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Abstract

Twisting sheets as a strategy to form functional yarns relies on millennia of human experi-

ence in making catguts and fabric wearables, but lacks scientific principles to guide their in-

tricate architectures. Enabled by nondestructive x-ray reconstruction, we show that twisted

hyperelastic sheets under tension follow ordered paths to form multilayered self-scrolled yarns

through recursive folding and twist localization that can be reconfigured and redeployed. Our

tensional twist-folding framework combines elasticity and origami to explain the observed pro-

gression beyond the realm of perturbative Föppl-von Kármán models. By incorporating dom-

inant stretching modes with folding kinematics, we explain the energetics before self-contact,

and show that the resulting structures can be algorithmically generated using Schläfli symbols

for star-shaped polygons. Our elasto-geometric formalism shows that origami can be harnessed
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to understand transformation of stretchable sheets into self-assembled architectures with simple

twist.

Teaser

An elasto-geometric twist-folding formalism is advanced to make intricate yarns guided by

internal imaging and Schläfli origami kinematics.

Introduction

Tensional twist-folding is a method to transform flat sheets into layered structures and yarns

with ordered internal architectures by remote boundary manipulation. Twisting sheets under

tension has been used since antiquity in making catgut bow strings, surgical sutures, musical

chord instruments, sports rackets, sausage and candy wrappers, fabric filters and wearbles such

as turbans and crushed dupattas, and in upcycling of plastic (Fig. 1 A to C). Scrolled yarns with

nested structures optimized for energy harnessing, batteries, and embedding materials (1–4) are

difficult to achieve by compression-induced transformations of elastic sheets (5–7), and tradi-

tional fiber spinning methods (8). When appropriate materials are used, the transformations

can be reversible, and twist folding and scrolling can be used to reconfigure and repurpose flat

sheets, as exemplified by the multifunctional Rajastani turban.

The interplay between topology and large shape transformations have been studied in terms

of inextensible twisted rods and ribbons to understand the conformation of DNA and pro-

teins (9–11), and has contributed to the development of a now well-established theoretical

framework (12, 13). However, shape transformation of sheets which significantly stretch upon

twist have remained undocumented despite their ubiquity in a wide range of applications.

We report the spontaneous formation of twisted multi-layered yarns with ordered internal ar-

chitectures enabled by x-ray 3D scanning. These structures obtained under extreme deformation
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Figure 1: Experiments reveal a highly ordered transformation to yarns when sheets held
under tension are twisted beyond the onset of primary instabilities. Examples of twisted,
folded, and scrolled structures: (A) wrapped candy, (B) multifunctional Rajastani Turban (Photo
credit: Lauren Cohen), (C) scrolled yarn from a polyethylene sheet (see SM 4: Yarn fabrication
from plastic bag). (D-G) Shadowgraphs of a transparent PDMS sheet twisted through angle
θ as shown in the inset (L/W = 1; t/W = 0.0028; ∆L/L = 0.1; θp = 60 ± 5◦). Inset:
Schematic and lab coordinate system. (D) Wrinkles observed just above the onset of primary
instability. (E) Accordion folded sheet with self-contact. (F) A nestled helicoid with folded
layers develop as the sheet is twisted further. (G) Secondary buckling instability occurs with
further twisting resulting in a yarn-like structure. (H) The measured torque shows a repeated
increasing and decreasing sawtooth variation with twist. The amplitude of variation increases
as L/W decreases. (I) A map delineating regions where the primary instability, self-contact,
and secondary instability occur as a function of aspect ratio and twist.
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and self-contact are distinct from those observed in rods and ribbons at moderate twist reported

previously (14, 15), and are not known to occur by a purely compression-driven transforma-

tions of elastic sheets as in crumpling, folding, and capillary wrapping (16–19). Modeling such

large shape transformations and configurations is extremely challenging. Elastic plate models

such as the Föppl-von Kármán (FvK) equation, and its more recent co-variant extension (20),

have solved the initial growth of wrinkling above onset of primary instability (20–26), but fail

to anticipate, let alone explain, the proposed transformation of a flat sheet into scrolled yarns

with functional guests (2). As in other paradigm pattern formation systems such as buoyancy-

driven Rayleigh-Bénard convection which displays intermittent spatio-temporal chaos (27), it

is not a priori obvious what imprints of the primary instabilities persist as a sheet is twisted far

beyond the perturbative regime where previous studies were focused. While origami and in-

extensible sheet models are amenable to address large shape transformations (18, 28–38), their

generalization to significantly stretched sheets is unknown.

Going beyond reporting the discovery of ordered transformations, we develop a framework

which combines the kinematics of stretched sheets, origami, and fold-induced transverse stiff-

ness to explain our observations. Remarkably, we find that the observed accordion folded sheets

have regular polygonal shapes described by Schläfli symbols (39), and show that origami kine-

matics can capture the main features of the structure. We provide an analytical framework to

address the successive transformations experienced by a twisted sheet from the onset of trans-

verse wrinkling via recursive folding and scrolling. Our framework can serve as a guide for

fabrication of yarns with precise control of crosssectional architecture. When made with hyper-

elastic materials, which recover their unstressed states, they can be repeatedly reconfigured and

redeployed with our twist-folding method.
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Results

Ordered shape-transformation and nonmonotonic torque with twist

Examples of a polydimethylsiloxane (PDMS) sheet with increasing twist are shown in Fig. 1D-

G and SM: Movie S1. A system schematic and the Cartesian coordinates system (x̄, ȳ, z̄) are

shown in Fig. 1D, inset. The system consists of a sheet of length L, width W , and thickness t,

twisted by an angle θ while being held at opposite ends and stretched axially by ∆L. Transverse

wrinkles can be observed just above the onset of primary instability (Fig. 1D), which grow in

amplitude and collapse into an accordion folded spiral structure with self-contact (Fig. 1E). As

θ is increased further, a nestled helical structure forms at the waist (Fig. 1F), before a secondary

instability occurs which leads to recursive folding and a scrolled yarn (Fig. 1G). Each of the

major shape transformations causes the rate of change of applied torque M to change sign,

leading to a sawtooth variation with twist (Fig. 1H). The primary instability and parameter

space over which these transformations occur varies with L/W (Fig. 1I). The observed angle

at which the primary instability occurs in Fig. 1I is consistent with the clamp-dominated (L ∼

W ) and the ribbon (L � W ) regimes, which scales as θp ∼ (L/W )ζ , with ζ = 1 and 2,

respectively, and wavelength λp ∼
√
Lt(∆L/L)−1/4 reported previously (20,25). The ordered

sheet transformations and sawtooth torque variations reported in Fig. 1E-I as self-contact occurs

are documented here for the first time, and are the focus of the following analysis.

Curvature localization and accordion folds

We investigate the morphologies of the sheets beyond incipient wrinkling until self-contact,

with noninvasive 3D x-ray tomography. In Fig. 2A, we reconstruct the central 80% of a twisted

poly-vinyl siloxane (PVS) sheet. We calculate its mean curvature H (see SM 6: Curvature

calculation) and note high-curvature regions along wrinkle antinodes which develop above the

onset of transverse instability. To recognize the spatial distribution of the curvature as the
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Figure 2: Accordion folding through curvature localization. (A) The deformation of a PVS
sheet twisted by θ = 120◦ obtained with x-ray tomography and rendered with mean curvature
H given by color bar on right (L/W = 3; t/W = 0.009; θp = 75± 5◦). The central 80% of the
sheet away from the clamps is shown. (B) The spatial distribution H mapped to a rectangular
domain shows symmetry breaking and localization of the sheet curvature with twist. (C) Bend-
ing content wb shows the localization of energy with creasing across the crosssection indicated
by the solid white line in (A). (D) The measured number of folds n is in good agreement with
the prediction n = 2W/λp.

sheet wraps around itself, we map H to a rectangular domain with axes (s̄, x̄), the curvilinear

and vertical coordinates, respectively (Fig. 2B, and SM: Figs. S2 and S5A). The wrinkles are

observed to be initially aligned with the applied tension when θ = 90◦ consistent with linear

perturbation analysis (20). With increasing twist, H is increasingly localized along folds with

essentially flat regions in between, and the folds rotate away from the tensional axis till they

meet near the clamped edges.

