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Ecography Understanding the key mechanisms that control northern treelines is important to
44: 1-13, 2021 accurately predict biome shifts and terrestrial feedbacks to climate. At a global scale,
doi: 10.1111/ecog.05597 it has long been observed that elevational and latitudinal treelines occur at similar

mean growing season air temperature (GSAT) isotherms, inspiring the growth limita-
Subject Editor and tion hypothesis (GLH) that cold GSAT limits aboveground growth of treeline trees,
Editor-in-Chief: with mean treeline GSAT ~6-7°C. Treelines with mean GSAT warmer than 6-7°C
Jens-Christian C Svenning may indicate other limiting factors. Many treelines globally are not advancing despite
Accepted 3 August 2021 warming, and other climate variables are rarely considered at broad scales. Our goals

were to test whether current boreal treelines in northern Alaska correspond with the
GLH isotherm, determine which environmental factors are most predictive of treeline
presence, and identify areas beyond the current treeline where advance is most likely.
We digitized ~12 400 km of treelines (>26 K points) and computed seasonal climate
variables across northern Alaska. We then built a generalized additive model predict-
ing treeline presence to identify key factors determining treeline. Two metrics of mean
GSAT at Alaska’s northern treelines were consistently warmer than the 6-7°C iso-
therm (means of 8.5°C and 9.3°C), indicating that direct physiological limitation
from low GSAT is unlikely to explain the position of treelines in northern Alaska. Our
final model included cumulative growing degree-days, near-surface (<1 m) permafrost
probability and growing season total precipitation, which together may represent the
importance of soil temperature. Our results indicate that mean GSAT may not be the
primary driver of treeline in northern Alaska or that its effect is mediated by other more
proximate, and possibly non-climatic, controls. Our model predicts treeline potential
in several areas beyond current treelines, pointing to possible routes of treeline advance
if unconstrained by non-climatic factors.
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Introduction

Treelines — the widespread vegetation boundaries between
forest and tundra — have interested scientists for over a cen-
tury (Gannett 1899, Daubenmire 1954, Tuhkanen 1993,
Koérner 2012, Holtmeier and Broll 2020). The potential of
treelines as bellwethers of climate change has inspired new
efforts to understand these boundaries (Bader et al. 2020).
Understanding how, where and when treelines form is chal-
lenging because potential driving factors are confounded;
biophysical attributes co-vary and are interrelated along the
environmental gradients that characterize forest-tundra eco-
tones. In addition, treelines are variable in structure, com-
position and geographic position and can be difficult to
access, which limits opportunities for experimental studies
of generalizable causal factors. Nevertheless, understanding
the relative importance of the causes of treelines has implica-
tions for species range limits (Risser 1995), carbon cycling
(Wilmking et al. 2006), broad-scale atmospheric circulation
patterns (Pielke and Vidale 1995) and surface energy balance
(Chapin et al. 2005). Understanding controls on treelines
between the vast boreal forest and tundra biomes of Eurasia
and North America is especially important because advanc-
ing forest could amplify current warming trends.

The strong correlation of latitudinal and elevational
treelines with temperature was noted by early researchers,
along with the hypothesis that cool growing season air tem-
perature is the primary cause of treelines (Gannett 1899,
Daubenmire 1954). Further explaining this association,
Kérner (1998) advanced the 'growth limitation hypothesis'
(GLH). The GLH posits that aecrodynamic coupling of tall-
statured trees with cold air — and the resultant constraints
on cell division — is the ultimate reason trees fail to grow
above certain elevations or laticudes globally (Kérner 1998,
2012, Kérner and Paulsen 2004). Observational elaborations
of the GLH identified global treeline mean growing season
air temperatures (GSATs) as 6.7°C (Korner and Paulsen
2004) and 6.4°C (Korner 2012, Paulsen and Kérner 2014).
Mean GSATs of 6-7°C are plausible if trees near treelines
are primarily growth-limited; the critical daily minimum air
temperature at the onset and cessation of wood formation
(xylogenesis) in conifers was estimated to be 4-5°C (daily
means of 8—9°C; Rossi et al. 2008) and as low as ~0.7°C at
treeline (daily means of ~3.9°C; Li et al. 2017).

