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Abstract
Recently, two of the authors of this paper constructed cyclic cocycles on Harish–
Chandra’s Schwartz algebra of linear reductive Lie groups that detect all information
in the K -theory of the corresponding groupC∗-algebra. Themain result in this paper is
an index formula for the pairings of these cocycles with equivariant indices of elliptic
operators for proper, cocompact actions. This index formula completely determines
such equivariant indices via topological expressions.
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1 Introduction

Consider a locally compact group G, and a proper, isometric action by G on a Rie-
mannian manifold X , such that X/G is compact. Let D be a G-equivariant, elliptic
differential operator on X . Then D has an equivariant index in the K -theory of the
reduced group C∗-algebra C∗

r (G),

indG(D) ∈ K∗(C∗
r (G)), (1.1)

defined by the analytic assembly map [7]. This index generalises the equivariant index
in the compact case. It has a range of applications, e.g. to geometry and topology
via the Baum–Connes and Novikov conjectures; to questions about positive scalar
curvature; to representation theory [24]; and to geometric quantisation [30].

It is a natural question to extract numerical invariants from the index (1.1) and
compute them. This is relevant, for example, to detect the vanishing of the index, and
because such numbers may have a meaning in geometry, topology or representation
theory. A natural way to extract numbers from K -theory classes is by pairing them
with traces or more general cyclic cocycles on the algebra in question, or an algebra
with the same K -theory. For suitable convolution algebras on groups, such traces
can be defined by orbital integrals: integrals over conjugacy classes. For the trivial
conjugacy class, one then obtains the classical von Neumann trace. It was shown
in various places, see e.g. [16,24,25,36], that traces defined by orbital integrals over
nontrivial conjugacy classes can yield more, and relevant, information than the von
Neumann trace.

In this paper, we focus on connected real linear reductive Lie groups. Connes and
Moscovici [13] showed that the von Neumann trace is then only nonzero on K -theory
classes defined by discrete series representations. So this trace is not enough to detect
all information about K -theory classes, especially for groups with no discrete series
representations. In [25], it is shown that one does detect all information in K∗(C∗

r (G))

for groups with discrete series representations if one uses traces defined by more
general orbital integrals. In another direction, higher cyclic cocycles coming from
group cohomology were used to extract and compute relevant numbers from the index
(1.1) in [34].

Recently, two of the authors of this paper developed a family of cyclic cocycles
on Harish–Chandra’s Schwartz algebra [37], for linear reductive G. These cocycles
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Table 1 Some equivariant index theorems for Lie groups G, for pairings of (1.1) with traces and higher
cocycles associated to orbital integrals

trivial conjugacy class {e} more general conjugacy classes

Trace Connes–Moscovici 1982 [13]
(homogeneous spaces)
Wang 2014 [38] (general
case)

Hochs–Wang 2017 [24] (semisimple Lie
groups)

Higher cocycles Pflaum–Posthuma–Tang 2015
[34] (cocycles from group
cohomology)

Theorem 2.1 (linear reductive groups)

are higher versions, in a sense, of orbital integrals. They detect all information about
classes in K∗(C∗

r (G)), in the sense that if the pairings of a class in K∗(C∗
r (G))with all

these cyclic cocycles are zero, then it is the zero class. Thismeans that an index formula
for the pairing of (1.1) with these cocycles is a complete topological description of
this index. Our goal in this paper is to prove such an index formula, Theorem 2.1.

At the end of [13], Connes and Moscovici write that they consider obtaining an
‘intrinsic’ index formula for (1.1) for Lie groups G, to be a problem that deserves
further study. We believe that Theorem 2.1 is such an intrinsic index formula, detect-
ing all relevant information, for linear reductive Lie groups. This builds on a long
development, and results by many authors, see Table 1. This type of index theorem for
pairings with higher cocycles, as well as the techniques involved, was heavily inspired
by the work of Connes and Moscovici for discrete groups, see Theorem 5.4 in [14].

Theorem 2.1 is stated for twisted Spinc-Dirac operators. At the end of this paper,
we describe how to generalise this to arbitrary elliptic operators; obtain a higher
version of Connes andMoscovici’s L2-index theorem for homogeneous spaces; obtain
independent proofs of injectivity of Dirac induction and the fact that the cocycles from
[37] detect all information from K∗(C∗

r (G)); realise the generators of K∗(C∗
r (G))

constructed in [37] as indices; and work out the case of complex semisimple groups.
Other applications of Theorem 2.1 are of the same type as those in [35].

• When D is the signature operator on X , the index element indG(D) is invariant
under G-equivariant homotopy [15, Theorem A]. Our theorem 2.1 shows that
the corresponding generalized signature number is invariant under G-equivariant
homotopy.

• When D is the Spin Dirac operator on a spin manifold X , the non-vanishing of
the generalized Â-class on the right side would be an obstruction for X to carry a
G-invariant metric with positive scalar curvature.

We plan to investigate potential applications of our theorem in representation theory
in the future.

Let us briefly go into the idea of the proof of Theorem 2.1. The cocycles we use
are associated to parabolic subgroups P = M AN < G, where M is reductive, A is
isomorphic to R

l and N is nilpotent. The proof of Theorem 2.1 is based on an equality
between the pairing of (1.1) with these cocycles and an analogous pairing of an index
of an M-equivariant operator on X/AN with an analogous cocycle for the parabolic
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subgroup M < M . Because M has a compact Cartan for the parabolic subgroups
we use, the latter pairing can be computed via results from [24]. It is an interesting
question to what extent the transition between these G and M-equivariant indices is
related to parabolic induction. Some indication for this is given in Sect. 2.4.

2 An index theorem

LetG be a connected, linear, real reductive Lie group. Let X be aRiemannianmanifold
on which G acts properly, cocompactly and isometrically.

Fix a G-equivariant Spinc-structure on X , assuming it exists. Let S → X be the
corresponding spinor bundle. Let W → X be a G-equivariant, Hermitian vector
bundle, and write E := S ⊗ W . Let D be a twisted Spinc-Dirac operator acting on
sections E , associated to a G-invariant Clifford connection on S and a G-invariant
Hermitian connection on W . Because D is an elliptic, G-equivariant operator, and
X/G is compact, we have the index

indG(D) ∈ K∗(C∗
r (G)), (2.1)

defined via the analytic assembly map [7]. Here indG(D) lies in even K -theory if
X is even-dimensional, so that S admits a natural grading and D is odd, and in odd
K -theory if X is odd-dimensional.

Our goal is to obtain a topological expression for the pairing of (2.1) with natural
cyclic cocycles constructed in [37].

2.1 Cocycles

We use a lower case gothic letter to denote the Lie algebra of the Lie group denoted
by the corresponding upper case Roman letter.

Let K < G be maximal compact. Let P < G be a parabolic subgroup. It has a
Langlands decomposition P = M AN , where M is reductive, A is isomorphic to a
vector space, and N is nilpotent.We assume from now on that P is a cuspidal parabolic
subgroup. (See Sect. 6.4 for the non-cuspidal case.) This means that M has a compact
Cartan subgroup, which implies that it has discrete series representations. In several
places, we will use the facts that N normalises M A and that M and A commute.

Let dg, dk, dm, da and dn be Haar measures on the groups G, K , M , A and N ,
respectively, such that

dg = dk dm da dn (2.2)

according to the decomposition G = K M AN . All these groups are unimodular, so
these measures are left- and right-invariant.

Define the map H : G → a by the property that for all g ∈ G, exp(H(g)) is the
component of g in A according to the decomposition G = K M AN .

Set l := dim(A). If a basis of a is chosen, then for a1, . . . , al ∈ a, the vectors
a1, . . . , al together define an l × l matrix. So we can take its determinant
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det(a1, . . . , al). This determinant depends on the choice of basis, but if x1, . . . , xn ∈
a∗ are the coordinates on a defined by this basis, then the volume element
det(a1, . . . , al)dx1 ∧ · · · ∧ dxl ∈ ∧l a∗, which is the relevant object in what fol-
lows, does not. For definiteness’ sake, we fix a basis such that

dx1 ∧ · · · ∧ dxl = da, (2.3)

the Haar measure on A ∼= a, and use this to define det(a1, . . . , al) for any a1, . . . , al ∈
a.

In [37], a cyclic cocycle on Harish-Chandra’s Schwartz algebra C(G) is con-
structed. This algebra is a generalisation of the algebra of Schwartz functions on R

n ,
and is defined as follows. Let π0 be the unitary representation of G induced from the
trivial representation of a minimal parabolic subgroup. Let ξ be a unit vector in the
representation space of π0, fixed by π0(K ). Let � be the function on G defined by

�(g) = (ξ, π0(g)ξ)

for all g ∈ G. The inner product on g defines a G-invariant Riemannian metric on
G/K . For g ∈ G, let d(g) be the Riemannian distance from eK to gK in G/K . Then
C(G) is the space of f ∈ C∞(G) such that for all m ≥ 0 and X , Y ∈ U (g),

sup
g∈G

(1 + d(g))m�(g)−1|L(X)R(Y ) f (g)| < ∞, (2.4)

where L and R denote the left and right regular representations, respectively. See
Section 9 in [18]. The space C(G) is a Fréchet algebra with respect to the seminorms
(2.4).