We calculate the bending energy density wb = B/2 (H2 + 2(1 − ν)K), where B =

Y t3/[12(1 − ν2)] is the bending stiffness, ν the Poisson ratio, K the Gaussian curvature, and

Y the Young’s modulus. Plotting wb across the sheet at mid-distance between the clamps, we

observe that sharp peaks grow with θ showing that the bending energy increasingly localizes

along the folds (Fig. 2C). Since the number of peaks is unchanged as twist is increased, we

postulate that the number of folds n are set by twice the ratio of W and λp. Accordingly, we

plot the observed n versus the predicted n = 2W/λp in Fig. 2D, and observe good agreement,
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Figure 3: Elasto-geometric fold model, and comparison with measured torque and energy.
(A) Schematics illustrating the elasto-geometric model. (B) The oscillation of measured torque
M (circles) versus θ is quantitatively captured by our elasto-geometric model (solid line), unlike
the prediction from the FvK equations. (C) Elastic energy Eel obtained experimentally (circles)
and from folded model and unbuckled helicoid scaled by E0 at zero twist. Elastic energy for
χ = 1 (helicoid case) is significantly higher for θ > 180◦ (yellow dashed line). (D) The scaled
bending energy Eb/E0 (purple triangles) obtained by integrating the measured bending energy
density is at least an order of magnitude lower than Eel/E0. Solid and dashed lines are guide to
the eye.

showing the imprint of the primary instability far into the shape transformation.

Elasto-geometric fold model

Based on these observations, we develop a model to compute the torsional response and stored

elastic energy of the sheet as it folds until reaching self-contact. We assume that the sheet

folding is predominantly given by elongation along straight lines, as represented by the red and

blue lines shown in Fig. 3A connecting the clamped edges and the central crosssection. The

elastic energy Eel of the sheets is calculated by integration of the strain energy density Y/2ε2

where ε = (L−L)/L is the strain and L the strip length (see also SM 7: Pre-self-contact elastic
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energy and torque analytics):

Eel = Y tL
∫ (
L(y)− L

L

)2

dy. (1)

The evolution of the strip length with twist may seem simple, but in fact it encodes a complex

folding kinematics. Here, we assume that these kinematics can be captured by the compaction

parameter χ = D/W , where D is the diameter of a circle enclosing the central sheet crosssec-

tion (Fig. 3A and SM: Fig. S6). Then,

L = (L+ ∆L)

√
1 + F2

(
y

W

)2

, (2)

where,

F2 =
4W 2

(L+ ∆L)2

(
1 + χ2 − 2χ cos θ/2

)
, (3)

which is related to the twist induced strain. Using Eqs. [2] and [3], Eel is calculated by numeri-

cally integrating Eq. [1], and an analytical expression is obtained as a polynomial of F accurate

within 10% error for L > 2W (see Eq. S16 in SM: 7. Pre-self-contact elastic energy and torque

analytics).

Recalling that M = dEel/dθ, we can then obtain an analytical expression for the torque:

M = M0

[
2χW sin θ/2

L+ ∆L

] (
1

12

∆L

L
+

1

160
F2
)
, (4)

where M0 = YW 2t. Fig. 3B shows a comparison of the measured M(θ) with that calculated

using Eq. [4]. The elasto-geometric fold model is seen to capture the nonmonotonic torsional

response quantitatively until the onset of self-contact at θ ≈ 180◦. We show that the nonmono-

tonicity originates from finite rotation effects which are essentially handled in Eq. [4] by a sine

function. Furthermore, the occurrence of torque peak at θ ≈ 105◦ is also captured. Because the

peak occurs at θ > 90◦, the quantity χ encodes the fold-induced resistance to transverse dis-

placement according to our elasto-geometric fold model. If this bending-induced stiffness was
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absent, the peak would occur at θ = 90◦ (see SM: Fig. S6B). It is noteworthy that M calculated

using the perturbative Föppl-von Kármán equations (14, 40) predicts an ever increasing torque

with twist which is clearly not the case in our data (see SM 7: Pre-self-contact elastic energy

and torque analytics, C and D).

We calculate the elastic energy obtained by numerical integration of Eq. [1] as a function

of θ, and compare it with the measured values in Fig. 3C after normalizing with the zero twist

stretching energy E0. We find very good agreement showing that the bending energy can be

neglected (Fig. 3D and SM 8: Comparison Stretching and Bending Energy up to Half-turn

Twist). It is noteworthy that, while the bending energy contribution to the elastic energy is small

(note the difference in vertical scale in Fig. 3C and Fig. 3D), folding is necessary to achieve a

net energy reduction. To demonstrate this, we have plotted the helicoidal elastic energy which

corresponds to χ = 1 in Fig. 3C (dashed line). The energy is observed to grow well above the

elastic energy of a folded sheet compared to when χ < 1 as in the experiments, showing that

folding clearly results in a lower growth in the elastic energy.

Self-folding and Schläfli origami

We now complement our elasto-geometric analysis with origami construction to explain the

folded structure which develops at θ = 180◦. Consider an inextensible sheet (Fig. 4A) which

can be folded up or down along the dashed lines, which results in a polygonal spiral origami

(Fig. 4B). The apex angle of the isosceles triangular folds is α. An image of an elastic sheet with

the same aspect ratio is shown in Fig. 4C, where the thickness of the sheet has been chosen such

that it results in the same number of folds as in the origami. We plot the segment angle β from

the ȳ-axis made by initial horizontal lines in Fig. 4D. Quantitative agreement is found between

the experimental value of β away from the clamps with the expected value (red line) assuming

solid body rotation of the triangles, where each fold acts as a hinge. To quantify the role of the

9



β

α

{17,8}

A B C

D E

Figure 4: Half-twisted sheets fold like an origami away from the clamp. (A) Flat sheet
with triangular up and down fold lines. Horizontal black solid line is drawn to indicate the
relative displacement. (B) Corresponding origami with 6 flat folds. (C) Elastic sheet twisted by
θ = 180◦ shows similar fold structure away from the clamped edges. (D) The segment angle β
as a function of distance across sheet width for elastic sheet and origami. Solid red line indicates
the expected segment slope value β = 31.8◦ for an origami with the same tip angle α. (E) The
angle α of stretched triangle as a function of applied strain ∆L/L. A line of slope -1 (dashed
line) is shown as a guide to the eye.
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Figure 5: Partial Schläfli origami explains layered architectures at half-twist. (A) Geomet-
rical forms obtained by increasing the Schläfli symbols and number of facets. (B) Comparison
of the experimental radiogram and Schläfli fold origami. Good correspondence is observed in
all four cases. (C) The angle Ψi of the ith fold as a function of the calculated angle i α using
geometric model is in excellent agreement. (D) Comparison of the apex angle α as a function
calculated α using various sheets and loading. (E) The apex angle as a function of triangle
number is essentially constant.

strain on the origami pattern, we measure α from shadowgraph images for various strains and

find that it decreases with ∆L/L (Fig. 4E). This variation follows from the decrease of λp and

increase in sheet length with strain, if one assumes α = λp/(L+ ∆L). Thus, good agreement

can be observed between the origami shape and the twisted sheet away from the clamped edges.

