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Dedicated to the memory of Ronald G. Douglas

We prove a K-homology index theorem for Toeplitz operators obtained from
the multishifts of Bergman spaces on several classes of egg-like domains. This
generalizes our earlier work with Douglas and Yu for the unit ball.

1. Introduction

Around a decade ago a multivariate operator theory approach to algebraic geome-
try was suggested by Arveson [2007] and Douglas [2006b] in the following way.
Suppose that I € 4 := C[zy, . . z,] is an ideal of the ring of polynomials in m
variables. To understand the geometry of the zero variety

V():=peC": f(p) =0, Vf €1

defined by 7, algebraic geometers study the coordinate ring A/I. To find an op-
erator theory model for A/1, one can replace A by the Bergman space L2 ()
of square-integrable analytic functions on some bounded strongly pseudoconvex
domain < C™ with smooth boundary, and mod it out by the closure I of /
inside L2() . The quotient Hilbert space Q; := L2()/ I has a natural Hilbert A-
module structure' givenby p- (f+ 1) =pf+ 1, p€A, f €L2() . Transporting
this action to the orthogonal complement

L) I=1*"

MSC2020: primary 19K33; secondary 19K56.
Keywords: Toeplitz operators, index theorem, egg domains.

IThere is a one-to-one correspondence between commuting  m-tuples of operators T :=
(T, . . Iy) acting on a Hilbert space H and Hilbert A-module structures on H [Arveson 2007].
The correspondence is given by representing each polynomial p(zq, . . zw) € A by the opera-
tor p(Tl, .. Tm). Conversely, T is identified with the m-tuple (le, .. Mzm)ofmultiplication
operators by coordinate functions, and is called the fundamental tuple of Toeplitz operators on the
Hilbert A-module H. Based on this correspondence, the properties of T are attributed to H and vice
versa. For example, H is called essentially normal if all [T], T, k*] are compact, and p-essentially
normal if all [T}, T)*] are Schatten p-summable. Also, c (H ) denotes the essential Taylor spectrum
associated to the fundamental tuple of Toeplitz operators ofH [Taylor 1970; Miiller 2007].
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makes /* a Hilbert A-module. Alternatively, the module structure of /* is given
by the compression of multiplication operators:

Tp::P]LMpl[L, pEA,

where M, : L2() » L2() is multiplication by p, and P;. is orthogonal projec-
tioninL2() onto I*. Let T, be the unital C*-algebra generated by{ 7, : p € A} UK,
where K is the ideal of compact operators on /+. Arveson, based on his work on
the model theory of spherical contractions in multivariate dilation theory [Arveson
1998; Ambrozie and Miiller 2015; Shalit 2015], proposed the following conjecture:

Conjecture 1.1 [Arveson 2002; 2005]. I+ is essentially normal. In other words,
all commutators | 25 TZ:] withj, k=1, . . mare compact.

Suppose momentarily that this conjecture holds. Also, assume that / is homoge-
neous. Then the maximal ideal space of T;/K is homeomorphic via the mapping
¢33 (p(T.,), . .. Tp[)) to the essential Taylor spectrum ¢! of (T;,, . . Ty, ),
which coincides with X, := V(I ) N J[Guo and Wang 2008, Theorem 5.1]; see
also [Curto 1981, Corollary 3.10; Douglas 2006b, Theorem 4.1; Curto and Salinas
1985; Gleason et al. 2005]. The Gelfand—Naimark duality then gives the short
exact sequence of C*-algebras

0> K~>T,- C(X[) - 0.

Let
T = ﬂ-l]

be the equivalence class represented by this exact sequence in the odd K-homology
group K (X;) of Brown-Douglas—Fillmore [Brown et al. 1973; 1977]. Douglas
[2006D] (see also [Baum and Douglas 1982, Section 25]) asked for an explicit
computation of this element in other topological or geometric realizations of K-
homology:

Problem 1.2 [Douglas 2006b]. Assume that / is homogeneous and /* is essen-
tially normal. Identify 7; € K (X 7 )

More specifically, he made the following conjecture:

Conjecture 1.3 [Douglas 2006b]. Let I be the vanishing ideal of an algebraic
variety V- S C™ which intersects & transversally. Then I+ is essentially normal,
and its induced extension class Ty is identified with the fundamental class of X,
namely the extension class induced by theSpin® Dirac operator associated to the
natural Cauchy—Riemann structure of Xj.

By analogy with the Atiyah—Singer index theorem, one expects that this conjec-
ture would lead to new connections between geometry and operator theory. To see
what brought Arveson and Douglas to their conjecture/problem, we refer the reader
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to their original papers [Arveson 2005; 2000; Douglas 2006b] as well as [Shalit
2015; Jabbari 2019, Sections 1.2-3]. In particular, Conjecture 1.3 generalizes some
aspects of the Boutet de Monvel index theorem for Toeplitz operators on strongly
pseudoconvex domains to possibly singular algebraic varieties [Boutet de Monvel
1978/79; Baum et al. 1989].

Let us review some results about these conjectures and problem. (See also
[Shalit 2015; Guo and Wang 2020].) When is the unit open ball, Conjecture 1.1
has been proved in the following cases:

(1) 1is monomial [Arveson 2005; Douglas 2006a; Douglas et al. 2018].
(2) Iis homogeneous and m < 3 [Guo and Wang 2008].
(3) Iis homogeneous and dim ¥ (1) <1 [Guo and Wang 2008].

(4) 1 is principal [Guo and Wang 2008; Douglas and Wang 2011; Fang and Xia
2013; 2018; Douglas et al. 2017; Wang and Xia 2020]. (The last two refer-
ences allow for strongly pseudoconvex domains .)

(5) I has a stable generating set {p;, . . ps] of homogeneous polynomials in
the sgnse that there exists C > 0 such that every ¢ € I can be written as
qg= f.:lrjpj with7; € A and kr;p;k;2) < Ckgk;2) [Shalit 2011; Wang
2019].

(6) I is the vanishing ideal of a homogeneous variety smooth away from the origin
[Englis and Eschmeier 2015; Douglas et al. 2016; Douglas and Wang 2017;
Wang and Xia 2019].

When is the unit ball, the articles [Guo and Wang 2008] and [Douglas et al.
2016] answer Problem 1.2 when m <2 and when / is the vanishing ideal of a com-
plete intersection variety (possibly singular away from the boundary), respectively.
In [Douglas et al. 2018] we gave an answer to Problem 1.2 when is the unit open
ball and / is monomial:

Theorem 1.4. Let  be the unit open ball B,, and I a monomial ideal.
(a) There exist a positive integer k, essentially normal Hilbert A-modules
Ag:=LL() AL ... AL

and Hilbert A-module morphz’sms2 9, :Aq > Aq+1, q=0, .. k-1such
that _ 9 9
0> I, A)=HA Zh . 2L A5 0

is exact. (This implies that I * is essentially normal.)

2Bounded linear maps that preserve 4-module structures.
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(b) For eachq, let T(A g ) be the unital C*-algebra generated by all module action
operators as well as all compact operators on the Hilbert moduleA ;, and let
a = d (Aq) be the essential Taylor spectrum associated to A,. Then the
identification N
7 = (_l)q_l[T(Aq}]
q=1
holdsinKy(c} U - - - §). o

By its explicit construction, each A, has a tractable geometry as the Hilbert
space of square-integrable analytic sections of a Hermitian vector bundle on a
disjoint union of subsets of B,,.

