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Tele-nursing robots provide a safe approach for patient-caring in quarantine areas. For effective nurse-robot collaboration,
ergonomic teleoperation and intuitive interfaces with low physical and cognitive workload must be developed. We propose
a framework to evaluate the control interfaces to iteratively develop an intuitive, efficient, and ergonomic teleoperation
interface. The framework is a hierarchical procedure that incorporates general to specific assessment and. its role in design
evolution. We first present pre-defined objective and subjective metrics used to evaluate three representative contemporary
teleoperation interfaces. The results indicate that teleoperation via human motion mapping outperforms the gamepad and
stylus interfaces. The trade-off with using motion mapping as a teleoperation interface is the non-trivial physical fatigue. To
understand the impact of heavy physical demand during motion mapping teleoperation, we propose an objective assessment
of physical workload in teleoperation using electromyography (EMG). We find that physical fatigue happens in the actions
that involve precise manipulation and steady posture maintenance. We further implemented teleoperation assistance in
the form of shared autonomy to eliminate the fatigue-causing component in robot teleoperation via motion mapping. The
experimental results show that the autonomous feature effectively reduces the physical effort while improving the efficiency
and accuracy of the teleoperation interface.

CCS Concepts: « Human-centered computing — Empirical studies in interaction design; Gestural input; Interaction
design theory, concepts and paradigms.

Additional Key Words and Phrases: Teleoperation interface, human workload, shared autonomy

1 INTRODUCTION

Tele-nursing robots provide a promising safe and cost-efficient approach for patient-caring in quarantine areas [52].
The recent outbreaks of infectious diseases like Ebola [95], Zika [143] and recently COVID-19 [121] necessitate
the evolution of tele-nursing robots for the nursing workplace [178]. For quarantine patient care, tele-nursing
robots for routine and assistive tasks (e.g., cleaning patient room, deliver food and supplies, assisting patient
motions, etc) can reduce the work time, stress, risk of infection, and discomfort of human workers in quarantine
areas. They are also capable of supporting the patient’s needs for physical and emotional care, and improving the
nursing workers’ job satisfaction [1, 60]. With the looming threat of the shortage of nursing workers, tele-nursing
robots also have the potential to provide remote care in hospitals, homes and nursing facilities, thus improving
the sustainability of healthcare for an aging society [55].

Currently, commercialized nursing robots deployed in the workplace are mostly limited to providing mobile
telepresence [42, 160]. A few advanced robot prototypes can perform nursing tasks that require manipulation
capability and mobility. However, even equipped with the state-of-the-art autonomy, these robots cannot perform
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nursing tasks at operational speed, or handle high-complexity tasks. They are also not able to perform reliably
without human direct control or intervention [173]. While teleoperation interfaces become a natural and practical
solution to this problem, teleoperation interfaces may also become the threshold for human-robot teaming. Unlike
surgical robots that are specialized for structured operations, nursing robots are designed for assisting a wide
range of tasks which require the coordination of the control of the robot arm, hand, base, as well as the active
sensors and telepresence.

Prior research has demonstrated that, the performance of human-robot teaming via teleoperation is limited
by the usability of teleoperation interfaces rather than the robot’s physical capabilities. The high workload
and learning effort associated with robot teleoperation interfaces also prevents nursing workers from using
the nursing robots on a daily basis, and imposes barriers to the nursing profession. The recent advances in
human-robot interfaces provides a wide range of interfaces for the teleoperation of complex motion coordination.
However, it is still unclear which interface design could be the most suitable for nursing robots, nursing tasks
and workers.

General Evaluation Specific Assessment
Objective Measurements  Subjective Measurements * EMG-based physical workload analysis
* Learning Effort * Survey * Muscle effort
* Learning outcomes * Interview * Physical fatigue
w.r.t. training time * NASA-TLX
 Task Performance * Mental demand * Reduction of physical workload evaluation
* Completion time * Physical demand
* Errors * Temporal demand
* Interface interaction * Performance Design Evolution
* Cognitive Workload " Effort * Assistive autonomy for precise tele-manipulation
* Secondary task * Frustration l

Fig. 1. A proposed hierarchical framework for the evaluation and evolution of human-robot interface.

We hypothesize that the desirable teleoperation interfaces for nursing robots should be efficient (high task
performance), ergonomic (low cognitive and physical workload) and intuitive (low learning efforts). We proposed
a hierarchical framework for the evaluation and evolution of a human-robot interface. The concept and the
procedures are presented in Figure 1. We first conduct a general user study evaluation, to characterize the
interfaces based on their performance, workload and learning effort. With the results from this general evaluation,
we further conducted an integrated interview and survey with participants to identify the causing factors and
the extent of their influence. Robot autonomy is further designed to address the major interface limitations
discovered in the general evaluation user study. A specialized evaluation was used to assess the efficacy of the
designed robot autonomy.

To demonstrate the efficacy of the proposed framework, we conducted three user studies for the evaluation
and evolution of the tele-nursing robot interfaces. Specifically, we compared three representative interfaces
designs frequently used for the direct teleoperation of low-autonomy robots (i.e., the robot autonomy is limited
to basic collision avoidance and inverse kinematics), including gamepad, stylus/joystick, and whole-body motion
mapping via a motion capture system. The evaluations were performed over a set of “psuedo” nursing tasks
that require the motion coordination skills frequently performed in a wide range of nursing tasks, including:
arm-hand coordination for (object grasping), bimanual coordination (for handling large, deformable and heavy
objects), loco-manipulation (for navigating in a cluttered workspace), and camera selection and control to support
these tele-actions. Our general evaluation found that: whole-body motion mapping interfaces have the best
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task performance and learning efforts among freeform teleoperation interfaces for nursing robots. However, it
may cause non-negligible physical fatigue and prevent users from teleoperating the robots for a long time. Our
integrated participant interview and survey also identified and ranked the fatigue-causing factors, including
maintaining steady postures for wrist camera controls and adjusting arm posture for stable object grasping. Our
robot autonomy design and specialized evaluation focused on reducing the physical workload of the interface, and
improving the ergonomics of the interface. For the specialized evaluation, we proposed a novel Electromyography
(EMG)-based muscle effort index, to provide a more detailed, objective, and accurate physical workload assessment.
The outcomes of the specialized evaluation validated the efficacy of our robot autonomy design, as well as our
proposed framework for interface evaluation and evolution. We believe the proposed framework, including most
of the evaluation metrics, are applicable to human-robot teaming interfaces beyond teleoperation.
The main contributions of this article are:

(1) An Evaluation framework and methods used — A proposed hierarchical framework that evaluates a
human-robot interface from general to specific characteristics; The specific evaluation focuses on address-
ing the limitation of the characteristics of the interface, rather than augmenting the task-specific robot
autonomous functions.