Further quantitative agreement observed with physical cuts mid-way between the clamps can

be found in SM 9: Transect Cut Comparisons.

Origami corresponding to spiral accordion folded elastic sheets can be algorithmically gen-

erated using α as a parameter. Consider a right angle triangle with height L and angle α/2
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(Fig. 5A). (This triangle is also the same as that at the far left side of the sheet in Fig. 4A.) To

help understand the geometrical transformation leading to a flat folded origami, we preserve

the color when reflecting off a right triangle with respect to its height, and change color when

reflecting the triangle with respect to its hypotenuse identified as a fold. A flat-fold origami is

thus obtained by applying alternately these two transformations until reaching a given number

of folds n. For specific values of α, these transformations result in a regular flat-folded origami

where the triangle bases are the edges of a regular polygon with p vertices (Fig. 5A). This poly-

gon is also the convex envelope of a star-shaped polygon composed by the hypotenuses (dashed

black line) connecting vertices separated by q consecutive triangle bases (solid orange line).

These origami can be identified by the so-called Schläfli symbols p, q (39), and thus we call

them Schläfli origami. By geometric construction, we have p = 180/α and q = (p − 1)/2.

Varying the Schläfli symbols (or equivalently reducing the tip angle and increasing the triangle

numbers), one can obtain triangle, pentagon, heptagon, and nonagon shaped envelopes. The

thickness of the overlapped regions at the center is given by t′ = (n + 1)t and decreases in

integer multiples of t toward the edges.

In Fig. 5B, we show in the first column flat-folded Schläfli origami of higher symmetry, and

in the second column their incomplete counterparts obtained by restricting the number of folds

to n = 2 W/λp, keeping p the same. The examples in the 1st, 3rd, and 4th row are symmetric,

and the one in the 2nd row is asymmetric, and thus a Schläfli origami with either symmetry can

be generated according to our algorithm by starting with a right angle triangle reflecting about

the hypotenuse and height equal to the calculated number of folds. Partial Schläfli origami have

been denoted with color intensity which is proportional to the number of overlapping domains

at the particular location. They can be compared with radiograms of spiral folded elastic sheets

which have the same L/W and n (Fig. 5B, third column). The color map in the radiogram is

linearly proportional to absorption encountered along the linear path of the x-rays, and thus can
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be observed to be consistent with those generated by origami.

The correspondence is further quantified by measuring, from the radiograms, the fold angle

ψ and α, after a 180◦ twist (Fig. 5C-E). α does not vary significantly between the triangles of a

given twisted sheet, in accordance with the predictions of the Schläfli origami (Fig. 5E). We find

an excellent agreement without any fit parameters for all three measures. Thus, the orientation

of the folds is given by our model, which neglects the elastic stretching of the sheet, and reveals

the strong connection between twisted sheets, classical Greek geometry and origami.

Secondary instabilities and yarn formation

We now examine the transformation of the folded sheets into yarns by plotting transects at

mid-distance between the clamps for θ = 180◦, 360◦, and 720◦ in Fig. 6A. The same left and

right edges of the sheet are denoted with red and blue markers, respectively. The central helical

yarn section undergoes strong compaction by θ = 360◦, and then folds recursively when a

secondary instability occurs at θs ≈ 400◦. Encapsulated regions are highlighted by the magenta

shade. The χ normalized by its minimum value χm is plotted as a function of L/W in Fig. 6B.

We observe that the ratio decreases from 2 to 1 after the secondary instability (denoted by the

vertical line), showing a recursive folding of the sheet.

Then, we represent the features by which the multi-layer yarns form by idealized straight

crossectional segments connected by curved joints making right (R) or left (L) turns going from

one edge of the sheet to the other by the black arrow in Fig. 6A. We take the cross-section shown

in Fig. 6A as an example. With this convention, the configuration of the cross-section before

and after secondary instability is encoded as LRLR (accordion) and LLRRLLRRL (folded ac-

cordion), respectively. The schematics highlights a period doubling by recursive folding in a

way which is qualitatively different from twist-less compressed sheets where the sequence of

turns LRLR transforms in LRLRLRLR after period doubling (41, 42).
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Figure 6: Secondary instability and yarn formation (A) Crosssections at x/L = 0.5 for twist
angle 180, 360, and 720◦ highlighting edges (red and blue disks) and encapsulated regions
(magenta shades). Corresponding schematics illustrating accordion folding and period doubling
at the secondary instability. (B) Compaction parameter shows a sharp decrease at the secondary
instability. (C) Fluoroscopy images corresponding to θ = 180◦, 360◦, and 720◦ with superposed
edges winding around each other. (D) The orientation angle of the edge θx versus x̄/L. Inset
: θx is the angle of the segment joining the two ends of the crosssection. (E) Schematics
illustrating the geometric yarn model. (F) Measured angle subtended by the fan versus the
prediction φ = (W −D)/(L− LY ). (G) The fraction of the yarn length LY /L versus Θ.

Fig. 6C show the radiograms at the corresponding θ where the tracked edges of the sheet

are marked in red and blue. While the folding and helical wrapping yield complex internal

structures, the stretched edges are found to wind around each other, similar to the twisting of

two filaments into a rope (43). The crossings between the two edges in the projected plane occur

in the yarn-like compact region which starts to develop along the longitudinal axis. To quantify

the yarn region, we use the orientation of the segment joining the end-points in the y − z plane

to obtain a cross-section orientation angle θx (Fig. 6D, inset and SM: Fig. S10). We plot θx in

Fig. 6D after the sheet is twisted twice, and find that the twist is localized in a central section

LY , where the local twisting rate θx/LY is approximately 4 times greater than θ/L. We use

these observations to introduce a geometric model of yarn formation from the accordion folded

sheet.
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Geometric yarn model

In order to model the growth of the yarns, we assume that the sheet can be divided into three

sections with a yarn-like structure of length LY and two fan-like structures near the clamped

edges characterized by fan angle φ, as shown schematically in Fig. 6E. This simplification

enables us to retain the fundamental role of the twisted sheet-edge in the elasto-geometric fold

model, while circumventing the difficulty in calculating strains.

We measure the evolution of LY and φ with twist over various L/W , and find that LY

and φ increase with θ (see SM: Fig. S11B and C). The LY increases quasi-linearly with twist

rate depending on the aspect ratio with the onset of yarn formation observed to begin after the

secondary instability occurs at θ = θs. Using trigonometry, we can express the fan angle as a

function of the sheet aspect ratio W/L, scaled yarn width D/W , and scaled yarn length LY /L,

yielding:

tanφ =
(
W

L

)
1−D/W
1− LY /L

. (5)

Before yarn formation LY = 0, D = 0, and we note from Eq. [5] that tanφ(θs) = W/L, where

φ(θs) can be interpreted as the angle that the diagonal makes with the longitudinal axis. This

form predicts an overall decrease of φ with the sheet aspect ratio L/W . We compare φ obtained

using various sheets with Eq. [5] in Fig. 6F, and find very good agreement.

Then, the evolution of the yarn length can be understood from the helical wrapping of the

fan edges around a cylindrical core of diameter D that encompasses the crosssection of the

compacted material in the yarn region. The fan edges are assumed to be in direct contact with

the core with an angle φ (see SM 11: Yarn shape analysis and Fig. S11A), thus forming a helix

with a local twist rate tanφ/(D/2) where φ remains unchanged upon twist. We further impose

the yarn growth rate with twist, dLY /dθ to be set by the local twist rate, yielding dLY /dθ =

tanφ/(D/2). Using Eq. [5], we find that LY is modeled by a linear first-order ODE whose

15



solution is:
LY
L

= 1− exp(−Θ/2), (6)

where Θ = χ (θ−θs)/(1−χ). Considering that there are no adjustable parameters, this growth

model is in very good agreement with experimental data shown in Fig. 6G.