The specific mechanisms of the GLH allow a conceptually
simple test: if the GLH explains treelines globally, then exami-
nations of mean GSAT at many treelines should reveal values
centered on 6-7°C. Kérner and Paulsen’s (2004) analysis of
soil temperature did find that subarctic and boreal treelines
match an isotherm between 6 and 7°C (global mean + SD of
6.7 + 0.8°C), but their sample of northern treelines was small
(three sites), and the authors used seasonal mean soil tempera-
ture to estimate mean GSAT. Although this method may be
accurate at lower latitudes, mean seasonal soil temperature at
boreal treelines can be much colder than GSAT due to per-
mafrost and associated high soil water content (Romanovsky
and Osterkamp 2000, Sullivan et al. 2015). More extensive

sampling of treelines is needed, particularly in boreal regions,
to assess their climatic attributes and to understand their causal
factors. Because only slightly more than half of all treelines
studied globally have advanced in response to anthropogenic
warming (Harsch et al. 2009), there is a clear need to consider
environmental variables other than GSAT at broad scales.
Our objectives were to evaluate the correspondence of
treelines in northern Alaska with the mean GSAT isotherm
specified by the GLH, determine which environmental fac-
tors best predict treeline presence, and identify areas currently
beyond the treeline with climates that could support treeline
expansion. Similar to species distribution modelling, we
determined which environmental factors are likely correlated
with treeline presence. We then applied a hypothetico-deduc-
tive framework to test the temperature isotherm aspect of the
GLH: if Alaska’s boreal treeline position is limited by cold
GSAT, 1) mean GSAT at treelines will be centered around
6-7°C and 2) metrics of GSAT will be the most important
predictors of treeline presence. Finally, we mapped model pre-
dictions over northern Alaska to determine specific areas that
may currently be climatically suitable for treeline advance.
Our specific research questions were:

1) Do boreal treelines across northern Alaska fall within the
6-7°C mean GSAT isotherm associated with the growth
limitation hypothesis?

2) Which variables make the best predictive model of treeline
presence in northern Alaska and how well does the model
predict treelines?

3) Based on model predictions, where will treelines most
likely expand in northern Alaska?

Methods

Study area

Our study area was all of the U.S. state of Alaska north of
66°N (northern Alaska), where boreal lowlands in Alaska’s
interior region are separated from the North Slope by the
~1000 km Brooks Range. White spruce Picea glauca is the
dominant treeline species throughout the Brooks Range and
in much of northern Alaska, although black spruce Picea
mariana can also form treelines (Viereck and Little 2007).
Elevational treelines in northern Alaska are rarely bounded
by upper shrublines of Alnus, Salix or Betula that separate for-
est from alpine tundra, unlike elsewhere in Alaska (Dial et al.
2016). Permafrost is present throughout the region, at least
discontinuously, and is most widespread and continuous on
the North Slope. However, permafrost degradation is occur-
ring and is expected to accelerate in the coming decades

(Pastick et al. 2015).

Treeline presence/absence dataset and sampling

We used a previously published coarse-scale Alaska treeline
(Jorgenson and Meidinger 2015; JM) to guide a detailed and



extensive treeline digitization effort. The JM treeline delin-
cates broad regions of forest and tundra, as determined from
Landsat imagery, but does not correspond precisely to local
tree limits, which are not usually visible at 30 m pixel resolu-
tion. Furthermore, because the JM treeline is meant to quali-
tatively separate boreal forest from tundra, the line frequently
bridges gaps between forest patches where there are no trees.
We used very high resolution (<1 m pixels), cloud-free
imagery available on Google Earth™ or archived at EVWHS
(<https://evwhs.digitalglobe.com>) such as Quickbird and
WorldView to refine the JM treeline (Supporting informa-
tion). For the purposes of identification, we defined treelines
inclusively as ecotones between areas containing some visible
trees and areas with no visible trees. These included, but were
not exclusive to, treelines on hillslopes (generally considered
alpine treelines) and in lowlands (often considered laticudinal
or boreal treelines). We digitized treelines as the outer edge
of tree occurrence, without stipulating they be single
connected lines.

Unable to manually digitize all treelines throughout our
study area, we strove to establish that non-treeline points (i.e.
absences) were correctly classified in the dataset used in model
building and assessment. We thus generated 65 sample disks
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(10 km radius), both as a grid (n=45) and along the north-
ernmost treeline (n=20), to ensure a representative sample
of the range of treeline locations in northern Alaska (Fig. 1).
We examined imagery within each of the disks and digitized
all treelines, if present. After treelines were digitized, we
imported the lines into R ver. 4 (Kwww.r-project.org>) and
converted them to a raster grid with a 0.00833° resolution
(337 X 918 m with Albers Equal Area projection; Supporting
information). Each pixel crossed by a treeline was coded as
treeline-present (1). All other pixels were coded as treeline-
absent (0). The total length of all treelines recorded was ~12
400 km (26 209 pixels; Fig. 1). The final sample dataset con-
sisted of all pixels within sampling disks for a total of 61 441
observations (8357 treeline-present, 53 084 treeline-absent).