(2) Integrated design evaluation and evolution — Apply the proposed evaluation framework to the in-
terface design evolution of general purpose tele-nursing robots. We focus on the skill sets necessary for
freeform teleoperation instead of evaluating a large variety of specific nursing tasks; We also consider the
needs of the primary user population, the nurses.

The rest of the paper is organized as follows. Section 2 discusses the design of the teleoperation interfaces
and methods for performance assessment. Section 3 describes our robot platform, teleoperation interfaces and
assistance design as well as the proposed framework. From Section 4 to 6, we evaluate the proposed evaluation of
the interface and the design evolution by conducting three independent user studies. In Section 7, we presented
the discussion of the results, limitations and future directions. Finally, Section 8 summarizes the important
findings of this paper.

2 RELATED WORK
2.1 Teleoperation Interface and Assistance for Nursing Robots

Tele-nursing robots: In response to Ebola, Zika and the COVID-19 pandemic crisis, mobile autonomous
robots [9], mobile telepresence robots [11, 12, 157], mobile manipulators and humanoids [7, 10, 72, 103, 145] have
been developed and deployed for quarantine patient care. While the current commercialized nursing robots are
predominantly mobile telepresence platforms (see review in [94]), more advanced nursing robots of high mobility
and manipulation capabilities are in great need to augment the future workforce in quarantine, hospital and
nursing facility [72]. Table 1 compares the existing commercial and prototype nursing robots according to the
robot platform, their motion capability, level of autonomy and operation interfaces. It shows that for more complex
nursing robot platforms, the interface design leans toward supporting more freeform teleoperation of complex
motion coordination, with the assistance of general-purpose, low-level autonomy. Most of the contemporary
nursing robots (e.g., Intouch RT-Vita [4, 52], Ava [6], BeamPro 2 [8], Vecna VGo [163]) are limited to providing
just mobility and telepresence. The combination of GUI interfaces with high-level robot autonomy enables users
new to robot operation to control or even supervise the robots for tasks consisting of structured sequence of
tasks. However, such interfaces are not sufficient to perform a wide range of unstructured tasks that require
various complex motion coordination and involve physical human-robot interactions.
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Table 1. An overview of commercial and prototype tele-nursing robots, with their Patient Assessment (A), Communication
(C), Navigation (N) and Manipulation (M) capabilities.

Robot platform Capability Autonomy Interfaces

Mobile telepresence [4, 6, 8, 163] A/C/N Self-navigation Touchpad, joystick
Obstacle avoidance
Human-following

Mobile manipulator [7, 71, 103] A/C/N/M  Self-navigation Gamepad, stylus,
Obstacle avoidance ~ GUI, touchpad,
Pick-and-place motion capture system

Humanoid [5] A/C/N/M  NA Exoskeleton

Table 2. Representative interfaces for online control of humanoid robot motion coordination.

Input interface Controlled motion

Human motions

Customized cockpits Whole-body [179]
VR controller Multiple hand configuration [138]
Whole-body [82]
Exosuit Balancing [125]
Manipulation and positioning [126]
RGB-D camera Whole-body [53]
Bi-manual manipulation [144]
Marker-based Whole-body [104]
IMU-based Whole-body [132]
Human motor commands
Myo Arm pose [162]
BCI Pick-and-place [147]

Navigation [15]

Teleoperation interface and assistance: The capabilities of the nursing robots are not fundamentally limited
by the hardware, but by the usability of interfaces. Thus far, research efforts on tele-medicine interfaces primarily
focuses on tele-surgical robots [136]. Since most of the surgical robots are focused on specific procedures
(e.g., [21]), the interface design as well as the evaluation methods and metrics tend to be platform- and task-specific.
The state-of-the-art interfaces and teleoperation assistance methods for complex robot platforms (e.g., mobile
manipulators and humanoid robots) could be considered for tele-nursing robots of higher motion capabilities [67].
For the online control of motion coordination, these interfaces either map the human motions to the robots
(using customized cockpits [179], commercial virtual reality and gaming controllers [49, 59, 138, 146], soft/hard
exoskeletons 27, 125] and data gloves [57, 107], marker-less or marker-based motion capturing device [27, 43,
50, 53, 56, 80, 92, 93, 104, 115, 132, 175]), or map human motor commands using myoelectric devices [91, 138, 162]
and brain-computer interfaces [15, 28, 119] (see the the representative interfaces in Table 2). Particularly, motion
mapping interfaces such as motion capture systems (e.g., Vicon [104]), portable motion capture devices (e.g.,
Microsoft Kinect [43, 50, 53, 127], Xsens MVN [92, 93, 132, 155]) and exoskeletons [27, 125] are most natural to
control humanoid robots to perform hand-arm coordination, bimanual manipulation, locomotion and whole-
body coordination. Within the spectrum of robot autonomy level, ranging from fully manual control to fully
autonomous control (see the review in [17]), action support and shared control are often used to assist the
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freeform teleoperation using motion mapping interfaces. Action support like tremor filtering [177], obstacle
avoidance [159] and precise orientation assistance [88, 90], usually assists the execution of a selected action.
Shared control is mostly used to assist the operator in actions towards a goal or generating motion along certain
trajectories [48, 83, 98, 139, 140].

