a strongly elongated one
x � 1 and α � 1. For a tactoid with a uniform director field
y � 1, and for a bipolar tactoid y → 1, see also Fig. 2. We
note that the quantities x and y will explicitly contribute to the
scaling theory presented in the following section.

It turns out practical to render the free energy dimen-
sionless, and define f = f (α, y) ≡ σF/(K11 − K24)2. The
optimal free energy minimizes f with respect to the open-
ing angle α or aspect ratio x and the bipolarness y, keeping
the volume V of the droplet constant. Let the dimensionless
volume be defined as v ≡ V [(σ/(K11 − K24)]3. The dimen-
sionless free energy f can then be written as a sum of surface
and volume terms

f (α, y) = v
2/3φ−2/3

v (α)[φσ (α) + ωφω(α, y)]

+ v
1/3φ−1/3

v (α)[φ11(α, y) + κφ33(α, y)]

− vφ−1
v (α)	φC(α, y),

(5)

where we refer to the Supplemental Material (SM) [54] for
details. The first line represents the two surface contributions,
the second line corresponds to the three types of elastic de-
formation of the director field, and the last is related to the
Coulomb energy. Here, κ ≡ K33/(K11 − K24) measures the
magnitude of the bend elastic constant relative to the effective
splay constant, and 	 = 1

8π
εaE2σ−2(K11 − K24) is the appro-

priate quantity to probe the impact of the electric field relative
to the surface tension and elastic deformation.

For the case of lyotropic nematics of rodlike particles, we
typically have σ ≈ 10−7–10−6 N m−1 for the surface ten-
sion [55], and K33/K11 ≈ 1–102 and K11 ≈ 10−12–10−11 N for
the elastic constants [12,28,56–58]. Dimensionless anchoring
strengths ω are typically in the range from about 1 to 10
[5,11,27,29].

All three terms are renormalized by a function measuring
how the opening angle α affects the droplet volume for a given

aspect ratio x. The common factor is given by

φv(α) = 7π

3
+ π

2

(

1 − 4α cot α + 3 cos 2α

sin2 α

)

. (6)

The first line of Eq. (5) consists of the sum of a contribution
from the bare surface tension,

φσ (α) = 4π

(

1 − α cot α

sin α

)

, (7)

and a term originating from the anchoring of the director field
to the interface,

φω(α, y) = π

2
(y2 − 1)2 sin3 α

×
∫ π

0
dξ

[

sin2 ξ cos2 ξ

N (y, ξ , α)(1 + sin ξ cos α)3

]

,

(8)

for which we have not been able to obtain an explicit expres-
sion. Here,

N (y, ξ , η) =
(

sin ξ cos η + 1
2 Z (ξ, η)(y2 − 1)

)2

+ y2 sin2 ξ sin2 η (9)

and

Z (ξ, η) = 1 + sin ξ cos η. (10)

Note that in Eq. (8), we inserted η = α to obtain the expres-
sion for N in Eq. (9).

The contribution of the splay and saddle-splay deformation
to the Frank elastic energy also gives rise to an integral that we
have also not been able to solve analytically:

φ11(α, y) = 8π

∫ π

0
dξ

∫ α

0
dη sin2 ξ cos2 ξ sin η

× 1

N (y, ξ , η)(1 + sin ξ cos η)3 , (11)

where we note that within our family of bispherical director
fields, the saddle-splay deformation merely renormalizes the
contribution from the splay deformation, giving rise to an
effective splay constant that is the difference of the splay and
bend-splay constants, explaining the scaling of the free energy
that we introduced above in terms of this difference [28,29].
The contribution of the bend elastic deformation reads as

φ33(α, y) = 8π

∫ π

0
dξ

∫ α

0
dη sin4 ξ sin3 η

× 1

N (y, ξ , η)(1 + sin ξ cos η)3 . (12)

Finally, the free energy of the interaction of the nematic
droplet with an electric field yields an even more daunting
integral

φC(α, y) = 8π

∫ π

0
dξ

∫ α

0
dη

sin2 ξ sin η

(1 + sin ξ cos η)3

× (y2Z2 + sin2 ξ sin2 η − cos2 ξ )2

N (y, ξ , η)(1 + sin ξ cos η)2 . (13)

Details of the derivation of all these expressions can be found
in the SM [54].
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FIG. 3. Dependence of (a) the degree of bipolarness y and (b) the
aspect ratio x of tactoids on the scaled volume v in the presence of an
electric field, according to the scaling theory. Blue solid line: the field
strength 	 is below the critical value 	c, and the anchoring strength
ω is somewhat larger than unity. The volumes v− and v+ demarcate
crossovers from quasibipolar director fields to bipolar ones, and v<

and v> those from elongated to spherical droplet shapes. Dashed-
dotted line: same curve, but now for 	 = 	c. Dashed lines: 	 > 	c.
For fields above the critical field strength 	∗, the tactoids are always
elongated provided the anchoring strength ω is sufficiently large. See
the main text. The slopes of the various curves are listed in Tables I,
II, and III, and the values of the various crossover volumes and field
strengths in Table IV.

The various integrals can be solved explicitly for the cases
y = 1 and y → ∞, but so far have eluded analytical evaluation
for the general case y � 1 [26,28]. Hence, we need to take
recourse to a numerical evaluation and minimization with
respect to the opening angle α and the bipolarness y. We
recall that there is a one-to-one mapping between the opening
angle α and the aspect ratio x of the tactoids. From Eq. (5)
we deduce that our parameter space is quite substantial: (i)
the scaled volume of the droplets v, (ii) the dimensionless
anchoring strength ω, (iii) the ratio of the bend and splay
elastic constants κ , and (iv) the dimensionless strength of the
magnetic field 	.