In this paper, we generalize Theorem 1.4 to the case when  is an egg domain
of the form

X
1:= (z1, . . zm) EC": z;PP <1, p; >0, (1.5)
j=1
or more generally of the form

a )& b
2= PP I S e (L6)
j:l k=1

where the finitely many parameters p;, gx, a, b, . . are arbitrary positive reals.
(Whenall p;, g, . .equal 1,  iscalled a generalized complex ellipsoid in
[Jarnicki and Pflug 2008, page 208; Kodama et al. 1992].)

Theorem 1.7. Let  be a domain of the form (1.5) or (1.6), andl a monomial ideal.

(a) There exist a positive integer k, essentially normal Hilbert A-modules
AO::Lg(): A]) .. 'Ak:
and Hilbert A-module morphisms 9 , :Aq > Aq+ 1,9 =0, . . ks 1suchthat
0> I A, 2%A 2L . 24 5 (1.8)

is exact. (This implies that I * is essentially normal.)

(b) For eachq, let T(A g ) be the unital C*-algebra generated by all module action
operators as well as all compact operators on the Hilbert moduleA ;, and let
a = d¢ (Aq) be the essential Taylor spectrum associated to A ;. Then the
identification

x 1
= (-LTA)
q=1
holdsinK (g} U - - - ). o
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The explicit construction of the resolution (1.8) comes in Section 2, and the
proof of Theorem 1.7 in Section 3. Our proof uses crucially the fact that monomials
constitute an orthogonal basis for Lf, () if isa domain of type (1.5) or (1.6).
Each A, has a tractable geometry as the Hilbert space of square-integrable analytic
sections of a Hermitian vector bundle on a disjoint union of subsets of

Remark 1.9. If / is homogeneous, the C*-algebra generated by {1} UT], : p € 4]
is irreducible (it has no proper reducing closed subspace), and hence contains K
if I+ is essentially normal [Guo and Wang 2008, page 923; Douglas 1998, Theo-
rem 5.39].

Remark 1.10. One reason why we care about monomial ideals is that a comprehen-
sive understanding of the phenomena appearing in this generically nonradical case
may lead to new results beyond the recently established ones about radical ideals
[Douglas et al. 2016; Douglas and Wang 2017; Engli§ and Eschmeier 2015].

Remark 1.11. A domain of type (1.5) is weakly (but not strongly) pseudoconvex
and with C? boundary when m > 1, all p ; are > 1 and atleastone p; is > 1
[D’Angelo 1978]. (The same is true for a domain of type (1.6) whenm+ n+- - - %,
alla,b, . . 2pj,2qk, . .are > 2 and at least one of 2 p;, 2q¢, . .is > 2.) As far
as we know, putting the polydiscs aside [Wang and Zhao 2018], Theorem 1.7 is
the only result which discusses Conjecture 1.1 and Problem 1.2 on weakly pseudo-
convex domains.

Remark 1.12. Note that a domain of type (1.6) is obtained fr?,tn a domain of type
(1.5) when each |z, | is replaced by an expression of the form ;. , |z;4[P/*, where
all coordinates z; are distinct. Applying this process on a domain of type (1.6)
and repeating this process finitely many times gives rise to more generalized egg
domains. For example, we can get

(’Z“llpm + |2112|P112)P11 + (12121 [Pt + kpn[P12 + o3 |P123)P12+ k3P P1

+(..P.zjl...3;‘

(Compare [Egorychev 1984, Section 6.2; Boas et al. 1999].) The arguments in this
paper prove Theorem 1.7 for all such domains.

Arveson’s statement of his essential normality conjecture was more refined than
Conjecture 1.1 in the sense that it addressed the Schatten class membership of
commutators [Arveson 2005; Douglas 2006a]. In this paper, however, we merely
focused on the membership of commutators in the ideal of compacts. The reason
is that our proof of Theorem 1.7(b) relies crucially on the usage of the Fuglede—
Putnam theorem in the proof of Proposition 2.5(b,c,d). Since the Schatten class
version of the Fuglede—Putnam theorem at the quotient level is missing [Douglas
2006a; Weiss 1981; Shulman 1996], our result does not determine the Schatten
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class membership of the commutators for the quotients of Bergman spaces by
monomial ideals. Nevertheless, it is worth pointing out that our computations (not
included in this paper) show that the whole Bergman space L2( 1) associated with
domain (1.5) is p-essentially normal exactly when

! iftm =1,

>
P max{m, p;(m—1) :j =1, .. m} ifm>1.

(See also Remark 2.7.) This suggests that the Schatten class property of the commu-
tators may be related to the convexity and geometry of the domain [Beatrous and
Li 1995; Connes 1994; Douglas and Voiculescu 1981; Krantz et al. 1997; Milnor

1968]. We plan to discuss this relation in the future [Jabbari 2020].

2. The construction of the resolution in Theorem 1.7

From now on, | and , are domains of type (1.5) and (1.6), respectively. We
develop the details for 1,and  can be treated similarly, with the only difference
being Proposition 2.2 and the proof of Lemma 2.6.  We always use the multi-

index notation [Krantz 2001, page 3], especially |«|to stand for the sum of the

components of the multi-index a. N denotes the set of nonnegative integers.

2A. The monomial orthonormal basis for the Bergman space. Monomial func-
tions z% a €N™, are orthogonal in L2( ), as the integration in polar coordinates
in each variable shows. On the other hand, since ; is a complete Reinhardt
domain, polynomials are dense in L2( ) with respect to the topology of uniform
convergence on compacts [Range 1986, page 47]. Then a standard shrinking ar-
gument [Zhu 2005, page 43; Duren and Schuster 2004, page 11] shows that the
normalized monomials
z¢ )
Totay M= KR
constitute an orthonormal basis for the Hilbert space L2 (). Next, we are going to

find an explicit formula for w () as well as wp (e, B, . . .) :=“&"- - 7k . In

a

what follows, d x:= d x; - - d x,, denotes the Riemannian density of the Euclizdean
space R™, for a variable x = {1, . . x,/ranging over some part of R”. The set
of positive reals is denoted by R. .

Lemma 2.1. Given o := (¢ . . .  Jo€R", we have
z " B i(a +1)
x“dx= 24—,
xeRy, " xl<l 2m o +1)
y4 - 1
B i(a +1)
x%doy(x) =—2——2,
x€RY, P";':Ix/Z,=1 () 2m-1
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where %(a +1) = %(al +1), .. %(am +1),

Q,
"0 Yo+ 1
B lfa +1) = —FL 21(" /

is the multivariable Beta function, and d oy, is the Riemannian density that d x
induces on the unit sphere S"~! < R".

Proof. These are standard facts; see [Andrews et al. 1999, Section 1.8; Zhu 2005,
page 13; Folland 1999, page 80].

Proposition 2.2. (a) Given multi-index oo EN™, we have
m B lla +1)
onfe) = K42, =
at 1 p] ;(O{ +1)
where%(a +1) := pll(a]+ 1), .. 'p%z(O"""’ 1).

(b) Given multi-indices ¢ eN™,  N”, . ., we have

w(a, B, . . .) =W’ - iék( )

ﬂm+n+"' 1

=Q—Q Blla+1)BLlpp+1)- -
p] qk. .ab. N 4 q
B la+1), %(/3 +1), ...
#(a +1) + %(/3 +1)+ -
Proof. (a) Using polar coordinates z ; =x_,~e\ 19 forz = £1, . . Zm), we have
Z 4
Y
w (o) = x* xjdx;do; = Px '} P 1y x> iy,
zZE | x€RY, x; <1

After the change of variables X ; := xf 7,

Z
wy () :M X2t gy

P
Pj XxeRy, Xi<l

we have

We are done by Lemma 2.1.