Overall, the freeform control via motion mapping augmented by robot autonomy results in an interface design
that is dexterous, precise, and reliable in motion control, which is desirable for a tele-nursing robot. However, it
is hard to specify the design choices of the interface and robot autonomy without appropriate evaluation.

2.2 Metrics and Methods for Robot Teleoperation Interface Evaluation

Evaluation metrics: Prior research efforts have provided many generic frameworks for the evaluation of
human-robot teaming (HRT) performance and the usability of interfaces [3, 25, 122, 137, 148, 154, 158, 171]. The
evaluation of human-robot interfaces are usually coupled with the assessment of task effectiveness (e.g., time- and
error-based [70]) and human performance (e.g., workload [70], situational awareness [61]), and therefore share
the same set of metrics [31-35, 66]. Some recent research efforts have also proposed metrics for the evaluation at
system level 109, 131], or suggest to evaluate dynamic aspects of the human-robot teaming (e.g:, interactivity [81],
teaming fluency [75], transparency [172], interface learning efforts [97]). For a particular robotic system, modality
of interface, work context and primary user group, the generic framework need to be augmented with domain-
and application-specific metrics [13, 16, 16, 18, 77, 79, 96, 101, 124, 149, 151, 153, 164, 166, 170, 176, 181]. Generally
speaking, the work on human-robot interface evaluation falls into two categories, which may be: (1) a general
evaluation which uses a framework of metrics to characterize the interface, or (2) a specific evaluation to assess
the efficacy of some design choices using the metrics that emphasize the interface improvement. The novel
contribution of this work is to propose an evaluation framework that integrates the general and specific evaluations
with the interface and robot autonomy design, to close the loop of interface evaluation and evolution.
Evaluation methods: The choice of evaluation metrics depends on the available evaluation methods and data
collection approaches. Bethel et al reviewed the methods of HRI human studies [19], while Abou reviewed the
related work for the approaches for HRI performance assessment [3]. In the nursing research community, there
are reviews on the usage of nursing robots [110] and on the evaluation of tele-nursing for its satisfaction, selfcare
practices, and cost savings [69]. The recently developed nursing robot platforms are usually presented with lab
experiment evaluations [36, 78, 102, 103, 120, 142]. Although both the field study and lab experiments can collect
data for quantitative evaluation, the subjective evaluation primarily replies upon interview and survey feedback,
while the objective evaluation usually rely upon the measurements of robot, task and human states. The standard
practice of evaluating HRT interfaces is to use general-purpose surveys (e.g., NASA-TLX and System Usability
Scale [20, 68, 89]), or use a customized questionnaire design only applicable to a specific experiment (e.g., [174]).
Participant interview, which has proven to be very useful for connecting human-robot teaming performance to
the specific aspects of the interface design characteristics [99, 152], hasn’t been well utilized for human-robot
interface evaluation.

Recently, the evaluation of HRT interfaces has more objective and quantitative metrics adopted for assessing
human performance. For instance, the assessment of physical workload can be estimated based upon objective
(neuro-) physiological measurements, including Electromyography (EMG) and Electroencephalograms (EEG) [39,
114]. Eye tracking has also been used for objective and accurate assessment of mental workload [23, 113,
150], attention [100, 117] and situational awareness [58, 128, 129]. Thus far, most nursing robots are (mobile)
telepresence robots controlled using GUI interfaces, for which the cognitive workload has more influence on the
usability of the interface. As the future tele-nursing robots will demand more complex motion control, interfaces
that map human motions to robots will become more desirable for efficient operation of the tasks. The physical
workload of using such interfaces on a daily basis will no longer be negligible. Prior research has investigated the
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physical fatigue associated with conventional tele-robotic interfaces. For instance, the physical fatigue during
tele-robotic surgery causes muscle tremors and may result in dangerous situations in critical surgical steps [112].
Besides, fatigue level also negatively affects the Quality of Teleoperation (QoT), which indicates a teleoperator’s
confidence in commands and decisions [108]. Beyond the teleoperation of medical robots, increased fatigue
results in reduced performance during the teleoperation of Unmanned Ground Vehicles (UGV) [86]. The accurate
assessment of muscle efforts and physical fatigue therefore becomes critical for evaluating interface usability.
Recent robot interfaces have incorporated the physical fatigue assessment using EMG sensing [104, 134, 135]
and biomechanical human modeling (e.g., OpenSim [45, 133]). Besides, the learning efforts for the interfaces,
measured as the difference in task performance and workload, is also important for the nursing robots to be
accepted by nursing workers. To address these needs, our proposed interface evaluation framework will also
incorporate novel methods and metrics for the quantitative and objective assessment of the physical workload,
and the interface learning efforts of nursing workers.

3 MATERIAL AND METHOD
3.1 Teleoperated Robot

This section describes the robot platform. Shown in Figure 2, the Tele-Robotic Intelligent Nursing Assistant
(TRINA) consists of a dual-armed humanoid torso (Rethink Robotics Baxter), and an omnidirectional mobile
base (HStar AMP-I). For grasping objects, two Righthand Robotics Reflex grippers were used in the experiments
evaluating physical fatigue indices and benefits of automating grasping while two two-fingered soft grippers
(UBIROS GentleDuo) were used for evaluating teleoperation interfaces. The visual sensor suite consists of a
ELP-USBFHDO01M 180° fisheye camera mounted on the robot head, two Intel RealSense D435 cameras on the
wrists and a Microsoft Kinect 2 on the middle of the Torso: The RGB-D cameras on the Kinect are used for object
detection as will be mentioned in Section 3.3.