Before numerically solving the pertinent equations in
Sec. IV, we first analyze in Sec. III the problem from the per-
spective of scaling theory for (nearly) spherical and (highly)
elongated droplets. This allows us to demarcate the crossovers
between the various parameter regimes, and find the scaling
exponents relevant to the behavior of the droplet shape and
director field. As we shall see in Sec. IV, our scaling theory
and our variational theory are consistent with each other.

For those not interested in the full scaling analysis, which
is rather technical in nature and details transitions between
no fewer than five regimes, we refer to Figs. 3 and 4 that
summarize our main findings. The scaling relations that we

FIG. 4. Schematic “phase” diagram of director fields of tac-
toids in an external field. Plotted is the scaled volume v versus the
scaled field strength 	. Indicated are the crossovers between the five
regimes, demarcated by the crossover volumes v−, v+, v<, v>, v∗,
and vc. Expressions for the crossover volumes v−, v+, v<, and v>,
and the critical field strengths 	c and 	∗, are listed in Table IV.
See also the main text. In the region bounded by v− and vc, tactoids
with sufficiently large anchoring strength ω � 1 are elongated with
a director field that is quasibipolar with a bipolarness y that decreases
with increasing volume. In the region bounded by vc and v+ in
the upper right-hand corner it is quasibipolar with a bipolarness
that increases with droplet volume. In region bounded by v− and
v+ in the upper left-hand corner. the director field is for all intents
and purposes bipolar. The tactoids are more or less spherical in the
region bounded by v< and v> in the uppermost left-hand corner, and
elongated outside of that region, at least if ω � 1. The volume vc de-
marcates the crossover from decreasing to increasing bipolarness for
quasibipolar director fields, the volume v∗ that between decreasing
aspect ratio to increasing aspect ratio.

find are summarized in Tables I, II, and III, and Table IV lists
all crossover volumes and external field strengths.

III. SCALING THEORY

Rather than getting the exact expression for the free energy
(5), we may also estimate the equilibrium shape and director
field configuration of a tactoid by applying simple geometric
arguments or resorting to asymptotic relations valid for the
various integrals that we introduced in the preceding section.
We assume that the droplet looks like a spindle with the short
axis r and the long axis R � r, and that its director field
is quasibipolar, i.e., the director field converges outside the
droplet to virtual point defect or boojums (see Fig. 2). The
(half) distance between the (virtual) defects is R̃ � R.

Referring to the free energy functions (1)–(4), we notice
that the elastic and electric-field contributions must be pro-
portional to the droplet volume V ∝ Rr2, while the surface
contributions must be proportional to the area of the droplet
S ∝ rR. Following Prinsen et al. [29], we argue that the radius
of curvature of a bend deformation must scale as R̃2/r and
that of the splay as R̃2/R. Furthermore, the anchoring strength
term, proportional to (�q · �n)2, scales as (r2/R2)(1 − R2/R̃2)2

[12,29], as we in fact also show in the SM. Finally, the field
term ( �E · �n)2 is proportional to E2r2R2/R̃4.

As already alluded to in the previous section, there are
two quantities that a nematic droplet can optimize in order
to lower its free energy: the aspect ratio x = R/r � 1 and the
bipolarness y = R̃/R � 1. The dimensionless free energy of a
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TABLE I. Summary of the various scaling regimes for the bipolarness y of nearly spherical tactoids (x � 1) in the presence and absence of
an electric field, for large, intermediate, and small droplet sizes v, relative to the crossover volumes v− and v+. If the electric field is weak and
0 < 	 < 	c, the bipolarness of the droplet has three different regimes. Under a strong field, 	 > 	c there are two regimes. Expressions for
the crossover volumes v− and v+ and the critical field strength 	c are listed in Table IV. Notice that for 	 = 0, v+ → ∞ and there are strictly
speaking only two regimes.

v < v− v− < v < vc vc < v < v+ v > v+

	 < 	c y ∼ ω−1/2
v

−1/6(1 + κ )1/2 y ∼ 1 y ∼ 1 y ∼ 	1/2ω−1/2
v

1/6

	 > 	c y ∼ ω−1/2
v

−1/6(1 + κ )1/2 y ∼ ω−1/2
v

−1/6(1 + κ )1/2 y ∼ 	1/2ω−1/2
v

1/6 y ∼ 	1/2ω−1/2
v

1/6

droplet with aspect ratio x and bipolarness y reads as within
our scaling ansatz

f (x, y) ∼ v
2/3x1/3[1 + ωx−2(1 − y−2)2]

+ v
1/3y−4x−4/3(1 + κx−2) + 	vx−2y−4, (14)

where we have ignored all constants of proportionality. The
values of the dimensionless anchoring strength ω, bend
constant κ = K33/(K11 − K24), electric-field strength 	 =

1
8π

σ−2εaE2(K11 − K24), and volume v ≡ V σ 3/(K11 − K24)3

determine what values of x and y minimize the free energy f .
The first term in Eq. (14) represents the surface free energy,
the second term the elastic deformation, and the last term the
interaction of the droplet with the external electric field. No-
tice that the various terms can also be derived from Eq. (1) by
applying a formal expansion for small α � x−1, and keeping
only the leading order term of each contribution. We refer to
the SM for details.

As we shall see, there are always two terms that dominate
the shape and director field of a tactoid: either the surface and
elastic energy, or the surface and Coulomb energy. This is a
result of the different scaling with the dimensionless volume
v: v

1/3 for the elastic free energy, v
2/3 for the interfacial free

energy, and v for the Coulomb free energy. This means that
droplet size crucially determines the shape and director field
behavior of tactoids.