/ /
v v

(b) Using polar coordinates z; =x;e ~'%, w = ye ~'%, . . we have
wle, B, .. .) 7
— 275 7z+n+--- 5 - 5 x2(x+]y2ﬁ+l. . dxdy' ..

m n 2qk b aee
x€eRY, yeR}, ..., x Vi +oe< ]

J
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After the change of variables X ; := xf, Ye:=y{, . ., wehave

D
(e, p, . . )

) L Xy CRm L aygy -

P ,a P
XeRY,YERL, .., X; + ¥} +-<1
Now comes the trick we learned from [D’Angelo 1994]. Changing to the spherical
coordinates X =r& Y =sm, . ., wherer,s, . .are positiverealsand § , n, .live
on unit spheres S” !, 8”71, . . respectively, we have

wla, B, .. .)
+ e y4
_ 2w , p(2a+2) -1 Jepr2) -1 drds - - -
pj ‘Ik . .Z.r’s’_,_ER_'_}r2£1+52b+.‘.<1
1 1
% E;(2a+2/—1773(2ﬁ+2)—1. Cdan(E o) - - -
genl psttl, L

where $” ! denotes S” ! NR7, and similarly for others. The first integral is given
by the first formula in Lemma 2.1 after the change of variablesR := %, S:=s?, . .,.

and the second integral is given by the second formula in Lemma 2.1.

For later use, we do the same computations in the more general context of
weighted Bergman spaces. Given a domainS  C” with smooth boundary,Li,S (),
s > —1 denotes the weighted Bergman space consisting of all holomorphic func-
tions f on suchthat |f(z)|?p(z) dV(z) < «, where p(z) is a positively
signed smooth defining function for and dI is the Lebesgue nmagasure. For

and , we use the defining functions 1 —  |z;[?% and 1 — z; PP ¢ —
|we P9 = - - respectively.

Proposition 2.3. (a) Given multi-index a EN™, we have
0 %(a +1) s!
0 %[a +1) +s+ 1

w(a) = k‘”kig,s( = %B %(a +1)

(b) Given multi-indices o eN™, B N”", . ., we have

(,LQ’S(Q, ﬂ: L )
= opB. . 2
= k*wf 50y

m+ nees 1
oo
pj qk..ab..

XB | (e 1), o6+ 1)), .

B S (a+1) B j(p+1) - - -

510 #(a+1)+ ﬁ(/ﬁ 1)+ - - -
0 s+ 1+ $Ka+1)+ é([ﬁ )+ -~
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Proof. (a) Similar to the proof of Proposition 2.2(a), we have

Z
X s
w1 (a) _&’ Xl T 2 gy,

P
Pj XxeRy, Xi<1

Changing to the spherical coordinates X =r&, r > 0, £ €S”~! we have

z Z,
on(a) =88 P a0, (5 ) x 1P 1= P,
Pj &em 0

The first integral is given by the ﬁecond formula in Lemma 2.1, and the second
integral is given by the formula 01 t“ V(1 —1t)~Vdt = 0@)o(b)/ 0(a+ b) after
the change of variable 7> = ¢ .

(b) Similar to the proof of Proposition 2.2(b), we have

sl B )
_ 2w A gy ar2)=1, L 0pr 21 - day (€ Honn) - - -
Pz' G " "gey ! pesi!, L
popRar2) 1o GRpE2) =1 e Tfr g2 s

The first integral is given by the second formula in Lemma 2.1. The second integral

after the change of coordinates R := 7%, S :=s”, . .becomes

1

ab - - + R.S..€R,,
R+ §%+-< |

R Ng g2 =1 L g 2@ .. SgRAS - - .

Changing to the spherical coordinates (R, S, . . .) =, r > 0, & in the unit sphere,
this latter integral equals an integrﬁl in the second formula in Lemma 2.1 multi-
plied by some integral of the form 01 Y =) Nde = 0w )o(v) O u+ v)

2B. Some notation. From now on, we are going to use the notation

n . =l
M= " n= 4l .. a") eN™, 2.4
) f ) (24)
for the elements of the orthonormal basis of L 2(* | ) derived in Section 2A.
Given a positive integer g, let S, (m ) denote the set of all g-shuffles of the set
[1, . . m}, namely

Sym) :=j:= ' .. jl) ezl 1<l <jf< - #<m).

Whenever necessary, we identify shuffles in S (m ) with subsets of {1, . . m)} of
size g. This enables us to talk about the union, intersection, etc. of shuffles of
[1, . . m} with themselves and with other subsets of {1, . . m].
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2C. Boxes and their associated Hilbert modules. To eachj= f', . . ji)eS,(m)
andb= p', . . b%) ENY we associate the box

ij:z (f', .. n") eN™:n/' <b fori=1, .. ql,

and to each box ij we associate the Hilbert space

bi+1
s I

b._ r2 ble1
Hj = La( 1) Zj1+
P

consisting of all functions X = » Xnz" € L3( 1) such that Xn 30 for every
ne N”\ BP. Anelement X € HP has the Taylor expansion X = X,i..,,uz"

. J 1 1 J q . . .
with summation over n/ < b', . . n/; < b?. The general construction in Section 1
about the orthogonal complements of polynomial ideals makes H jb a Hilbert A4-
module. (4 denotes the ring of polynomials in m variables.) More explicitly, its
fundamental tuple of Toeplitz operators is given by
sz’b[z”) = ziz" if (nlj o ni;l’ n'+ L, n'* l’ c n'?) EB'b’ i=1,..m,

i 0 otherwise,

In the next proposition we gather several facts about essential normality which
will be used later.

Proposition 2.5 (Arveson—Douglas). (a) Let  be an open subset of C"', I S A be
a homogeneous ideal, and P, Q := 1 — P be the orthogonal projections in Lg ()
onto I and I+, respectively. Suppose that LZ () is essentially normal. Then I
is essentially normal (module actions are given by restrictions of multiplications
in L2() )ifand only if I* is essentially normal, if and only if all [M,,, P) for
a =1, . . m,are compact, if and only if all PM, ,Q are compact, if and only if all
[M,, O] are compact, if and only if all QM P are compact.

(b) Let M and N be isomorphic Hilbert A-modules. Then M is essentially normal
if and only of N is; if so, then they represent the same odd K-homology class.

(c) Let M be an essentially normal Hilbert A-module, and N €M be a submodule.
Then N is essentially normal if and only if the quotient module M /N is.

(d) Let 9 : Ay > A, be a closed-range Hilbert A-module map between essentially
normal Hilbert modules. Then the kernel and range of 9 are essentially normal.

Proof. (a) Our reference is [Arveson 2005, Theorem 4.3]. Recall that an operator
T is compact if and only if 7* is compact, if and only if 7' 7™ is compact. Let
the module action of p € 4 on L2() , I and I+ be denoted by operators M, R,
and T, respectively. For brevity, set M, := M, R,:= R. and T, := T.,. The
last four statements are easily seen to be equivalent. Here are the reasons. Since /
is invariant under M, we have PM ,P = M ,P. Then

[M,, P] =M,P — PM, =PM,P —PM,= —PM,O.
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The equality P + Q =1 gives [M,, P] = —M,, Q]. Also note that
(PM Q)" = OM},P.