Discussion

Thus, we explain the remarkably ordered transformation of flat sheets to scrolled multilayered

yarns observed in our experimental study by introducing a series of simplified elasto-geometric

models. Since perturbative analysis of the FvK equations reported previously (14,20) cannot be

applied to the large deformation regime, we develop a framework combining observed geome-

try, elasticity, and kinematics to explain the three stages of the transformation.

Beyond the primary transverse wrinkling instability, the Elasto-geometric fold model (in-

troduced in Results Section C) fully explains the torque required to twist the sheet and the

observed accordion folding until the sheet comes in self-contact. In this model, the elastic en-

ergy is parametrized by decomposing the sheet into longitudinal filaments of length L, and the

compaction parameter χ quantifying the folding midway between the clamped edges. Because

these two quantities are independent of the choice of the frame of reference, we can compute

the elastic energy even when the sheet presents finite rotation, making our model suitable to

address finite shape transformation. This is a fundamental difference from FvK models used to

explain initial wrinkling instability with twist (20). We find that finite rotation is responsible for

the torque saw-tooth profile shown in Fig. 3B, while the precise peak location is modulated by

the fold-induced transverse stiffness of the sheet captured by Eq. [4]. In our model, the bending

energy stored along the folds can be neglected, an assumption validated experimentally by the

excellent agreement between the calculated and measured elastic energy in Fig. 3C.

To explain the flat multilayered structure observed after a 180◦ twist, we then introduce a

16



Schläfli origami model in Results Section D, where we consider the inextensible sheet limit

(represented as in a sheet of paper) in alternating mountains and valley creases. The resulting

folds form a sequence of vertically oriented triangles with complementary orientations. Thus,

the observed transformed sheet shape is parametrized by the number of creases and the angle

of the triangle apex in our model. In the flat folded state, we show that the origami is twisted

by a half-turn forming aregular star-shaped polygons characterized by Schläfli symbols. These

flat folded Schläfli origami accurately predict the observed folded structure when the Schläfli

symbols and the vertices number are set using sheet L, W , and λp. Thus, we find the imprint

of the primary wrinkling instability persists far beyond onset. Deviation of the shape from our

prediction is observed only near the two clamps where significant stretching is needed to satisfy

the clamped boundary conditions. Nonetheless, it is remarkable that the kinematics obtained

by an inextensible origami model is preserved when significant tension is applied as in the

elastic sheets used in our experiments. The key role of sheet stretchability and applied tension

in selecting the number of folds, and in organizing the folding into tightly scrolled yarns is thus

uncovered by our analysis.

Then, we develop a geometric yarn model in Results Section F to explain the evolution of

the folded sheet after a secondary instability. Based on x-ray tomography analysis, we postulate

that the structure can be considered as composed of a highly twisted yarn region at the center and

weakly twisted fan-like regions connected to the two clamps. Our model is based on simplified

kinematics where the edges are straight and co-planar in the fan region, but form two helices

winding around each other and a compact cylindrical core idealizing the multi-layered yarn.

Our model explains the decrease in size of two fan-like regions upon twist and the linear growth

of the yarn length initially, with an exponential slow-down as the yarn-ends approach the clamps

given by Eq. [6]. Thus, we uncover with experiments and complementary framework, the main

stages of the transformation of a flat sheet to multilayered yarns.
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Finally, it is noteworthy that the PDMS and PVS sheets in our study were used repeatedly

because of their hyperelastic nature. This allowed the sheets to be unfolded and reconfigured

multiple times during the course of the trials, recording their shapes and torques under different

loading conditions. Thus, we demonstrate that our tensional twist-folding strategy can be used

to create redeployable functional structures from simple elements with the appropriate choice

of materials, an important goal for advanced manufacturing with soft materials (1, 2, 7).

Materials and Methods

The material properties of the sheets used in the study can be found in the Supplementary

Materials (SM) 1: Materials. The shape measurement methods are discussed in SM 2: Optical

Imaging, and SM 3: Fluoroscopy and Computed Tomography, respectively.

The data in the analysis corresponding to the measured sheets, twits, and scans can be found

in the main document and in Ref. (44)
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Supplementary Text

1. Materials
The sheet materials used to study twist induced transformations and their properties are listed
in Table 1. The PDMS and PVS sheets are hyperelastic, undergoing fully reversible transforma-
tions even when stretched by 50% of their physical dimensions. These sheets do not plastically
deform and return to their initial flat unstressed state after being twisted and untwisted repeat-
edly as shown in Fig. S1. The latex sheets show aging effects and were used to perform limited
measurements to extend the range of parameters investigated, and examine the robustness of the
phenomena. The stress-strain relationship for these materials are similar for the purposes of our
study and was shown to be consistent with the Mooney-Rivlin hyperlastic model in previous
published reports (44, 26).

2. Optical Imaging
The sheets were imaged using a digital color PixeLINK PL-D725CU-T camera and illuminated
using white light generated with a uniform LED panel. The sheet and the twisting apparatus
were placed in between the light source and the camera. Regions with greater thickness absorb
and scatter more light, and thus appear darker. In the case of the transparent sheets, refraction
of light near the high curvature regions and absorption of light cause the corresponding regions
to appear dark. This enables us to locate folds by identifying the change of light intensity across
a fold in an image using standard image processing.

3. Fluoroscopy and Computed Tomography
A Varian BIR 150/130 Desktop Computed Tomography system is used to noninvasively obtain
the x-ray images and scans of the deformed sheets. The three dimensional reconstructed volume
arrays of the material density were obtained using 720 radiograms, each consisting of 948×688
pixel 16-bit images, in 0.5 degree rotational increments about a central vertical axis. The 3D
coordinates of the sheet were then located in each horizontal crosssection to within 100µm
depending on the volume scanned.

4. Yarn Fabrication from Plastic Bag
We used a common plastic bag made of High Density PolyEthylene with a 10µm thickness. A
square of 10 cm wide and 30 cm long is clamped at both ends and stretched by hanging a weight
of 4 kg at the bottom rotating clamps resulting in a strain ∆L/L = 2%. The sheet is then twisted
by 5 turns (θ = 1800◦) and held in place while hot air is blown for approximately 2 minutes.
The applied temperature is held in the range 80-140◦C which around the melting temperature of
the material. When the plastic approaches its melting temperature, it deforms plastically while
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still offering mechanical resistance. This deformation keeps the fabricated yarn structure intact
even after the applied twist and heat are removed.

5. Coordinate Systems
We introduce a Cartesian coordinate system (x̄, ȳ, z̄) attached to the laboratory frame of refer-
ence. The material points of the sheet are parametrized by their Cartesian coordinates (x, y)
in the load free configuration, projected on the mid-plane (z = 0) (Fig. S2). After transfor-
mation, the coordinates of the material points are denoted by (x′(x, y), y′(x, y), z′(x, y)). This
parametrization is used to derive elastic quantities (strain, elastic energy, torque, etc).

Then, we introduce the parametrization (x̄, yc(x̄, s̄), zc(x̄, s̄)) for the shape of the sheet
which is better adapted for tomographic cuts. The coordinates of the crosssection at x̄ are
denoted by (yc(x̄, s̄), zc(x̄, s̄)), where s̄ is the curvilinear coordinates. This parametrization is
used for the calculation of the mean and Gaussian curvatures. Note that while the components of
curvature tensor depend on the choice of the parametrization, the mean and Gaussian curvatures
do not.