It is important to note at this point that the specific form of
our scaling ansatz for the free energy [Eq. (14)] automatically
ensures that y � 1 but not that x � 1. The former follows
directly from the observation that the first term has a mini-
mum for y = 1, while all the other terms decrease as y > 0
increases. Further, Eq. (14) does not hold for lens-shaped
tactoids, that is, for x < 1. Indeed, the surface free energy
for x � 1 would require a term proportional to an area that
scales as r2 rather than the Rr that is valid for x � 1. Similar
arguments hold for the elastic and Coulomb terms [32,59,60].

In order to deal with the fact that our free energy does not
automatically ensure the condition that x � 1 for ω � 0, we

have to separate the case of elongated droplets with x � 1
from that of spheroidal droplets with x ≈ 1. In fact, for ω < 0
the tactoids become lens shaped with x < 1, a case we do
not consider in this work as it has been dealt with elsewhere
[32,59,60]. The case x ≈ 1 can be investigated by putting
x = 1 in the free energy, and not optimizing with respect
to both x and y, but only with respect to y. The crossover
from elongated to spheroidal emerges automatically from our
analysis, as we shall see. In what follows, we first analyze the
the simpler case for which the aspect ratio is close to unity, and
next consider the case where the aspect ratio is significantly
larger than unity.

A. Nearly spherical tactoids

As we shall see in the next subsection, tactoids are always
nearly spherical if the anchoring strength ω is about unity or
smaller [see Eq. (3)], irrespective of the value of the scaled
volume v and that of the scaled strength of the electric field 	.
If ω � 1, then the droplets become spherical only for a range
of volumes that we will specify below, and then only if the
field strength is below some critical value.

Minimizing the free energy f (1, y) for nearly spherical
droplets with respect to the bipolarness y, we find for its
optimal value

y2 � 1 + ω−1(1 + κ )v−1/3 + 	ω−1
v

1/3. (15)

This expression immediately highlights the importance of
the volume of the droplet. The director field is uniform,
corresponding to y � 1, either if ω−1(1 + κ )v−1/3 � 1 or
	ω−1

v
1/3 � 1. In other words, if v � v− = ω−3(1 + κ )3 or

v � v+ = ω3	−3. For droplet volumes v− � v � v+, the di-
rector field is (quasi)bipolar, and y ≈ 1.

Thus, we find that there are potentially three different
regimes and two critical volumes that dictate the behavior of
the droplet. For v � v−, we obtain the scaling relation

y ∼ v
−1/6ω−1/2(1 + κ )1/2, (16)

TABLE II. This table summarizes the various scaling regimes for the bipolarness y of elongated tactoids (x � 1) in the presence and
absence of an electric field, for large, intermediate, and small droplet sizes v, relative to the crossover volumes v− and v+. If the electric
field is weak and 0 < 	 < 	c, the bipolarness of the droplet has three different regimes. Under a strong field, 	 > 	c there are two regimes.
Expressions for the crossover volumes v− and v+, and the critical field strength 	c, are listed in Table IV. Notice that for 	 = 0, v+ → ∞ and
there are strictly speaking only two regimes.

v < v− v− < v < vc vc < v < v+ v > v+

	 < 	c y ∼ ω−5/12
v

−1/6(1 + κω−1)1/2 y ∼ 1 y ∼ 1 y ∼ 	1/2ω−7/12
v

1/6

	 > 	c y ∼ ω−5/12
v

−1/6(1 + κω−1)1/2
y ∼ ω−5/12

v
−1/6(1 + κω−1)1/2

y ∼ 	1/2ω−7/12
v

1/6 y ∼ 	1/2ω−7/12
v

1/6
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TABLE III. This table summarizes the various scaling regimes for the aspect ratio x of tactoids in the presence and absence of an electric
field, for large, intermediate, and small droplet sizes v, relative to the crossover volumes v− and v+, and v< and v>. For simplicity, we have
dropped any dependence of the aspect ratio on κ . Expressions for the crossover volumes v−, v+, v<, and v>, and the critical field strengths 	c

and 	∗ are listed in Table IV. Notice that for 	 = 0, v+ → ∞, and v> → ∞.

v<v− v− <v<v< v< <v<v∗ v∗ <v<v> v> <v < v+ v > v+

	<	∗ x ∼ √
ω x ∼ v

−1/5 x ∼ 1 x ∼ 1 x ∼ 	3/7
v

1/7 x ∼ √
ω

	∗ <	 <	c x ∼ √
ω x ∼ v

−1/5 x ∼ v
−1/5 x ∼ 	3/7

v
1/7 x ∼ 	3/7

v
1/7 x ∼ √

ω

	>	c x ∼ √
ω x ∼ √

ω x ∼ √
ω x ∼ √

ω x ∼ √
ω x ∼ √

ω

while for v � v+, we have

y ∼ v
1/6	1/2ω−1/2. (17)

Notice that the exponents of − 1
6 for volumes v � v− and of

+ 1
6 for v � v+ are universal. A summary of these results is

given in Table I.
We notice that as the electric-field strength increases, v+

decreases and the two critical volumes merge into one critical
volume: v− = v+. This happens at a critical electric field
	c � ω2(1 + κ )−1. If 	 � 	c, the bipolarness y is always
greater than unity for any size of the droplet, and the droplet is
never fully bipolar. The crossover of a decreasing bipolarness
to an increasing one with increasing volume then happens at
a critical volume vc = ω−3(1 + κ )3, where we inserted 	c in
the expression for v+. If 	 > 	c, we find the crossover to
occur for vc = 	−3/2(1 + κ )3/2 that can be found by equat-
ing Eqs. (16) and (17). The summary of the results of this
subsection is presented in Table I.

So, in conclusion, if 	 > 	c, then y � 1 decreases with
increasing volume v of the tactoid until larger than the critical
value vc. If larger than vc, y increases again with increasing
volume and y does not approach the value of unity, that is, the
tactoid does not become bipolar. For 	 < 	c, the director field
is bipolar if v− < v < v+, but not outside of this range of vol-
umes. For v < v− the bipolarness y decreases with increasing
volume, while for v > v+ it increases with increasing volume.
All in all, this demarcates three scaling regimes for the degree
of bipolarness of the director field.

