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Understanding the key mechanisms that control northern treelines is important to 
accurately predict biome shifts and terrestrial feedbacks to climate. At a global scale, 
it has long been observed that elevational and latitudinal treelines occur at similar 
mean growing season air temperature (GSAT) isotherms, inspiring the growth limita-
tion hypothesis (GLH) that cold GSAT limits aboveground growth of treeline trees, 
with mean treeline GSAT ~6–7°C. Treelines with mean GSAT warmer than 6–7°C 
may indicate other limiting factors. Many treelines globally are not advancing despite 
warming, and other climate variables are rarely considered at broad scales. Our goals 
were to test whether current boreal treelines in northern Alaska correspond with the 
GLH isotherm, determine which environmental factors are most predictive of treeline 
presence, and identify areas beyond the current treeline where advance is most likely. 
We digitized ~12 400 km of treelines (>26 K points) and computed seasonal climate 
variables across northern Alaska. We then built a generalized additive model predict-
ing treeline presence to identify key factors determining treeline. Two metrics of mean 
GSAT at Alaska’s northern treelines were consistently warmer than the 6–7°C iso-
therm (means of 8.5°C and 9.3°C), indicating that direct physiological limitation 
from low GSAT is unlikely to explain the position of treelines in northern Alaska. Our 
final model included cumulative growing degree-days, near-surface (≤1 m) permafrost 
probability and growing season total precipitation, which together may represent the 
importance of soil temperature. Our results indicate that mean GSAT may not be the 
primary driver of treeline in northern Alaska or that its effect is mediated by other more 
proximate, and possibly non-climatic, controls. Our model predicts treeline potential 
in several areas beyond current treelines, pointing to possible routes of treeline advance 
if unconstrained by non-climatic factors.
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Introduction

Treelines – the widespread vegetation boundaries between 
forest and tundra – have interested scientists for over a cen-
tury (Gannett 1899, Daubenmire 1954, Tuhkanen 1993, 
Körner 2012, Holtmeier and Broll 2020). !e potential of 
treelines as bellwethers of climate change has inspired new 
efforts to understand these boundaries (Bader et al. 2020). 
Understanding how, where and when treelines form is chal-
lenging because potential driving factors are confounded; 
biophysical attributes co-vary and are interrelated along the 
environmental gradients that characterize forest-tundra eco-
tones. In addition, treelines are variable in structure, com-
position and geographic position and can be difficult to 
access, which limits opportunities for experimental studies 
of generalizable causal factors. Nevertheless, understanding 
the relative importance of the causes of treelines has implica-
tions for species range limits (Risser 1995), carbon cycling 
(Wilmking et al. 2006), broad-scale atmospheric circulation 
patterns (Pielke and Vidale 1995) and surface energy balance 
(Chapin et al. 2005). Understanding controls on treelines 
between the vast boreal forest and tundra biomes of Eurasia 
and North America is especially important because advanc-
ing forest could amplify current warming trends.

!e strong correlation of latitudinal and elevational 
treelines with temperature was noted by early researchers, 
along with the hypothesis that cool growing season air tem-
perature is the primary cause of treelines (Gannett 1899, 
Daubenmire 1954). Further explaining this association, 
Körner (1998) advanced the 'growth limitation hypothesis' 
(GLH). !e GLH posits that aerodynamic coupling of tall-
statured trees with cold air – and the resultant constraints 
on cell division – is the ultimate reason trees fail to grow 
above certain elevations or latitudes globally (Körner 1998, 
2012, Körner and Paulsen 2004). Observational elaborations 
of the GLH identified global treeline mean growing season 
air temperatures (GSATs) as 6.7°C (Körner and Paulsen 
2004) and 6.4°C (Körner 2012, Paulsen and Körner 2014). 
Mean GSATs of 6–7°C are plausible if trees near treelines 
are primarily growth-limited; the critical daily minimum air 
temperature at the onset and cessation of wood formation 
(xylogenesis) in conifers was estimated to be 4–5°C (daily 
means of 8–9°C; Rossi et al. 2008) and as low as ~0.7°C at 
treeline (daily means of ~3.9°C; Li et al. 2017).

!e specific mechanisms of the GLH allow a conceptually 
simple test: if the GLH explains treelines globally, then exami-
nations of mean GSAT at many treelines should reveal values 
centered on 6–7°C. Körner and Paulsen’s (2004) analysis of 
soil temperature did find that subarctic and boreal treelines 
match an isotherm between 6 and 7°C (global mean ± SD of 
6.7 ± 0.8°C), but their sample of northern treelines was small 
(three sites), and the authors used seasonal mean soil tempera-
ture to estimate mean GSAT. Although this method may be 
accurate at lower latitudes, mean seasonal soil temperature at 
boreal treelines can be much colder than GSAT due to per-
mafrost and associated high soil water content (Romanovsky 
and Osterkamp 2000, Sullivan et al. 2015). More extensive 

sampling of treelines is needed, particularly in boreal regions, 
to assess their climatic attributes and to understand their causal 
factors. Because only slightly more than half of all treelines 
studied globally have advanced in response to anthropogenic 
warming (Harsch et al. 2009), there is a clear need to consider 
environmental variables other than GSAT at broad scales.