For the rest, we need the assumption that L 2() is essentially normal. With an
abuse of language, one says that, as mappings from L2() to I, R,P and R /’;P
equal PM,P = M, P and PM Z,P , respectively. Then

[Re, R;]P = MO,PM;;P —PM;;MO(P ~ MaPM;P —PMaM/’;P
= Mo, PYM;P = PM OMiP = —PM,Q)(OM}P)
_PMOCQ)(PMﬁQ)* = _W(b P][Mﬂ5 P] *:

where ~ denotes equality modulo compacts. This identity shows that all [ R, Rj]
are compact if and only if all [M,, P] are. The rest of the proofis dual. As
mappings from L2() to I, T,0 and T30 equal OM,,Q and OM;0 = M0,
respectively. We also have the identity

[Ta: Tﬁ*]Q ~ W/}, Q]*[Maa Q];

which proves that all [T, Tj;] are compact if and only if all [Mq, O] are.

(b, c, d) Refer to [Douglas et al. 2016, Proposition 4.4], [Douglas 2006a, Theo-
rem 2.1] and [Douglas 2006b, Theorem 2.2], respectively.

Lemma 2.6. Each H J-b is essentially normal.

Proof. We first show thatL2 (" 1) is essentially normal; compare [Curto and Salinas
1985]. Let M., € B(L?( ,)) fori =1, . . m,be multiplication by the coordi-
nate function z;. Since these operators commute with each other, according to the
Fuglede—Putnam theorem, it suffices to verify that each M, is essentially normal.
A straightforward computation shows that

(M., M](z") = 2", Y= f1, .. n,) eN”,
where
A00: a)l(n] coon;+ 1. - nm)
’ w1 (nl . nm) ’
and A%is set to be zero when n; = 0. We need to check that A = 0 when the norm
of n (say the /! norm) tends to infinity. By Proposition 2.2(a), we have

A = 03200 0= wl(nl' 'nm)
’ wy(ny: cni—1-ny)

0l g N+ZL N+L
1 1

pPi :
O= O g Ny mrl N oAl ifn; >0,
{ Pi Pi Di
0 ifn; =0,

P
where N := ¢, (n+ 1)/ pr.
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Note that by Stirling’s formula (or, more strongly, [Tricomi and Erdélyi 1951]),

0(x+a)_ a4 O
o) " (1+ 0(x7"))

as the real variable x grows large. Therefore, when #n; is bounded and N = o« ,
29 is dominated by N~YPi so A 5 0. On the other hand, when n; » o , A°
asymptotically behaves like

N 1 1

l-——+0 — +0 .
I’li+pl’N n; }’li+N

This shows that A = %~ A%> 0 when n; o . We have shown that L2( | )is
essentially normal.

Let P be the orthogonal projection in L2( ) onto Hjb. To prove our lemma,
according to Proposition 2.5(a) it suffices to check that each [M,, P] is compact.
Foreach n e ij we have
S
1 a)l(nl- 'ni+1- 'nm)
PM;, (z")= | o (ni- - np)

0 otherwise,
S

2N (g g+ 1 - ny) €BP,

. . . 1. .
a)l(nl nl+ nm)znl"'ni"'l"'”m lf /nl. cnpe nm) EBb’

MziP(Zn): { a)](nl. . nm)
0 otherwise.
U o |
Note that the coefficients - - -appear because of the normalization in defini-
tion (2.4). Therefore
° ' C e b
O B L ) s, i) B
n) = o (i b nm) and there exists / such
[le’) P:I(Z ) - 1 m thatl :]15 n; = b19
0 otherwise.

We need to check that the ratio

_onfnyc b+ 10 ny)
w(ny b ng)

with / and b; fixed, approaches zero when the norm of (nl, .o by, .. ony } tends
to infinity. This was verified during the proof of the essential normality of L2( ).
This finishes the proof of our lemma for domains of type (1.5).  The proof for
domains of type (1.6) is completely similar, having at hand the explicit formula for
w (e, B, . . ftbm Proposition 2.2(b).
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Remark 2.7. With arguments similar to the ones in the proof of Lemma 2.6, one
can show that L2( ) is p-essentially normal if and only if
! iftm =1,

>

max({m, p;(m—1) j=1, .. m} ifm>1.

The computations will be included in our forthcoming paper [Jabbari 2020]. It is
worth pointing out that it is a new phenomenon that the p-essential normality of the
Bergman module depends not only on the dimension of the domain but also on its
geometry. (See also [Beatrous and Li 1995; Krantz et al. 1997].) This phenomenon
will also be explored in [Jabbari 2020].

2D. The geometry of Hilbert modules associated to boxes. Consider the Hilbert
module H jb associated to the box ij. Set

:{él"'zm)e132]-1:'--27—-4,:0}'
Observe that 1) is an egg domain of type (1.5) inside C" 7. Consider the Hilbert
space M
b._ 2 .
HJ .= La,P7:1ﬁ1+ 1)/]7/-1( 1’1),
i=(il,.., % JeN?
il<bl,... i9<b?

and the map R J-b :H J.b > H jb given by sending X € H jb to

X
Y= Y',
Q V) .
| 0 ) py) Ax 2
v = g g (il+1)/ py ! il i ELu,Pj’_(i“l)/p.z( l’j)'
o=t = (0 U pe 5’Zj1' ) 'Z;Z Lj B !

A straightforward computation with the orthonormal bases (Propositions 2.2 and 2.3)
shows that R b js an isometric isomorphism of Hilbert spaces.

Now c0n51der the trivial vector bundle EP := CO+1=(b"+1) 5 over 1,
together with the standard frame e, i = (!, . . i9) eN9,i' <b', . . i%,<b9,
and equip it with the Hermitian structure

P
X s {1/ py

bei, eji(z) = 1— |z |~ a,0 z€ 1,
=1

where ¢ is the Kronecker tensor. This way, & Jb can be identified with the Bergman
space of the L2-holomorphic sections of EJb Under the isomorphism Rb one can
identify the Toeplitz algebra generated by T b e B(H bli=1,.. m with the
algebra generated by matrix-valued Toeplitz operators on the latter Bergman space
of L2-holomorphic sections of E jb.
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2E. The construction of the resolution. This section constructs the resolution in
Theorem 1.7. Let the ideal / S A be generated by distinct monomials

2%, o= (q, .. . TeeN", i=1, .. L,

Let the complementary space C(I) S N™ be the set of the exponents of those

monomials which do not belong to /. Note that the set of monomials belonging to
[ is a basis of I as a complex vector space [Herzog and Hibi 2011, Theorem 1.1.2].
Also note that a monomial u belongs to / if and only if there is a monomial v such
that u = % forsome i = 1, . . / [Herzog and Hibi 2011, Proposition 1.1.5].
In other words, z/'+ + 2" € C(I) if and only if for every i = 1, . . [ there exists

m

si € I, . . mJ such that n¥ < ¢'. Consider the finite collection
Slen, .. .p)e= 1, .. m)
of I-tuples s = §, . . s;) of integers such that 1 <s; < m for every i. Given's,

let js be the shuffle associated to the set {sy, . . s;}. Foreach j €jg, let b ; be the
minimum of all & —1,i =1, . . [,,suchthat s; = j. Set bs:= p;);ej,. The
following symbolic logic computation shows that C(1 ) is the union of boxes ijss
forSES(al, .. )a

z’fl~ 2" eC(l) o< dv - < d) A nh<ld v - n< d)

m

— 51

« (n*'< &' A - - m'A< d').
(8100 57 )E(1,..., m)!