Let x ∈ M be a semisimple element. Let Z := Z M (x) be its centraliser in M .
Because x is semisimple, the quotient M/Z has an M-invariant measure d(h Z) (also
denoted by d(m Z)) compatible with the Haar measure dm on M . In Definition 3.3 in
[37], the cyclic l-cocycle �P

x on C(G) is defined by

�P
x ( f0, . . . , fl) :=

∫

M/Z

∫

K N

∫

Gl

det
(
H(g1g2 · · · glk), H(g2 · · · glk)), . . . , H(gl−1glk), H(glk)

)

f0(khxh−1nk−1(g1 · · · gl)
−1) f1(g1) · · · fl(gl) dg1 · · · dgl dk dn d(h Z),

(2.5)

for f0, . . . , fl ∈ C(G). Theorem 3.5 in [37] states that this is indeed a cyclic cocycle.
If G has a compact Cartan subgroup, then we can take P = M = G, so that If

l = 0. Then �P
x is simply the orbital integral trace associated to x :

�G
x ( f0) =

∫

G/Z
f0(hxh−1)d(h Z).
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2.2 An index pairing

The Schwartz algebraC(G) is a dense subalgebra ofC∗
r (G), closed under holomorphic

functional calculus, see Theorem 2.3 in [24]. So indG(D) ∈ K∗(C(G)), and we obtain
the number

〈�P
x , indG(D)〉

by the pairing between cyclic cohomology and K -theory. Our main result, Theorem
2.1 below, is a topological expression for this number.

The group AN has no nontrivial compact subgroups and acts properly on X , so the
action is free, and X/AN is a smooth manifold. Because M commutes with A and
is normalised by N , the action by x on X preserves N A-orbits, and hence descends
to an action on X/N A. Also, if F → X is a G-equivariant vector bundle, then
F/AN → X/AN is an M-equivariant vector bundle.

Consider the fixed point set (X/AN )x ⊂ X/AN . The connected components of
(X/AN )x are submanifolds of X/AN of possibly different dimensions. We apply all
constructions below to the connected components of (X/AN )x and add the results
together.

The set (X/AN )x is preserved by the action of the centraliser Z of x in M . Let dz
be the Haar measure on Z such that for all ϕ ∈ Cc(M),

∫

M
ϕ(m) dm =

∫

M/Z

∫

Z
ϕ(zm) dz d(m Z).

Let χx be a smooth, compactly supported function on (X/AN )x such that for all
p ∈ (X/AN )x ,

∫

Z
χx (zp) dz = 1.

The Spinc-structure on X induces an M-equivariant Spinc-structure on X/AN with
spinor bundle SAN such that

S/AN = SAN ⊗ FAN ⊗ Sa → X/AN , (2.6)

for an M-equivariant, graded vector bundle FAN → X/AN , and a vector space Sa
of dimension 2
 dim(a)−1

2 �. See Sect. 5.1 for an explicit construction, in particular (5.1).
Let Ldet → X/AN be the determinant line bundle of the Spinc-structure on X/AN
with spinor bundle SAN .

Let Â((X/AN )x ) be the Â-class of (X/AN )x . Let N → (X/AN )x be the normal
bundle to (X/AN )x in X/AN . Let RN be the curvature of the Levi–Civita connection
on X/AN restricted to N.

Consider the vector bundle

WAN := FAN ⊗ W/AN → X/AN .
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If the closure Tx of the set of powers of x is a compact subgroup of M , then the
restriction of WAN to the compact set supp(χx ) ⊂ (X/AN )x defines a class

[WAN |supp(χx )] ∈ K 0
Tx

(supp(χx )) ∼= K 0(supp(χx )) ⊗Z R(Tx ),

where R(Tx ) is the representation ring of Tx . The last equality holds because Tx acts
trivially on (X/AN )x . Evaluating the factor in R(Tx ) at x , we obtain

[WAN |supp(χx )](x) ∈ K 0(supp(χx )) ⊗Z C.

Consider the Chern character

ch : K 0(supp(χx )) ⊗ C → H even(supp(χx ); C).

Suppose P is a cuspidal parabolic. Let T < K ∩ M be a maximal torus.

Theorem 2.1 [Index theorem for higher orbital integrals] For all x ∈ T ,

〈�P
x , indG(D)〉 =

∫

(X/AN )x
χx

Â((X/AN )x ) ch([WAN |supp(χx )](x))ec1(Ldet |(X/AN )x )

det(1 − xe−RN/2π i )1/2
.

(2.7)

If P is not a maximal cuspidal parabolic subgroup or x does not lie in a compact
subgroup of M, then the left hand side equals zero.

Remark 2.2 The M-equivariant Spinc-structure on X/AN with spinor bundle SN sat-
isfying (2.6) is not unique: one can tensor SAN by an M-equivariant line bundle and
FAN by the dual line bundle. But the right hand side of (2.7) does not change under
this modification, so (2.6) is enough to state Theorem 2.1. For the sake of definiteness,
we will use the bundles SAN and FAN defined in (5.1).

2.3 A reformulation on X/N

The fixed point formula in Theorem 2.1 can be reformulated in terms of the manifold
X/N rather than X/AN . The manifold X/N has a Spinc-structure with spinor bundle
SN such that

S/N = SN ⊗ FN → X/N (2.8)

for an M-equivariant vector bundle FN → X/N . See Sect. 4.2 for an explicit con-
struction, in particular (4.6). Analogously to Remark 2.2, any ambiguity in the choice
of SN does not affect the index formula. Let L N

det → X/N be the determinant line
bundle of this Spinc-structure. Consider the vector bundle

WN := FN ⊗ W/N → X/N .
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For x ∈ M , let NN → (X/N )x be the normal bundle of (X/N )x in X/N .
We view da as the volume form (2.3). Consider the projection map qA : X/N =

X/AN × A → A. Let χA ∈ C∞
c (A) be such that

∫

A
χA da = 1.

Let q : X/N → X/AN be the quotient map, and set χx,A := q∗χx q∗
AχA.

Lemma 2.3 If P is a maximal cuspidal parabolic subgroup and x ∈ T , then the right
hand side of (2.7) equals

∫

(X/N )x
χx,A

Â((X/N )x ) ch([WN |supp(χx,A)](x))ec1(L N
det |(X/N )x )

det(1 − xe−RNN /2π i )1/2
∧ q∗

Ada. (2.9)

Remark 2.4 If x ∈ T reg, then (X/N )x ∼= X x , and (2.9) can be rewritten as an integral
over X x . But it seems to be a nontrivial exercise to rewrite the integrand in terms of
the manifold X instead of X/N .

2.4 Idea of the proof and relation with parabolic induction

An intuitive outline of the proof of Theorem 2.1 is given in Diagram (2.10). The
ingredients of this diagram are described below.

K G∗ (X)
indG

ResG
M A

K∗(C∗
r (G))

−⊗C∗
r (G) Ind

G
P

〈�P
x ,−〉

K M A∗ (X/N )
indM A

K∗(C∗
r (M A))

〈�M A
x ,−〉

C

K M∗ (X/AN )
indM

−⊗[DA]

K∗(C∗
r (M))

−⊗ indA(DA) 〈�M
x ,−〉

(2.10)

1. The map

− ⊗C∗
r (G) Ind

G
P : K∗(C∗

r (G)) → K∗(C∗
r (M A)) (2.11)

is defined by the tensor product over C∗
r (G) from the right by a Hilbert C∗

r (G)-
C∗

r (M A) bimodule IndG
P defined in [10,11]. This module is closely related to

parabolic induction, see Corollary 1 in [10] and Definition 4.4 in [11]. It is an
interesting but seemingly nontrivial question if the top right part of Diagram (2.10)
commutes.

2. There is a natural way to define a map ResG
M A : K G∗ (X) → K M A∗ (X/N ), by first

restricting group actions fromG to P and then applying a construction fromSection
3.2 of Valette’s part of [32] or Appendix A in [21]. One could expect the top left
part of (2.10) to commute, based on results in [21,31,32].
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3. Let DA be the Spin-Dirac operator on A ∼= R
l . The bottom left part of Diagram

(2.10) is defined in terms of the exterior Kasparov product by the K -homology
and index classes of DA. This commutes by basic properties of the index; see also
Lemma 5.2.

4. The group M has a compact Cartan subgroup.Hence itsmaximal cuspidal parabolic
subgroup is M itself. Similarly, M A is its own maximal cuspidal parabolic sub-
group. Let �M

x and �M A
x be the corresponding versions of the cocycle (2.5). The

maps on the right hand side of (2.10) are defined by pairing with the respective
cocycles. The bottom right part of Diagram (2.10) commutes by Lemmas 5.3 and
5.4.

The open questions in points 1 and 2 are topics of ongoing research. Positive answers
would make a proof of Theorem 2.1 possible based on Diagram (2.10). Indeed, using
commutativity of (2.10), one shows that the left hand side of (2.7) equals the pairing
of �M

x with the M-equivariant index of a certain Dirac operator on X/AN . The latter
pairing can be computed via results from [24], because M has a compact Cartan
subgroup.

An indication that the questions in points 1 and 2 are nontrivial is that it seems
necessary for the diagram to commute (indeed, even for some of its components to be
well-defined) that P is a parabolic subgroup, not just any cocompact subgroup. We
give a different and more direct proof of Theorem 2.1 here, but in spirit it is analogous
to Diagram 2.10. We have included this diagram to illustrate the idea of the proof, and
its possible relation to the parabolic induction map from [10,11].

3 The index pairing on X

The most important step in the proof of Theorem 2.1 is the fact that the left hand side
of (2.7) equals an index pairing on X/N . This is Proposition 4.8, which is analogous
to commutativity of the top two diagrams in (2.10). Proving that proposition is our
main goal in this section and the next.

In this section, we prepare for the proof of Proposition 4.8 by obtaining a relation
between cocycles defined on G and on M A, and giving an explicit representative of
indG(D). These two ingredients lead to an expression for the left hand side of (2.7),
Proposition 3.9. That proposition is a version of the commutativity of the top-right
part of Diagram 2.10.