Our objectives were to evaluate the correspondence of 
treelines in northern Alaska with the mean GSAT isotherm 
specified by the GLH, determine which environmental fac-
tors best predict treeline presence, and identify areas currently 
beyond the treeline with climates that could support treeline 
expansion. Similar to species distribution modelling, we 
determined which environmental factors are likely correlated 
with treeline presence. We then applied a hypothetico-deduc-
tive framework to test the temperature isotherm aspect of the 
GLH: if Alaska’s boreal treeline position is limited by cold 
GSAT, 1) mean GSAT at treelines will be centered around 
6–7°C and 2) metrics of GSAT will be the most important 
predictors of treeline presence. Finally, we mapped model pre-
dictions over northern Alaska to determine specific areas that 
may currently be climatically suitable for treeline advance.

Our specific research questions were:

1) Do boreal treelines across northern Alaska fall within the 
6–7°C mean GSAT isotherm associated with the growth 
limitation hypothesis?

2) Which variables make the best predictive model of treeline 
presence in northern Alaska and how well does the model 
predict treelines?

3) Based on model predictions, where will treelines most 
likely expand in northern Alaska?

Methods

Study area

Our study area was all of the U.S. state of Alaska north of 
66°N (northern Alaska), where boreal lowlands in Alaska’s 
interior region are separated from the North Slope by the 
~1000 km Brooks Range. White spruce Picea glauca is the 
dominant treeline species throughout the Brooks Range and 
in much of northern Alaska, although black spruce Picea 
mariana can also form treelines (Viereck and Little 2007). 
Elevational treelines in northern Alaska are rarely bounded 
by upper shrublines of Alnus, Salix or Betula that separate for-
est from alpine tundra, unlike elsewhere in Alaska (Dial et al. 
2016). Permafrost is present throughout the region, at least 
discontinuously, and is most widespread and continuous on 
the North Slope. However, permafrost degradation is occur-
ring and is expected to accelerate in the coming decades 
(Pastick et al. 2015).

Treeline presence/absence dataset and sampling

We used a previously published coarse-scale Alaska treeline 
(Jorgenson and Meidinger 2015; JM) to guide a detailed and 
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extensive treeline digitization effort. !e JM treeline delin-
eates broad regions of forest and tundra, as determined from 
Landsat imagery, but does not correspond precisely to local 
tree limits, which are not usually visible at 30 m pixel resolu-
tion. Furthermore, because the JM treeline is meant to quali-
tatively separate boreal forest from tundra, the line frequently 
bridges gaps between forest patches where there are no trees. 
We used very high resolution (<1 m pixels), cloud-free 
imagery available on Google Earth™ or archived at EVWHS 
(<https://evwhs.digitalglobe.com>) such as Quickbird and 
WorldView to refine the JM treeline (Supporting informa-
tion). For the purposes of identification, we defined treelines 
inclusively as ecotones between areas containing some visible 
trees and areas with no visible trees. !ese included, but were 
not exclusive to, treelines on hillslopes (generally considered 
alpine treelines) and in lowlands (often considered latitudinal 
or boreal treelines). We digitized treelines as the outer edge  
of tree occurrence, without stipulating they be single  
connected lines.

Unable to manually digitize all treelines throughout our 
study area, we strove to establish that non-treeline points (i.e. 
absences) were correctly classified in the dataset used in model 
building and assessment. We thus generated 65 sample disks 

(10 km radius), both as a grid (n = 45) and along the north-
ernmost treeline (n = 20), to ensure a representative sample 
of the range of treeline locations in northern Alaska (Fig. 1). 
We examined imagery within each of the disks and digitized 
all treelines, if present. After treelines were digitized, we 
imported the lines into R ver. 4 (<www.r-project.org>) and 
converted them to a raster grid with a 0.00833° resolution 
(337 × 918 m with Albers Equal Area projection; Supporting 
information). Each pixel crossed by a treeline was coded as 
treeline-present (1). All other pixels were coded as treeline-
absent (0). !e total length of all treelines recorded was ~12 
400 km (26 209 pixels; Fig. 1). !e final sample dataset con-
sisted of all pixels within sampling disks for a total of 61 441 
observations (8357 treeline-present, 53 084 treeline-absent).