The construction of modules A ;. From now on, fix a finite collection of boxes

BY, i=1,..k, (2.8)
such that their union equals C(7). Given I S {I, . . kJ, (note that we are using the
symbol / for two purposes), let

Bb.— Bbi
Ir - Ji
i€l
denote the intersection of boxes B-tjf, i € I. (Note that the intersections of boxes are
again boxes.) Each box Bjti’ has a corresponding Hilbert module H R’ as introduced
in Section 2C. Foreachg =1, . . k,,set
M
— b —72
Agi= HPL Ag=12( )
1€8, (k)

Note that each Hilbert space A, is equipped with a Hilbert 4-module structure
coming from the A4-module structures on its direct summands. The following
proposition is immediate from Lemma 2.6.

Proposition 2.9. Each A is essentially normal.
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The construction of the maps 9 4. Thinking of the elements of S+ (k ) as the sub-
sets Ipe1 S (1, . . k), ofsiz§ q + 1, define themaps f,, : Sg+1(k) > S, (k),
i=1, .. q# 1,by setting fq’+1/1q+1)to be the subset of {1, . . kJ, obtained by
dropping the i-th smallest element in 7,4 ;. The map 9,:A, > A, is defined
by
X X
X — qu % Y — Y1q+1’ qu c HjbIIq) Y[q+1 c Hjblq"'l,
q

Ig+1
1,€8, (k) g+ 1€841(k)

given by
1 1 (lge1)
X =1 v (e - br,,
(Y[qﬂ)n:[i:l( )71 xlantlaert) 1fnij1;q+ll,
0 otherwise.

Remark 2.10. Similar to the explanation in Section 2D, each Hilbert module Aq,
g =1, . . k,can be identified with the Bergman space of the L?-holomorphic
sections of a Hermitian vector bundle on a disjoint union of subsets of . Under
this identification, the module morphisms 9,,¢ =0, . . k 1 can be realized as
the restriction maps of jets of holomorphic sections to the subsets. Although this
geometric picture is not used heavily in what follows, we believe that such an intu-
ition will play a crucial role in the study of nonradical ideals beyond monomials.

3. The proof of Theorem 1.7

In this section we prove Theorem 1.7. Again, we develop the details for a domain
1 of type (1.5), and domains of type (1.6) can be treated similarly.

3A. The proof of Theorem 1.7(a). In this section we prove that the construction
of Section 2E is a resolution of Hilbert modules asserted in Theorem 1.7(a). This
is an adjustment of the proof of Theorem 1.4, which first appeared in [Douglas
et al. 2018, Theorem 1.1].

Proposition 3.1. Each 9, is a morphism of Hilbert A-modules.

i P 1 I b
Proof. We first verify boundedness. Foreach X' = o5 ) X' eA,, XlieH i,
e defined 7
w X,
9‘](X) = Y q+1’
10,
X! i o
0 1 )i—1 fq+l(lq+1) . b10+
YI!;)+1 EBJ.b1§+1’ Ynlq” = ‘_1( 1) Xn 1fn€Bj1§+]1:

I
q+1 .
otherwise.

=
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Therefore,
1

X X % _ i )2 XX i 0
k9,(X K* = (—1)’*1)({9”(1‘1”) < (q+1))(r’,[‘”‘(’q”)2

0 b = 0 b
]q+1 neB. 1§+1 i=1 ]q+1 neB. IO+1
llq+1 Iq+1
X X
Iq 2 . bIO b[q
=< (q+ 1) Xy since B, ¢+1 S B,
J]c(])+l qu

0 b
1541 neB. 1
11,

! X X
< k—qllg+1) e P = k—q)q+ 1 kxi.
1€S, (k) neBézq
Iy
The last inequality is because every /; is contained in at most k—q copies of I£+ 1
Next, we prove that 9, commutes with the module actions. For each I € S, (k)
and X/ eH jbll, we defined

1 X sign(1,s )y 1Uls)

9,(X") = (—1 prentls/y tJist
1<s<k, s&l

X ifneBP

J1ul;

I1U(s} bruls) IUls}) _ g2
Y o EHJ'IILEJ[S" Y, bl = ]

0 otherwise,

where s is the a-th smallest number in/ U §}, and sign(l,s) = a +
Each z,, action on H jbII is implemented by

szll)’bl (Xl)n ..gp.,_ 1 ny,

wl(nl--np+1-'nm) 7 . .

wi(n ny) Xoyeonyom, P EJ1,
S
- a)l(nl--np+1--nm)X,

YRS -

ifp =j°€j;, n,+1=0°,

0 otherwise.

This shows that T ZJ; b1 preserves the component H B’. Similarly, the z,, action on
Hbrus) s realized by

JIU{A‘}
j1uls),bruls) A 1Uls)
g )
S
w(ny: ~np+1--n ] . .
( P m)Ynllu{qu . ifp €j1, pEs,
w (nl . . nm) P m
S

onfm - np+ 1 ”m)Ylu{s}
a)l (nl . nm) Ay Ty,

ifp =j' €jru), np+ 1 <0,

0 otherwise.
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1

It is straightforward to directly check that on each component H blf okl we have

(gq(TZ];,bI /XI)J)IULS TJIU YJ’bIUx (9(1(XI)IUS )’

Zp
and we are done.
Proposition 3.2. 1 = ker(9 ).
Proof. 1If f € I, then f has no nonzero component in any of the boxes Bbs,
SES(a, . . . 1)@o0 fFﬁ ker(9 ). This shows that I < ker(9,). For the other
direction, assume f = fnz" Eker(9¢). Since 9¢(f) =0, it follows that
fan=0foreveryi =1, . . kandne Bb Let fM, =1,2, . ., be the truncation
of the Taylor expansion of f by requlrmg n', .. n™ < M. Since fj; hasno
component in the boxes ijll, .. Bj?k’f, we have fM €. Thus, f =limfy € I.
Proposition 3.3. Im(9,_1) Sker(9,) foreveryq =1, . . k.,

Proof. For each I € S, (k) and X' € ij;’, the image of X’ under 9, is of the

form (_USign(I,s)YIU{S}

1<s<k, s&l
where s is the a-th smallest number in 7 U §}, sign(7,s) = « % and the function
IUls} = Hbruls) i of
Yy'te e poslis given by
Xl ifneBPoy

n JUH’

Y]U{S } —
n 0 otherwise.

Similarly, the image of Y/ Ulsl under 9 ¢ 1s of the form

X ( 1)51gn(IUlSJ t)ZIU[

1<t<k, tZIUls|
where ¢ is the B-th smallest number in 7 U §, ¢}, sign(I U §},¢) = B +, and the
function Z 7Vl e H ﬁ’&iﬁ;’ﬂ is given by
YAl ifne b,

J1Us,

ZrI]U{S,Z} —
0 otherwise.

Therefore,

1
— (_1)sign([,s)+ sign(]U{S},t}ZIU{s,t}
1<s6t<k, s,t&l
— (_ 1)sign(],s)+ sign(lu{s},t)+ (_l)sign(l,t)+ sign(1U(t},s) Zlu{s,t}
1<s<t=<k, s,t&l

Every summand in the latter sum vanishes because

sign(l,s) =sign(IU {},s), sign(IU §},t) =sign(I,t) +1

whens < t.
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Proposition 3.4. (a) Im(9,) 2ker(9).
(b) Im(9 ,—1) 2ker(9,) foreveryq =1, . . k.,
Proof. (a) Assume X := X', . . XP) €ker(9 ). Consider & €A given by

£ = X;, if'there is s such that nEijX,
n .= :

0 otherwise.