As we shall see next, for elongated tactoids the number of
regimes increases to five.

TABLE IV. Listing of all crossover volumes v and critical field
strengths 	, for small and large values of the anchoring strength ω.
Crossovers form elongated to spherical tactoids only occur if ω is
sufficiently large.

ω � 1 ω � 1

v− ω−3(1 + κ )3 ω−5/2(1 + κω−1)3

v+ ω3	−3 ω7/2	−3

vc 	−3/2(1 + κ )3/2 	−3/2ω−1(1 + κω−1)3/2

v< – (1 + κ )3

v> – 	−3

v∗ – 	−5/4

	∗ – (1 + κ )−1

	c ω2(1 + κ )−1 ω2(1 + ω−1κ )−1

B. Elongated tactoids

For elongated tactoids, matters become significantly more
complex. To calculate the optimal values for the bipolarness y

and the aspect ratio x for x � 1, we need to minimize the free
energy (14) with respect to both x and y. This gives rise to the
following set of coupled equations:

y4 = ωx−2(y2 − 1)2

+ v
−1/3x−5/3(1 + κx−2) + v

1/3	x−7/3 (18)

and

y2 = 1 + ω−1x1/3(1 + κx−2)v−1/3

+ 	ω−1
v

1/3x−1/3. (19)

Inserting the last two terms of Eq. (19) in Eq. (18), we find

x2

ω
= (1 − y−2) + (1 − y−2)2. (20)

Inserting this back in Eq. (19) produces a nonlinear equa-
tion entirely in terms of the quantity y. Unfortunately, we
have not been able to solve this expression exactly. It can of
course be solved numerically, but this would obviously defeat
the purpose of the scaling theory. Fortunately, the governing
equations can be solved asymptotically in a number of useful
limiting cases that we will discuss next.

For instance, we have seen in the preceding section that
for very large and very small droplet volumes the director
field must be nearly homogeneous, implying that y � 1. We
note that large and small here refer to the critical volumes
v− and v+, introduced already in the preceding subsection for
nearly spherical tactoids but that now will conform to slightly
different expressions given below. Equation (20) tells us that
if y → ∞, the director field is uniform, and the aspect ratio
is (apart from a multiplicative constant) equal to

√
ω. This is

consistent with the exact result x = 2ω1/2 obtained by means
of the Wulff construction for ω � 1 [28].

Inserting x � ω1/2 in Eq. (18) gives, to leading order for
large values of y,

y2 ∼ v
−1/3ω−5/6(1 + κω−1) + v

1/3ω−7/6	. (21)

This means that for sufficiently small droplets

y ∼ v
−1/6ω−5/12(1 + κω−1)1/2, (22)

while if they are sufficiently large we have

y ∼ v
1/6ω−7/12	1/2. (23)

It is worth mentioning that the result for large droplets does
not depend on the value of κ that is a measure for the
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magnitude of the bend elastic constant. Recall that in Eqs. (16)
and (17), we find the same scaling of the bipolarness with the
dimensionless volume for nearly spherical droplets. The scal-
ing with the anchoring strength is slightly different, however.

Equation (22) applies for v � v− = ω−5/2(1 + κω−1)3

and Eq. (23) for v � v+ = 	−3ω7/2, as can be deduced from
Eq. (21). These critical volumes differ slightly from those we
calculated for nearly spherical tactoids, as already announced.
We conclude that if v− � v � v+ the elongated droplets must
be bipolar.

If v+ drops below v−, the tactoids are always more or
less uniform, and x � ω1/2. This happens at a critical field
strength 	c = ω2(1 + κω−1) that we find by setting v+ = v−.
The crossover of decreasing to increasing bipolarness with
increasing volume now occurs at a critical volume vc = ω−3

for 	 = 	c. If 	 > 	c, the crossover happens at a criti-
cal volume vc = 	−3/2ω1/2(1 + κω−1)3/2, which we find by
equating Eqs. (22) and (23).

What the aspect ratios of the tactoids are when v− � v �

v+, so when the director field is no longer uniform, can be
inferred from Eqs. (19) by inserting y = 1 + δ in Eq. (20)
and presuming that δ � 1. Solving these equations then gives
to leading order in δ = x2ω−1 � 1 an expression for the
aspect ratio: x5/3 ∼ v

−1/3(1 + κx−2) + v
1/3	x−2/3. For small

droplets with a volume v+ � v > v−, we have x ∼ v
−1/5 if

we ignore the contribution from the bend elasticity; thus, the
droplet becomes less elongated with increasing volume. For
larger ones v− � v < v+, the aspect ratio x ∼ v

1/7	3/7 grows
again with increasing volume.

As we need to insist that x > 1 for the equations to hold, we
take the value of x = 1 as the crossover to the regimes where
the droplets are more or less spherical. Inserting this condition
in the equation for the aspect ratio gives 1 ∼ v

−1/3(1 + κ ) +
v

1/3	, which we translate in two crossover volumes. In the
absence of a field, the crossover from an elongated droplet
with x = ω1/2 to a nearly spherical droplet with x = 1 oc-
curs for v = v< with v< ≡ (1 + κ )3 > v− another crossover
volume. For sufficiently weak fields, they start to elongate
again if v> < v < v+ = 	−3ω7/2 with the crossover volume
v> ≡ 	−3 smaller than v+ since we presume that ω > 1. For
v > v+ the director field is uniform and the aspect ratio obeys
again x ∼ ω1/2.