Environmental variable dataset

We assembled raster maps of seasonal climatic variables for
northern Alaska from several source datasets: modelled/
interpolated monthly 2 m air temperature and precipita-
tion normals (1981-2010) from PRISM (Daly et al. 2008),
observed daily snow cover for 2006-2019 from the National
Snow and Ice Data Center (U.S. National Ice Center 2008,
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Figure 1. Layout of the sampling design in northern Alaska. We used high resolution satellite imagery to digitize all observable treelines
(dark blue lines) in the Brooks Range mountains using the general Jorgenson and Meidinger (2015; brown line) treeline as a guide (inset
map shows distinction in detail). We then selected a systematic sample of 10 km radius disks in a string along our observed treelines (n=20;
yellow circles) and in a systematic grid across the landscape (n=45; dark gray circles). We examined imagery in each disk and digitized any
additional treelines we identified within. Finally, treeline presence and environmental variables were extracted for all pixels inside each disk

to create the sample dataset used for model training and validation.



updated daily), and modelled/interpolated monthly 10 m
wind normals (1981-2010) from the TerraClimate dataset
(Abatzoglou et al. 2018). We used the native PRISM reso-
lution (0.00833°, 337 X 918 m) for all analysis, re-scaling
other datasets where necessary using the nearest neighbour
method (Table 1). To approximate seasons with daily reso-
lution in each pixel, we applied the methods of Paulsen
and Kérner (2014) by transforming monthly normals into
pseudo-daily data using smoothing splines through monthly
values. Interpreted as pseudo-daily values, monthly means
represent values near the 15th day.

We defined growing, fall, winter and spring seasons for
each pixel in the landscape. We defined tree-specific growing
seasons as all days with a daily mean air temperature greater >
4°C (the seasonal base temperature), informed by published
seasonal temperature thresholds for onset and cessation of
xylogenesis (Rossi et al. 2008, Li et al. 2017). We further
constrained growing seasons by subtracting days before the
median first snow-free date for each pixel, when snow per-
sisted after daily means exceeded the base temperature (as in
Paulsen and Kérner 2014). We defined fall as daily means <
4°C, but with daily maximum temperatures > 0°C. Winter
included all days with daily maximum < 0°C. Spring was
defined as daily maximum > 0°C and before the growing sea-
son (either the 4°C mean daily base temperature or the first
snow-free day). Although the 4°C mean daily base defined
growing seasons for most variables, we also calculated cumu-
lative growing degree-days with other temperature bases (0,
4 and 5°C) to test the relevance of heat sums for treeline
presence. Growing degree-days were calculated as the sum of
temperatures for all days above the temperature base (Man
and Lu 2010), ignoring snow cover. We performed most

calculations using the raster package (Hijmans 2021) in R
ver. 4 (Kwww.r-project.org>).

While historical estimates of active-layer depth and perma-
frost conditions are available in Alaska (Pastick et al. 2017),
past model simulations relied on vegetation characteristics
that could confound our analysis. Therefore, we developed a
map (90 m resolution) of near-surface permafrost probabili-
ties using field observations, permafrost-related topographic
data and the machine learning framework of Pastick et al.
(2015), excluding Landsat imagery and land cover data. This
consisted of 1) extracting environmental data: average annual
and seasonal temperature (Hijmans et al. 2005), monthly
snow cover fractions (Hall et al. 2016), soil organic carbon
(Wylie et al. 2016) and interferometric synthetic aperture
radar (IFSAR)-derived topographic metrics at each field site;
2) randomly splitting (90/10) this database for random forest
model training and validation (Breiman 2001); 3) selecting
optimal hyper-parameters using the random search method
(Bergstra and Bengio 2012); and 4) applying the classifica-
tion model in Google Earth Engine (Gorelick et al. 2017).
Our independent accuracy assessment and reliability plots
revealed good agreement between mapped and observed
values across Alaska (area under the receiver operating char-
acteristic curve [AUC]=0.93). The resulting data represent
simulated probabilities of encountering permafrost within 1
m of the ground surface.

Testing the 6-7°C isotherm associated with the GLH

To investigate mean GSAT at treeline, we created two ras-
ter layers using the pseudo-daily temperature data. One
layer used the 4°C base temperature corresponding with

Table 1. Descriptions of explanatory environmental variables used for building models predicting treeline presence in northern Alaska.
There were 48 variables in total. Seasonal abbreviations are as follows: GS=growing season, SP=spring, FA=fall and WI=winter.

Variable Description Units Time periods covered  Native resolution

FAL Length of the fall season. Period between tmean < 4°C and tmax  Days Annual 800 m
< 0°C.

Frost risk ~ Percentage of frost days within a season (for seasons with % of days  GS, SP, FA 800 m
tmean > 0°C).

GDD Cumulative growing degree-days with base of 0, 4 or 5°C. Sum of °C days GS 800 m
tmean-base for all days tmean > base.

GSL Length of the growing season. Snow-free period where Days Annual 800 m
tmean > 4°C.

Permafrost Modelled near surface (< Tm) permafrost. Probability ~ Annual 90 m

Ppt Daily precipitation totals summed over the respective time period. mm Annual, GS, SP, FA, WI 800 m

Snow delay Period between first daily tmean > 4°C and first snow-free day. Days Annual 4 km

Snowfree  Median first snow-free day of the year for the available period Day of year Annual 4 km
2006-2019.