This is well-defined because 91 (& ) #. Note that & €A, because

ké k= K('K*+ - - - +XRK%.
Clearly, 99(5 ) =X

(b) We apply induction on k. When k = 1, themap 9 : Ay = A is surjective
because computing with the orthonormal basis shows thatA | can be identified with
a closed subspace of A = Li( 1), with 9 being the corresponding orthogonal
projection. Assuming

Im(9q,1) 2ker(9q), q=1,..k,1<k<p,

we prove the statement for £ = p. The case ¢ = 1 is proved in (a), so from now on
we assume 2 < g <k.
Consider the following two collections of p — 1 boxes:
+ The first p — 1 boxes: ijl‘, .. B%’:}‘.
Applying the construction in Section 2E to these boxes, we get the Hilbert mod-
ules A! together with the Hilbert module maps9 | :Al=> Al s =1, .. p-2.
SetA} := 0] and 9}1)71 :=0.

+ The intersection of the first p — 1 boxes with the last one: ijl‘ JE BR}P:I‘ ’.
Applying the construction in Section 2E to these boxes, we get the Hilbert mod-
ules A2 together with the Hilbert module maps9 2: A2 A2 s=1, .. p-2.

s+ 12
Set A2 := 0] and 9127_1 :=0.

By the induction assumption we have
Im/Q(;_l) ler/QC}), Im(9§_1) ler(Qj), g=1, .. p—1L
Define amap 8, :A! 5 AZby
8(x') =y"VIP . resp-1),

where YY) denotes the component corresponding to the intersection of the boxes
b; bisp of
ijllpp’ . B-rl_xpf’, given by o i
YIU{p} - (—1) Xn lfHEBJ-IIJJ[;ﬁJ,
4 0 otherwise.
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Similar to the proof of Proposition 3.1, 8 is an 4-module map. Furthermore, we
can easily check that

<A, :A}[eA;_l forg =2, .. p,

1
9, 0

.gq: 8q 95_1

forg =2, .. p—1.

These identifications are used below to prove that Im(9 ,—1) 2ker(9,). We split
the proof into three cases.

(1) g=2.
Suppose (X1, X,) €A} ®A? =A, is inker(9, ). By the identification above for9 ,,
we have

9,(X1) =0,  81(Xi) + §(X2) =0.

By the induction assumption, we have ker(91) <Im(9 ), so there exists ¥; €Al
such that 9 { (Y1) =X,. By Proposition 3.3, for the morphism 9., we have

(0,0)
= %(91(11.0)) = 9(9{(11), 8(11))

93(91(v1)), 8:(9{ (Y1) + §(8:(v1)) 9|(11) =X1, %(9{(Y1)) =0
0. 8(x1) + §(81(11))).

Therefore, 8,(X) + §/81(Y1)) =0. Settinng:Z X, — 8(Y1), we have

9t(x3) = §(x2) — 9(8:(M1)) = §(X2) + 8(X,) =0,

because 0 = % (X1, X2) = (3(X1), 8:(X1) + F(X2)). Since 97(X3) =0, it
follows that the following assignment is well-defined:

(YZ)M:

(x%7), ifne Bﬁfpﬂ forsomei =1, .. p—1,
0 otherwise.

Arguments similar to the proof of Proposition 3.4 show that this assignment gives
Y2 EHiﬂ such that9 3 (Y> )= X9. In summary, we have found(Y, Y, JeA;=A] @Hip
which satisfies

91(V1.Y2) = (§(1), &) + §(Y2) = X1, 8(11) +X3) = X1, X2).

2)yg=3,.. p—1L
Suppose (X1, X2) €A} @ AZ—I =A, isin ker(9,). By the identification above
for 9,, we have

94(X1) =0, 8,(X1) + §_,(X2) =0.
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Since Im(9, ) Sker(9 ), there exists Y; €A} | such that X = 9 (Yy). Since

94(94-1(11,0)) =0, it follows that 8, (X1) + §_,(84-1(Y1)) =0. Therefore,
9; (X2— 8-1(11)) =0.

Since Im(97_,) ker(97_, ), there exists Y €A?_, such that

9:.5(12) =Xy~ §-1(11)
In summary, we have found (Y}, Y2) €A, which satisfies

9,1V, Y2) = (§., (M), 81(11) + §2(12) = X1, Xa).

(3) g =p.
Since 9 ;_2 :A§—2 - A§—1 is surjective, it follows that

9p-1t A :A;—l eBAi—z) > A, :Aé—lj

is also surjective.
All cases are exhausted.

3B. The proof of Theorem 1.7(b). To deduce the index formula in Theorem 1.7(b)
from the resolution in Theorem 1.7(a), we need the following proposition.

Proposition 3.5. Let0 > M > M, > M3 > 0 bea short exact sequence of
essentially normal Hilbert A-modules and Hilbert A-module maps between them.
Suppose that the essential spectra of M ;i = 1,2, 3, is contained in 1, and let
a:C( 1) > OM ) bethe *representation of C( 1) on the Calkin algebra
OM ;) =BM ;)/K(M ;) induced by the essential normality of M ;.
(a) There are co-isometries U:M , > M and V :M 5 > M 5 such that
ur*=0=vur, Uu+ Vv =1,
and they commute with A-module structures up to compact operators in the
sense that[Uleo|U]* = aand[V]ew[V]*= & whereo;(p) =1T;] €OM ;),
p € A is the equivalence class of the multiplication operator T}’; eBM ;).

(b) We have[an] = (@ + [g] in K; (aez), where (fez is the essential Taylor spec-
trum associated to the Hilbert module M ,, and [, [&s] are identified as
classes in K | (%2) by the co-isometries U and V.

Proof. (a) This is [Douglas et al. 2018, Proposition 3.8].

(b) Set &l := @M ;), the essential Taylor spectrum associated to the Hilbert mod-
ule M ;i = 1,2, 3. The representation ¢; factors through the *monomorphism
C(ol) » QM ;). Wehave oy = [U]ap[U]* by (a). The composition of [U],[U]*
with o !is a *homomorphism C (e 02) » C(c!), and this induces a natural map
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g » oZ. Similarly, we have a natural map o; » oZ. Therefore, ¢y and o5 induce
classes [c] and [e3] in K| (02 ) by the functoriality of K ;. Putting all equations

vur=1=wvv* UV*=0=Vvu*, U'U+ V'V =1,
[Ulw[U]"= a, [V]w[V]"= a,
together, we deduce that (] = [¢] + [g].

The proof of Theorem 1.7(b). The idea is to decompose the resolution of 7 in
Theorem 1.7(a) into short exact sequences and then apply Proposition 3.5(b). The
details follow. ConsiderA; :=Im(9 q_l) =ker(9 q) as a closed subspace of A .
Note that A" = A because 9, is surjective. The morphism 9, : A, > A,
of Hilbert modules induces the short exact sequence

05 A S AZBA 50, g=1, .. k:l, (3.6)

which, according to Propositions 2.5 and 2.9, implies that Aq_ is essentially normal.
Set of := @(A, ), and let oy be the *monomorphism C (o) > 0(A, ) and a;
the *monomorphism C(of ") » Q(A_) induced by essential normality. Note
that the essential spectra of all terms in the exact sequence (3.6) are contained

in 1. By Proposition 3.5(b), we have [¢,] = (@] + [g,]in K (of ) for every
g=1, .. k1. These formulas forqg =k —1and g = k — 2 give

[ax—1] = [@,] + [« €K\ (af7!), log—a] = [@,] + [¢ ] €K (0} 2).
Pushing forward these equations into K 1 (0¥ ™! U 72 ) by inclusion maps
o L¢P dTu g
gives [ax—1] + [@,] = [@ + [@2]. Continuing this argument, we have
o] =[d = [d+ - +1 ] nKi(@}u---Ho @
On the other hand, the short exact sequence
0> 1> L2 1)>A[ >0

establishes a natural Hilbert module isomorphism betweenA | and Li( I =TH,
and hence 7; := [[*] = [@] by Proposition 2.5(b). This, together with (3.7), gives
the index formula in Theorem 1.7(b).