The picture that emerges is one where for v < v− the
nematic droplets have a more or less uniform director field
with an aspect ratio of about ω1/2, and the same for v > v+.
If v > v−, the droplets become increasingly bipolar and the
aspect ratio decreases with increasing volume. If the scaled
volume v increases further to get closer to v+, the bipolar
character of the director field diminishes again with increasing
volume, while the aspect ratio increases to its maximum value
of about ω1/2 (see Fig. 3). Notice that we have presumed that
ω � 1; otherwise, we would not have x � 1.

Somewhere in the size range v− � v � v+, the droplets
actually become nearly spherical, in which case the theory of
the preceding section applies. This happens in the range of
volumes for which v< < v < v>. The nearly spherical drop
regime disappears if v< = v>. Equating these critical volumes
shows that this occurs for field strengths 	 larger than the
critical value of 	∗ ≡ (1 + κ )−1. In that case, we only have
crossover from decreasing elongated to increasing elongated

at a crossover volume v∗ = 	−5/4. Since 	∗ < 	c, we con-
clude that for ω � 1 we lose the spherical tactoid regime
before we lose the bipolar director field.

The summaries of these results are presented in Tables II,
III, and IV, as well as in Fig. 4, showing the different regimes
and crossovers. The conclusion of our scaling theory is that
the aspect ratio of the nematic droplets is at most ω1/2, inde-
pendent of the volume or the field strength. In other words,
external fields cannot elongate a tactoid to aspect ratios be-
yond those that are found in the absence of a field, at least for
the family of director fields that we presume. We return to this
issue in the Discussion section below.

In the next section, we present the numerical evaluation
of our variational theory and obtain the mathematically exact
response of the director field and the shape of the droplet in
the presence of an electric field, and compare these with the
scaling theory. As we shall see, our scaling predictions are
robust. This means also that the conclusions that we base them
on are robust.

IV. NUMERICAL RESULTS

The scaling theory of the preceding section has enabled us
to identify different scaling regimes, which we now investi-
gate by numerically minimizing the free energy (5). To this
end, we evaluate Eq. (5) for opening angles 0 � α � π and
degrees of bipolarness of the director field 1 � y � ∞ and
find the values of these quantities for which the free energy
f is minimal. So, for a given scaled volume v, anchoring
strength ω, ratio of bend-to-splay elastic constants κ and elec-
tric field strength 	, we obtain the optimal values of both α

and y. We recall that the aspect ratio of the tactoids x is directly
linked to the opening angle via the relation x = cot(α/2).
In order to find the minimum free energy, we numerically
calculate all integrals given in Sec. II.

It is clear that the electric field drives the director field to
align itself with it, implying that the major axis of a tactoid ori-
ents parallel to the electric field. This happens irrespective of
whether the director field configuration is uniform or bipolar.
If the electric field is sufficiently weak, the director field is not
perturbed by the electric field. If the field is sufficiently strong,
we would expect the director field of the droplet to become
homogeneous, even if the director field in the absence of a
field is bipolar. What weak and strong here mean depends on
volume of a tactoid as we have seen in the preceding section,
and is schematically summarized in Figs. 3 and 4.

Figure 5 confirms this expectation. Shown is the bipo-
larness y as a function of the dimensionless volume v of
the tactoids, for the case where we (arbitrarily) set for the
dimensionless bend constant κ = 10 and for the anchoring
strength ω = 14. Indicated are results for different values of
the dimensionless electric field 	. We confirm the scaling
prediction that two critical volumes emerge, one associated
with the crossover from a quasibipolar to a bipolar direc-
tor field v−, and one with the crossover from a bipolar to
quasibipolar director field v+. For 	 � 100, we only find qua-
sibipolar director fields characterized by a bipolarness y > 1
for all volumes v. The scaling exponent β we find for y ∼ v

β

equals β = −0.15 for small volumes and β = +0.16 for large
volumes, values that agree reasonably well with the predicted
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FIG. 5. The bipolarness y of the director field of a tactoid in the
presence of an electric field as a function of its dimensionless volume
v. Indicated by the different symbols are results for different values
of the dimensionless electric-field strength 	. The dimensionless
anchoring strength is fixed at ω = 14 and the dimensionless bend
constant at κ = 10.

exponents of − 1
6 and + 1

6 that we obtained from the scaling
theory and are quoted in Table II.

Figure 5 also shows that the bipolarness y increases with
the electric-field strength 	, if the volume of a tactoid is
sufficiently large v > v+. According to the scaling prediction
(23), y should scale as 	1/2. Figure 6, in which we plotted
the bipolarness as a function of the field strength for the case
where ω = 14 and κ = 10, confirms that the scaling exponent
is 0.5 over three decades of 	. So, indeed, increasing the
field strength leads to director fields that become increasingly
homogeneous, as one would in fact expect from the scaling
theory of the previous section. See also Table II.

According to the scaling theory of the preceding section,
the impact of the (scaled) bend elastic constant κ on the
bipolarness y of a tactoid is negligible for sufficiently large
tactoids in the presence of an external field. See Table II. It
is negligible for small tactoids too, but only provided κ � ω.
Our numerical results presented in Fig. 7 confirm for the case
ω = 14, the bipolarness is an invariant of κ for sufficiently
large volumes, but becomes a function of κ for values larger
than about 10, as expected from the scaling theory.

For bend elastic constants κ > 10 ≈ ω, the bipolarness
should exhibit a power-law scaling predicted by the scal-
ing relation (22) that then takes the simpler form y ∼

FIG. 6. Bipolarness y of a tactiod as a function of the dimension-
less electric field 	 for a dimensionless volume v = 107. Anchoring
strength ω = 14 and dimensionless bend constant κ = 10. The solid
line shows the scaling of y as with 	0.5.