SPL Length of the spring season. Period between tmax > 0°C and Days Annual 800 m
tmean < 4°C.

Tmax Daily maxmimum air temp. averaged over the respective time °C Annual, GS, SP, FA, WI 800 m
period.

Tmean Daily mean air temp. averaged over the respective time period. °C Annual, GS, SP, FA, WI 800 m

TmeanPK  Mean daily growing season air temp. using Paulsen and Kérner’s ~ °C GS 800 m
(2014) 0.9°C base.

Tmin Daily minimum air temp. averaged over the respective time °C Annual, GS, SP, FA, WI 800 m
period.

WIL Length of the winter season. Period where tmax < 0°C. Days Annual 800 m

Wind Daily mean wind speed averaged over the respective time period. m s~ Annual, GS, SP, FA, WI 4 km




observed daily air temperature thresholds for xylogenesis
(Rossi et al. 2008, Li et al. 2017) and the other using the
0.9°C base of Paulsen and Koérner (2014) for direct com-
parison with their global analysis. Without appropriate soil
moisture data, we did not subtract days from growing seasons
to account for drought stress, which previous research indi-
cates may be rare in mature white spruce across the Brooks
Range (Brownlee et al. 2016). Mean GSAT was computed as
the mean of all days during growing seasons, then extracted
along all 12 400 km of our treelines with pixel values equal to
treeline presence (response variable value=1).

Model building and variable selection — which
variables are most predictive of treeline presence?

Our sample dataset included 41 environmental variables
with 61 441 observations, which we randomly split (50/50)
into training (for model building) and validation (to assess
model performance) datasets. Many variables related com-
plexly with treeline presence (Supporting information). To
accommodate these relationships, we used binomial gener-
alized additive models (GAMs) to model treeline presence
(mgev package in R; Wood 2004, 2011). We reduced the
variable set to the most ecologically relevant variables by
sequentially choosing variables in order of importance using
Akaike’s information criterion (AIC) in univariate logistic
GAMs (lowest AIC value = highest rank; model fits shown in
Supporting information) while minimizing pairwise correla-
tions (Spearman’s correlation coefficient > |0.7|; the ‘select07’
method in Dormann et al. 2013). To reduce overfitting, we
imposed smooth response curves by constraining the number
of basis dimensions (k=4) for each term and applying an
additional global penalty that lowers the effective sample size
(gamma=10).

With the resulting 14 ecologically meaningful, but mini-
mally collinear, variables, we built a single GAM with all vari-
ables in the list. We then sequentially removed environmental
variables that had pairwise concurvity (a nonlinear analog of
collinearity) > 0.5 with any of the other variables based on
the conservative ‘worst-case concurvity’ metric (Wood 2017).
This process was repeated until the final model had pairwise
concurvity < 0.5 between all variables. Rather than relying on
p-values (nearly all terms were significant due to large sample
size), we conducted final variable selection by including a
global penalty to smooth terms in the GAM which identi-
fies weak variables by reducing their coefficients towards 0
(Marra and Wood 2011, Wood 2017). The final model fits
to remaining variables were further refined by adjusting the
number of basis dimensions (max k=10) for each smooth
term and controlling the effective sample size.

We validated our final model by predicting treeline pres-
ence using the validation dataset and computing AUC as an
absolute measure of performance. We checked for the influ-
ence of spatial autocorrelation on results (Dormann et al.
2007) by refitting a GAM with a residual autocovariate term
(Crase et al. 2014) using the set of predictor variables identi-
fied after the select07 and concurvity exclusion processes. We

also fitted GAMs with spatial coordinates terms to examine
if spatial autocorrelation could be accounted for in this way.
We further validated our GAM results and variable rankings
with a random forest model (randomForest package; Liaw
and Wiener 2002). Variable ranking in the random forest
was determined using permutation importance, a metric of
increase in classification error resulting from the removal of
each variable. After the model building process, we used the
resulting GAM to construct a map of treeline probability over
northern Alaska. Finally, to better understand how general
climatic attributes (rather than specific variables) are associ-
ated with treelines, we also ran a principal components (PC)
analysis on our suite of environmental variables and built
another GAM predicting treeline presence from the PC axes.

Results

Testing the 6-7°C isotherm associated with the GLH

Mean GSAT at our treelines was not centered on 6-7°C and
was almost universally warmer (Fig. 2). Using the 4°C base,
all treeline pixels had mean GSAT warmer than 6.4°C (range:
7.1-11.2°C, mean: 9.3°C, median: 9.2°C; Fig. 3). For
Paulsen and Kérner’s (2014) 0.9°C base, 99.99% of treeline
pixels were warmer than 6.4°C (range: 6.2-10.6°C, mean:
8.5°C, median: 8.5°C; Fig. 2). For an inclusive comparison,
we also considered the 6.7 + 0.8°C (i.e. 5.9-7.5°C) isotherm
reported by Korner and Paulsen (2004). For the 4°C base,
only 0.02% (5 pixels) of treelines were below 7.5°C. With
the 0.9°C base, 4.7% (1224 of 26 209 pixels) of treelines
were below 7.5°C (Fig. 2). When mapped, the 6.7 & 0.8°C
isotherm occurs primarily along the northern coast, northern
Brooks Range foothills and high in the Brooks Range — loca-
tions far beyond the majority of observed treelines (Fig. 3).