Environmental variable dataset

We assembled raster maps of seasonal climatic variables for 
northern Alaska from several source datasets: modelled/
interpolated monthly 2 m air temperature and precipita-
tion normals (1981–2010) from PRISM (Daly et al. 2008), 
observed daily snow cover for 2006–2019 from the National 
Snow and Ice Data Center (U.S. National Ice Center 2008, 

Figure 1. Layout of the sampling design in northern Alaska. We used high resolution satellite imagery to digitize all observable treelines 
(dark blue lines) in the Brooks Range mountains using the general Jorgenson and Meidinger (2015; brown line) treeline as a guide (inset 
map shows distinction in detail). We then selected a systematic sample of 10 km radius disks in a string along our observed treelines (n = 20; 
yellow circles) and in a systematic grid across the landscape (n = 45; dark gray circles). We examined imagery in each disk and digitized any 
additional treelines we identified within. Finally, treeline presence and environmental variables were extracted for all pixels inside each disk 
to create the sample dataset used for model training and validation.
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updated daily), and modelled/interpolated monthly 10 m 
wind normals (1981–2010) from the TerraClimate dataset 
(Abatzoglou et al. 2018). We used the native PRISM reso-
lution (0.00833°, 337 × 918 m) for all analysis, re-scaling 
other datasets where necessary using the nearest neighbour 
method (Table 1). To approximate seasons with daily reso-
lution in each pixel, we applied the methods of Paulsen 
and Körner (2014) by transforming monthly normals into 
pseudo-daily data using smoothing splines through monthly 
values. Interpreted as pseudo-daily values, monthly means 
represent values near the 15th day.

We defined growing, fall, winter and spring seasons for 
each pixel in the landscape. We defined tree-specific growing 
seasons as all days with a daily mean air temperature greater ≥ 
4°C (the seasonal base temperature), informed by published 
seasonal temperature thresholds for onset and cessation of 
xylogenesis (Rossi et al. 2008, Li et al. 2017). We further 
constrained growing seasons by subtracting days before the 
median first snow-free date for each pixel, when snow per-
sisted after daily means exceeded the base temperature (as in 
Paulsen and Körner 2014). We defined fall as daily means ≤ 
4°C, but with daily maximum temperatures ≥ 0°C. Winter 
included all days with daily maximum < 0°C. Spring was 
defined as daily maximum ≥ 0°C and before the growing sea-
son (either the 4°C mean daily base temperature or the first 
snow-free day). Although the 4°C mean daily base defined 
growing seasons for most variables, we also calculated cumu-
lative growing degree-days with other temperature bases (0, 
4 and 5°C) to test the relevance of heat sums for treeline 
presence. Growing degree-days were calculated as the sum of 
temperatures for all days above the temperature base (Man 
and Lu 2010), ignoring snow cover. We performed most 

calculations using the raster package (Hijmans 2021) in R 
ver. 4 (<www.r-project.org>).

While historical estimates of active-layer depth and perma-
frost conditions are available in Alaska (Pastick et al. 2017), 
past model simulations relied on vegetation characteristics 
that could confound our analysis. !erefore, we developed a 
map (90 m resolution) of near-surface permafrost probabili-
ties using field observations, permafrost-related topographic 
data and the machine learning framework of Pastick et al. 
(2015), excluding Landsat imagery and land cover data. !is 
consisted of 1) extracting environmental data: average annual 
and seasonal temperature (Hijmans et al. 2005), monthly 
snow cover fractions (Hall et al. 2016), soil organic carbon 
(Wylie et al. 2016) and interferometric synthetic aperture 
radar (IFSAR)-derived topographic metrics at each field site; 
2) randomly splitting (90/10) this database for random forest 
model training and validation (Breiman 2001); 3) selecting 
optimal hyper-parameters using the random search method 
(Bergstra and Bengio 2012); and 4) applying the classifica-
tion model in Google Earth Engine (Gorelick et al. 2017). 
Our independent accuracy assessment and reliability plots 
revealed good agreement between mapped and observed 
values across Alaska (area under the receiver operating char-
acteristic curve [AUC] = 0.93). !e resulting data represent 
simulated probabilities of encountering permafrost within 1 
m of the ground surface.

Testing the 6–7°C isotherm associated with the GLH

To investigate mean GSAT at treeline, we created two ras-
ter layers using the pseudo-daily temperature data. One 
layer used the 4°C base temperature corresponding with 

Table 1. Descriptions of explanatory environmental variables used for building models predicting treeline presence in northern Alaska. 
There were 48 variables in total. Seasonal abbreviations are as follows: GS = growing season, SP = spring, FA = fall and WI = winter.

Variable Description Units Time periods covered Native resolution

FAL Length of the fall season. Period between tmean < 4°C and tmax 
< 0°C.

Days Annual 800 m

Frost risk Percentage of frost days within a season (for seasons with  
tmean > 0°C).

% of days GS, SP, FA 800 m

GDD Cumulative growing degree-days with base of 0, 4 or 5°C. Sum of 
tmean-base for all days tmean > base.

°C days GS 800 m

GSL Length of the growing season. Snow-free period where  
tmean ≥ 4°C.

Days Annual 800 m

Permafrost Modelled near surface (≤ 1m) permafrost. Probability Annual 90 m
Ppt Daily precipitation totals summed over the respective time period. mm Annual, GS, SP, FA, WI 800 m
Snow delay Period between first daily tmean > 4°C and first snow-free day. Days Annual 4 km
Snowfree Median first snow-free day of the year for the available period 

2006–2019.
Day of year Annual 4 km

SPL Length of the spring season. Period between tmax > 0°C and 
tmean < 4°C.