Dual-Armed Humanoid Torso
(Rethink Robotics Baxter)

| Head Fisheye Camera |

Torso Camera
(Microsoft Kinect 2)

Two-Fingered Grippers
(UBIROS GentleDuo)

|

|

|

|
Three-Fingered Grippers :
(Righthand Robotics :
ReFlex Grippers) :

|

|

|

|

Wrist Camera

== (RealSense D435)

Omnidirectional Mobile Base
(HStar AMP-I)

Fig. 2. Tele-robotic Intelligent Nursing Assistant (TRINA) system.
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3.2 Teleoperation Interfaces

In the following section the design of the gamepad, stylus-based and motion mapping interfaces that will be used
in performing the robot teleoperation for the user studies will be expanded upon. This section will provide a brief
overview of the button configuration, design methodology and the control input for each teleoperation interface.

3.2.1 Gamepad. The TRINA robot is controlled using a gamepad (Logitech F710) as shown in Figure 3. The
gamepad control interface consists of 2 modes: arm and base mode. The arm mode controls the motion of the
robot arm while the base mode controls the motion of the robot base. There are dedicated buttons to cycle
between the two modes, to return the arms to a pre-defined starting position and hold the current gripper pose.
The left and right trigger buttons are used to switch between the arm being currently controlled and to control
the gripper, respectively. The gripper of the currently active arm will be controlled when operated using the
trigger. The joysticks of the gamepad are to control the motion of the base and arms depending on the mode the
operator is in currently. In the arm mode, the left joystick moves the arms up and down while the right joystick
moves the arm forward, backward, and sideways. In the base mode, the left joystick moves the base forward,
backward and sideways while the left gamepad rotates the base clockwise and counterclockwise. Specifically, the
end-effector position and base motion is controlled using velocity control based on the location of the joystick on
the gamepad:

Ve = Xieft/5 1)
Vy = Ylef[/S (2)
Ve = right/5 3)

where V., V; and V, are the velocities in the x,y and z directions, Xjefs, Yier, and Yyigp, are the x-coordinate
and y-coordinate position of the left joystick and y-coordinate position of the right joystick respectively. When
controlling the base Vy, V;, and V, correspond to the motion of the base in the x and y directions and rotation of
base respectively.

LT: Switch to Left/Right arm RT: Gripper control

Y: Switch to Arm/Base Mode

Right Joystick:
Twist Base
Clockwise/Counter-clockwise
Move Arm
Forward/Backward/Sideways

Fig. 3. Gamepad controller configuration for teleoperation interface.

As it is not possible to represent cartesian positions of the gripper through the gamepads, the grippers are
controlled through velocity control. The direction in which the gamepad is held and the extent to which it is
moved from center determines the velocity with which the gripper moves. This principle applies for moving the
arm up, down, and sideways. For the gamepad interface, the gripper is designed such that the face of the gripper
when open always points downwards. The interface was designed in this manner because this orientation of the
gripper enables the robot to pick up even objects that are very small or laundry that can lie flat against the table.
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However, this interface is limited in its joint control abilities. The addition of this extra mode to the interface
might make the interface more complicated.

To illustrate this interface, we explain how the robot is controlled to pick up an object off a table. The user
first switches to the base mode to position the robot near the table and the object using the two joysticks. The
user then switches to the arm mode and uses the trigger switch to cycle between the left and the right arm. The
user uses the two joysticks to position the arm near the object. The right trigger (RT) button is used to close the
gripper and the Hold (A) button is used to lock the gripper’s position. The user can then use the joysticks to lift
the arm off the table.

3.2.2 Stylus Device. The TRINA robot is controlled using the stylus device (Geomagic Touch) as shown in
Figure 4. Due to the limited amount of user inputs that can be extracted from the device, the interface is split into
three modes namely the base, arm, and gripper modes. There are two buttons on both styluses that can cycle
between the modes. Once a mode is selected, the dedicated engage button can be used to activate the mode of
teleoperation.

’ Left Device ‘ ’ Right Device ‘

In Arm mode:
Move Right Arm
In Base mode:
Rotate Base Clockwise/
Counter-clockwise

In Arm mode:
Move Left Arm
In Base mode:
Move Base Forward/
Backward/Sideways

Toggle Modes Toggle Modes
(Arm/Base/Gripper) (Arm/Base/Gripper)
Engage Mode Engage Mode

Fig. 4. Stylus device (Geomagic Touch) configuration for teleoperation interface.

The motion of the styluses can control the respective arms in the arm mode. To make the interface as intuitive
as possible, the orientation of the robot arm from the robot’s "elbow" to the gripper is mapped to the orientation
of the stylus of the device: To control the robot end-effector positions cartesian position control was used. The
position and orientation of the left and right styluses were scaled to the robot frame and the robot limbs were
moved to the desired location by solving the Inverse Kinematics of the Baxter robot arms. In the base mode, the
left stylus can move the base linearly while the right stylus is used to rotate the base. This means that the base
moves forwards, backwards and sideways depending on the way the left stylus is moved. The right stylus is
used to rotate the base clockwise and counterclockwise. The base control uses velocity control similar to the one
described in Section 3.2.1 where the location of the right and left styluses control the robot base rotation and
translation respectively.

To illustrate this interface, we again use the example of grasping an object off a table. The user in the base
mode uses the stylus motion to move the base closer to the table and the object. The user then must switch to the
arm mode to control the arms using the styluses. Once in a suitable pose, the user can close the gripper in the
gripper mode. The gripper can be toggled between fully open and fully closed. Once the object is fully grasped,
the user can switch back to the arm mode to lift the arm.

3.23 Motion Mapping. The Vicon Nexus motion capture system is used to develop a motion capture interface
to control the TRINA robot (Figure 5). Human motion was captured at 100 Hz by 10 infrared cameras and streamed
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at 50 Hz for robot control. The subject’s physical attributes do not affect the end-effector positions of the robot as
only the position and orientation of the wrist and the swivel angle of the teleoperator is mapped to the robot
during teleoperation. The swivel angle is defined as the rotation of the elbow of the operator with respect to the
axis connecting the centers of the shoulder and wrist joints [161]. This angle is then used as an indicator of the
operator’s arm posture.

Head Cam View

Fig. 5. Overview of robot teleoperation via motion mapping interface.