Which variables are most predictive of treeline
presence?

The four most predictive variables of treeline presence in a
univariate context were metrics of GSAT, with cumulative
growing degree-days (4°C base; GDD4) being the most
predictive (23.2% deviance explained=d.c.), followed by
the two other calculations of growing degree-days and July
mean air temperature (Table 2). The least predictive metrics
of growing season warmth were air temperature means (GS_
TmeanPK with 0.9°C base: 19.7% d.e., GS_Tmean with
4°C base: 20.0% d.e.), minimum (GS_Tmin: 14.3% d.e.)
and maximum (GS_Tmax: 12.0% d.e.; Table 2). Annual
maximum air temperature, growing season length and winter
season length ranked similarly to mean GSAT (-20% d.e.).
Overall, there were often small differences in AIC values and
deviance explained between adjacently ranked univariate
models (Table 2).

The final GAM included three predictors: GDD4, near-
surface permafrost probability and growing season total
precipitation (GS_Ppt; Supporting information, Fig. 4).
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Figure 2. Disagreement between two metrics of mean growing season air temperature in northern Alaska and the 6.7 + 0.8°C isotherm
associated with the growth limitation hypothesis. Data were extracted for all treeline pixels identified in this study (n=26 209 pixels; 12
400 km in total length). (a) Scatter plots of treeline mean growing season air temp. versus elevation. Red points and lines represent medians
with 25 and 75% quantiles. (b) Relative distribution of treeline points across the range of mean growing season air temp. in 0.25°C bins.
In both (a) and (b), top panels show growing season means calculated with the 0.9°C base used by Paulsen and Kérner (2014). Bottom
panels show growing season means calculated with a seasonal base temperature of 4°C informed by thermal limits of xylogenesis (Rossi et al.
2008, Li et al. 2017). The gray bars delineate the 6.7 + 0.8°C isothem. Overlap with the 4°C base was 0.02% of treelines, with 0.9°C

overlap was 4.7% of treelines.

This model explained 32.5% of the deviance in the training
dataset with AUC=0.89 on the validation dataset, reflect-
ing good overall model performance. Model residuals con-
tained spatial autocorrelation (Moran’s I=0.22 for 3 X 3
pixel neighbourhoods), but accounting for this with a resid-
ual autocovariate term did not change the order of variable
importance (Supporting information). Including a spatial
coordinates term did not affect residual autocorrelation. The
random forest model also ranked predictors in the same order
of importance as the GAM, with GDD4, permafrost prob-
ability and GS_Ppt as the top three (Supporting informa-
tion). In the final GAM model, GDD4 and GS_Ppt showed
clear optimums associated with treeline presence, with peaks
near 650 growing degree-days and 80 mm of precipitation,
respectively (Fig. 4). Lower GDD4 values reduced the prob-
ability of treeline at the higher elevations of the Brooks Range
and along the northern coast (corresponding to <400 degree-
days; Supporting information). The additional inflections in
the GDD4 response reflect clusters of treelines near 450 and
850 growing degree-days. The low values occurred at treelines
in the western and eastern Brooks Range and the highest val-
ues occurred primarily at low elevation treelines near the vil-
lage of Ambler (Supporting information; Fig. 1 for location).
Permafrost probability had a distinctive two-peaked pattern,

with most treelines clustered around 30% probability (Brooks
Range and mountains south) and a secondary cluster above
75% probability (western low elevation treelines) (Fig. 4;
Supporting information). GS_Ppt had a smaller influence on
treeline presence (Supporting information, Fig. 4), with most
treelines occurring at intermediate levels of GS_Ppt centered
over the Brooks Range and mountains south (Supporting
information).

Our best principal components GAM included PC1, PC2
and PC4 as predictors of treeline presence (Supporting infor-
mation). PC3 and PC5 had weak effects and were dropped
from the model. The results largely agree with the specific-
variable GAM and provide further insight into the interre-
lated environmental factors associated with treeline. Lower
PC1 values indicate warmer growing seasons, while high val-
ues represent longer winters, warmer, but windier, springs,
windier growing seasons and later snow-free dates. Low PC2
values represent higher permafrost probabilicy and greater
frost occurrence, while high values represent warmer winters
and increased precipitation. PC4 was lower for longer fall
seasons, greater spring frost occurrence and windier winters.
Larger PC4 values reflect greater delay in the start of grow-
ing seasons due to persistent snowpack and warmer spring

and fall air temperatures. The PCA GAM achieved slightly
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Figure 3. Spatial disagreement of the 6.7 + 0.8°C isotherm associated with the growth limitation hypothesis (areas in black) and observed
treelines (grey lines) over northern Alaska. Areas of overlap are highlighted in blue (4.7% of treelines in the top panel, 0.02% in the bottom
panel). The top panel shows mean growing season air temperatures calculated with a base temperature of 0.9°C used by Paulsen and Korner
(2014). Bottom panel shows growing season means calculated with a 4°C base informed by thermal limits of xylogenesis (Rossi et al. 2008,
Li etal. 2017). Both metrics of growing season air temperature are derived from 1981 to 2010 normals.