Days Annual 800 m

Tmax Daily maxmimum air temp. averaged over the respective time 
period.

°C Annual, GS, SP, FA, WI 800 m

Tmean Daily mean air temp. averaged over the respective time period. °C Annual, GS, SP, FA, WI 800 m
TmeanPK Mean daily growing season air temp. using Paulsen and Körner’s 

(2014) 0.9°C base.
°C GS 800 m

Tmin Daily minimum air temp. averaged over the respective time 
period.

°C Annual, GS, SP, FA, WI 800 m

WIL Length of the winter season. Period where tmax < 0°C. Days Annual 800 m
Wind Daily mean wind speed averaged over the respective time period. m s−1 Annual, GS, SP, FA, WI 4 km
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observed daily air temperature thresholds for xylogenesis 
(Rossi et al. 2008, Li et al. 2017) and the other using the 
0.9°C base of Paulsen and Körner (2014) for direct com-
parison with their global analysis. Without appropriate soil 
moisture data, we did not subtract days from growing seasons 
to account for drought stress, which previous research indi-
cates may be rare in mature white spruce across the Brooks 
Range (Brownlee et al. 2016). Mean GSAT was computed as 
the mean of all days during growing seasons, then extracted 
along all 12 400 km of our treelines with pixel values equal to 
treeline presence (response variable value = 1).

Model building and variable selection – which 
variables are most predictive of treeline presence?

Our sample dataset included 41 environmental variables 
with 61 441 observations, which we randomly split (50/50) 
into training (for model building) and validation (to assess 
model performance) datasets. Many variables related com-
plexly with treeline presence (Supporting information). To 
accommodate these relationships, we used binomial gener-
alized additive models (GAMs) to model treeline presence 
(mgcv package in R; Wood 2004, 2011). We reduced the 
variable set to the most ecologically relevant variables by 
sequentially choosing variables in order of importance using 
Akaike’s information criterion (AIC) in univariate logistic 
GAMs (lowest AIC value = highest rank; model fits shown in 
Supporting information) while minimizing pairwise correla-
tions (Spearman’s correlation coefficient > |0.7|; the ‘select07’ 
method in Dormann et al. 2013). To reduce overfitting, we 
imposed smooth response curves by constraining the number 
of basis dimensions (k = 4) for each term and applying an 
additional global penalty that lowers the effective sample size 
(gamma = 10).

With the resulting 14 ecologically meaningful, but mini-
mally collinear, variables, we built a single GAM with all vari-
ables in the list. We then sequentially removed environmental 
variables that had pairwise concurvity (a nonlinear analog of 
collinearity) > 0.5 with any of the other variables based on 
the conservative ‘worst-case concurvity’ metric (Wood 2017). 
!is process was repeated until the final model had pairwise 
concurvity ≤ 0.5 between all variables. Rather than relying on 
p-values (nearly all terms were significant due to large sample 
size), we conducted final variable selection by including a 
global penalty to smooth terms in the GAM which identi-
fies weak variables by reducing their coefficients towards 0 
(Marra and Wood 2011, Wood 2017). !e final model fits 
to remaining variables were further refined by adjusting the 
number of basis dimensions (max k = 10) for each smooth 
term and controlling the effective sample size.

We validated our final model by predicting treeline pres-
ence using the validation dataset and computing AUC as an 
absolute measure of performance. We checked for the influ-
ence of spatial autocorrelation on results (Dormann et al. 
2007) by refitting a GAM with a residual autocovariate term 
(Crase et al. 2014) using the set of predictor variables identi-
fied after the select07 and concurvity exclusion processes. We 

also fitted GAMs with spatial coordinates terms to examine 
if spatial autocorrelation could be accounted for in this way. 
We further validated our GAM results and variable rankings 
with a random forest model (randomForest package; Liaw 
and Wiener 2002). Variable ranking in the random forest 
was determined using permutation importance, a metric of 
increase in classification error resulting from the removal of 
each variable. After the model building process, we used the 
resulting GAM to construct a map of treeline probability over 
northern Alaska. Finally, to better understand how general 
climatic attributes (rather than specific variables) are associ-
ated with treelines, we also ran a principal components (PC) 
analysis on our suite of environmental variables and built 
another GAM predicting treeline presence from the PC axes.

Results

Testing the 6–7°C isotherm associated with the GLH

Mean GSAT at our treelines was not centered on 6–7°C and 
was almost universally warmer (Fig. 2). Using the 4°C base, 
all treeline pixels had mean GSAT warmer than 6.4°C (range: 
7.1–11.2°C, mean: 9.3°C, median: 9.2°C; Fig. 3). For 
Paulsen and Körner’s (2014) 0.9°C base, 99.99% of treeline 
pixels were warmer than 6.4°C (range: 6.2–10.6°C, mean: 
8.5°C, median: 8.5°C; Fig. 2). For an inclusive comparison, 
we also considered the 6.7 ± 0.8°C (i.e. 5.9–7.5°C) isotherm 
reported by Körner and Paulsen (2004). For the 4°C base, 
only 0.02% (5 pixels) of treelines were below 7.5°C. With 
the 0.9°C base, 4.7% (1224 of 26 209 pixels) of treelines 
were below 7.5°C (Fig. 2). When mapped, the 6.7 ± 0.8°C 
isotherm occurs primarily along the northern coast, northern 
Brooks Range foothills and high in the Brooks Range – loca-
tions far beyond the majority of observed treelines (Fig. 3).