Acknowledgments

We would like to thank Ronald Douglas, Guoliang Yu and Yi Wang for inspiring
discussions. Both authors are partially supported by NSF grants.



378 MOHAMMAD JABBARI AND XIANG TANG

References

[Ambrozie and Miiller 2015] C. Ambrozie and V. Miiller, “Commutative dilation theory”, pp. 1093—
1124 in Operator theory, vol. 2, edited by D. Alpay, Springer, 2015.MR Zbl

[Andrews et al. 1999] G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of
Mathematics and its Applications 71, Cambridge University Press, 1999. MR Zbl

[Arveson 1998] W. Arveson, “Subalgebras ofC *-algebras, III: Multivariable operator theory”, Acta
Math. 181:2 (1998), 159-228. MR Zbl

[Arveson 2000] W. Arveson, “The curvature invariant of a Hilbert module overC[zy, . . z4]”, J.
Reine Angew. Math. 522 (2000), 173-236. MR Zbl

[Arveson 2002] W. Arveson, “The Dirac operator of a commutingd-tuple”, J. Funct. Anal. 189:1
(2002), 53—79. MR Zbl

[Arveson 2005] W. Arveson, “p-summable commutators in dimension d”, J. Operator Theory 54:1
(2005), 101-117. MR Zbl

[Arveson 2007] W. Arveson, “Quotients of standard Hilbert modules™, Trans. Amer. Math. Soc.
359:12 (2007), 6027-6055. MR Zbl

[Baum and Douglas 1982] P. Baum and R. G. Douglas, ‘K homology and index theory”, pp. 117—
173 in Operator algebras and applications, Part I (Kingston, ON, 1980), Proc. Sympos. Pure Math.
38, Amer. Math. Soc., Providence, R.1., 1982. MR Zbl

[Baum et al. 1989] P. Baum, R. G. Douglas, and M. E. Taylor, “Cycles and relative cycles in analytic
K-homology™, J. Differential Geom. 30:3 (1989), 761-804. MR Zbl

[Beatrous and Li 1995] F. Beatrous and S.-Y. Li, “Trace ideal criteria for operators of Hankel type”,
1llinois J. Math. 39:4 (1995), 723-754. MR Zbl

[Boas et al. 1999] H. P. Boas, S. Fu, and E. J. Straube, “The Bergman kernel function: explicit
formulas and zeroes”, Proc. Amer. Math. Soc. 127:3 (1999), 805-811.MR Zbl

[Boutet de Monvel 1978/79] L. Boutet de Monvel, “On the index of Toeplitz operators of several
complex variables”, Invent. Math. 50:3 (1978/79), 249-272. MR Zbl

[Brown et al. 1973] L. G. Brown, R. G. Douglas, and P. A. Fillmore, “Unitary equivalence modulo
the compact operators and extensions of C*-algebras”, pp. 58—128 in Proceedings of a Conference
on Operator Theory (Halifax, NS, 1973), edited by P. A. Fillmore, Lecture Notes in Math. 345,
Springer, 1973. MR Zbl

[Brown et al. 1977] L. G. Brown, R. G. Douglas, and P. A. Fillmore, “Extensions of C *-algebras
and K-homology”, Ann. of Math. (2)105:2 (1977), 265-324. MR Zbl

[Connes 1994] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994. MR
Zbl

[Curto 1981] R. E. Curto, “Fredholm and invertiblen-tuples of operators: the deformation problem”,
Trans. Amer. Math. Soc. 266:1 (1981), 129-159.MR Zbl

[Curto and Salinas 1985] R. E. Curto and N. Salinas, “Spectral properties of cyclic subnormal m-
tuples”, Amer. J. Math. 107:1 (1985), 113—-138. MR Zbl

[D’Angelo 1978] J. P. D’ Angelo, “A note on the Bergman kernel”, Duke Math. J45:2 (1978), 259—
265. MR Zbl

[D’Angelo 1994] J. P. D’Angelo, “An explicit computation of the Bergman kernel function”, J.
Geom. Anal. 4:1 (1994), 23-34. MR Zbl

[Douglas 1998] R. G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Graduate
Texts in Math. 179, Springer, 1998. MR Zbl



AN INDEX THEOREM FOR QUOTIENTS OF BERGMAN SPACES ON EGG DOMAINS 379

[Douglas 2006a] R. G. Douglas, “Essentially reductive Hilbert modules”, J. Operator Theory55:1
(2006), 117-133. MR Zbl

[Douglas 2006b] R. G. Douglas, “A new kind of index theorem”, pp. 369-382 in Analysis, geometry
and topology of elliptic operators, edited by B. Boo3-Bavnbek et al., World Sci. Publ., Hackensack,
NJ, 2006. MR Zbl

[Douglas and Voiculescu 1981] R. G. Douglas and D. Voiculescu, “On the smoothness of sphere
extensions”, J. Operator Theory 6:1 (1981), 103—-111. MR Zbl

[Douglas and Wang 2011] R. G. Douglas and K. Wang, “A harmonic analysis approach to essential
normality of principal submodules”, J. Funct. Anal. 261:11 (2011), 3155-3180.MR Zbl

[Douglas and Wang 2017] R. G. Douglas and Y. Wang, “Geometric Arveson—Douglas conjecture
and holomorphic extensions”, Indiana Univ. Math. J. 66:5 (2017), 1499-1535.MR Zbl

[Douglas et al. 2016] R. G. Douglas, X. Tang, and G. Yu, “An analytic Grothendieck Riemann Roch
theorem”, Adv. Math. 294 (2016), 307-331. MR Zbl

[Douglas et al. 2017] R. G. Douglas, K. Guo, and Y. Wang, “On the p-essential normality of princi-
pal submodules of the Bergman module on strongly pseudoconvex domains”, preprint, 2017. arXiv

[Douglas et al. 2018] R. G. Douglas, M. Jabbari, X. Tang, and G. Yu, “A new index theorem for
monomial ideals by resolutions”, J. Funct. Anal. 275:3 (2018), 735-760. MR Zbl

[Duren and Schuster 2004] P. Duren and A. Schuster, Bergman spaces, Mathematical Surveys and
Monographs 100, Amer. Math. Soc., Providence, RI, 2004. MR Zbl

[Egorychev 1984] G. P. Egorychev, Integral representation and the computation of combinatorial
sums, Translations of Mathematical Monographs59, Amer. Math. Soc., Providence, RI, 1984. MR
Zbl

[Engli§ and Eschmeier 2015] M. Engli$ and J. Eschmeier, “Geometric Arveson—Douglas conjec-
ture”, Adv. Math. 274 (2015), 606—630. MR Zbl

[Fang and Xia 2013] Q. Fang and J. Xia, “Essential normality of polynomial-generated submodules:
Hardy space and beyond”, J. Funct. Anal. 265:12 (2013), 2991-3008. MR Zbl

[Fang and Xia 2018] Q. Fang and J. Xia, “On the essential normality of principal submodules of the
Drury—Arveson module”, Indiana Univ. Math. J. 67:4 (2018), 1439-1498.MR Zbl

[Folland 1999] G. B. Folland, Real analysis: modern techniques and their applications, 2nd ed.,
John Wiley & Sons, New York, 1999. MR Zbl

[Gleason et al. 2005] J. Gleason, S. Richter, and C. Sundberg, “On the index of invariant subspaces
in spaces of analytic functions of several complex variables”, J. Reine Angew. Math.587 (2005),
49-76. MR Zbl

[Guo and Wang 2008] K. Guo and K. Wang, “Essentially normal Hilbert modules and K-homology”,
Math. Ann. 340:4 (2008), 907-934. MR Zbl

[Guo and Wang 2020] K. Guo and Y. Wang, “A survey on the Arveson—Douglas conjecture”, pp.
289-311 in Operator theory, operator algebras and their interactions with geometry and topology,
edited by R. E. Curto et al., Operator Theory: Advances and Applications 278, Birkhduser, Cham,
2020. MR Zbl

[Herzog and Hibi 2011] J. Herzog and T. Hibi, Monomial ideals, Graduate Texts in Math. 260,
Springer, 2011. MR Zbl

[Jabbari 2019] M. Jabbari, Index theory for Toeplitz operators on algebraic spaces, Ph.D. thesis,
Washington University in St. Louis, 2019, https://openscholarship.wustl.edu/artsci—etds/1913/.