FIG. 7. Bipolarness y of the droplet as a function of the dimen-
sionless volume v of tactoids in the presence of an electric field
for different values of the dimensionless bend constants κ indicated
by the symbols. Anchoring strength ω = 14 and dimensionless field
strength 	 = 100.

v
−1/6ω−11/12κ1/2. In Fig. 8 we have plotted the bipolarness

y as a function of κ for 	 = 100 and v = 10−4. The expo-
nent that we measure is 0.49, which is indeed close to the
value obtained from the scaling theory. Our scaling theory
also predicts the bipolarness of the tactoids to depend on the
anchoring strength ω. Indeed, Eqs. (16) and (17) for nearly
spherical tactoids, and Eqs. (22) and (23) for elongated ones,
predict that both for small and large droplets the bipolarness
should shift with shifting anchoring strength. This makes in-
tuitive sense because the larger the anchoring strength is, the
larger the free energy penalty becomes for imperfect planar
anchoring. Hence, with increasing anchoring strength the tac-
toids should become increasingly bipolar. This is what our
numerical calculations also confirm, as is shown in Fig. 9. On
a logarithmic scale, the curves shift vertically by an amount
that depends on the anchoring strength ω.

The scaling of the bipolarness y with the anchoring strength
ω is highly nontrivial, as is implicit in the scaling predictions
(16) and (17) for nearly spherical tacoids, and Eqs. (22) and
(23) for elongated ones. It depends not only on the shape of
the tactoids, but also whether the tactoids are large or small,
and on whether or not the bend elastic constant is large. To
account for this, we plot in Figs. 10 and 11 the bipolarness y

as a function of the anchoring strength ω for two droplet sizes
and fixed values of 	 = 10 and κ = 0. The appropriate scaling

FIG. 8. Bipolarness of a tactoid as a function of the dimension-
less bend constant κ in the presence of an electric field. Anchoring
strength ω = 1.4, dimensionless field strength 	 = 100, and dimen-
sionless volume v = 10−4.
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FIG. 9. Bipolarness y of a tactoid as a function of the dimension-
less volume v in the presence of an electric field for different values
of the anchoring strength, indicated by the symbols. Dimensionless
field strength 	 = 100 and bend constant κ = 10.

regimes for ω < 1 for which the droplets are approximately
spherical, and ω > 1 for which they are elongated, are also il-
lustrated in the figure. Four different scaling exponents, which
agree rather well with the predictions from scaling theory, are
shown in the figure.

How the value of the bend elastic constant κ impacts the
dependence of the bipolarness y and the anchoring strength
ω is highlighted in Fig. 12 for a large and small value of κ .
For the range of anchoring strengths shown, a small tactoid
volume of v = 10−4 and a field strength of 	 = 102, we find
scaling exponents of −0.43 and −0.90 for the small and large
values of dimensionless bend constants κ , which have to be
compared with the scaling predictions of − 5

12 � −0.42 and
− 11

12 � −0.92. Again, we find quite good agreement between
our numerical work and the scaling theory. (See also Table II.)

Having exhaustively verified the theoretical scaling predic-
tions for the degree of bipolarness of the tactoids, we now
proceed to investigate how their aspect ratio depends on the
volume and how it responds to the presence of an electric
field. It is well known that, in the absence of an electric field,
the aspect ratio of a nematic tactoid decreases with increasing
droplet size. This happens to be so not only in bulk, but also if
the tactoids deposited on a partially wetting surface [5,12,39].

FIG. 10. Bipolarness y of a tactoid as a function of an anchoring
strength ω > 1 for small and large droplets, with dimensionless
volumes v = 10−2 and 106. The dimensionless electric field strength
is fixed at 	 = 10 and the dimensionless bend constant at κ = 0. In-
dicated are also the scaling relations y ∼ ω−0.43 for the small volume
and y ∼ ω−0.62 for the large volume. See also the main text.

FIG. 11. Bipolarness y of a tactoid as a function of anchoring
strength (ω < 1) for small and large droplets, with dimensionless
volumes v = 10−2 and 106. The dimensionless electric field strength
is fixed at 	 = 10 and the dimensionless bend constant at κ = 0.
Indicated are also the scaling relations y ∼ ω−0.51 and y ∼ ω−0.52.
See also the main text.

Indeed, from the scaling theory we expect that for v > v−,
the aspect ratio x should scale as v

−1/5 at least if κ � ω and
ω → ∞ [12,28,29]. For finite ω = 14 the decay of the aspect
ratio with volume is even a weaker function of the volume, as
Fig. 13 shows for the field-free case 	 = 0.

Notice that for the dimensionless bend constant of κ = 10,
the predicted critical magnetic field strength of 	∗ = 1

11 �
0.09 coincides with the smallest nonzero value of 	 taken
in our numerical calculations. This means that our results of
Fig. 13 should show conditions characterized by an absence
of an intermediate regime with spherical tactoids, excluding
the case 	 = 0. See also the phase diagram of Fig. 4. The
predicted crossover volume v∗ ∼ 	−5/4 from a decreasing
aspect ratio to an increasing aspect ratio varies five orders
of magnitude for the range of field strengths shown in the
figure, in agreement with our numerical results presented in
the figure.

What Fig. 13 also shows is that for increasingly large
fields, the drop in aspect ratio becomes small mirroring the
prediction of our scaling theory. This happens for 	 > 	c ∼
ω2/(1 + κ/ω) � 100 for our choice of parameters, when the
drop in aspect ratio in fact disappears. This value is consistent
with our numerical findings. In that case, the director field is

FIG. 12. Bipolarness y as a function of anchoring strength ω for
two different dimensionless bend constants of κ = 0.1 and 103. The
dimensionless volume is set at a value v = 10−4. Also indicated
are the scaling exponent of −0.43 for the small value of the bend
constant and of −0.90 for the large value of the constant. See also
the main text.
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FIG. 13. The aspect ratio x of a tactoid as a function of the
dimensionless volume v for different (dimensionless) electric field
strengths 	 indicated by the symbols. The anchoring strength is set
at ω = 14 and the dimensionless bend constant at κ = 10.

for all intents and purposes uniform irrespective of the volume
of the nematic droplet. This means that in our model, there is
an upper limit for the aspect ratio, namely 2

√
ω.