lower AIC than the specific-variable GAM (16751 versus
16695) but did not improve prediction accuracy (AUC 0.88
versus 0.89) or deviance explained (32.3% versus 32.5%).
Therefore, we used the specific-variable GAM for mapping
predictions of treeline presence.

Mapping treeline predictions over northern Alaska

Mapped predicted treeline presence generally agreed well with
observed treelines (Fig. 5). However, the model estimated

treelines in the central and western Brooks Range more accu-
rately than in the eastern part of the range. Additionally,
lowland treelines in non-mountainous terrain were pootly
predicted. The model predicted treeline presence in several
areas beyond and generally north of our observed treelines,
most notably in the extreme western extent of the Brooks
Range (De Long Mountains), the Wulik and Kivalina water-
sheds and the upper Noatak River Basin. The model also indi-
cated non-negligible probabilities of treeline (<0.2) across a
broad area of current tundra in the Colville River drainage
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Table 2. Environmental variable rankings based on univariate logis-
tic generalized additive models predicting treeline presence in
northern Alaska. Table 1 for a key to variable names. Ranks are
based on model AIC values.

Variable AIC Deviance explained
GDD4 18 947.5 23.2
GDDO 18995.9 23.0
GDD5 19 001.8 23.0
July_Tmean 19 670.7 20.3
AN_Tmax 19 738.3 20.0
GS_Tmean 19 746.1 20.0
GSL 19 752.7 20.0
WIL 19 770.2 19.9
GS_TmeanPK 19 823.7 19.7
Snowfree 20361.7 17.5
GS_Tmin 21 158.8 14.3
AN_Tmean 21 405.5 13.3
GS_FrostRisk 21 452.4 13.1
SP_Wind 21 467.1 13.0
AN_Tmin 21 616.7 12.4
GS_Tmax 21724.0 12.0
GS_Ppt 217474 1.9
FAL 21 905.6 11.3
FA_Wind 22 141.1 10.3
WI_Tmax 22 141.3 10.3
GS_Wind 22 157.5 10.2
WI_Tmean 22 198.6 10.1
AN_Ppt 22 295.6 9.7
SP_Ppt 22 303.2 9.6
WI_Tmin 22 402.9 9.2
WI_Ppt 22 615.8 8.4
GS_snowdelay_PK 227163 8.0
Permafrost 227711 7.7
GS_snowdelay 22 892.1 7.3
AN_Wind 22 950.5 7.0
SP_FrostRisk 22 954.5 7.0
FA_Ppt 22 964.1 7.0
SP_Tmin 22 965.4 7.0
SP_Tmean 232933 5.6
WI_Wind 23 596.1 4.4
SPL 23729.5 3.9
FA_Tmean 23 780.0 3.7
FA_Tmin 24 046.5 2.6
FA_Tmax 24 128.9 2.2
FA_FrostRisk 24 3349 1.4
SP_Tmax 24 363.1 1.3

of the north Slope. In the eastern Brooks Range, the model
predicted treelines in the Kongakut River valley (Fig. 5; Fig. 1
for locations).

Discussion

Identifying the climatic variables associated with north-
ern treelines is an important aspect of predicting responses
of arctic and subarctic ecosystems to climate change and
their feedbacks to the climate system. Treelines are generally
thought to be controlled by GSAT, and other environmental
variables are rarely considered over a broad scale. Our mod-
elling approach allowed consideration of the relationship of
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Figure 4. Partial response plots from a binomial logistic generalized
additive model predicting treeline presence as a function of cumula-
tive growing degree-days (4°C base), near surface (<1 m) perma-
frost probability and growing season total precipitation. Response
curves for each variable show the predicted response when the other
variables are held at their mean values. Confidence intervals (gray
bands) show + 2 SE associated with each smooth term, plus the
uncertainty associated with the overall model fit. Hash mark ‘rugs’
show distribution of pixels containing treelines (blue) over pixels
without treelines (gray).