Table 3. Motion Mapping Teleoperation Interface. The arm posture is measured by the swivel angle, i.e., the rotation of the
elbow position with respect to the axis connecting the shoulder and wrist positions [161].

Teleoperation Input Robot Function
Robot’s Upper Body

Hand position and orientation = End-effector position and orientation

Arm posture and orientation Manipulator arm posture

Rotate upper body Rotate mobile base orientation

Hand open/close Gripper opens/closes

Right shank flexion Activate teleoperation assistance
Robot’s Lower Body

Squat Engage/Disengage teleoperation

Leg steps forward/backward Mobile base moves front/back
Left (right) leg steps left (right) Mobile base moves left (right)
Lift right leg Switch the camera view

The motion mapping interface developed using the VICON motion capture set-up also used controlled the
robot motion using the Cartesian position similar to the method described in Section 3.2.2. The location of the
operator’s hands in the human skeleton captured by the motion capture system is scaled to the robot frame. The
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Inverse Kinematics for the Baxter robot arms is solved to control the motion of the robot end-effectors. The robot
base is controlled using desired velocity. The direction and magnitude of offset of the operator’s feet from the
origin defined in the operator’s workspace is the direction and magnitude of velocity with which the base is
required to move.

Table 3 defines the controls for the motion mapping interface. Robot teleoperation can be engaged and
disengaged by squatting. The operator can control the robot arms by moving their arms in the desired manner
and the robot will replicate these movements. The robot base can be moved by the operator stretching their leg
out in the desired direction of motion. For example, the operator can move the robot forward, backward, left, and
right by stretching their leg out forward, backward, left and right respectively. The robot base can also be moved
diagonally depending upon how the operator moves their leg. The opening and closing of the robot grippers can
be achieved by the operator opening and closing their fingers.

We shall use the example of picking up an object from a table to explain this interface. The operator moves the
robot towards the table and the object by stretching their legs in the necessary direction. Once at a convenient
position, the operator can make the robot reach out to the object by reaching out in the corresponding direction
in their workspace. The robot replicates this motion and once at the right position the gripper can be closed
when the operator closes their fingers.

3.24 Graphical User Interface. A Graphical User Interface is used to provide the teleoperator with the video
stream from the fisheye camera (e.g. in the bottom of the Figure 5 ) and the two wrist cameras. The video stream
and the control GUI are presented to the user on a monitor at the teleoperation workstation. This video stream
provides the teleoperator with a real-time view of the workspace. The GUI also tells which mode the operator is
in while using the gamepad and stylus interface or which arm is being controlled when in the gamepad mode.
The current robot state is also provided as a 3D model in a simulated environment. Examples of this GUI in use
can be seen in Figures 10 (a) and (b).

3.3 Teleoperation Assistance

The flowchart in Figure 6 describes the design of the autonomous grasping function for teleoperation assistance.
The Microsoft Kinect attached to the robot was used for capturing the workspace. Mask-RCNN [2, 73] is used
to detect objects and generate bounding boxes of (2 X height) X (3 X thickness) X (5 X width) (cm®) around the
center of an object. This enhanced region around the object is where teleoperation assistance is available for the
user and is termed as the Teleoperation Assistance Zone (TAZ). The TAZ was designed in this manner based on
the inputs from an initial pilot study while designing this interface.

The bounding box generated by the Mask-RCNN model on the Kinect RGB-stream around the detected objects
was projected to the depth stream from the Kinect. The center of this bounding box was determined to be the
center of the object. The depth value of the center of the object thus obtained can be used to find the remaining
two coordinates of the object using the pinhole camera equations [87]. The coordinates of the object formed in
the Kinect frame is transformed to the coordinate system of the Baxter. This provides us with the location of
the detected object in the three-dimensional workspace. If multiple objects are present in the workspace (e.g.
cluttered environment), it will return the coordinate of the closest object as default.

The teleoperator is indicated if the end-effector is in this region by audio and visual notifications. Points on
the mid-points of the left and right vertical sides of the original bounding box around the object are identified as
target grasping points. Based on where the robot arm present in the TAZ a reaching-to-grasp motion is planned
for the corresponding nearest target point by solving the inverse kinematics for this location. The assistance
does not control the gripper and this action is left to the discretion of the operator who goes will complete the
grasping action if he/she believes the gripper is in an appropriate position for grasping.
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Fig. 6. Autonomous Grasping Function for Teleoperation Assistance.

3.4 General Evaluation Metrics

In order to investigate the most suitable teleoperation interfaces that can be utilized by the non-robotics related
populations (e.g. healthcare workers and nurses), we performed the evaluation of three representative designs
of contemporary control interfaces (handheld gamepad, stylus-based devices and human motion mapping) by
a system of objective and subjective metrics to appraise the learning effort, task performance and operation
workload.

34.1 Objective Measurements.

- For learning effort evaluation, we consider the learning outcomes (indicated by the task completion time,
numbers of mode switches and errors before and after practice) and practice time used during the training
phase for each teleoperation interface. This measurement helps us to quantify how fast the users can
build confidence to use the control interface and how much impact training has on task efficiency and
accuracy: On the other hand, the investigator could just simply adopt the method of asking the participants
to perform multiple trials of the training task and using only the task completion time to evaluate the
interface. This is however not sufficient as an index as it will ignore other critical factors that might be
essential in influencing the learning curve.

For task performance evaluation, we measure the time required to complete the task, number of in-
teractions with the interface (mode switches in our case) during teleoperation, as well as the number
and type of errors. The type of errors that influence the performance include errors that: (1) reduce the
efficiency, (2) decrease the accuracy and (3) diminish the safety. For example, in the pick-and-place sub-task
in our evaluation task, the types of errors we include are: (1) dropping or knocking over of objects, (2)
inappropriate grasps and (3) collisions with the table.