Which variables are most predictive of treeline 
presence?

!e four most predictive variables of treeline presence in a 
univariate context were metrics of GSAT, with cumulative 
growing degree-days (4°C base; GDD4) being the most 
predictive (23.2% deviance explained = d.e.), followed by 
the two other calculations of growing degree-days and July 
mean air temperature (Table 2). !e least predictive metrics 
of growing season warmth were air temperature means (GS_
TmeanPK with 0.9°C base: 19.7% d.e., GS_Tmean with 
4°C base: 20.0% d.e.), minimum (GS_Tmin: 14.3% d.e.) 
and maximum (GS_Tmax: 12.0% d.e.; Table 2). Annual 
maximum air temperature, growing season length and winter 
season length ranked similarly to mean GSAT (~20% d.e.). 
Overall, there were often small differences in AIC values and 
deviance explained between adjacently ranked univariate 
models (Table 2).

!e final GAM included three predictors: GDD4, near-
surface permafrost probability and growing season total 
precipitation (GS_Ppt; Supporting information, Fig. 4). 



6

!is model explained 32.5% of the deviance in the training 
dataset with AUC = 0.89 on the validation dataset, reflect-
ing good overall model performance. Model residuals con-
tained spatial autocorrelation (Moran’s I = 0.22 for 3 × 3 
pixel neighbourhoods), but accounting for this with a resid-
ual autocovariate term did not change the order of variable 
importance (Supporting information). Including a spatial 
coordinates term did not affect residual autocorrelation. !e 
random forest model also ranked predictors in the same order 
of importance as the GAM, with GDD4, permafrost prob-
ability and GS_Ppt as the top three (Supporting informa-
tion). In the final GAM model, GDD4 and GS_Ppt showed 
clear optimums associated with treeline presence, with peaks 
near 650 growing degree-days and 80 mm of precipitation, 
respectively (Fig. 4). Lower GDD4 values reduced the prob-
ability of treeline at the higher elevations of the Brooks Range 
and along the northern coast (corresponding to <400 degree-
days; Supporting information). !e additional inflections in 
the GDD4 response reflect clusters of treelines near 450 and 
850 growing degree-days. !e low values occurred at treelines 
in the western and eastern Brooks Range and the highest val-
ues occurred primarily at low elevation treelines near the vil-
lage of Ambler (Supporting information; Fig. 1 for location). 
Permafrost probability had a distinctive two-peaked pattern, 

with most treelines clustered around 30% probability (Brooks 
Range and mountains south) and a secondary cluster above 
75% probability (western low elevation treelines) (Fig. 4; 
Supporting information). GS_Ppt had a smaller influence on 
treeline presence (Supporting information, Fig. 4), with most 
treelines occurring at intermediate levels of GS_Ppt centered 
over the Brooks Range and mountains south (Supporting 
information).

Our best principal components GAM included PC1, PC2 
and PC4 as predictors of treeline presence (Supporting infor-
mation). PC3 and PC5 had weak effects and were dropped 
from the model. !e results largely agree with the specific-
variable GAM and provide further insight into the interre-
lated environmental factors associated with treeline. Lower 
PC1 values indicate warmer growing seasons, while high val-
ues represent longer winters, warmer, but windier, springs, 
windier growing seasons and later snow-free dates. Low PC2 
values represent higher permafrost probability and greater 
frost occurrence, while high values represent warmer winters 
and increased precipitation. PC4 was lower for longer fall 
seasons, greater spring frost occurrence and windier winters. 
Larger PC4 values reflect greater delay in the start of grow-
ing seasons due to persistent snowpack and warmer spring 
and fall air temperatures. !e PCA GAM achieved slightly 

Figure 2. Disagreement between two metrics of mean growing season air temperature in northern Alaska and the 6.7 ± 0.8°C isotherm 
associated with the growth limitation hypothesis. Data were extracted for all treeline pixels identified in this study (n = 26 209 pixels; 12 
400 km in total length). (a) Scatter plots of treeline mean growing season air temp. versus elevation. Red points and lines represent medians 
with 25 and 75% quantiles. (b) Relative distribution of treeline points across the range of mean growing season air temp. in 0.25°C bins. 
In both (a) and (b), top panels show growing season means calculated with the 0.9°C base used by Paulsen and Körner (2014). Bottom 
panels show growing season means calculated with a seasonal base temperature of 4°C informed by thermal limits of xylogenesis (Rossi et al. 
2008, Li et al. 2017). !e gray bars delineate the 6.7 ± 0.8°C isothem. Overlap with the 4°C base was 0.02% of treelines, with 0.9°C 
overlap was 4.7% of treelines.
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lower AIC than the specific-variable GAM (16751 versus 
16695) but did not improve prediction accuracy (AUC 0.88 
versus 0.89) or deviance explained (32.3% versus 32.5%). 
!erefore, we used the specific-variable GAM for mapping 
predictions of treeline presence.