3.1 Cocycles on G andMA

Lemma 3.1 For all f0, . . . , fl ∈ C(G),

�P
x ( f0, . . . , fl) =

∫

M/Z

∫

K l+1

∫

Nl+1

∫

(M A)l
det(a1, . . . , al)

f0(k0n0hxh−1m−1
1 a−1

1 k−1
1 ) f1(k1n1m1m−1

2 a1a−1
2 k−1

2 ) · · ·
· · · fl−1(kl−1nl−1ml−1m−1

l al−1a−1
l k−1

l ) fl(klnlmlalk
−1
0 )

dm1 · · · dml da1 · · · dal dn0 · · · dnl dk0 · · · dkl d(h Z). (3.1)
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178 P. Hochs et al.

Proof First substituting k−1g j k for g j in the right hand side of (2.5), and then g j · · · gl

for g j , we obtain

�P
x ( f0, . . . , fl) =

∫

M/Z

∫

K N

∫

Gl
det

(
H(g1), . . . , H(gl)

)

f0(khxh−1ng−1
1 k−1) f1(kg1g−1

2 k−1) · · · fl−1(kgl−1g−1
l k−1) fl(kglk

−1)

dg1 · · · dgn dk dn d(h Z).

Using (2.2) and the definition of the map H , we rewrite the right hand side as

∫

M/Z

∫

K N

∫

(K M AN )l
det(a1, . . . , al)

f0(khxh−1nn−1
1 a−1

1 m−1
1 k−1

1 k−1) f1(kk1m1a1n1n−1
2 a−1

2 m−1
2 k−1

2 k−1) · · ·
· · · fl−1(kkl−1ml−1al−1nl−1n−1

l a−1
l m−1

l k−1
l k−1) fl(kklmlalnlk

−1)

dm1 · · · dml da1 · · · dal dn dn1 · · · dnl dk dk1 · · · dkl d(h Z).

The facts that N normalises M A and that M and A commute, together with substitu-
tions in the integrals over N , imply that the above expression equals

∫

M/Z

∫

K l+1

∫

Nl+1

∫

(M A)l
det(a1, . . . , al)

f0(kn0hxh−1m−1
1 a−1

1 k−1
1 k−1) f1(kk1n1m1m−1

2 a1a−1
2 k−1

2 k−1) · · ·
· · · fl−1(kkl−1nl−1ml−1m−1

l al−1a−1
l k−1

l k−1) fl(kklnlmlalk
−1)

dm1 · · · dml da1 · · · dal dn0 · · · dnl dk0 · · · dkl d(h Z).

A substitution in the integrals over K now gives the desired equality (3.1). ��
If f ∈ C(G), define the function f N on M A by

f N (ma) :=
∫

N
f (nma) dn. (3.2)

It was shown in Lemma 21 in [18] that this integral converges for all m ∈ M and
a ∈ A, and that this defines a Schwartz function f N ∈ C(M A).

Let H be a Hilbert space. We write L1(H) for the algebra of trace-class operators
onH. Define seminorms on the space of smooth maps from G toL1(H) by taking the
seminorms on C(G) and replacing absolute values of functions by the trace norm. Let
C(G,L1(H)) be the Fréchet space of all such maps for which these seminorms are
finite. For a cyclic l-cocycle ϕ on C(G), let ϕ# Tr : (

(C(G,L1(H))
)l+1 → C be as in

Theorem III.1.α.12 in [12], initially defined on the dense subspace C(G)⊗L1(H) and
extended continuously. Then the pairing of ϕ with an idempotent q in a matrix algebra
over C(G,L1(H)), representing an element in K0

(
C(G,L1(H))

)
, is given by

〈ϕ, q〉 = (ϕ# Tr)(q, . . . , q). (3.3)
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Here Tr denotes the tensor product of the operator trace on L1(H) and the matrix
trace.

Proposition 3.2 Let H be a Hilbert space equipped with a representation of K . For
j = 0, . . . , l, let f j ∈ C(G,L1(H)) be such that for all g ∈ G and k, k′ ∈ K ,

f j (kgk′) = k ◦ f j (g) ◦ k′ ∈ L1(H). (3.4)

Let f N
j be defined via the extension of (3.2) to a mapC(G,L1(H)) → C(M A,L1(H)).

Then

(�P
x # Tr)( f0, . . . , fl) = (�M A

x # Tr)( f N
0 , . . . , f N

l ).

Proof Viewing M A as a parabolic subgroup of itself, and applying Lemma 3.1, we
find that that for all f M A

0 , . . . , f M A
l ∈ C(M A,L1(H)),

(�M A
x # Tr)( f M A

0 , . . . , f M A
l ) =

∫

M/Z

∫

(K∩M)l+1

∫

(M A)l
det(a1, . . . , al)

Tr
(

f M A
0 (k0hxh−1m−1

1 a−1
1 k−1

1 ) f M A
1 (k1m1m−1

2 a1a−1
2 k−1

2 ) · · ·
· · · f M A

l−1 (kl−1ml−1m−1
l al−1a−1

l k−1
l ) f M A

l (klmlalk
−1
0 )

)

dm1 · · · dml da1 · · · dal dk0 · · · dkl d(h Z).

Using the facts that k j ∈ M and that M and A commute, we can use substitutions to
rewrite the right hand side as

∫

M/Z

∫

(M A)l
det(a1, . . . , al)Tr

(
f M A
0 (hxh−1m−1

1 a−1
1 ) f M A

1 (m1m−1
2 a1a−1

2 ) · · ·

· · · f M A
l−1 (ml−1m−1

l al−1a−1
l ) f M A

l (mlal)
)

dm1 · · · dml da1 · · · dal d(h Z). (3.5)

Explicitly, if l ≥ 4, then one substitutes k0h for h; k1m1k−1
0 for m1; k2m2k−1

0 for m2;
kl−1ml−1k−1

0 for ml−1; klmlk
−1
0 for ml ; and k j m j for m j if 3 ≤ j ≤ l − 2.

Now if f0, . . . , fl ∈ C(G,L1(H)) satisfy (3.4), then Lemma 3.1 implies that

(�P
x # Tr)( f0, . . . , fl)

=
∫

M/Z

∫

K

∫

(M A)l
det(a1, . . . , al)Tr

(
k0 f N

0 (hxh−1m−1
1 a−1

1 ) f N
1 (m1m−1

2 a1a−1
2 ) · · ·

· · · f N
l−1(ml−1m−1

l al−1a−1
l ) f N

l (mlal)k
−1
0

)
dm1 · · · dml da1 · · · dal dk0 d(h Z).

By the trace property of the operator trace, this equals the right hand side of (3.5),
with f M A

j replaced by f N
j . ��
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3.2 A slice

Using Abels’ slice theorem [1], we write

X = G ×K Y , (3.6)

for a K -invariant, compact submanifold Y ⊂ X . The index (2.1) is independent of the
G-invariant Riemannian metric on X . From now on, we choose such a metric induced
by a K -invariant Riemannian metric on Y and a K -invariant inner product on p via

T X ∼= G ×K (p ⊕ T Y ).

We will write dy (and dy′ and dy j ) for the Riemannian density on Y . Then we can
and will normalise the Haar measure dg on G so that for all f ∈ Cc(X),

∫

X
f (p) d volp =

∫

G

∫

Y
f (gy) dy dg,

where d vol is the Riemannian density on X . See Lemma 4.1 in [23].
Suppose that the adjoint representation Ad : K → SO(p) lifts to a homomorphism

Ãd : K → Spin(p). (3.7)

This is not a restriction, since this is always true for a double cover G̃ of G, and one
can then use the fact that G̃ ×K̃ Y = G ×K Y = X , for a maximal compact subgroup
K̃ < G̃. Let Sp be the Spin-representation of Spin(p), viewed as a representation of
K via Ãd. The slice Y in (3.6) has a Spinc-structure with spinor bundle SY → Y such
that

S = G ×K (Sp ⊗ SY ). (3.8)

See Proposition 3.10 in [22].
Corresponding to (3.8), we have the decomposition

L2(E) = (
L2(G) ⊗ Sp ⊗ L2(SY ⊗ W |Y )

)K
. (3.9)

Let L be the left regular representation of G onC∞(G), and let c be the Clifford action
by p on Sp. Let {X1, . . . , Xr } be an orthonormal basis of p with respect to the Killing
form. Consider the operator

DG,K :=
∑

j

L(X j ) ⊗ c(X j )

on C∞(G) ⊗ Sp. We have

D = DG,K ⊗ 1 + 1 ⊗ DY (3.10)
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on

	∞(E) ∼= (
C∞(G) ⊗ Sp ⊗ 	∞(SY ⊗ W |Y )

)K
,

for a Spinc-Dirac operator DY on SY , coupled to W |Y . Here we use a graded tensor
product, which means that 1 ⊗ DY means the grading operator on Sp tensored with
DY .

Consider the vector bundle Hom(E |Y ) := E |Y � E |∗Y → Y × Y . Consider the
action by K × K on C(G) ⊗ 	∞(Hom(E |Y )) defined by

(
(k, k′) · ( f ⊗ A)

)
(g, y, y′) = f (kgk′−1)k−1A(ky, k′y′)k′, (3.11)

for k, k′ ∈ K , f ∈ C(G), A ∈ 	∞(Hom(E |Y )), g ∈ G and y, y′ ∈ Y . Let C0(E) ⊂
C(G) ⊗ 	∞(Hom(E |Y )) be the space of elements invariant under this action. An
element κ̃ ∈ C0(E) defines a smooth section κ of Hom(E) := E � E∗ → X × X
given by

κ(gy, g′y′) = gκ̃(g−1g′, y, y′)g′−1, (3.12)

for g, g′ ∈ G and y, y′ ∈ Y .
We define C(E) := C

(
G,L1(L2(E |Y ))

)
as above Proposition 3.2. We identify

elements of C(E) with the G-equivariant operators they define on L2(E) via (3.12).