For operation workload evaluation, we used a secondary task where the participants had to solve simple
arithmetic questions [30] while teleoperating the robot. Users were allowed to skip questions if they
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deemed it too difficult. A mentally demanding task would make the user perceive a problem to be more
difficult than they usually would have, and they would answer less questions or have more errors or skip
more questions. The longer response time indicates that the user requires a higher cognitive workload
for robot teleoperation, and therefore has less capacity for the other aspects of the tasks (e.g. professional
decision-making, patient interaction and information inquiry).

3.4.2 Subjective Measurements. We adopted NASA-TLX as the workload assessment tool that helps record
the user’s self-evaluation of Mental, Physical and Temporal Demands, Performance, Effort and Frustrations [37].
We further calculated the overall NASA-TLX score to identify the subjective workload by weighting each effort
demand. The weighting coefficients were generated by choosing from a series of pairs of rating scale factors that
were deemed to be important based on the official instructions. In addition to the NASA-TLX evaluation form,
the comprehensive custom questionnaire is an integral part that captures the users’ feedback and attitude toward
the newly implemented methods and interfaces. Unlike the traditional customized questionnaire in human-robot
interaction, we performed a post-study interview to identify the causing factors and features that will improve
the interface usability.

3.5 Specific Objective Assessment of Physical Workload

By the general evaluation metrics, robot teleoperation via motion mapping has been demonstrated to be an
intuitive, efficient, and low learning curve approach for controlling the motion coordination of the humanoid
robots. However, the trade-off with using human motion mapping as a teleoperation interface is the non-trivial
physical fatigue associated with this interface and this information is also captured in the NASA-TLX self-
evaluation and post-study questionnaire. Muscle fatigue has been defined as any exercise-induced reduction in
the maximum capacity to generate force or power output [168]. Assessment of physical fatigue can be based on
the measurements of force, power, and torque. Besides, heart rate can also be used to detect muscle contraction
and infer overall physical fatigue level [65]. Among all the approaches, SEMG measurement have proven to be
more effective as it measures muscle activity in a non-invasive and real-time environment and provides the ability
to monitor physical fatigue of a particular muscle [38]. Thus, in addition to the subjective measurements, we
developed indices that assess the physical workload objectively using wireless surface EMG sensors (Trigno’™
from Delsys Inc. at 1,000 Hz sample rate). Our analysis of the EMG signals aims to: (1) investigate individual
muscle effort and physical fatigue development during teleoperation using motion mapping; (2) compare the
physical fatigue induced by different tasks and thus identify movements that cause fatigue, giving us the directions
to facilitate the fatigue-adaptive interface design. Figure 7 illustrates our data preparation process for the muscle
effort and physical fatigue estimation.

3.5.1 Muscle Effort Analysis. The recorded EMG signals are within the 40 Hz-700 Hz range in the spectrum
domain. The raw EMG data was pre-processed using a high pass filter (cutoff frequency 10 Hz), to remove the
soft tissue artifact and offset the frequency baseline. The processed signal further went through a full-wave
rectification and then a sixth-order elliptical low pass filter (cutoff frequency 50 Hz), to remove noise and transients
and develop alinear envelope of the EMG signal. We use the computer-based methods to determine the onset
and offset of muscle contraction of the processed EMG signal. The tunable parameters include the threshold
value (standard deviation of the baseline signal) and the number of samples (sliding windows in the units of a
millisecond) for which the mean must surpass the defined threshold. We choose the combination of three times
the standard deviation of the muscle static contraction obtained from the first 200 frames of the EMG signal in the
maximum voluntary contraction (MVC) test and 25 milliseconds as the signal sliding window size. This window
size has shown similar results to results from the visually derived data [74]. The MVC test also serves as the
tool to normalize the EMG signal with respect to the maximum force generated by each muscle [22]. Figure 7(a)

ACM Trans. Hum.-Robot Interact.



Intuitive, Efficient and Ergonomic Tele-Nursing Robot Interfaces: Design Evaluation and Evolution « 13

(6 order, elhptlc) Duration (sec)

e e e
Teleoperation by Motion Mapping : Muscle Effort Analy51s 1
1 1
1 5 5 1
Motion Mapping Interface ! High Pass Filter 5 :
' ! (10 Hz < w) %4 '
1 3 1
1 1
>y " " 3 1
i I Full-Wave Rectification I N2 i
1 ] 1
I 1 £+ I
i - = i
ol
: Low Pass Filter ] B :
1 1
1 1

B ———————— - - - ol
T input EMG Raw Sigal =~~~

Task Performance E Physical Fatigue Analysis E
- A Band Pass Filter 250 ]
Il (25 Hz < w < 500 Hz) g 1

: 8200 .

I - £ 1

’: Fast Fourier %150 :

! Transform (FFT) s —er ||

I —~Right| | 1

i 100 i

i 1 2 3|y

: I Spectral Ana]ysis l Number of Repetition :

I 1

Fig. 7. Process of the muscle effort and physical fatigue analysis.

shows the individual muscle contraction levels (represented as the black line which is the normalized processed
EMG signal from the MVC test) and contraction duration (indicated by the green bars).

3.5.2 Fatigue Analysis. We use the band pass filter (25 to 500 Hz) to filter the recorded EMG signals and apply
the conventional fast Fourier transformation to convert the signal from time domain to power spectrum domain
to calculate the spectral density. Previous studies have shown that the mean and median frequencies of the
surface EMG signals decrease as the muscle contraction duration increases, and therefore can be used to measure
the fatigue in isometric contraction [44]. To address the inadequate sensitivity of the transitional fatigue indices
during dynamic contractions, increased fatigue can be measured by the highly sensitive Dimitrov spectral fatigue
indices (FI,smk) [46]. These indices are the features extracted from the spectral moments computed from the
EMG power-spectral density (PSD) function. The spectral moment (M) can be calculated using equation (4):

fmax
Me= | rtesnds @

where My indicates the spectral moment, f is the frequency, fiqx and fi,i, represent the bandwidth of the signal
and PS(f) is the EMG power-frequency spectrum as a function of frequency and k is the chosen order. The
Dimitrov spectral fatigue indices are represented by the ratio of the spectral moments of order (-1) and order k
which is in the range of 2-5:

M S s(ar
Flygmik = — = k=2 to 5 (5)

Myl prpsf)af
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The fifth-order FI,,,5 data was selected for generating the objective physical fatigue index since the variation
across the repetitions tended to be wider when the order k of the normalizing spectral moment was higher. The
relative changes in the fatigue index is calculated against the first repetition within the trial. This means the
fatigue index will always start with 100 % and the values increase with increasing fatigue.