treeline with several environmental factors across northern
Alaska. We interpreted our results with respect to the GLH:
1) mean GSAT at treelines in northern Alaska is consistently
far warmer than the 6-7°C isotherm associated with the
GLH and 2) treeline was best predicted by a model contain-
ing GDD4, permafrost probability and GS_Ppt. If GSAT
was the primary limiting factor for treelines in our study area,
we would see consistency between observed treelines and the
GLH isotherm. Instead, our results indicate that while there
is a substantial role of growing season warmth in predicting
treelines, we reject the growth limitation hypothesis as the
direct causal mechanism of treelines in Arctic Alaska. Our
model predicted non-zero treeline probability in several areas
that are not currently known to contain trees but are near
observed treelines. These areas present low climatic barriers
and may be future locations of treeline advance.
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Figure 5. Map of predicted treeline presence in northern Alaska (expressed as probabilities) showing generally good agreement with many
observed treelines. Areas beyond the current treeline highlighted by the model may indicate likely locations of treeline expansion. Predictions
derive from a logistic generalized additive model with cumulative growing degree-days (4°C base), near surface (<1 m) permafrost probabil-
ity and growing season total precipitation as predictors. Prediction error at observed treeline points (1-predicted probability) is shown with

blue shading,.

Treelines that are warmer than the 6-7°C mean GSAT
isotherm (Millar et al. 2020) may indicate that growth limi-
tation due to cold GSAT is not the dominant factor deter-
mining those treelines or that it is codominant with other
factors. It is also possible that treeline positions simply lag
behind warming or that Alaska’s northern treelines display
nonequilibrium behaviour (sensu Scheffer et al. 2012) and
have not yet reached a critical mean GSAT. However, our
results cannot be fully explained by lagged responses follow-
ing release from direct physiological limitation by GSAT.
First, our climate data account for >1 decade of lag (1981—
2010 climate normals with 2006-2019 imagery). Second,
the trends in May—September mean air temperature across
northern Alaska were —0.03°C.decade™ for 1901-1950 and
0.28°C-decade™ for 1951-2010 (Supporting information).
At these rates, our 8.5 and 9.3°C GSAT means for 1981-
2010 (midpoint=1995) were ~7.2 and ~8°C for the rela-
tively static 1901-1950 period (data from Scenarios Network
for Alaska and Arctic Planning, <https://uaf-snap.org/get-
data/>). A majority of our treelines have thus been warmer
than 6-7°C for at least 120 years. Instead of direct control by
GSAT, warm growing seasons, the low explained deviance of
our model and the combination of variables in the model may
indicate the importance of missing or inadequately character-
ized variables in our analysis, such as soil temperature, snow
depth or wind. It is also possible that our results reflect the
roles of non-climatic factors, like tree demography, dispersal,
competition, herbivory, disturbance (e.g. bark beetles, fire)
and their interactions. Warmer GSAT than expected under

the GLH likely indicates that ‘regionally variable modulatory
forces’ — hypothesized by Korner (1998) to secondarily aug-
ment the fundamental importance of GSAT as predictors of
treeline — are the rule, rather than the exception at Alaska’s
northern treelines.

The strong influence of GDD4 in our model could reflect
a primary role of GSAT in limiting tree growth, reproduc-
tion, germination or survival at treeline (i.e. support of the
GLH). GDD was found to be an important correlate of tree
and seedling establishment — the prerequisites of treeline
advance — at an advancing treeline in southwestern Alaska
(Miller et al. 2017). However, our observation of GSATs
warmer than the GLH isotherm indicate that direct physi-
ological limitation from low GSAT is unlikely to explain the
position of treelines in northern Alaska. Additionally, we
found that winter length was almost as influential as met-
rics of growing season warmth on the PC1 axis (Supporting
information). Although this association could be arithmetic
(longer winters will generally accompany shorter, cooler sum-
mers), the importance of winter for tree growth and treeline
position has been recognized elsewhere (Hagedorn et al.
2014, Harsch et al. 2014, Sullivan et al. 2015, Renard et al.
2016). Thus, we interpret these results as indicating that
mechanisms relating to both growing season warmth and
winter season length are important predictors of treeline in
northern Alaska. One such mechanism may be soil tempera-
ture and its related soil processes, which have previously been
hypothesized as the primary or co-dominant limiting factors
of treelines in northern Alaska (Sullivan et al. 2015).



While the effects of soil temperature and related processes
are likely not fully captured in our analysis, the predictor vari-
ables in our final model (GDD4, permafrost probability and
GS_Ppt) together may act as surrogates for soil temperature.
The temperature of soil above permafrost is correlated with
air temperature at a coarse scale, but it is strongly affected
by other factors and processes such as vegetation, soil prop-
erties and conditions (e.g. organic layer thickness, moisture
and texture), snow accumulation, conductive exchange with
snowmelt water and latent heat exchange from phase changes
of water in the soil (Hinkel et al. 2001). Summer soil tem-
perature is also typically much cooler than air temperature
near boreal treelines (Sullivan et al. 2015, Ellison et al. 2019),
which could account for the mismatch between our treelines
and the GLH isotherm. The temporal lag associated with
warming soils could account for apparent nonequilibrium
behaviour with respect to air temperature and treeline posi-
tion. The inclusion of precipitation in our final model could
reflect an influence of longitudinal moisture gradients on tree
growth at treeline (Wilmking and Juday 2005) but could also
further reflect the importance of winter climate or the role of
soil water on soil temperature.