3.3 Functional calculus and operators in C(E)

Wewill use the fact that the K -theory class indG(D) can be represented by idempotents
that lie in the unitisation of C(E), see Lemma 3.8. That allows us to apply Proposition
3.2, see the proof of Proposition 3.9. These arguments are based on the following fact.

Proposition 3.3 Let f be a Schwartz function on R, and assume that for all n ∈ Z≥0,
there are a, b > 0 such that for all x > 0, the nth derivative of f at x satisfies

| f (n)(x)| ≤ ae−bx . (3.13)

Then the operators f (D2) and D f (D2) defined by functional calculus lie in C(E).

For every V ∈ K̂ , let specV (DY ) ⊂ spec(DY ) be the set of eigenvalues of the
restriction of DY to the V -isotypical component L2(SY ⊗ W |Y )V of L2(SY ⊗ W |Y ).
For λ ∈ specV (DY ), let L2(SY ⊗ W |Y )V ,λ ⊂ L2(SY ⊗ W |Y )V be the corresponding
eigenspace. Then by (3.9),

L2(E) ∼=
⊕

V ∈K̂

⊕

λ∈specV (DY )

(
L2(G) ⊗ Sp ⊗ L2(SY ⊗ W |Y )V ,λ

)K
.
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Via the Fourier transform, the right hand side is isomorphic to

∫ ⊕

Ĝtemp

⊕

V ∈K̂
[π |K :Sp⊗V ]�=0

⊕

λ∈specV (DY )

Hπ ⊗ (
H∗

π ⊗ Sp ⊗ L2(SY ⊗ W |Y )V ,λ

)K
dμ(π),

(3.14)

where μ is the Plancherel measure. Every representation π ∈ Ĝ temp is of the form
π = IndG

P (σ ⊗ ν ⊗ 1), for a cuspidal parabolic subgroup P = M AN < G, a (limit
of) discrete series representation σ of M , and ν ∈ Â = ia∗. (See [27,28], or Theorem
14.91 in [26].) We denote by

(�(P, σ ), ν) ∈ i(t ∩ m)∗ ⊗ ia∗

the infinitesimal character of IndG
P (σ ⊗ ν ⊗ 1). Then the Casimir element �G of G

acts on π as the scalar

�G(π) = −‖�(P, σ )‖2 + ‖ν‖2. (3.15)

Let f be as in Proposition 3.3. Let f̂ (D2) be the operator on (3.14) corresponding
to the operator f (D2) on L2(E).

Lemma 3.4 The operator f̂ (D2) is given by multiplication by a function on Ĝ temp ×
spec(DY ). At (π = IndG

P (σ ⊗ ν ⊗ 1), λ), with λ ∈ specV (DY ), the absolute value of
this function is at most

ae−bλ2e−b(‖ν‖2−‖�(P,σ )‖2+‖μV +ρK ‖2), (3.16)

where μV is the highest weight of V , and ρK is half the sum of a choice of positive
roots for (K , T ). All derivatives of this function with respect to ν satisfy the same
estimate, for possibly different a and b.

Proof Because of the use of graded tensor products in (3.10),

D2 = D2
G,K ⊗ 1 + 1 ⊗ D2

Y

where the tensor products on the right hand side are ungraded. This implies that the
two terms commute, so that for all s ∈ R,

eis D2 = eis D2
G,K ⊗ eis D2

Y ,

as in (4.3) in [24]. So Proposition 10.3.5 in [19] implies that

f (D2) =
∫

R

eis D2
f̂ (s)ds =

∫

R

eis D2
G,K ⊗ eis D2

Y f̂ (s) ds.
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After Fourier transform, the operator D2
G,K acts on (3.14) as multiplication by a

function, which takes the value

‖ν‖2 − ‖�(P, σ )‖2 + ‖μV + ρK ‖2

at the point corresponding to V ∈ K̂ and π = IndG
P (σ ⊗ ν ⊗ 1). Here we use (3.15),

and Proposition 3.1 in [33]; see also (3.17) in [3].

We find that f̂ (D2) is indeed given by multiplication by a function on Ĝ temp ×
spec(DY ), and its value at (IndG

P (σ ⊗ ν ⊗ 1), λ), with λ ∈ specV (DY ), is

∫

R

eis(‖ν‖2−‖�(P,σ )‖2+‖μV +ρK ‖2eisλ2 f̂ (s) ds

= f (‖ν‖2 − ‖�(P, σ )‖2 + ‖μV + ρK ‖2 + λ2). (3.17)

By assumption on f , this function and all its derivatives with respect to ν satisfy the
desired estimate. ��

Our next goal is to estimate the decay behaviour of (3.16). We use the term rapidly
decreasing tomeandecreasing faster than any rational function.Let us define a function
C on K̂ by

C(V ) =
∑

λ∈specV (DY )

e−bλ2 ,

for V ∈ K̂ .

Lemma 3.5 The function C decreases rapidly in ‖μV ‖.

Proof Consider the special case of Proposition 3.3 where G = K is compact. Then
the heat kernel of D lies in

C(E) =
(

C∞(K ) ⊗ L1(E |Y )
)K

,

simply because it is smooth. Its component in L1(E |Y ) is nonnegative, so its trace
norm on that component equals its trace. Applying this trace on Y , we obtain a smooth
function on K , whose Fourier transform equals C . And the Fourier transform of a
smooth function on K is a rapidly decreasing function on K̂ . ��
Lemma 3.6 The function

C̃(x) :=
∑

W∈K̂‖μW ‖≥x

C(W )

decreases rapidly in x ≥ 0.
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Proof If x ∈ N, then

C̃(x) =
∞∑

n=x

∑

W∈K̂
n≤‖μW ‖<n+1

C(W )

≤
∞∑

n=x

#
{
W ∈ K̂ ; n ≤ ‖μW ‖ < n + 1

}
max‖μW ‖≥n

C(W ).

The number #{W ∈ K̂ ; n ≤ ‖μW ‖ < n +1} increases at most polynomially in n. And
max‖μW ‖≥n C(W ) decreases rapidly in n, because C(W ) decays rapidly in ‖μW ‖ by
Lemma 3.5. So the terms in the latter sum decay rapidly in n. This implies that the
sum decays rapidly in x , for example via an estimate of the sum by an integral. ��
Lemma 3.7 Let ϕ be the operator-valued function on Ĝ temp given by

ϕ(π = IndG
P (σ ⊗ ν ⊗ 1))

=
∑

V ∈K̂
[π |K :Sp⊗V ]�=0

∑

λ∈specV (DY )

e−bλ2e−b(‖ν‖2−‖�(P,σ )‖2+‖μV +ρK ‖2) · id(π⊗Sp⊗V )K ,

(3.18)

for some b > 0. Then the function

‖ϕ‖HS ∈ C∞(Ĝ temp)

is a rapidly decreasing function in ‖�(P, σ )‖ and ‖ν‖, where ‖ • ‖HS means the
Hilbert–Schmidt norm.

Proof We study the decay behaviour of ϕ in ν and σ separately.
For the decay behaviour in ν, we note that positivity of D2

G,K implies that

− ‖�(P, σ )‖2 + ‖μV + ρK ‖2 ≥ 0. (3.19)

(This is known as Parthasarathy’s Dirac inequality.) Hence for all σ ,

ϕ(IndG
P (σ ⊗ ν ⊗ 1)) ≤

(∑

V ∈K̂

C(V )[π |K : Sp ⊗ V ]
)

e−b‖ν‖2 . (3.20)

For any W ∈ K̂ , we have

[π |K : W ] ≤ dim(W ).

See for example Theorem 8.1 in [26]. (Compare also Theorem 2.9(3) and Example
2.12 in [29].) So [π |K : Sp ⊗ V ] grows at most polynomially in ‖μV ‖, uniformly in
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π . And the function C decreases rapidly by Lemma 3.5. So the sum over V in (3.20)
converges, and ϕ decreases rapidly in ‖ν‖, uniformly in σ .

We now consider decay behaviour with respect to σ . For any π ∈ Ĝ, we write

minK (π) := min{‖μV ‖; V ∈ K̂ , [π |K : Sp ⊗ V ] �= 0}.

By Frobenius reciprocity, we have for all W ∈ K̂ ,

[π |K : W ] =
[
IndG

P (σ ⊗ ν ⊗ 1)
∣
∣
K : W

]
=

[(
L2(K ) ⊗ σ

)M∩K : W

]

= (
W ∗|M∩K ⊗ σ

)M∩K
. (3.21)

This implies that ‖minK (π)‖ increases as a positive power of ‖�(P, σ )‖ when
‖�(P, σ )‖ is large enough.

Now (3.19) implies that

‖ϕ(IndG
P (σ ⊗ ν ⊗ 1))‖HS ≤ C̃(minK (π))[π |K : Sp ⊗ V ].

BecauseminK (π) increases as a positive power of ‖�(P, σ )‖ and C̃ decreases rapidly
by Lemma 3.6, we find that C̃(minK (π)) decreases rapidly in ‖�(P, σ )‖ and is
independent of ν. Hence ‖ϕ(IndG

P (σ ⊗ν⊗1))‖HS also decreases rapidly in ‖�(P, σ )‖,
uniformly in ν. ��

Proof of Proposition 3.3 We first show that f (D2) ∈ C(E). We consider its Fourier

transform f̂ (D2) on (3.14), and apply the trace norm on the component L2(SY ⊗W |Y ).
Lemmas 3.4 and 3.7 imply that the resulting function is a Schwartz function on Ĝ temp.
By a characterisation of C(G) by Arthur [2] (based on results by Harish-Chandra
[17,18]), this implies that f (D2) lies in C(G) ⊗ End(Sp) after we apply the trace
norm on L2(SY ⊗ W |Y ). Hence f (D2) ∈ C(E).