6. Curvature Calculation
The geometrical analysis of the sheets are investigated by further processing of the crosssec-
tion data obtained with x-ray tomography. We use the morphological operations on binary
images available in the Matlab Image Processing Toolbox. The image of a crosssection is
first thresholded to obtain a binary image composed of 0s and 1s, and, then, processed by a
skeletonized morphological operation using the Matlab bwmorph function. After cleaning up
spurious branches, isolated regions and holes, this yields an image with a black background and
a 1px thick continuous white line. We construct a list of points Mn of the line with a search
procedure. The search procedure gives a list that needs to be ordered to reflect the connectivity
of a pixel and its neighbor as illustrated in Fig. S4. The information of the connectivity is nec-
essary to compute quantities such as curvatures which are obtained by a spatial differentiation
of the neighboring points.

The permutation of the indices to have all points Mn ordered according to their connectivity
is obtained via the symmetric reverse Cuthill-McKee ordering applied on the adjacent matrix
Adj. The adjacent matrix is a sparse matrix where Adj(n,m) = Adj(m,n) = 1 if Mn and
Mm are distinct connected points (i.e. n 6= m), else Adj(n,m) = 0. If the points are or-
dered according to their connectivity, the adjacent matrix is tridiagonal. The symmetric reverse
Cuthill-McKee ordering provides the permutation triadiagonalizing the adjacent matrix and,
thus, provides the permutation to have the points ordered according to their connectivity. Once
the points are ordered, we can use finite difference to calculate the quantities such as curvilinear
coordinates, gradient, and curvatures.

The surface is parametrized by (x̄n, y
c
n(x̄n, s̄n), zcn(x̄n, s̄n)), where ycn and zcn are the coor-

dinates of a point Mn of a crosssection at x̄n, and s̄n is the curvilinear coordinate defined for
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n > 1 as:

s̄n =
n−1∑
i=1

√
(yci+1 − yci )

2 + (zci+1 − zci )
2 ,

and s̄1 = 0 (see Fig. S5A). Next, we set an observation window where a small region of the sheet
is analyzed. Typically, the portion of the sheet is 10 by 10 pixels, which is a good compromise
to have sufficient averaging of the noise while still keeping the spatial variation of curvature.

To calculate the local curvature tensor, it is best to orient the portion of the surface such that
the normal is aligned with the z-axis. In this new frame of reference, the shape of the surface
can be fitted by a quadratic polynomial of the type:

1

2
κxx x̄

2 +
1

2
κss s̄

2 + κxs x̄s̄,

where κij are the components of the curvature tensor.
The local normal n̂ is calculated from the moment of inertia I of the surface inside the

observation window. Because a surface has a strong geometric anisotropy (the thickness is
much smaller than the lateral dimensions), the eigenvector of I with the highest eigenvalue
gives the direction of the normal.

The Gaussian and mean curvatures defined as the determinant and half the trace of the
curvature tensor are calculated:

H =
1

2
Tr(κ) =

1

2
(κxx + κss) ,

and
K = det(κ) = κxx κss − κ2

xs.

We can check for the accuracy of the measurement of H using the data corresponding to
applied twist θ = 120◦. Fig. S5B shows the crosssection of a PVS sheet with L/W = 3. In
this case, the folds are essentially cylindrical, thus the curvature along the fold is much smaller
than in the transverse direction. Hence, the mean curvature can be calculated from the radius of
the cylinder using ImageJ. The radius of curvature rc ≈ 2.35 mm, thus κss ≈ 0.43 mm−1, and
H ≈ 0.21 mm−1. This is indeed what is obtained looking at the mean curvature map shown in
Fig. 2A in the main text.

7. Pre-self-contact elastic energy and torque analytics
Introduction

We develop an elasto-geometric model for the tensional twist-folding of elastic sheets. The
model is tractable enough to yield analytical predictions up to self-contact. When self-contacts
occur the kinematics becomes complicated but a simplified version of the model, i.e. the Geo-
metric yarn model, can be developed allowing to obtain the evolution of the morphology of the
yarns.
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In the elasto-geometric model, we neglected the fine morphology of folds and retain only the
backbone shape of the deformed sheet. As shown in the main text, the bending energy is much
smaller than the stretching energy, at least up to self-contact (see Fig. 3a and b, main document).
To obtain the dominant term in the elastic energy, we neglect the bending contribution i.e.
B/(Y tW 2)→ 0.

Because we focus on deriving analytical solutions for the energy and the torque, we restrict
ourselves to configurations before self-contact. We consider an elastic sheet of length L, width
W , and thickness t stretched along its length by a distance ∆L with Young’s modulus Y and
Poisson ratio ν, as shown in Fig. S6A. Before twist is applied, the initial stretching results
in a strain ε0 = ∆L/L, and length between clamps L′ = (1 + ε0)L. To avoid cumbersome
expressions, we take ν = 0. With this choice, there is no loss of generality as our findings
do not originate from a Poisson ratio effect. As a consequence, the width W and thickness t
remain unchanged after loading. The othonormal basis of the Cartesian coordinate system is
(x̂, ŷ, ẑ), where x̂ is oriented along the axis of rotation, ŷ is in the plane of the sheet, and ẑ is
oriented along the normal. The coordinate system is centered on the sheet. The material points
are parametrized by −L/2 ≤ x ≤ L/2 and −W/2 ≤ y ≤ W/2.

The top clamp initially at x = L/2 is translated by ∆L/2x̂ and rotated by an angle θ/2, and
the bottom one initially at x = −L/2 is translated by −∆L/2x̂ and counter-rotated by −θ/2.
Then, the top clamp is parametrized by:

~rc =
L′

2
x̂+ y cos

(
θ

2

)
ŷ + y sin

(
θ

2

)
ẑ, (S1)

and a parametrization of the bottom clamp is obtained by a 180◦ rotation with respect to the y
axis.

Kinematics

The backbone shape of the deformed sheet (i.e. averaging out the wrinkling and folding
structure) is modeled by two ruled surfaces S+ and S−, connected at the mid-crosssection
(x = 0) along the y axis. As illustrated in Fig. S6A, the surface S+ is generated by sweep-
ing transversely a line connecting the top clamp and an effective crosssection at x = 0 and is
parametrized by:

~r(x, y) =
x

L/2
~rc(y) +

(
1− x

L/2

)
~rχ(y), (S2)

where ~rχ(y) parametrizes the mid crosssection (at x = 0). The parametrization for S− can
simply be obtained by a 180◦ rotation with respect to the y axis. In the remaining part of this
section, we only consider the top half of the surface for our reasoning.

Above the onset of the primary instability, the crosssection at x = 0 starts wrinkling and
folding. The kinematics is complex and composed of a contraction along ŷ and oscillations
in the xz plane, as evidenced in Fig. 3 in the main text. These oscillations are of a much
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lower extent than the contraction. For the sake of clarity and conciseness, we will neglect these
oscillations. We check with numerical simulation that no significant effect on the elastic energy
is observed when these oscillations are incorporated in ~rχ. Then, the effective crosssection at
x = 0 is parametrized by:

~rχ = χ(θ)y ŷ. (S3)

For a helicoid, the width of the sheet remains constant upon twist, then χ = 1. For a sheet
without bending stiffness, the edges of the sheet remain straight. This constraint imposes that
χ = cos θ/2. Indeed, by symmetry, the coordinates of the crosssection are obtained as the
mean between the top and bottom clamp coordinate, yielding ~rχ = y cos θ/2ŷ. Fig. S6B shows
that the measured χ ' 1 when the sheet is helicoidal, before the onset of primary instability,
and then decreases by an order of magnitude to a plateau as θ → 180◦. We can readily check
that the decrease is smaller than cos θ/2 which is explained by the fold-induced resistance to
compaction. Measurements indicate that, in absolute value, the rate of change of the compaction
parameter is larger near onset of primary instability than near self-contact. In the experiment,
the compaction is well described by a decreasing asymmetric sigmoid function:

χ =
χsc
2

+
(

1− χsc
2

)
Γ [b (θ − θp), a] (S4)

where Γ(u, a) is the normalized lower incomplete gamma function. This asymmetric sigmoid
gives an accurate fit of the data using 4 parameters. θp is the threshold from primary instability,
χsc the compaction parameter at self-contact. b sets the decrease rate in twist from 1 to χsc and
a sets asymmetry rate of change near θp and θsc (twist angle at self-contact). θp and χsc are
measured. We found a = 4.5, b = 4 adjusting the parameters by the eyes.