Mapping treeline predictions over northern Alaska

Mapped predicted treeline presence generally agreed well with 
observed treelines (Fig. 5). However, the model estimated 

treelines in the central and western Brooks Range more accu-
rately than in the eastern part of the range. Additionally, 
lowland treelines in non-mountainous terrain were poorly 
predicted. !e model predicted treeline presence in several 
areas beyond and generally north of our observed treelines, 
most notably in the extreme western extent of the Brooks 
Range (De Long Mountains), the Wulik and Kivalina water-
sheds and the upper Noatak River Basin. !e model also indi-
cated non-negligible probabilities of treeline (<0.2) across a 
broad area of current tundra in the Colville River drainage 

Figure 3. Spatial disagreement of the 6.7 ± 0.8°C isotherm associated with the growth limitation hypothesis (areas in black) and observed 
treelines (grey lines) over northern Alaska. Areas of overlap are highlighted in blue (4.7% of treelines in the top panel, 0.02% in the bottom 
panel). !e top panel shows mean growing season air temperatures calculated with a base temperature of 0.9°C used by Paulsen and Körner 
(2014). Bottom panel shows growing season means calculated with a 4°C base informed by thermal limits of xylogenesis (Rossi et al. 2008, 
Li et al. 2017). Both metrics of growing season air temperature are derived from 1981 to 2010 normals.
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of the north Slope. In the eastern Brooks Range, the model 
predicted treelines in the Kongakut River valley (Fig. 5; Fig. 1 
for locations).

Discussion

Identifying the climatic variables associated with north-
ern treelines is an important aspect of predicting responses 
of arctic and subarctic ecosystems to climate change and 
their feedbacks to the climate system. Treelines are generally 
thought to be controlled by GSAT, and other environmental 
variables are rarely considered over a broad scale. Our mod-
elling approach allowed consideration of the relationship of 

treeline with several environmental factors across northern 
Alaska. We interpreted our results with respect to the GLH: 
1) mean GSAT at treelines in northern Alaska is consistently 
far warmer than the 6–7°C isotherm associated with the 
GLH and 2) treeline was best predicted by a model contain-
ing GDD4, permafrost probability and GS_Ppt. If GSAT 
was the primary limiting factor for treelines in our study area, 
we would see consistency between observed treelines and the 
GLH isotherm. Instead, our results indicate that while there 
is a substantial role of growing season warmth in predicting 
treelines, we reject the growth limitation hypothesis as the 
direct causal mechanism of treelines in Arctic Alaska. Our 
model predicted non-zero treeline probability in several areas 
that are not currently known to contain trees but are near 
observed treelines. !ese areas present low climatic barriers 
and may be future locations of treeline advance.

Table 2. Environmental variable rankings based on univariate logis-
tic generalized additive models predicting treeline presence in 
northern Alaska. Table 1 for a key to variable names. Ranks are 
based on model AIC values.

Variable AIC Deviance explained

GDD4 18 947.5 23.2
GDD0 18 995.9 23.0
GDD5 19 001.8 23.0
July_Tmean 19 670.7 20.3
AN_Tmax 19 738.3 20.0
GS_Tmean 19 746.1 20.0
GSL 19 752.7 20.0
WIL 19 770.2 19.9
GS_TmeanPK 19 823.7 19.7
Snowfree 20 361.7 17.5
GS_Tmin 21 158.8 14.3
AN_Tmean 21 405.5 13.3
GS_FrostRisk 21 452.4 13.1
SP_Wind 21 467.1 13.0
AN_Tmin 21 616.7 12.4
GS_Tmax 21 724.0 12.0
GS_Ppt 21 747.4 11.9
FAL 21 905.6 11.3
FA_Wind 22 141.1 10.3
WI_Tmax 22 141.3 10.3
GS_Wind 22 157.5 10.2
WI_Tmean 22 198.6 10.1
AN_Ppt 22 295.6 9.7
SP_Ppt 22 303.2 9.6
WI_Tmin 22 402.9 9.2
WI_Ppt 22 615.8 8.4
GS_snowdelay_PK 22 716.3 8.0
Permafrost 22 771.1 7.7
GS_snowdelay 22 892.1 7.3
AN_Wind 22 950.5 7.0
SP_FrostRisk 22 954.5 7.0
FA_Ppt 22 964.1 7.0
SP_Tmin 22 965.4 7.0
SP_Tmean 23 293.3 5.6
WI_Wind 23 596.1 4.4
SPL 23 729.5 3.9
FA_Tmean 23 780.0 3.7
FA_Tmin 24 046.5 2.6
FA_Tmax 24 128.9 2.2
FA_FrostRisk 24 334.9 1.4
SP_Tmax 24 363.1 1.3