To show that D f (D2) ∈ C(E), we write

D f (D2) = (DG,K ⊗ 1) f (D2) + (1 ⊗ DY ) f (D2),

using graded tensor products. The first term on the right lies in C(E) because the
universal enveloping algebra of g preserves C(G), so that DG,K ⊗ 1 preserves C(E).
The second term on the right lies in C(E) by a similar argument as for f (D2). The
difference is that for (1 ⊗ DY ) f (D2), the expression (3.17) is replaced by

∫

R

eis(‖ν‖2−‖σ‖2+‖μV +ρM
K ‖2)λeisλ2 f̂ (s) ds = λ f (‖ν‖2 − ‖σ‖2 + ‖μV + ρM

K ‖2 + λ2).

The rest of the argument still applies, with e−bλ2 replaced by λe−bλ2 everywhere. ��
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3.4 The index on X

We will use an explicit representative of the K -theory class indG(D). Suppose that
G/K and X are even-dimensional. Then Y is also even-dimensional. We will later
deduce the odd-dimensional case of Theorem 2.1 from the even-dimensional case; see
Lemma 5.5.

Let D± be the restriction of D to even and odd-graded sections of E , respectively.
Fix t > 0, and write

qt :=
(

e−t D− D+
e− t

2 D− D+ 1−e−t D− D+
D− D+ D−

e− t
2 D+ D− 1−e−t D+ D−

D+ D− D+ 1E− − e−t D+ D−

)

∈ 	∞(Hom(E)),

(3.22)

and

pE :=
(
0 0
0 1E−

)

∈ B(L2(E)).

Lemma 3.8 The operator qt lies in the unitisation of C(E).

Proof By Proposition 3.3, the operators e−t D2
and e− t

2 D2 1−e−t D2

D2 D lie in C(E). ��
The operator qt is an idempotent, so we have

[qt ] − [pE ] ∈ K∗(C(E)).

For any cyclic cocycle ϕ over C(G),

〈ϕ, indG(D)〉 = 〈ϕ# Tr, [qt ] − [pE ]〉, (3.23)

where the pairing on the right is as in (3.3). See page 356 in [13]. Combining (3.23)
with Proposition 3.2, we obtain the main conclusion of this section.

Proposition 3.9 We have

〈�P
x , indG(D)〉 = 〈�M A

x # Tr, [q N
t ] − [pN

E ]〉.
Proof By Lemma 3.8 and the K × K -invariance property (3.11) of the elements of
C(E), the element qt ∈ C(G,L1(L2(E |Y ))) has the K × K -invariance property of
the functions f j in Proposition 3.2. By that proposition, (3.23) and (3.3), the claim
follows. ��

4 An index pairing on X/N

We construct a Dirac operator on X/N and give an explicit realisation of its M A-
equivariant index, Proposition 4.7. This proposition is a variation on the commutativity
of the top left diagram in (2.10).
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4.1 Operators on X and X/N

Consider the M A-invariant submanifold X M A := M A ×K∩M Y ⊂ X . Then X =
N AM ×K∩M Y , so the inclusion map X M A ↪→ X induces X M A ∼= X/N . For κ ∈
C(E) ∩ 	∞(Hom(E)), let

κ N ∈ (
C(M A)⊗̂	∞(Hom(E |Y ))

)K∩M×K∩M
↪→ End(E |X M A ) (4.1)

be defined as in (3.2). (We use the completed tensor product of the Fréchet space
C(M A) and the nuclear Fréchet space 	∞(Hom(E |Y )) here, instead of the space
C(M A,L1(L2(E |Y ))), to make it clear that κ N defines a smooth kernel on X M A.)
Explicitly, for all m ∈ M , a ∈ A and y, y′ ∈ Y ,

κ N (ma, y, y′) =
∫

N
κ(nam, y, y′) dn ∈ Hom(Ey′ , Ey).

Consider the space 	∞(E)N ,c of smooth, N -invariant sections of E whose support
has compact image in X/N . Then 	∞(E)N ,c ∼= 	∞

c (E |X M A ) via restriction to X |M A.
Via this identification, a section κ N as in (4.1) defines an operator on 	∞(E)N ,c. If
s1 and s2 are sections of E that are not necessarily square-integrable, we will denote
the integral

∫

X
(s1(p), s2(p))E d volp

by (s1, s2)L2(E) if it converges.

Lemma 4.1 For all κ ∈ C(E), σ ∈ 	∞
c (E) and s ∈ 	∞(E)N ,c,

(κ∗σ, s)L2(E) = (σ, κ N s)L2(E). (4.2)

In particular, the integral defining the left hand side converges.

Proof For κ ∈ C(E), let κ̃ be defined as in (3.12). Writing X = N AM ×K∩M Y , we
see that the left hand side of (4.2) equals

∫

N AM

∫

Y

∫

N AM

∫

Y

(
κ̃∗(namy, n′a′m′y′)σ (n′a′m′y′), s(namy)

)
E

dy′ dn′ da′ dm′ dy dn da dm

By definition of the adjoint kernel κ̃∗, and by N -invariance of s, and G invariance of
κ̃ , this integral equals

∫

N AM

∫

Y

∫

N AM

∫

Y

(
σ(n′a′m′y′), nκ̃(n−1n′a′m′y′, amy)s(amy)

)
E

dy′ dn′ da′ dm′ dy dn da dm.
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Substituting n′−1n for n, we rewrite this as

∫

N AM

∫

Y

∫

N AM

∫

Y

(
σ(n′a′m′y′), n′nκ̃(n−1a′m′y′, amy)s(amy)

)
E

dy′ dn′ da′ dm′ dy dn da dm. (4.3)

If κ̃ N is related to κ N as in (3.12), with G replaced by M A, then for all y, y′ ∈ Y ,
a, a′ ∈ A and m, m′ ∈ M , unimodularity of N implies that

∫

N
nκ̃(n−1a′m′y′, amy) dn = κ̃ N (a′m′y′, amy).

So (4.3) equals

∫

N AM

∫

Y

(
σ(n′a′m′y′), n′(κ̃ N s)(a′m′y′)

)
E dy′ dn′ da′ dm′

By N -invariance of κ̃ N s, we have n′(κ̃ N s)(a′m′y′) = (κ̃ N s)(n′a′m′y′) for all y′ ∈ Y ,
n′ ∈ N , a′ ∈ A and m′ ∈ M . So the latter integral equals the right hand side of (4.2).

��
Let κt ∈ C(E+) be kernel of the heat operator e−t D− D+

.

Lemma 4.2 For all σ ∈ 	∞
c (E+) and s ∈ 	∞(E+)N ,c, and for all t > 0,

d

dt
(σ, κ N

t s)L2(E+) = (σ,−D− D+e−t D− D+
s)L2(E+).

Proof By Lemma 4.1,

(σ, κ N
t s)L2(E+) = (e−t D− D+

σ, s)L2(E+).

The derivative with respect to t at t equals

(−D− D+e−t D− D+
σ, s)L2(E+). (4.4)

The operator −D− D+e−t D− D+
is symmetric on sections in L2(E+), so we have to

take the fact into account that s is not in L2(E+).
Let ε > 0. For r > 0, let ψr ∈ C∞

c (M) be constant 1 within a distance r of
supp(σ ). Then (4.4) equals

(−D− D+e−t D− D+
σ,ψr s

)
L2(E+)

− (
(1 − ψr )D−D+e−t D− D+

σ, s
)

L2(E+)
.

Because σ and ψr s lie in 	∞
c (E+), the first term equals (σ,−D− D+e−t D− D+

ψr s)L2(E+). And the absolute value of the second term is at most equal to

‖(1 − ψr )D− D+e−t D− D+
σ‖L1(E+)‖s‖∞.
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The first factor is smaller than ε for r large enough by Gaussian decay properties
of heat kernels. (Here we also use the fact that X/G is compact, so X has bounded
geometry and volumes of balls in X are bounded by an exponential function of their
radii.) For such a value of r , we find that

∣
∣(−D− D+e−t D− D+

σ, s)L2(E+) − (σ,−D− D+e−t D− D+
ψr s)L2(E+)

∣
∣ < ε‖s‖∞.

We similarly have

∣
∣(σ,−D− D+e−t D− D+

s)L2(E+) − (σ,−D− D+e−t D− D+
ψr s)L2(E+)

∣
∣

= |((1 − ψr )D−D+e−t D− D+
σ, s

)
L2(E+)

| < ε‖s‖∞.

We conclude that (4.4) equals (σ,−D− D+e−t D− D+
s)L2(E+), and the claim follows.

��

4.2 An index on X/N

We have a K ∩ M-invariant decomposition

p = (p ∩ m) ⊕ a ⊕ ((p ∩ m) ⊕ a)⊥,

where the orthogonal complement is taken insidepwith respect to theKilling form.The
homomorphim Ãd maps K ∩M into Spin(p∩m)×Spin(a)×Spin(((p∩m)⊕a)⊥) ↪→
Spin(p). Let Sp∩m, Sa and S((p∩m)⊕a)⊥ be the corresponding Spin-representations of
K ∩ M . (The group K ∩ M acts trivially on Sa, because M centralises A.) Then we
have a decomposition of representations of K ∩ M ,

Sp = Sp∩m ⊗ Sa ⊗ S((p∩m)⊕a)⊥ . (4.5)

If G/K is even-dimensional, then this includes the gradings on the respective spaces,
and we use graded tensor products.