Using Eqs.[ S1], [S2], and [S3], the parametrization for S+ reads:

~r(x, y) = (1 + ε0)x x̂+

[
χ+

x

L/2

(
cos

(
θ

2

)
− χ

)]
y ŷ +

x

L/2
y sin

(
θ

2

)
ẑ. (S5)

In the limit where θ is small, we have to first order in θ:

~r(x, y) ≈ (1 + ε0)x x̂+

[
χ+ (1− χ)

x

L/2

]
y ŷ +

θ

L
xy ẑ. (S6)

This expression can be compared with the parametrization of a stretched helicoid:

~rhel(x, y) = (1 + ε0)x x̂+ y cos

(
θx

L

)
ŷ + y sin

(
θx

L

)
ẑ. (S7)

Taking χ = 1, corresponding to a helicoid in Eq. [S6], we have:

~r(x, y) ≈ ~rhel(x, y) ≈ (1 + ε0)x x̂+ y ŷ +
θ

L
xy ẑ. (S8)
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Thus, the kinematics introduced in Eq. [S2] coincides with that of a stretched helicoid to first
order in θ. Note that Eq. [S8] can be found as the solution of the Föppl-von Kármán (FvK)
equations where the deflection is given by ~r · ẑ = θ

L
xy. (If the Poisson effect is included, one

would have (1 − νε0)yŷ instead of yŷ. We have simplified the expressions by neglecting the
Poisson effect by taking ν = 0.)

Based on the parametrization given in Eq. [S2], the sheet is divided into a series of indepen-
dent longitudinal strips of width dy which connect the top and bottom clamp with a discontin-
uous change in slope at x = 0. (In fact, each strip can be thought of as two straight segments
connected at x = 0 because we have assumed B → 0.) An individual segment is characterized
by the vector ~u = ~rc − ~rχ connected at its two ends and given by:

~u =
L′

2
x̂+ y

(
cos

(
θ

2

)
− χ(θ)

)
ŷ + y sin

(
θ

2

)
ẑ. (S9)

Further, the length L of the strip is given by L = 2||~u|| and reads:

L = L′
√

1 + F2

(
y

W

)2

, (S10)

where, we introduce:

F(θ;χ, ε0,W/L) =
2W

(1 + ε0)L

√
1 + χ2 − 2χ cos

θ

2
. (S11)

The evolution of F with θ is shown in Fig. S6C using the same compaction parameter as in B
and ε0 = 0.16. In the limit where F � 1, we have:

L ≈ L′
[
1 +

1

2
F2

(
y

W

)2
]
. (S12)

Further, we have that F ≈ η ≡ θW/L′ for a slightly twisted sheet (χ ≈ 1 and θ � 1). Thus,
L = L′

√
1 + η2(y/(W/2))2, which is the length of a helix located at a distance y from the

axis (20).

Strain

The strain along a strip is defined as ε = (L − L)/L and reads:

ε = (1 + ε0)

√
1 + F2

(
y

W

)2

− 1.

In the limit F � 1, the strain is given by:

ε ≈ ε0 +
1

2
F2

(
y

W

)2

.
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As before, we obtain ε ≈ ε0 + 1
2
η2
(
y
W

)2
for a slightly twisted sheet (χ ≈ 1 and θ � 1), which

is the strain profile for a slightly stretched helicoid which can be obtained as a solution of the
FvK equations. F2 can be interpreted as a measure of the twist induced strain extended to large
morphological transformations.

Stress and Torque

The tension per unit width acting along the strip is ~f = Y tεû, where û = 2~u/L is a unit vector.
The torque M is defined as

M =
∫ W/2

−W/2
x̂ · (~rχ × ~f) dy. (S13)

The integrand in Eq. S13 is:

x̂ · (~rχ × ~f) = χy [2 sin (θ/2) y/L] f.

Thus we have :

M = M0

[
2χW sin (θ/2)

L′

] ∫ 1/2

−1/2

[
1 + ε0 −

1√
1 + F2ξ2

]
ξ2dξ

where M0 = YW 2t and ξ = y/W . The torque can be calculated numerically as shown in
Fig. S7A. We find that there is a maximum and very good agreement with the experimental
data.

We can obtain an analytical expression in the limit where F � 1. The torque reads (up to
second order in F):

M = M0

[
2χW sin (θ/2)

L′

] ∫ 1/2

−1/2

(
ε0ξ

2 +
1

2
F2ξ4

)
dξ.

Finally, after integration over the width, the torque is :

M = M0

[
2χW sin (θ/2)

L′

] (
1

12
ε0 +

1

160
F2
)
, (S14)

From Eq. [S14], we can readily see that the torque is not monotonic due to the sine function.
When χ and F do not depend on θ like in the helicoid regime, the location of the torque peak
is given by the condition dM/dθ ∼ cos θ/2 = 0, yielding a peak torque at θ = π. For a
sheet with no bending-induced stiffness, we have χ = cos θ/2 (see B. Kinematics). M ∼
2ε0 cos θ/2 sin θ/2 = ε0 sin θ, where we assume that ε0/12 � F2/160 which is the regime of
high tension explored in our study. In this limit, the torque peaks at θ = π/2. In the intermediate
case (1 < χ < cos θ/2), the location of the peak is between π/2 and π which is in agreement
with the the torque measurements.

From Eq. [S14], we can also obtain a scaling for the maximum torque admissible by a
twisted sheet Mmax taking χmin ≈ 1/2 and θp ≈ π as typical values. At high initial pre-strain
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(ε0 � F2), Mmax ∼ YW 2t (W/L)ε0 scales linearly with W/L and ε0. In the opposite limit
(ε0 � F2), Mmax ∼ YW 2t (W/L)3 is pre-strain independant and grows as the cube of W/L.

If the sheet is in the slightly stretched and twisted helicoid regime (θ � 1, L′ ≈ L, and
χ ≈ 1), then F ≈ η, the product inside the square brackets also tends to η, and:

M ≈M0

(
1

12
ε0η +

1

160
η3
)
. (S15)

Eq. [S15] is the same as in Chopin and Filho (34) using the FvK model. However, within
this model, the torque increases monotonically, thus, no maximum is predicted as shown in
Fig. S7A.

Energetics

In our scalar model, the total energy E of the sheet under fixed distance condition is given by:

E = Eel −WM ,

where Eel is the elastic energy and WM the work by the external torque which is given by
WM =

∫ θ
0 M(θ′)dθ′, where M is the applied torque.The elastic energy per unit width is given

by dEel/dy = 1
2
Y ε2 Lt. The stretching energy is then obtained by integration over the sheet

width:

Eel = LWt
Y

2

∫ 1/2

−1/2
ε2dξ.