FIZsmS
Objective Fatigue Index = ——— X 100% ,n = repetition number in the trial (6)
nsm5
Figure 7(b) shows the example output of the fatigue index for the muscle on the left and right sides of the body
(blue and red lines in the graph on bottom right).

3.5.3 Pilot-Testing of the Objective Physical Fatigue Assessment.

- For verification of our methods with literature, we evaluated the effectiveness of the objective indices
for measuring fatigue using a validation test. Participants (N = 5) were instructed to perform single joint
movements like Biceps curls and side lateral raises using their dominant hand to lift a dumbbell (9.5 kg)
for 10 repetitions (left in Figure 8), which was expected to fatigue their Bicep and lateral Deltoid in the
signals detected by the surface EMG sensors attached. As the fatigue increases, the static fatigue index
(for isometric contraction using mean frequencies, Fp,eqn) decreases (Figure 8(a) and 8(c) shows the results
from a representative participant) while the dynamic fatigue index (for the dynamic contraction using
Dimitrov spectral indices, FI,,sm5) increases (Figure 8(b) and 8(d) shows the results from a representative
participant) that those indices share the same trend with the results reported in previous literature [44, 46].
We choose the dynamic fatigue index based on spectral indices as it is more sensitive and was reported to
be more suitable for measuring the fatigue caused due to motion.
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Fig. 8. Objective physical fatigue indices validation.

- For identification of fatigue threshold, one important issue in fatigue assessment is to determine an
appropriate fatigue threshold which may vary largely across muscle groups. Prior research chose to use a
certain percentage of MVC value as the fatigue threshold, which was expected to be suitable for their tasks.
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Our robot teleoperation involves tasks that utilize mostly upper body. Thus, we propose an experimental
approach to determine the fatigue threshold for each targeted muscle. The participants (two male and one
female) were instructed to perform a series of isolation exercises (pictured to the left in Figure 9) using their
dominant and non-dominant hand. The participants had to lift a dumbbell (20 percent of the body weight
for the trapezius; 5 percent of the body weight for the anterior, lateral, posterior deltoid, biceps and forearm;
no extra load for lower back) for 3 sets with 12 repetitions each. They can rest between each repetition for
one minute. After the weight-lifting experiment, we asked the participants to point out the specific session
and repetition at which they struggled to continue the task. On average, the participants pointed to the 9"
repetition in the third set as the fatigue threshold. The ratio (in terms of percentage) between the spectral
indices of 9th repetition and the 1st repetition will be used as the threshold for identifying the onset of the
physical fatigue. The muscle-specific fatigue threshold is defined as the mean of the index value identified
for the dominant and non-dominant hand (Figure 9 in the right).

Shrug Dumbbell Raise Biceps Curl Reverse Wrist Curl

Male Female
Deltoid (Anterior) 150.68 123.64
Deltoid (Lateral) 171.30 137.95
Deltoid (Posterior) 199.85 192.33
Back Extension Biceps 179.88  201.53
N Trapezius 200.65 181.94
a Lower Back 268.24 248.82
R Forearm 171.04 150.79

20% of the BW 5% of the BW No Extra Load

Fig. 9. A series of isolation exercises (left) and the muscle-specific fatigue threshold (right). Bodyweight is denoted as BW in
the figure.

4 USER STUDY |: TELEOPERATION INTERFACES COMPARISON

To appraise the usability of the general to specific teleoperation interface evaluation framework, we conducted a
series of user studies to validate each component step-by-step. In the first user study, we present the usage of
the general pre-defined metrics to evaluate three representative designs of contemporary robot teleoperation
interfaces. We tried to find a suitable teleoperation interface that is intuitive and easy to learn for the primary
users (nursing workers) who usually do not have an engineering background.

4.1 Experimental Setup

First the three teleoperation interfaces are compared to find the best suited interface for the nursing workers.
This experiment requires the subject to control the robot platform using the gamepad, stylus and motion capture
interfaces (See Figure 10). The teleoperator receive a real time video stream from the fish-eye camera of the
robot workspace. The user performs different tasks that involve them manipulating different objects placed
on a table in two different experiment stages, the training and performance phase (refer Section 4.4). The task
performance time, number and type of errors and number of mode switches were recorded. The responses to
arithmetic questions asked during the performance phase are also recorded. After all the tasks, the user answers
a survey that captures the user’s preferences for the different interfaces.
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Fig. 10. Nursing robot teleoperation via: (a) Gaempad (b) Stylus-Style Joysticks and (c) Motion Mapping Interface.

4.2 Participants

Our user study involves (N=8) nursing students (eight female, 19-21 years old) who represent the future users for
the teleoperation interface. We also recruited three registered nurses to get their feedback and attitude towards
the use of tele-nursing assistive robots on a daily basis. All the participants have experience working in healthcare
and are familiar with the hospital environment. They also do not have any robotics or engineering expertise and
have almost zero gaming experience with the gamepad controller. The experimental protocol was reviewed and
approved by the Worcester Polytechnic Institute Institutional Review Board.