Lemma 4.3 There is an isomorphism of graded representations of K ∩ M

S((p∩m)⊕a)⊥ ∼= Sk/(k∩m).

Proof There are T ∩ M-equivariant linear isomorphisms

p ∼= g/k ∼= m/(k ∩ m) ⊕ a ⊕ n ∼= (p ∩ m) ⊕ a ⊕ n.

If θ is the Cartan involution, then themap y �→ (y+θ y)/2+k∩m is a T ∩ M-invariant
isomorphism from n onto k/(k∩m). So ((p∩m)⊕a)⊥ ∼= k/(k∩m) as representations
of T ∩ M . This implies that their characters are equal on K ∩ M , so they are equal as
representations of K ∩ M as well. ��
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Consider the M A-equivariant vector bundles

SN := M A ×K∩M (Sp∩m ⊗ Sa ⊗ SY ) → X M A = X/N ;
FN := M A ×K∩M (Y × Sk/(k∩m)) → X M A = X/N .

(4.6)

Lemma 4.4 The vector bundle SN is the spinor bundle of an M A-equivariant Spinc-
structure on X/N, and (2.8) holds.

Proof Clifford multiplication is an algebra bundle isomorphism Cl(T X) → End(S),
where Cl stands for the Clifford bundle. The Clifford bundle

Cl(T X M A) = Cl(M A ×K∩M (p ∩ m ⊕ a ⊕ T Y ))

maps precisely onto End(SN ) under this isomorphism. So SN is the spinor bundle of
an M A-equivariant Spinc-structure on X M A. Lemma 4.3 and (3.8) imply (2.8). ��
The equality (2.8) implies that

E |X M A = M A ×K∩M
(
(Sp∩m ⊗ Sa) ⊗ (SY ⊗ Sk/(k∩m) ⊗ W |Y )

)
. (4.7)

Let {X1, . . . , Xs} be a basis of (p∩m)⊕a, orthonormal with respect to the Killing
form. Let L be the left regular representation of M A. Let

DM A/(K∩M) :=
∑

j

L(X j ) ⊗ c(X j ) (4.8)

be the Spin-Dirac operator on the bundle

M A ×K∩M (Sp∩m ⊗ Sa) → M A/(K ∩ M). (4.9)

It extends to an operator DM A,K∩M on

C∞(M A) ⊗ (Sp∩m ⊗ Sa),

defined by the same expression (4.8).
Let DY ,M be the Spinc-Dirac operator on Y coupled to Sk/(k∩m) ⊗ W |Y , acting on

sections of the bundle

SY ⊗ Sa ⊗ Sk/(k∩m) ⊗ W |Y → Y .

Consider the operator

DX M A := DM A,K∩M ⊗ 1 + 1 ⊗ DY ,M , (4.10)
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where we use graded tensor products; i.e. 1 ⊗ DY ,M means the grading operator on
(4.9) tensored with DY ,M . Initially, it acts in the space

C∞(M A) ⊗ (Sp∩m ⊗ Sa) ⊗ 	∞(SY ⊗ Sk/(k∩m) ⊗ W |Y ),

but we view it as acting on the subspace of K ∩ M-invariant elements, which is the
space of smooth sections of (4.7). Then DX M A is a Spinc-Dirac operator on X M A for
the Spinc-structure with spinor bundle SN ,

twisted by the vector bundle WN := FN ⊗ W/N .
As before, let κt ∈ C(E+) be Schwartz kernel of the heat operator e−t D− D+

, and
let κ N

t be defined as in (4.1).

Lemma 4.5 The Schwartz kernel of e
−t D−

X M A
D+

X M A is κ N
t . The analogous statement for

e
−t D+

X M A
D−

X M A holds as well.

Proof The operator D commutes with the action of κ N
t on 	∞(E+)N ,c because it

is N -equivariant. So Lemmas 4.2 and 4.1 imply that for all σ ∈ 	∞
c (E+) and s ∈

	∞(E+)N ,c ∼= 	∞
c (E+|X M A ), and all t > 0,

d

dt
(σ, κ N

t s)L2(E+) = (e−t D− D+
σ,−D− D+s)L2(E+)

= (σ,−κ N
t D−D+s)L2(E+)

= (σ,−D− D+κ N
t s)L2(E+).

On N -invariant sections, D equals DX M A , so the latter inner product equals
(σ,−D−

X M A
D+

X M A
κ N

t s)L2(E+).
Lemma 4.1 also implies that

lim
t↓0 (σ, κ N

t s)L2(E+) = (σ, s)L2(E+).

We conclude that the map (p, t) �→ (κ N
t s)(p) satisfies the heat equation for the

operator D−
X M A

D+
X M A

, with the boundary condition limt↓0(κ N
t s)(p) = s(p) for all

p ∈ X M A.

The statement for e
−t D+

X M A
D−

X M A can be proved analogously. ��

Lemma 4.6 Let λt ∈ C(E) be the smooth kernel of e− t
2 D− D+ 1−e−t D− D+

D− D+ D−. Then

λN
t is the Schwartz kernel of e

− t
2 D−

X M A
D+

X M A 1−e
−t D−

X M A
D+

X M A

D−
X M A

D+
X M A

D−
X M A

. The analogous

statement for e− t
2 D+ D− 1−e−t D+ D−

D+ D− D+ holds as well.

Proof Fix t0 ∈ (0, t). As in Lemma 3.8, the Schwartz kernel νt of the operator

e− t0
2 D− D+ 1 − e−t D− D+

D− D+ D−
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lies in C(E). Similarly to the proof of Lemma 4.5, we use Lemmas 4.1 and 4.2 to find
that for all σ ∈ 	∞

c (E+) and s ∈ 	∞(E−)N ,c,

d

dt
(σ, νN

t s)L2(E+) = d

dt

(
D+ 1 − e−t D− D+

D− D+ e− t0
2 D− D+

σ, s
)

L2(E−)

= (e− t0
2 D− D+

e−t D− D+
D+σ, s)L2(E−)

= (σ, e− t0
2 D− D+

e−t D− D+
D−s)L2(E+)

= (σ, e
− t0

2 D−
X M A

D+
X M A e

−t D−
X M A

D+
X M A D−

X M A
s)L2(E+).

So νN
t has the defining properties of the operator

e
− t0

2 D−
X M A

D+
X M A

1 − e
−t D−

X M A
D+

X M A

D−
X M A

D+
X M A

D−
X M A

.

Lemma 4.5 implies that if κt is the Schwartz kernel of e− t−t0
2 D− D+

, then κ N
t is

the Schwartz kernel of e
− t−t0

2 D−
X M A

D+
X M A . Because N normalises M and A, the map

κ �→ κ N is multiplicative. So λN
t = κ N

t νN
t , which by the preceding arguments is the

Schwartz kernel of e
− t

2 D−
X M A

D+
X M A 1−e

−t D−
X M A

D+
X M A

D−
X M A

D+
X M A

D−
X M A

.

The statement for e− t
2 D+ D− 1−e−t D+ D−

D+ D− D+ can be proved analogously. ��
Proposition 4.7 For any cyclic cocycle ϕ over C(M A),

〈ϕ, indM A(DX M A)〉 = 〈ϕ# Tr, [q N
t ] − [pE |X M A

]〉.

Proof Lemmas 4.5 and 4.6 imply that q N
t equals (3.22), with D replaced by DX M A .

So the claim follows from the analogue of (3.23) for DX M A . ��
Propositions 3.9 and 4.7, and the fact that pN

E = pE |X M A
, lead to the following key

step in the proof of Theorem 2.1.

Proposition 4.8 We have

〈�P
x , indG(D)〉 = 〈�M A

x , indM A(DX M A)〉.

5 Proof of the index theorem

Having established an analogue of commutativity of the top two diagrams in (2.10)
with Proposition 4.8, we finish the proof of Theorem 2.1 by considering the bottom
two diagrams in (2.10). We note that the bottom left part commutes in Lemma 5.2,
and show that the bottom right part commutes in Lemmas 5.3 and 5.4. Then applying
the main result of [24] to the action by M on X/AN finishes the proof.
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5.1 Cococyles forM and A

Consider the cyclic l-cocycle �̃M
x on C(M) given by

�̃M
x ( f M

0 , . . . , f M
l )

=
∫

M/Z

∫

(K∩M)l+1

∫

Ml

f M
0 (k0hxh−1m−1

1 a−1
1 k−1

1 ) f M
1 (k1m1m−1

2 k−1
2 ) · · ·

· · · f M
l−1(kl−1ml−1m−1

l k−1
l ) f M

l (klmlk
−1
0 )dm1 · · · dml dk0 · · · dkl d(h Z).

Note that �̃M
x is not the same as the cocycle �M

x for the cuspidal parabolic M < M as
defined in (2.5), because the latter is a degree zero cocycle. We do have the following
fact.

Lemma 5.1 Let H be a Hilbert space with a unitary representation of K . For all
q ∈ K∗((C(M,L1(H)))K×K ),

〈�̃M
x , q〉 = 〈�M

x , q〉.

Proof Let q ∈ Mr ((C(M,L1(H)))K×K ) be an idempotent. Similarly to the last para-
graph of the proof of Proposition 3.2, K × K -invariance of q and the trace property
of Tr imply that

〈�̃M
x , q〉 = (�̃M

x # Tr)(q, . . . , q) =
∫

M/Z

∫

Ml
Tr

(
q(hxh−1m−1

1 a−1
1 )q(m1m−1

2 ) · · ·

· · · q(ml−1m−1
l )q(ml)

)
dm1 · · · dml d(h Z) =

∫

M/Z
Tr(ql+1(hxh−1))d(h Z).