All of this implies that for our choice of director field
geometry, an externally applied electric (or magnetic) field
cannot elongate tactoids beyond their maximum aspect ratio
that under the field-free conditions happens for sufficiently
small droplets. This, clearly, goes against the grain of the
experimental observations of Metselaar et al. of tactoids in
electric fields [39], and those of Kaznacheev and collaborators
in magnetic fields [26]. As we argue in the next section, this
must mean that either (i) the director field does not conform
to a bispherical geometry in an external alignment field; (ii)
the tactoids are in a restricted equilibrium characterized by a
bipolarness that is fixed to the value of the field-free initial
state; or (iii) the various elastic and surface constants do
depend on the strength of the field.

V. DISCUSSION AND CONCLUSIONS

In this paper, we present a model in which the director
field and shape of a nematic tactoid can adjust themselves
both in order to optimize the interfacial, elastic, and Coulomb
energy in the presence of an externally applied orienting field.
We restrict the shape of the tactoid to that of the family of
circle sections of revolution, and the director field to that
of the family of fields that can be described by bispherical
geometries [61,62]. We find that the known “phase” diagram
of nematic tactoids becomes more complex in the presence of
an electric field [28–30].

In the absence of such an alignment field there are three
regimes, separating elongated tactoids with a uniform director
field if they are sufficiently small from roundish bipolar ones
if very large, with an intermediate size range where the drops
are quasibipolar and somewhat elongated. In the presence
of an alignment field, we have identified up to five regimes
depending on the strength of the anchoring of the director to
the interface. A schematic of the new phase diagram is given
in Fig. 4.

Close comparison of theoretical predictions based on this
model and experimental observations on tactoids of carbon

FIG. 14. Aspect ratio x and bipolarness y of the director field as
a function of volume of a droplet in the absence of the electric field
with 	 = 0. Left vertical axis shows us the aspect ratio (we use blue
triangles for the aspect ratio) and the right vertical axis shows us
bipolarness (cross signs for bipolarness) and the red circles represent
the experimental data of [39]. The best fits we obtain by eye are for
the parameter values κ = 20, ω = 1.3, and (K11 − K24)/σ = 4 μm.
Notice that the largest tactoids are bipolar because y → 1 and the
smallest ones quasibipolar with y ≈ 3.

nanotubes in chlorosulfonic acid by Jamali et al. have shown
that, in the absence of an electric orienting field, there is a
very good agreement between the theory and experiments [5].
The predicted gradual crossover from elongated to more or
less spherical shapes, and from uniform to bipolar director
fields, is confirmed experimentally, not only for tactoids in
bulk solution, but also for sessile tactoids, i.e., tactoids on
surfaces [12]. Curve fits provide access to information on the
surface energies and bend constants [5,12,27,29,63–67].

For instance, if we curve fit the theory to the experimental
data of Metselaar et al. on tactoids formed in dispersions of
chitin fibers in water in the absence of an electric field, we ob-
tain a reasonably good agreement if we set ω = 1.6, κ = 20,
and (K11 − K24)/σ = 4 μm. See Fig. 14, where the aspect
ratio x is plotted against the actual volume of the droplets.
Also shown in the figure is the predicted bipolarness y of the
tactoids, which vary between 3 and just over 1 over that range
of droplet volumes. It suggests that the tactoids of chitin in
water are either bipolar or quasibipolar, in agreement with
experimental observation [39].

Because of the scatter in the data, and since we do not cover
the whole range of volumes from nearly uniform to bipolar
director fields as was done in the work of Jamali et al. [5],
we cannot expect these estimates to be highly accurate. Still,
if we take them at face value, we find them to differ quite
substantially from the ones found by Jamali et al. for carbon
nanotubes in chlorosulfonic acid, with ω = 5.6, κ = 1.3, and
(K11 − K24)/σ = 78 μm [5]. This, however, should not be too
surprising, given that both the elastic constants and surface
energies depend sensitively on the dimensions of the particles
[35,55,57].

Rather unexpectedly, our predictions fail if an external field
is applied. In the experiments of Metselaar et al., sufficiently
large tactoids elongate up to 10 times their original aspect
ratio, which is much more elongated than the droplets in
the absence of a field [39]. As we have seen in our model
calculations, the presence of very large field strengths does not

lead to highly elongated shapes but to uniform director fields.
As already announced, this might perhaps suggest that the
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FIG. 15. Aspect ratio x of tactoids as a function of volume V

in the presence of an electric field. We compare our numerical
results with the experimental data of [39]. The best fit by eye we
obtain taking as parameter values 	 = 500, ω = 1.3, κ = 20, and
(K11 − K24)/σ = 4 μm.

bipolarness of the tactoids cannot respond sufficiently swiftly
to the switching on of the external field. Before discussing the
accuracy of this presumption, we first investigate its conse-
quences assuming that it is true.

The procedure that we pursue is as follows. First we cal-
culate the bipolarness y of the director field for the field-free
case with 	 = 0. Next, in the presence of an orienting field, so
for 	 > 0, we use this value of the bipolarness and optimize
the free energy only with respect to the aspect ratio x. Fol-
lowing this procedure, we do find a strong elongation of the
droplets as Fig. 15 shows, where we compare the prediction
of the full equilibrium and this restricted-equilibrium model
with the dynamical data of Metselaar et al. for tactoids of
chitin in water. Shown is the aspect ratio of the droplets as
a function of their volumes for a single electric-field strength.
For the largest droplets, the full relaxation takes more than the
maximum of 1100 s, so the tactoids have not fully equilibrated
yet (see Fig. 15 of [39]).