Figure 4. Partial response plots from a binomial logistic generalized 
additive model predicting treeline presence as a function of cumula-
tive growing degree-days (4°C base), near surface (≤1 m) perma-
frost probability and growing season total precipitation. Response 
curves for each variable show the predicted response when the other 
variables are held at their mean values. Confidence intervals (gray 
bands) show ± 2 SE associated with each smooth term, plus the 
uncertainty associated with the overall model fit. Hash mark ‘rugs’ 
show distribution of pixels containing treelines (blue) over pixels 
without treelines (gray).
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Treelines that are warmer than the 6–7°C mean GSAT 
isotherm (Millar et al. 2020) may indicate that growth limi-
tation due to cold GSAT is not the dominant factor deter-
mining those treelines or that it is codominant with other 
factors. It is also possible that treeline positions simply lag 
behind warming or that Alaska’s northern treelines display 
nonequilibrium behaviour (sensu Scheffer et al. 2012) and 
have not yet reached a critical mean GSAT. However, our 
results cannot be fully explained by lagged responses follow-
ing release from direct physiological limitation by GSAT. 
First, our climate data account for >1 decade of lag (1981–
2010 climate normals with 2006–2019 imagery). Second, 
the trends in May–September mean air temperature across 
northern Alaska were −0.03°C·decade−1 for 1901–1950 and 
0.28°C·decade−1 for 1951–2010 (Supporting information). 
At these rates, our 8.5 and 9.3°C GSAT means for 1981–
2010 (midpoint = 1995) were ~7.2 and ~8°C for the rela-
tively static 1901–1950 period (data from Scenarios Network 
for Alaska and Arctic Planning, <https://uaf-snap.org/get-
data/>). A majority of our treelines have thus been warmer 
than 6–7°C for at least 120 years. Instead of direct control by 
GSAT, warm growing seasons, the low explained deviance of 
our model and the combination of variables in the model may 
indicate the importance of missing or inadequately character-
ized variables in our analysis, such as soil temperature, snow 
depth or wind. It is also possible that our results reflect the 
roles of non-climatic factors, like tree demography, dispersal, 
competition, herbivory, disturbance (e.g. bark beetles, fire) 
and their interactions. Warmer GSAT than expected under 

the GLH likely indicates that ‘regionally variable modulatory 
forces’ – hypothesized by Körner (1998) to secondarily aug-
ment the fundamental importance of GSAT as predictors of 
treeline – are the rule, rather than the exception at Alaska’s 
northern treelines.

!e strong influence of GDD4 in our model could reflect 
a primary role of GSAT in limiting tree growth, reproduc-
tion, germination or survival at treeline (i.e. support of the 
GLH). GDD was found to be an important correlate of tree 
and seedling establishment – the prerequisites of treeline 
advance – at an advancing treeline in southwestern Alaska 
(Miller et al. 2017). However, our observation of GSATs 
warmer than the GLH isotherm indicate that direct physi-
ological limitation from low GSAT is unlikely to explain the 
position of treelines in northern Alaska. Additionally, we 
found that winter length was almost as influential as met-
rics of growing season warmth on the PC1 axis (Supporting 
information). Although this association could be arithmetic 
(longer winters will generally accompany shorter, cooler sum-
mers), the importance of winter for tree growth and treeline 
position has been recognized elsewhere (Hagedorn et al. 
2014, Harsch et al. 2014, Sullivan et al. 2015, Renard et al. 
2016). !us, we interpret these results as indicating that 
mechanisms relating to both growing season warmth and 
winter season length are important predictors of treeline in 
northern Alaska. One such mechanism may be soil tempera-
ture and its related soil processes, which have previously been 
hypothesized as the primary or co-dominant limiting factors 
of treelines in northern Alaska (Sullivan et al. 2015).

Figure 5. Map of predicted treeline presence in northern Alaska (expressed as probabilities) showing generally good agreement with many 
observed treelines. Areas beyond the current treeline highlighted by the model may indicate likely locations of treeline expansion. Predictions 
derive from a logistic generalized additive model with cumulative growing degree-days (4°C base), near surface (≤1 m) permafrost probabil-
ity and growing season total precipitation as predictors. Prediction error at observed treeline points (1-predicted probability) is shown with 
blue shading.
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While the effects of soil temperature and related processes 
are likely not fully captured in our analysis, the predictor vari-
ables in our final model (GDD4, permafrost probability and 
GS_Ppt) together may act as surrogates for soil temperature. 
!e temperature of soil above permafrost is correlated with 
air temperature at a coarse scale, but it is strongly affected 
by other factors and processes such as vegetation, soil prop-
erties and conditions (e.g. organic layer thickness, moisture 
and texture), snow accumulation, conductive exchange with 
snowmelt water and latent heat exchange from phase changes 
of water in the soil (Hinkel et al. 2001). Summer soil tem-
perature is also typically much cooler than air temperature 
near boreal treelines (Sullivan et al. 2015, Ellison et al. 2019), 
which could account for the mismatch between our treelines 
and the GLH isotherm. !e temporal lag associated with 
warming soils could account for apparent nonequilibrium 
behaviour with respect to air temperature and treeline posi-
tion. !e inclusion of precipitation in our final model could 
reflect an influence of longitudinal moisture gradients on tree 
growth at treeline (Wilmking and Juday 2005) but could also 
further reflect the importance of winter climate or the role of 
soil water on soil temperature.