Because q is an idempotent, this equals

∫

M/Z
Tr(q(hxh−1))d(h Z) = 〈�M

x , q〉.

��
Let X M A, SY , Sp∩m and Sk/(k∩m) be as aboveLemma4.5. Let X M := M×K∩M Y ⊂

X M A. Then X M A = X M × A, and X M ∼= X/AN . Consider the M-equivariant vector
bundles

SAN = M ×K∩M (Sp∩m ⊗ SY ) → X M ∼= X/AN ;
FAN = M ×K∩M (Y × Sk/(k∩m)) → X M ∼= X/AN .

(5.1)

Analogously to Lemma 4.4, SAN is the spinor bundle of an M-equivariant Spinc-
structure on X/AN , and Lemma 4.3 and (3.8) imply that (2.6) holds.
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Let DA be the Spin-Dirac operator on A, acting on sections of the spinor bundle
A × Sa. Let DM/(K∩M) be the Spin-Dirac operator on M/(K ∩ M), acting on sections
of the spinor bundle M ×K∩M Sp∩m. Let DM,K∩M be its extension to an operator
on C∞(M) ⊗ Sp∩m, defined analogously to the operator DM A,K∩M in Sect. 4.2.
Analogously to (4.10), consider the operator

DX M := DM,K∩M ⊗ 1 + 1 ⊗ DY ,M

on the space of K ∩ M-invariant elements of

C∞(M) ⊗ Sp∩m ⊗ 	∞(SY ⊗ Sk/(k∩m) ⊗ W |Y ),

which is the space of smooth sections of SAN ⊗ FAN ⊗ W/AN . Then DX M is a
Spinc-Dirac operator on X M for the Spinc-structure with spinor bundle SAN , twisted
by the vector bundle WAN = FAN ⊗ W/AN .

Lemma 5.2 We have

indM A(DX M A) = indM (DX M ) ⊗ indA(DA).

On the right hand side, we used the exterior Kasparov product

K K (C, C∗
r M) × K K (C, C∗

r A) → K K (C, C∗
r (M A)).

Proof We have

DX M A = DX M ⊗ 1 + 1 ⊗ DA,

where we use graded tensor products. Hence the claim follows by Theorem 5.2 in
[20]. ��
Lemma 5.3

〈�M A
x , indM A(DX M A )〉 = 〈�M

x , indM (DX M )〉〈�A
e , indA(DA)〉.

Proof Applying Lemma 3.1 and with G and P both replaced by M A, so that the
integrals over K and N are not present, we find that �M A

x decomposes as

�M A
x = �M

x ∪ �A
e .

So by Lemma 5.2, the pairing 〈�M A
x , indM A(DX M A )〉 equals

〈�̃M
x , indM (DX M )〉〈�A

e , indA(DA)〉. (5.2)

This follows from compatibility of the cup product on cyclic cohomology with the
external Kasparov product, or from a direct computation involving the special case of
Lemma 3.1 just mentioned. The claim then follows by Lemma 5.1. ��
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Lemma 5.4 We have

〈�A
e , indA DA〉 = 1.

Proof This is a very special case of Theorem 4.6 in [34]. ��
Lemma 5.5 Let DX×R be the Spinc-Dirac operator on X × R for the Spinc-structure
with spinor bundle S×R, twisted by W ×R. Then

〈�P×R

(x,0) , indG×R(DX×R)〉 = 〈�P
x , indG(D)〉.

Proof The operator DX×R equals

DX×R = D ⊗ 1 + 1 ⊗ i
d

dt

on 	∞(E × R) = 	∞(E) ⊗ C∞(R). So by Lemmas 5.3 and 5.4, and an analogue of
Lemma 5.2,

〈�P×R

(x,0) , indG×R(DX×R)〉 = 〈�P
x , indG(D)〉

〈

�R

0 , indR

(

i
d

dt

)〉

= 〈�P
x , indG(D)〉.

��

5.2 Proofs of Theorem 2.1 and Lemma 2.3

Lemma 5.6 The character of Sk/(k∩m) restricted to T ∩ M equals

∏

λ

(eλ/2 − e−λ/2), (5.3)

where λ runs over the T ∩ M-weights of k/(k ∩ m). If P is not a maximal cuspidal
parabolic, then this equals zero.

Proof The first claim follows from Remark 2.2 in [33]. If P is not a maximal cuspidal
parabolic, then T ∩ M is not a maximal torus in K . Hence there is a nonzero subspace
of k on which T ∩ M acts trivially. This means that the weight zero occurs in (5.3),
which is therefore zero. ��
Proof of Theorem 2.1 If X and G/K are even-dimensional, then applying Proposition
4.8 and Lemma 5.3, we see that

〈�P
x , indG(D)〉 = 〈�M A

x , indM A(DX M A )〉 = 〈�A
e , indA(DA)〉〈�M

x , indM (DX M )〉.
(5.4)

Lemma 5.4 implies that the right hand side equals

〈�M
x , indM (DX M )〉. (5.5)
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Because M has a compact Cartan subgroup, Proposition 4.11 in [24] and the fact that
X/AN is a smooth manifold equal to X M imply that (5.5) equals the right hand side
of (2.7) if x lies in a compact subgroup of M , and is zero otherwise. Here we use the
fact that �M

x equals the orbital integral trace τx used in [24]. Two points to note here
are the following.

• The condition in Proposition 4.11 in [24] that x has ‘finiteGaussian orbital integral’
is in fact always satisfied, see Section 4.2 in [9].

• In [24], it was assumed for simplicity that the group acting is connected. The group
M is not connected in general, but it belongs to Harish-Chandra’s class, which is
enough for the results in [24] to hold.

If P is not a maximal cuspidal parabolic, then Lemma 5.6 implies that the bundle
FAN in the second line of (5.1) is zero as a virtual vector bundle. So the virtual vector
bundle WAN is zero, and ch([WAN |supp(χx )](x)) on the right hand side of (2.7) is zero
as well.

By Lemma 5.5, the case where X and G/K are even-dimensional implies the
case where X and G/K are odd-dimensional. If the dimensions of X and G/K have
different parities (i.e. Y is odd-dimensional), then both sides of (2.7) are zero. ��
Proof of Lemma 2.3 Recall the definition of the projection maps qA : X/N → A and
q : X/N → X/AN above Lemma 2.3. The decomposition X/N = X/AN × A
implies that

Â(X/N ) = q∗ Â(X/AN )q∗
A Â(A) = q∗ Â(X/AN );

WN = q∗WAN ;
SN = q∗SAN ⊗ Sa.

The third equality implies that L N
det = q∗Ldet.

Let P be a maximal cuspidal parabolic, and let x ∈ T < K ∩ M . Then x acts
trivially on A, so (X/N )x = (X/AN )x × A. This implies that NN = q∗N. We
conclude that (2.9) equals

∫

(X/N )x
q∗

(

χx
Â((X/AN )x ) ch([WAN |supp(χx )](x))ec1(Ldet |(X/AN )x )

det(1 − xe−RN/2π i )1/2

)

∧ q∗
A(χA da)

=
∫

(X/AN )x
χx

Â((X/AN )x ) ch([WAN |supp(χx )](x))ec1(Ldet |(X/AN )x )

det(1 − xe−RN/2π i )1/2

∫

A
χA da,

which equals the right hand side of (2.7). ��

6 Extensions and special cases

6.1 General elliptic operators

By standard arguments, the index formula (2.7) for twisted Spinc-Dirac operators
implies an index formula for general elliptic operators. We sketch the argument here,
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and refer to [8] for some details. Also compare this with the proof of Theorem 2.5 in
[24].

Let E → X be any Hermitian G-vector bundle, and D a G-equivariant elliptic
differential operator on E . Let �X be the manifold obtained from X by gluing two
copies of the unit ball bundle in T X along the unit sphere bundle. This has a natural
G-invariant almost complex structure. Let p�X : �X → X be the projection map.
There is a Hermitian G-vector bundle VD → �X defined in terms of the principal
symbol of D, such that the Spinc-Dirac operator DVD

�X on �X (for the Spinc-structure
defined by the almost complex structure) twisted by VD satisfies

[D] = p�X∗ [DVD
�X ] ∈ K G

0 (X),

see Theorem 5.0.4 in [8]. Naturality of the analytic assembly map implies that

indG(D) = indG(DVD
�X ),

and Theorem 2.1 is a topological expression for the pairing of the index on the right
hand side with �P

x .

6.2 A higher L2-index theorem

The case of Theorem 2.1 where x = e is a higher version ofWang’s L2-index theorem,
Theorem 6.10 in [38], in the case of linear reductive Lie groups. This is the equality

〈�P
e , indG(D)〉 =

∫

X/AN
χ AN

e Â(X/AN ) ch([WAN |supp(χe)])ec1(Ldet). (6.1)

This implies a higher version of Connes and Moscovici’s L2-index theorem on homo-
geneous spaces, Theorem 5.2 in [13].

Let H < K ∩ M be a closed subgroup. On page 309 of [13], a Chern character

ch : R(H) → H∗(m, H)

is defined, where H∗(m, H) denotes relative Lie algebra cohomology. Furthermore,
an Â-class Â(m, H) ∈ H∗(m, H) is constructed there from the representationm/h of
H . Let V be a finite-dimensional virtual representation of H . Suppose, for simplicity,
that G/H has a G-invariant Spin-structure. (This assumption may be dropped as
described on page 307 of [13].) Let DV

G/H be the Spin-Dirac operator on G/H coupled
to G ×H V → G/H .