It seems that within a restricted-equilibrium calculation,
agreement with the experimental data is indeed rather good,
even if they do not yet represent fully relaxed tactoids. The
data confirm our expectation that the electric field only has
an impact on the shape of the tactoids if they are sufficiently
large. How large depends on the strength of the electric field.
This is shown in Fig. 16, where we show predictions of our
restricted-equilibrium model for the aspect ratio x of nematic
droplets as a function of the dimensionless volume v for

FIG. 16. Aspect ratio x of a tactoid as a function of the dimen-
sionless volume v for different electric-field strengths 	 according
to the restricted equilibrium model. See the main text. Anchoring
strength ω = 14 and bend elastic constant κ = 10.

FIG. 17. Aspect ratio x of a tactoid as a function of the electric
field 	 according to the restricted-equilibrium model. Anchoring
strength ω = 14 and dimensionless bend constant κ = 10. Different
symbols show different volumes: triangles v = 107, squares v = 108,
and circles v = 109. Indicated are also the scaling exponents, which
are close to 0.4 for the three tactoid volumes.

different dimensionless field strengths 	. According to the
scaling theory of Sec. III, we should expect an x ∼ 	3/7

v
1/7

for a fully bipolar director field corresponding to sufficiently
large droplets. The slopes of the various curves shown in
Fig. 16 agree with this. Figure 17 shows that the scaling with
the electric field strength 	 for different tactoid volumes v also
agrees with the scaling prediction of 3

7 ≈ 0.43.
All of this of course begs the question why our full equilib-

rium model, in which the tactoids choose their optimal aspect
ratio and director field in response to the external field, does
not agree with the experimental observations. Above we have
presumed that the bipolarness of the tactoids cannot respond
swiftly to the switching on of an electric field, at least less
swiftly than the aspect ratio can respond. In that case, a re-
stricted equilibrium picture applies, which would be valid for
intermediate times. This implies that after an initial increase
in aspect ratio, this aspect ratio should decrease again for (po-
tentially) much later times. This has not yet been investigated
but would be an interesting avenue of future experimental
research.

While this may seem a somewhat far-fetched explanation
to align theory and experiment, it does tie in with the ob-
servations of Jamali et al., who collected data on hundreds
of tactoids of carbon nanotubes in chlorosulfonic acid [5].
Even after 15 days of equilibration, the scatter in the observed
aspect ratio remains appreciable and cannot be explained by
thermal fluctuations. Indeed, the experiments of Metselaar
et al. also point at long relaxation times: the largest droplets
do not seem completely equilibrated even after 7000 s. On
the other hand, the lattice Boltzmann simulations presented
in the work of Metselaar et al. [39], which do mirror the
large elongation of the tactoids in an external field, point
at a relatively swift relaxation of the director field after the
external field is switched on.

In the simulations, the director field seems to keep the
almost perfect planar alignment to the interface of the tactoid
with the surrounding isotropic fluid, while in the bulk of the
tactoid the director field seems to become homogeneous [41].
This suggests a different kind of relaxation of the director field
in response to the alignment field than the one we presumed in
our work, which conserves the geometry of director field. This
kind of director field is in our view surprising, as it involves
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a strong deformation with a small radius of curvature that is
very costly in elastic free energy. This is why, generally, it is
believed that wall defects in nematics spread out very quickly
[34]. (See, however, Tromp et al. [68].) We emphasize that,
in general, the interplay of the defective points (disclinations)
and curvature is not trivial. The complexity arises from solv-
ing the elasticity equations in three dimensions (3D) in the
presence of defects [69,70].

In fact, a simple scaling theory supports this view in the
context of tactoids. Let us for simplicity take a spherical
tactoid of radius R. A locally deformed director field that
preserves perfect planar anchoring would give a free energy
of the form F � σR2 + KR2ξ−1 + γ R2ξ . Here, K is some
combination of the bend and splay elastic constants, ξ � R

is the width of the deformed director field that we equate to its
radius of curvature, and γ = εaE2 is the Coulomb energy per
unit volume. If we optimize ξ , we get ξ = K

1/2
11 γ −1/2 � R for

γ � K11R−2. For γ � KR−2, we have ξ = R.
Hence, we obtain F � σR2 + KR + γ R3 for γ � KR−2

and F � σR2 + γ 1/2 + K1/2R2 for γ � KR−2. For a smooth
director field in the limit of large field strengths, we have
F � σR2 + σωR2 because the director field is then approx-
imately uniform. This shows that for γ � ωσ/R the uniform
director field has a lower free energy than the locally deformed
one. Of course, we cannot exclude the possibility that for
KR−2 < γ < ωσ/R a locally deformed director field wins out
albeit that this might also be accompanied by an imperfect
anchoring.

In conclusion, we should perhaps not exclude the possibil-
ity that the lattice Boltzmann simulations, which are coarse
grained and characterized by rather large interfacial widths
even on the scale of the width of the droplets, allow for larger
deformations in the interfacial region than a continuum theory
would. Because of this, we feel that additional and more
comprehensive simulation studies would be useful to perform
in order to settle this issue [71].

Finally, we cannot exclude the possibility that the external
field has a sizable impact on both the interfacial tension,
the anchoring, and on the elastic constants because they all
depend on the degree of orientation order of the particles
[35,48,49]. Indeed, all of them depend on the degree of align-
ment of the particles, where we note that the isotropic phase
becomes paranematic in the presence of an external field
[52,72,73]. This implies that the interfacial tension between
the nematic droplets and the host phase should decrease with
increasing field strength. In fact, it should disappear altogether
at some critical field strength. The study presented in this
paper shows that these issues can only be resolved with more
detailed experimental investigation of the impact of external
fields on the properties of isotropic and nematic phases of
rodlike colloidal particles.
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