It can be noted that this elastic energy corresponds to the membrane energy, as bending rigidity
is taken to zero in the zero thickness limit. Further, unlike the FvK equations where configura-
tions are restricted to remain in the small slope limit, finite rotations are taken into account in
the model. In the ribbon limit (L/W � 1, thus F � 1):

Eel = LWt Y
(

1

2
ε20 +

1

24
ε0F2 +

1

640
F4
)
, (S16)

with F given in Eq. [S11].
We can provide a complementary definition of the torque based on the elastic energy

M =
dEel
dθ

, (S17)

where we used the fact that at equilibrium dE
dθ

= 0. We can check the consistency of the M with
Eq.S13. Noting that dEel

dθ
= dF2

dθ
dEel
dF2 , we have:

dF2

dθ
= 4χ

(
W

L′

)2

sin (θ/2) , (S18)
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and, using Eq. S16,
dEel
dF2

= Y LWt
(

1

24
ε0 +

1

320
F2
)
. (S19)

Inserting Eq. [S18] and Eq. [S19] in Eq. [S17], we recover the expression of the torque in the
ribbon regime (L� W ) given in Eq. [S14].

Finally, integrating Eq. [S17] with respect to θ, we obtain an expression of the elastic energy
in terms of torque:

Eel = E0 +
∫ θ

0
M(θ′)dθ′, (S20)

where
E0 =

Y

2
ε20 LWt, (S21)

is the stretching energy at zero twist.

8. Comparison Stretching and Bending Energy up to Half-turn Twist
The expression of the elastic energy given by Eq. [S20] is independent of the elastic model
used. To calculate explicitly Eel in our model, we use Eq. [S13]. Whereas, Eq. [S15] can be
used to calculate assuming the FvK model. These two calculations can be directly compared
with experiments by using the measured torque with a strain gauge. It is worth noting here
that the bending modes do not contribute to the torque neither our scalar model nor in the FvK
model.

In the FvK thin elastic sheet model, the elastic energy is given by Eel = Es + Eb, where Es is
the stretching energy and Eb is the bending energy given by

Eb =
1

2
B
∫
H2 + 2(1− ν)Kdxdy,

where B is the bending stiffness, ν the Poisson ratio, H the mean curvature and K the Gaussian
curvature. The stretching energy is given by:

Es =
Y

2
Wt

∫ 1/2

−1/2

(
ε0 +

1

2

θ2W 2

L2
ξ2

)
dξ.

The calculated elastic energy Eel corresponding to our scalar model, given by Eq. [S16],
reduces to Es in the limit where L/W � 1, χ ≈ 1, and F ≈ η = θW/L. We start by
estimating an upper bound for the bending energy assuming that the sheet folds with a radius of
curvature rc. The mean curvature scales as H ∼ r−2

c . The total length of folds is φfnL, where
n is the number of folds and φf a numerical prefactor correcting for the fact that the folds are
slightly tilted and span around 80% of the sheet. The fold surface is therefore 2rcφfnL where

we take 2rc as an estimate for the fold width. Therefore, we have Eb ≈ φf
1
2
B
(

1
2rc

)2
2rc nL.

Substituting B = 1/12Y t3, we obtain:

Eb ≈
nφf
48

Y
(
t

rc

)
t2L. (S22)
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The radius of curvature rc is in the range 2t−D where D is the yarn thickness. The ratio of the
estimated bending energy scaled by E0 (Eq. [S21]) is:

Eb
E0

≈ nφf
24

(
1

ε20

)(
t

W

)(
t

rc

)
. (S23)

Next, we estimate the stretching energy at a half turn using Eq S14 keeping terms up to
second order in W/L. We obtain:

Eel(θ = π) = LWt Y

(
ε20 +

1

6
ε0

(
W

L

)2

(1 + χ2)

)
.

In the case of a helicoid (χ = 1), the elastic energy reduces to:

Ehelel (θ = π) = LWt Y

(
ε20 +

1

3
ε0

(
W

L

)2
)
.

The change in energy ∆Eel = |Eel(θ = π)−Ehelel (θ = π)| between the helicoid and folded shape
is:

∆Eel
E0

=
1

3

(
W

L

)2 1− χ2

ε0
. (S24)

We can now express the ratio between the elastic energy estimated in the scalar model using
Eq. [S24], and an upper bound of the bending energy estimated in Eq. [S22] using the FvK
model as

∆Eel
Eb

=
8

nφf
ε0(1− χ2)

(
rc
t

)(
W

t

)(
W

L

)2

. (S25)

To have a rough estimate of this ratio, we take typical values for the various parameters (W/t ∼
102 , W/L ∼ 1/2, n ∼ 5, χ ∼ 1/2, φf ∼ 1, ε0 ∼ 0.1, rc/t ∼ 5), and find that ∆Eel

Eb
∼ 10.

Thus, folding results mostly in a reduction of the stretching energy associated with a modest
increase in the bending energy, typically an order of magnitude smaller. This rough estimate is
consistent with the results shown in Fig.2H and I in the main text. At θ = 270◦, ∆Eel ∼ 0.5 E0

while the bending energy is Eb ∼ 0.05 E0

9. Transect Cut Comparisons
To further test the correspondence between the origami model and the twisted sheet by a half-
turn, we consider a physical cut midway across the folded sheet, which results in a sawtooth
shape which is related to the number of folds (Fig. S8F). In fact, it is possible to derive a
recursive relation for the cut angle γm (Fig. S8G) which can be related to the triangle number
m from the center as

γm+1 = (−1)m(|γm|+ α), (S26)

where, α = λp/L. Then, by measuring the average slopes between each peak and valley, we
compare the ones observed in the folded hyperelastic sheet, the corresponding origami, and
prediction of Eq. S26 in Fig. S8C. Good correspondence can be observed with systematic lower
slopes because of relieving of the stretching due to cutting of the sheet.
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10. Yarns with Nested Structures
We characterize the highly deformed shape of a twisted sheet when a scrolled yarn has formed.
As illustrated by the fluoroscope shown in Fig. S9A, a projected sheet crosssection can be
observed to vary considerably along its length. Hence, we measure the degree of compaction of
the sheet as a function of x̄ by calculating the diameter Dx of an enclosing circle by considering
each scanned crosssection as illustrated in Fig. S9B. The center of the circle which envelops
the sheet is located at the center of mass of the sheet crosssection, and the circle radius Dx/2 is
given by the distance from the center to the farthest point in that crosssection. From the variation
of Dx observed in Fig. S9C, we conclude that the sheet can be considered to be composed of
a central compact yarn-like region and two triangular fan-like regions with bases located at the
respective clamps.

We first discuss two bounding values of Dx based on the observed variation. A helicoidally
deformed sheet corresponds to the upper bound, D = W , and χ = D/W = 1. To estimate the
lower bound, we note that the initial area of the crosssection is tW . Assuming a circular yarn
without holes, the area is π

4
D2. Assuming crosssectional volume conservation in each slice,

tW = π
4
D2. Thus, the minimal compaction parameter is χ =

√
4t
πW

. For the sheet considered
here, then minimal χ = 0.083. In the central region, we measure χ = 0.11, which is reasonable
considering that we have neglected out-of-plane motion of the sheet in each crosssection as well
as Poisson effect, and the fact that the sheet may not be fully packed.

After examining the envelop of the sheet, we now investigate the internal structure by track-
ing the two unclamped edges as a function of applied twist for θ = 180◦, 360◦, 540◦, and 720◦.
We locate the coordinates of the two edges (indicated by a blue and red markers) in each yz-
plane with image analysis software ImageJ (Fig. S10A). Then, we calculate the distanceDx and
orientation angle θx of the segment joining those two points as a function of x̄. In Fig. S10B
and C, we plot the distance Dx and the angle θx. Although the minimal distance between the
two edges min(Dx/W ) = 0.04 is smaller than the corresponding χ, we find the same trend
looking at Dx as compaction parameter Dx shown in Fig. S10C. This is to be expected as the
two edges can actually be in contact. Thus, according to parametrization, the sheet develops
two distinct regions with increasing twist, in which the central compact yarn-like region grows
at the expense of the fan-like regions near the two clamps.