[Jabbari 2020] M. Jabbari, “ p-summable commutators on Bergman spaces of egg domains”, preprint,
2020. arXiv



380 MOHAMMAD JABBARI AND XIANG TANG

[Jarnicki and Pflug 2008] M. Jarnicki and P. Pflug, First steps in several complex variables: Rein-
hardt domains, Eur. Math. Soc., Ziirich, 2008. MR Zbl

[Kodama et al. 1992] A. Kodama, S. G. Krantz, and D. Ma, “A characterization of generalized
complex ellipsoids in C” and related results”, Indiana Univ. Math. J.41:1 (1992), 173—-195. MR
Zbl

[Krantz 2001] S. G. Krantz, Function theory of several complex variables, AMS Chelsea Publishing,
Providence, RI, 2001. MR Zbl

[Krantz et al. 1997] S. G. Krantz, S.-Y. Li, and R. Rochberg, “The effect of boundary geometry on
Hankel operators belonging to the trace ideals of Bergman spaces”, Integral Equations Operator
Theory 28:2 (1997), 196-213. MR Zbl

[Milnor 1968] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies
61, Princeton University Press, 1968. MR Zbl

[Miiller 2007] V. Miiller, Spectral theory of linear operators and spectral systems in Banach alge-
bras, 2nd ed., Operator Theory: Advances and Applications 139, Birkhiduser, Basel, 2007. MR
Zbl

[Range 1986] R. M. Range, Holomorphic functions and integral representations in several complex
variables, Graduate Texts in Math. 108, Springer, 1986. MR Zbl

[Shalit 2011] O. Shalit, “Stable polynomial division and essential normality of graded Hilbert mod-
ules”, J. Lond. Math. Soc. (2)83:2 (2011), 273-289. MR Zbl

[Shalit 2015] O. Shalit, “Operator theory and function theory in Drury—Arveson space and its quo-
tients”, pp. 1125-1180 in Operator theory, vol. 2, edited by D. Alpay, Springer, 2015.MR Zbl

[Shulman 1996] V. Shulman, “Some remarks on the Fuglede—Weiss theorem”, Bull. London Math.
Soc. 28:4 (1996), 385-392. MR Zbl

[Taylor 1970] J. L. Taylor, “A joint spectrum for several commuting operators”, J. Functional Anal-
ysis 6 (1970), 172—-191. MR Zbl

[Tricomi and Erdélyi 1951] F. G. Tricomi and A. Erdélyi, “The asymptotic expansion of a ratio of
gamma functions”, Pacific J. Math. 1 (1951), 133—-142. MR Zbl

[Wang 2019] Y. Wang, “Essential normality — a unified approach in terms of local decompositions”,
Proc. Lond. Math. Soc. (3)119:5 (2019), 1388-1429. MR Zbl

[Wang and Xia 2019] Y. Wang and J. Xia, “Essential normality for quotient modules and complex
dimensions”, J. Funct. Anal. 276:4 (2019), 1061-1096. MR Zbl

[Wang and Xia 2020] Y. Wang and J. Xia, “Essential normality of principal submodules of the Hardy
module on a strongly pseudo-convex domain”, J. Operator Theor83:2 (2020), 333-352. MR Zbl

[Wang and Zhao 2018] P. Wang and C. Zhao, “Essentially normal homogeneous quotient modules
on the polydisc”, Adv. Math. 339 (2018), 404—425. MR Zbl

[Weiss 1981] G. Weiss, “The Fuglede commutativity theorem modulo operator ideals”, Proc. Amer.
Math. Soc. 83:1 (1981), 113-118. MR Zbl

[Zhu 2005] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Math.226,
Springer, 2005. MR Zbl

Received 6 Oct 2020. Revised 12 Nov 2020. Accepted 3 Dec 2020.

MOHAMMAD JABBARI : mohammad.jabbari@cimat.mx
Centro de Investigacion en Matematicas, Guanajuato, Mexico

XIANG TANG: xtang@wustl.edu
Department of Mathematics and Statistics, Washington University, St. Louis, MO, United States

:'msp



ANNALS OF K-THEORY

msp.org/akt
EDITORIAL BOARD

Joseph Ayoub  Universitdt Ziirich Ziirich, Switzerland
joseph.ayoub@math.uzh.ch
Paul Balmer  University of California, Los Angeles, USA
balmer@math.ucla.edu
Guillermo Cortifias ~ Universidad de Buenos Aires and CONICET, Argentina
georti@dm.uba.ar
Héléne Esnault  Freie Universitit Berlin, Germany
liveesnault@math.fu-berlin.de
Eric Friedlander ~ University of Southern California, USA
ericmf@usc.edu
Max Karoubi Institut de Mathématiques de Jussieu — Paris Rive Gauche, France
max.karoubi@imj-prg.fr
Moritz Kerz  Universitit Regensburg, Germany
moritz.kerz@mathematik.uni-regensburg.de
Huaxin Lin ~ University of Oregon, USA
livehlin@uoregon.edu
Alexander Merkurjev ~ University of California, Los Angeles, USA
merkurev@math.ucla.edu
Birgit Richter ~ Universitit Hamburg, Germany
birgit.richter@uni-hamburg.de
Jonathan Rosenberg  (Managing Editor)
University of Maryland, USA
jmr@math.umd.edu
Marco Schlichting ~ University of Warwick, UK
schlichting@warwick.ac.uk
Charles Weibel (Managing Editor)
Rutgers University, USA
weibel@math.rutgers.edu
Guoliang Yu Texas A&M University, USA
guoliangyu@math.tamu.edu
PRODUCTION

Silvio Levy  (Scientific Editor)
production@msp.org

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation
acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in
the launch of the Annals of K-Theory.

See inside back cover or msp.org/akt for submission instructions.

The subscription price for 2021 is US $510/year for the electronic version,  and $575/year ( + $25, if shipping
outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address
should be sent to MSP.

Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798
Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Peri-
odical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditF low® from MSP.

PUBLISHED BY
:- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2021 Mathematical Sciences Publishers



ANNALS OF K-THEORY

2021 vol. 6 no. 2

On the classification of group actions on C*-algebras up to 157
equivariant KK-equivalence
RALF MEYER

The real cycle class map 239
JENS HORNBOSTEL , MATTHIAS WENDT , HENG XIE and
MARCUS ZIBROWIUS
Positive scalar curvature and an equivariant Callias-type index 319
theorem for proper actions
HaAo Guo, PETER HOCHS and VARGHESE MATHAI

An index theorem for quotients of Bergman spaces on egg domains 357
MOHAMMAD JABBARI and XIANG TANG



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