Cold soils can directly affect root growth (Tryon and 
Chapin 1983) and can also indirectly affect growth by nega-
tively affecting water transport (Running and Reid 1980) and 
nutrient absorption (Stevens and Fox 1991, Weih and Karlsson 
2002). Although trees are dormant through winter, winter 
soil temperature affects soil microbial activity (Sturm et al. 
2005, Sullivan et al. 2020) and can indirectly affect trees by 
limiting microbial nutrient mineralization (Nadelhoffer et al. 
1991, Dawes et al. 2017), which ultimately restricts nutri-
ent availability in the growing season (Sveinbjörnsson 2000, 
Sullivan et al. 2015). An analysis of factors affecting veg-
etation distributions in northwest Alaska found that white 
spruce cover was associated with greater active layer and water 
table depths than unforested areas, indicating the importance 
of drainage (Jorgenson et al. 2009). !ese soil properties can 
in turn be affected by topography, with the warmest, best-
drained soils occurring on south-facing slopes. Our model 
performed relatively poorly in predicting current treelines in 
the eastern Brooks Range, a region with the highest elevation 
treelines, the greatest differences between air and soil tem-
perature, and lower soil nutrient availability than elsewhere 
in the Brooks Range (Ellison et al. 2019). However, climate 
station coverage is limited in this area. Although the soil tem-
perature interpretation is plausible, our model only explained 
32.5% of the deviance in the dataset. Inaccuracies in gridded 
climate data probably limited explanatory power, although 
it seems likely that we lacked important climatic predictor 
variables, or that treeline positions in our study region are 
dependent on non-climatic factors not easily characterized at 
broad scales.

Non-climatic factors, such as population and commu-
nity dynamics and disturbance, are known to be important 
in determining treeline movement. Dispersal of seeds can 
be more important than abiotic constraints in determining 
establishment in habitats near current treelines (Stueve et al. 

2011). Factors that limit successful dispersal – seeds reach-
ing suitable microsites and establishment of individuals in 
those sites – can cause lags in tree population expansion 
behind climatic conditions (Johnstone and Chapin 2003). 
Herbivory of seedlings during peaks in snowshoe hare Lepus 
americanus abundance can prevent spruce establishment 
near treelines in interior Alaska and could substantially slow 
treeline advance in areas with favourable hare habitat (e.g. tall 
shrubs; Olnes et al. 2017). Additionally, mortality of mature 
trees reduces seed sources. Porcupine Erethizon dorsatus feed-
ing on the cambium of P. glauca can kill mature trees (Payette 
2007), while spruce bark beetles Dendroctonus rufipennis can 
induce widespread mortality. Spruce bark beetle outbreaks 
have historically been infrequent in northern Alaska, but 
warming winters may increase their frequency (Berg et al. 
2006). Similarly, while wildfire has historically been rare near 
the northern treeline in Alaska, by the century’s end, the fre-
quency of lightning strikes at treeline is projected to match 
rates currently experienced in interior Alaska (Chen et al. 
2021). It seems clear that these non-climatic factors will 
affect the character of treeline movement in complex ways as 
the climate and Arctic ecosystems continue to change.

Although extensive field-based research is needed to 
make fine-scale predictions of how treelines may shift (and 
how rapidly) in coming decades, our model predictions may 
broadly indicate regions that present low climatic barriers 
to treeline advance. In northwest Alaska in particular, our 
model identified extensive areas that may be able to support 
trees beyond currently known treelines. Previous research 
identified the Brooks Range as a major geographic barrier 
to northward treeline advance, possibly delaying warming-
induced treeline advance by 1000+ years with ‘low barrier’ 
areas in the upper Noatak River Basin (Rupp et al. 2001). 
Agreement between our predictions and those of Rupp et al. 
(2001) indicates this region is a potential front of treeline 
advance in the near future, although advance will be substan-
tially modified by non-climatic factors. Near-surface perma-
frost is rapidly thawing in northwest Alaska, with active layer 
thickness projected to more than double in the next 35 years 
(Batir et al. 2017). Treeline advance related to permafrost 
thaw has been observed in western Alaska (Lloyd et al. 2003) 
and may be especially important in river floodplains where 
deep active layers border areas of tundra with shallow active 
layers, forming abrupt treelines (Epstein et al. 2004). Changes 
in boreal forest extent will have important implications for 
wildlife movement and distribution patterns (Mallory and 
Boyce 2018, Zhou et al. 2020) and human subsistence use 
(Brinkman et al. 2016). Increasing tree coverage in the Arctic 
is also expected to amplify climate warming through changes 
in surface albedo and carbon cycling (Chapin et al. 2005). 
Shifting boreal treelines are thus expected to be both a cause 
and a consequence of continued rapid warming in the Arctic.
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