Corollary 6.1 We have

〈�P
e , indG(DV

G/H )〉 =
∫

m/h
Â(m, H) ch(V ⊗ Sk/(k∩m)). (6.2)
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Proof It is shown in Corollary 6.14 and Remark 6.15 in [38] that if X = G/H and
D = DV

G/H , the right hand side of (6.1) equals the right hand side of (6.2). ��
If G has a compact Cartan subgroup, then M = G, and Corollary 6.1 reduces

to Theorem 5.2 in [13]. If G does not have a compact Cartan subgroup, then both
sides of the equality in Theorem 5.2 in [13] equal zero by Theorem 6.1 in [13] and
Harish-Chandra’s criterion rank(G) = rank(K ) for existence of discrete series rep-
resenrations; see also (1.2.5) in [6]. Corollary 6.1 is a generalisation of Theorem 5.2
in [13] that gives a nontrivial result even when G does not have a compact Cartan
subgroup; see also Sect. 6.5.

6.3 Dirac induction

We assume that G/K is equivariantly Spin for simplicity. As before, let R(K ) be the
representation ring of K . The Dirac induction map

D-IndG
K : R(K ) → K∗(C∗

r (G))

from the Connes–Kasparov conjecture maps an irreducible representation V of K to
indG(DV

G/K ), where DV
G/K is the Spin-Dirac operator on G/K coupled to G ×K V →

G/K . In this case, Theorem 2.1 implies that

〈�P
x , indG(DV

G/K )〉 = (−1)dim(M/(K∩M))/2χV (x)χSk/(k∩m)
(x)

χSp∩m(x)
, (6.3)

where the letter χ denotes the character of a representation. This can be deduced
directly from Theorem 2.1 as in the proof of Theorem 3.1 in [25], but the easiest was
to deduce this equality is to use the equalities (5.4) and then apply Theorem 3.1 in
[25] directly.

The following fact was deduced from a fixed-point formula as Corollary 4.5 in [25],
in the case where G has a compact Cartan subgroup. We now generalise this argument
to arbitrary linear reductive groups.

Corollary 6.2 Dirac induction for G is injective.

Proof Let y ∈ R(K ), and suppose that D-IndG
K (y) = 0. As in the proof of Corollary

4.5 in [25], it follows from (6.3) that the character of y is zero on T . Because T is a
maximal torus in G, it follows that y = 0. ��

Another consequence of (6.3) is that pairing with �P
x detects all information about

classes in K∗(C∗
r (G)) for maximal P , and no information for non-maximal P .

Corollary 6.3 If P is a maximal cuspidal parabolic subgroup, then pairing with �P
x

for regular x ∈ K ∩ M separates points in K∗(C∗
r (G)). If P is not a maximal cuspidal

parabolic subgroup, then the pairing of �P
x with any class in K∗(C∗

r (G)) is zero.

Proof The first claim follows from (6.3) as in Corollary 4.1 in [25]. Here one uses
surjectivity of Dirac induction. For the second claim, we use the fact that Sk/(k∩m) is

123



An index theorem for higher orbital integrals 199

zero as a virtual representation of K ∩ M , if P is not maximal (see Lemma 5.6). By
surjectivity of Dirac induction, (6.3) implies that the pairing of �P

x with any class in
K∗(C∗

r (G)) = K ∗(C(G)) is zero. ��
The first part of Corollary 6.3 means that Theorem 2.1 is a complete topological
description of indG(D), with no loss of information.

Remark 6.4 We expect that for non-maximal P , the class of �P
x in the cyclic coho-

mology of C(G) is zero. This is a stronger statement than the second part of Corollary
6.3. Proving the vanishing of these cohomology classses will likely involve detailed
information on the structure of C(G) in terms of representation theory, as obtained in
[2,11]. Vanishing of the pairings of these classes with elements of K∗(C∗

r (G)), as in
Corollary 6.3, follows directly from Theorem 2.1, and does not require knowledge of
the precise structure of C(G).

In Definition 5.3 in [37], a generator QV of K∗(C∗
r (G)) is defined independently

of Dirac induction. Theorem 5.4 in [37] implies that

〈�P
x , QV 〉 = (−1)dim(A) χV (x)�K

T (x)

χSp∩m(x)�K∩M
T (x)

, (6.4)

where �K
T and �K∩M

T are Weyl denominators for choices of positive roots for (K , T )

and (K ∩ M, T ), respectively. (Note that T ⊂ M for a maximal parabolic.) The

character of Sk/(k∩m) restricted to T ∩ M equals (5.3), which also equals
�K

T
�K∩M

T
.

Because of this equality and (6.3) and (6.4), we find that for regular x ∈ K ∩ M ,

〈�P
x , indG(DV

G/K )〉 = (−1)dim(M/(K∩M))/2+dim(A)〈�P
x , QV 〉.

If P is a maximal cuspidal parabolic, then the first part of Corollary 6.3 allows us to
deduce that

indG(DV
G/K ) = (−1)dim(M/(K∩M))/2+dim(A)QV ,

i.e. the generators defined by Dirac induction equal the generators QV , up to a sign.

6.4 Non-cuspidal parabolics

If P < G is a parabolic subgroup but not cuspidal, then the pairing on the left
hand side of (2.7) is still defined. And as in (5.4) and (5.5), this pairing equals
〈�M

x , indM (DX M )〉. Because �M
x is now the orbital integral trace on C(M), Theo-

rem 3.2(b) in [25] implies that this pairing is zero. Hence for non-cuspidal P , the left
hand side of (2.7) is zero. As in the proof of Corollary 6.3, this fact and surjectivity
of Dirac induction imply that pairing with �P

x is the zero map on K -theory.
Now suppose that G has discrete series representations. Consider the parabolic

subgroup P = G < G. Then, because �G
x is the orbital integral trace, Proposition
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5.1 in [24] implies that for all regular x ∈ T , the pairing of �G
x with the K -theory

class of a discrete series representation π is the value of the character of π at x , and
in particular nonzero for some x . By the previous paragraph, this implies that G is
a cuspidal parabolic subgroup of itself. (Here we do not need the full surjectivity
of Dirac induction, just the fact that discrete series classes can be realised by Dirac
induction.) And that means that G has a compact Cartan subgroup. Thus we recover
one half of Harish-Chandra’s result that G has a discrete series if and only if it has a
compact Cartan. (This could also have been deduced directly from Theorem 3.2(b) in
[25].)

The authors have not checked in detail if this result by Harish-Chandra was used
in the proofs of any of the results from representation theory that we have applied, or
in the proofs of any of the results we refer to. So we do not claim here that our proof
of necessity of existence of a compact Cartan for the existence of the discrete series is
independent of Harish-Chandra’s. But at least this is a possibly interesting illustration
of the links of our results to representation theory.

6.5 Complex semisimple groups

Now suppose that G is a complex semisimple group. Then the maximal parabolic
subgroup P is also minimal, i.e. a Borel subgroup. It is a classical fact that now
K/T ∼= G/P , as complex manifolds. And M = T , so we have an M-equivariant
diffeomorphism

X/AN = X M = M ×K∩M Y = Y .

So by Proposition 4.8 and Lemmas 5.3 and 5.4,

〈�P
x , indG(D)〉 = indT (DY )(x). (6.5)

The right hand side is the classical T -equivariant index of DY evaluated at x . This is
given by the Atiyah–Segal–Singer fixed point formula [4,5].

As an example, suppose that D = DV
G/H as in (6.2). Then (6.5) implies that (6.2)

becomes

〈�P
e , indG(DV

G/H )〉 = ind(DV
K/H ),

for a Dirac operator DV
K/H on K/H coupled to K ×H V . The right hand side is

nonzero in many cases, for example if H = T , and V is such that indK (DV
K/T ) is an

irreducible representationof K by theBorel–Weil–Bott construction.Then ind(DV
K/H )

is the dimension of this representation, up to a sign. This shows that Corollary 6.1 is
nontrivial, also in the non-equal rank case.

Example 6.5 Suppose that G = SL(2, C), K = SU(2) and H = T = U(1). Let
DG/T be the Dolbeault–Dirac operator on G/T coupled to G ×T Cn , where Cn is the
representation of U(1) in C with weight n ∈ Z≥0. Then for regular x = eiα ∈ T , the
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Borel–Weil theorem and (6.5) imply that

〈�P
x , indG(DG/T )〉 = sin((n + 1)α)

sin(α)
,

the character of the irreducible representation of SU(2) of dimension n + 1, evaluated
at x .

7 Notation

The numbers in brackets indicate on what page each symbol was introduced.

• Groups: G (5), K (5), P (5), M (5), A (5), N (5), Z (6), T (8);
• Manifolds: X (5), Y (14), X M A (21), X M (29);
• Clifford modules and Spin-representations: S (5), SAN (7), SY (14), Sp (14), Sa
(24), Sp∩m (24), Sk/(k∩m) (24), SN (24);

• Vector bundles: W (5), E (5), WAN (8), FAN (8),N (8), Ldet (8), L N
det (9), WN (9),

FN (24);
• Dirac operators: D (5), DG,K (15), DY (15), DX M A (25), DM A/(K∩M) (25),

DM A,K∩M (25), DY ,M (25), DX M (29), DM/(K∩M) (29), DM,K∩M (29);
• Cyclic cocycles: �P

x (6), �̃M
x (28);

• Functions and maps: H (5), C(G) (6), χx (7), χA (9), q (9), qA (9), f N (12), κ N

(21);
• Miscellaneous: l (5), x (6), qt (20), pE (20).
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