11. Yarn shape analysis
We model the scrolled yarn formation as a structure with a core of width χW around which the
fan edges wrap around (see Fig. S11A). The fan edges are assumed to be in direct contact with
the core with an angle φ which remains unchanged upon twist. Thus, the fan edges transition
into a helical structure wrapped around a cylinder with the same angle φ in our model. Since φ
evolves with θ, the helix has a pitch which continuously evolves with θ.

To obtain the growth mechanism, we write that LY increases at a rate given by τY which
is the twisting rate measured at the yarn ends. Inside the central region, the twisting rate is on

12



average ∆θ/LY but varies along the longitudinal direction as may be noted from Fig. S9C. The
rate of yarn growth is then given by:

dLY
dθ

=
1

τY
.

For a constant twist rate τY , we obtain a linear increase of the yarn length with twist, LY =
∆θ/τY , where ∆θ = θ − C, and C is a constant of integration.

However, as the yarn increased in length, we observed that the fan angle also increased.
Thus, we expect the twisting rate – which measures the rate at which the sheet wraps around
the yarn per unit length – to increase as well. This increase is suggested by the slope variation
in Fig. S9C. Focusing on the region near the yarn ends, we can express τY in terms of the fan
angle φ and compaction parameter χ as (Fig. S11A):

tanφ = τY D/2.

This expression captures the variation of the twist rate as the yarn grows. We can see that as the
fan angle increases (as observed experimentally), the twist rate is increasing as well.

Then we obtain an expression of the yarn length growth as a function of φ andD, dLY /dθ =
(D/2)/ tanφ. Using the expression of φ found previously, we have:

dLY
dθ

=
D

2

L− LY
W −D

.

Thus, we obtain a first order linear ODE for the evolution of the yarn length

dLY
dθ

+
χ

2(1− χ)
LY =

χ L

2(1− χ)
.

where LY (θs) = 0, i.e. the yarn starts growing after the second instability occurs. The solution
of the equation is:

LY = L

[
1− exp

(
− χ

2(1− χ)
(θ − θs)

)]
. (S27)

As shown in Fig. 6 in the main document, when the yarn length is rescaled by L and plotted
against Θ = χ

(1−χ)
(θ−θs), we observed a very good collapse of the data on the predicted master

curve given by Eq. [S27].
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Fig. S1.

A B C

Figure S1: Hysteresis test. (A and B) Measured torque as a PVS sheet is repeatedly twisted
(A) and untwisted (B). (C) Torque as a function of twist and untwist shows little hysteresis.
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Fig. S2.

A B

Figure S2: Coordinates systems. (A and B) Laboratory coordinates are denoted by (x̄, ȳ, z̄).
The material coordinates of the mid-section (z = 0) in the load free configuration are (x, y) and
coincide with the laboratory coordinates (A). After transformation (B), the material coordinates
are denoted (x′(x, y), y′(x, y), z′(x, y)), and are functions of the material coordinates in the load
free configuration.
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Fig. S3.

Figure S3: Scrolled yarn fabrication. A scrolled yarn with fans made by twist scrolling a
polyethylene sheet held at the opposite ends where fans develop. The twisted yarn structure is
heat treated to freeze in the twist.
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Fig. S4.
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Figure S4: Crosssection detection and points ordering. (A) Schematics of a detected cross-
section composed of 5 points. The search algorithm does not provide an ordered list of points
denoted here by {M1,M3,M2,M4,M5}. (B) Permutation switching point 2 and 3. (C) Apply-
ing the permutation defined in (B), the list of point is ordered according to the neighborhood
of each point. (D) Adjacent matrix for the unordered list of points shown in (A). The matrix
is not tridiagonal when the points are not ordered. (E) Corresponding adjacent matrix after
applying the symmetric reverse Cuthill-McKee ordering. The ordering tridiagonalize adjacent
matrix provides the permutation to order the list of points.
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Fig. S5.

0

A B

Figure S5: Mean curvature calculation. (A) Schematics of a crosssection at an elevation x̄
parametrized by the curvilinear coordinate s̄. (B) Test of calculation of the mean curvature by
fitting calculated radius of curvature and a sheet crosssection.
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Fig. S6.
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Figure S6: Elasto-geometric fold Model (A) Schematics for the scalar model showing the top
half of a twisted sheet modeled as a series of segments connecting the top rotating clamp with
an effective crosssection at x = 0. The corresponding ruled surface approximates the folded
sheets. (B) Compaction parameter χ for a PVS sheet (L/W = 3; t/W = 0.009; ∆L/L = 0.16;
θp = 85±5◦). The shaded grey area corresponds to the admissible compaction profile according
to our model. (C) Evolution of F given in Eq. S11 with θ.
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Fig. S7.
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Figure S7: Torque and elastic energy evolution. (A) Evolution of the torque M with the twist
angle. (B) Evolution of the elastic energy with the twist angle.
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Fig. S8.
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Figure S8: Profile of cuts. (A) Cut profile of an origami when folded flat. (B) Cut profile of
a PDMS sheet twisted by a half-turn with tension and thickness chosen to the same number of
folds as in (A). (C) The cut pattern after the origami is cut across the center and unfolded. The
segment slope as a function of segment number is observed to be in quantitative agreement with
geometric models. (D) Schematics showing the evolution of the cut angle from one fold to the
other.

21



Fig. S9.
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Figure S9: Compaction of the crosssection (A) PVS sheet L/W = 2, θ = 720◦. (B) Cross-
sections with enclosing circle Dx at x̄/L = 0.2, 0.5, and 0.8. (C) Variation of Dx as a function
of normalized distance between clamps x̄/L. The minimum of the curve D = min (Dx) is used
to obtain the compaction parameter χ = D/W = 0.11.
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Fig. S10.
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Figure S10: Longitudinal edges configuration. Characterization of the yarn with nested struc-
tures using the configuration of the two longitudinal edges. (A) Sequence of crosssections for
various elevations x̄. The segment joining two edges (blue and red disks) at a given x̄ has a
length Dx and orientation angle θx. (B) Profile of Dx/W along the longitudinal axis. The min-
imal distance between the two edges min(Dx/W ) = 0.04. (C) Profile of the orientation angle
θx along the longitudinal axis showing a high twisting rate in the central yarn region of length
LY .
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Fig. S11.

A B C

Figure S11: Yarn fabrication model. (A) Schematics of a highly twisted sheet with a yarn
forming at its center. Yarn length is LY and fan angle is φ. (B) The yarn length is increasing
with the twist angle at a rate that depends on the aspect ratio. (C) Evolution of the fan angle
with the twist.
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Tables S1.

Material Y (MPa) ν Optical Source
PDMS 6.2 0.5 colorless, transparent SILEX Limited, UK
PVS 1.2 0.4 green, translucent Zhermack SpA, IT
Latex 3.6 0.35 beige, translucent MSCDirect

Table 1: List of materials and their properties.
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Tables S2.

Materials L/W θs (deg) χ
PVS 1 450 0.1
PVS 2 500 0.1
PVS 3 500 0.1

PDMS 10 500 0.15

Table 2: Parameters used in the yarn model.
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Movie S1.
Movie S1 Tensional twist-folding of elastic sheet. Movie of a PDMS sheet (L/W = 1;
t/W = 0.0028; ∆L/L = 0.1; θp = 60± 5◦; same sheet as in Fig. 1D to G) while twisted from
zero until an angle θ = 900◦. Frame rate is 15 fps.
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