Cold soils can directly affect root growth (Tryon and
Chapin 1983) and can also indirectly affect growth by nega-
tively affecting water transport (Running and Reid 1980) and
nutrientabsorption (Stevens and Fox 1991, Weih and Karlsson
2002). Although trees are dormant through winter, winter
soil temperature affects soil microbial activity (Sturm et al.
2005, Sullivan et al. 2020) and can indirectly affect trees by
limiting microbial nutrient mineralization (Nadelhoffer et al.
1991, Dawes et al. 2017), which ultimately restricts nutri-
ent availability in the growing season (Sveinbjérnsson 2000,
Sullivan et al. 2015). An analysis of factors affecting veg-
etation distributions in northwest Alaska found that white
spruce cover was associated with greater active layer and water
table depths than unforested areas, indicating the importance
of drainage (Jorgenson et al. 2009). These soil properties can
in turn be affected by topography, with the warmest, best-
drained soils occurring on south-facing slopes. Our model
performed relatively poorly in predicting current treelines in
the eastern Brooks Range, a region with the highest elevation
treelines, the greatest differences between air and soil tem-
perature, and lower soil nutrient availability than elsewhere
in the Brooks Range (Ellison et al. 2019). However, climate
station coverage is limited in this area. Although the soil tem-
perature interpretation is plausible, our model only explained
32.5% of the deviance in the dataset. Inaccuracies in gridded
climate data probably limited explanatory power, although
it seems likely that we lacked important climatic predictor
variables, or that treeline positions in our study region are
dependent on non-climatic factors not easily characterized at
broad scales.

Non-climatic factors, such as population and commu-
nity dynamics and disturbance, are known to be important
in determining treeline movement. Dispersal of seeds can
be more important than abiotic constraints in determining
establishment in habitats near current treelines (Stueve et al.
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2011). Factors that limit successful dispersal — seeds reach-
ing suitable microsites and establishment of individuals in
those sites — can cause lags in tree population expansion
behind climatic conditions (Johnstone and Chapin 2003).
Herbivory of seedlings during peaks in snowshoe hare Lepus
americanus abundance can prevent spruce establishment
near treelines in interior Alaska and could substantially slow
treeline advance in areas with favourable hare habitat (e.g. tall
shrubs; Olnes et al. 2017). Additionally, mortality of mature
trees reduces seed sources. Porcupine Erethizon dorsatus feed-
ing on the cambium of 2 glauca can kill mature trees (Payette
2007), while spruce bark beetles Dendroctonus rufipennis can
induce widespread mortality. Spruce bark beetle outbreaks
have historically been infrequent in northern Alaska, but
warming winters may increase their frequency (Berg et al.
20006). Similarly, while wildfire has historically been rare near
the northern treeline in Alaska, by the century’s end, the fre-
quency of lightning strikes at treeline is projected to match
rates currently experienced in interior Alaska (Chen et al.
2021). It seems clear that these non-climatic factors will
affect the character of treeline movement in complex ways as
the climate and Arctic ecosystems continue to change.
Although extensive field-based research is needed to
make fine-scale predictions of how treelines may shift (and
how rapidly) in coming decades, our model predictions may
broadly indicate regions that present low climatic barriers
to treeline advance. In northwest Alaska in particular, our
model identified extensive areas that may be able to support
trees beyond currently known treelines. Previous research
identified the Brooks Range as a major geographic barrier
to northward treeline advance, possibly delaying warming-
induced treeline advance by 1000+ years with ‘low barrier’
areas in the upper Noatak River Basin (Rupp et al. 2001).
Agreement between our predictions and those of Rupp et al.
(2001) indicates this region is a potential front of treeline
advance in the near future, although advance will be substan-
tially modified by non-climatic factors. Near-surface perma-
frost is rapidly thawing in northwest Alaska, with active layer
thickness projected to more than double in the next 35 years
(Batir et al. 2017). Treeline advance related to permafrost
thaw has been observed in western Alaska (Lloyd et al. 2003)
and may be especially important in river floodplains where
deep active layers border areas of tundra with shallow active
layers, forming abrupt treelines (Epstein et al. 2004). Changes
in boreal forest extent will have important implications for
wildlife movement and distribution patterns (Mallory and
Boyce 2018, Zhou et al. 2020) and human subsistence use
(Brinkman et al. 2016). Increasing tree coverage in the Arctic
is also expected to amplify climate warming through changes
in surface albedo and carbon cycling (Chapin et al. 2005).
Shifting boreal treelines are thus expected to be both a cause
and a consequence of continued rapid warming in the Arctic.
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