4.3 Tasks

The participants in the user study performed two tasks (see Figure 11). The testing task (left) is to collect an
individual object on the counter workspace and is designed to examine the user’s learning effort and the outcome
of practice time for each interface. This task is performed both before and after the practice session to evaluate the
learning outcome. The evaluation task (right) is to clean and organize several objects scattered in the workspace
and is designed to evaluate the interface usability. Our prior study shows that most of the tele-nursing tasks
require the users to perform: 1) free control of reaching-to-grasp rigid and deformable objects, 2) free control
to move the mobile base to facilitate manipulation, and 3) point control to facilitate engaging/disengaging the
interface or mode switching. Based on this finding, we set up a “pseudo-task” which incorporates these necessary
teleoperation skills in the context of workspace cleaning and organization by a nurse. Specifically, the user
will teleoperate the nursing robot to collect several rigid and deformable objects randomly placed on a counter
workspace and sort them into two separate bins. This task integrates the free control of precise and gross
manipulation in a cluttered environment, locomotion, and point control of robot states, all of which are necessary
primitive robot control skills for tele-nursing tasks.

4.4  Experimental Procedure

The user study consists of a Training Phase and a Performance Phase. The order of interfaces were randomized for
each participant. For each user interface, the experimenter introduced and demonstrated the interface functions.
In the Training Phase, the subject performs the testing task described in the previous section twice. The two trials
of testing task is separated by a practice session of 15 minutes. The participants can stop the practice session
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Fig. 11. The tasks of the user study include collecting a single object (left), and cleaning and organizing a counter workspace
(right).

anytime they feel comfortable with the interface and are confident in performing the second trial of the training
task. The time consumed for practice and the change in performance between the two trials of the testing task are
used in evaluating the learning effort associated with the interface. The participants move on to the Performance
Phase after completing the training phase. In the Performance Phase the users will perform the evaluation task,
i.e,, collecting 3 grocery items and 3 pieces of clothing, and sorting them into two baskets. The participants
were required to answer two-digit arithmetic problems continuously for the entirety of the task (as in [30]). This
secondary task helps identify the mental effort required for decision-making during robot teleoperation and
provides an objective measurement of the cognitive workload of the teleoperators.

4.5 Data Analysis and Results

We used a system of objective metrics to evaluate the usability of each interface, in terms of task performance,
user workload and learning efforts. For task performance, we measure the completion time for the evaluation task,
number of mode switches during teleoperation, as well as the number and types of errors. The types of errors
we consider include: 1) dropping or knocking over objects, 2) inappropriate grasps (failed attempts at grasping)
and 3) collisions with the table. For operation workload, we record the time taken to answer each arithmetic
question while teleoperating. The longer response time indicates that the user incurs a higher cognitive workload
for robot teleoperation, and therefore has less capacity for the other aspects of patient-caring (e.g. professional
decision-making, patient information inquiry and emotional care). For learning effort, we consider the learning
outcome (indicated by the completion time, numbers of mode switches and errors for the testing task) because
of the practice time used for that interface. Harder interfaces require longer practice times and show greater
differences between the two trials of the testing task. In addition to the objective metrics, we use the user’s
responses to NASA-TLX questionnaires (before and after the testing task, as well as after the evaluation task) as
the subjective measurement of their performance and workload. The participants also answer a comprehensive
custom questionnaire at the end of the user study to evaluate the influence of interface design features.

4.5.1 Learning Effort and Outcome. Figure 12(a) shows the comparison of interfaces in terms of learning
effort. The dotted line indicates the mean of the maximum and minimum value from all participants for both
learning effort and outcome. For N=8 nursing students, the motion mapping interface (Mocap) has a better
learning outcome and lower learning effort, compared to the other interfaces. Each ellipse plots the mean and
standard deviation of the testing task completion time with respect to the mean and standard deviation of the
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user’s practice time. The red, green, and blue colors are for the motion mapping interface (Mocap), stylus and
gamepad, respectively. The learning outcomes can be found by comparing the ellipses of the same color. On
average, the nursing students spent less time (219+39 sec) to learn the Mocap interface than the gamepad (792+57
sec) and stylus device (870+20 sec) interfaces. ANOVA analysis showed that: 1) The learning effort for Mocap
was significantly lower than that for the gamepad (F(2,21)=71.137, p<0.001) and stylus interfaces (F(2,21)=71.137,
p<0.001); 2) The Mocap interface also had the least completion time (61+6.7 sec) after practice for the testing
task, followed by the gamepad (90+8.2 sec), and then the stylus (228+57 sec); 3) In the evaluation task, the
Mocap interface also has a significantly faster completion time than the gamepad (F(1,14)=6.979, p<0.05) and
stylus interfaces (F(1,14)=8.296, p<0.05). We also noticed that the completion time for the testing task before the
practice was significantly slower than after practice, when using the gamepad (F(1,14)=5.624, p<0.05) and stylus
device (F(1,14)=5.442, p<0.05). The significant effects of practice for these two interfaces were confirmed by the
participants’ reports in the post-study interview. The effect of practice is also more significant for the gamepad
than for the stylus interface, which may be because the gamepad is a widely used gaming interface for the public.
However, the participants also report that it is difficult to remember the many different functions associated with
the gamepad buttons. On the other hand, the Mocap interface has a low learning effort and the trivial effect of
practice indicates that this interface is the most intuitive one for nursing robot teleoperation.
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Fig. 12. (a) Practice time vs Completion time for nursing students. (b) Comparison of number of errors, interactions, and
subjective workload (NASA-TLX) across interfaces for nursing students.

We further use the weighted NASA-TLX scores to measure the subjective workload before and after practice
with the interface. The weighting coefficients were selected as follows: mental demand=5, physical demand=4,
temporal demand=0, performance=1, effort=3, frustration=2. In Figure 12(b), the Interactions field refers to the
number of times a mode has to be switched while using the interface. A switch from controlling the base of
the robot to the right arm of the robot is considered as an interaction when evaluating the gamepad and stylus
interfaces. However, for the Mocap interface since the operator can control all aspects of the robot functionality
at the same time, this part of the graph is empty as no interactions/mode switching is required. The comparison
of all the interfaces for all the nursing students show no significant difference in the number of error and
interactions and subjective workload during the testing task performed before and after practice. However, the
motion mapping interface allowed users to control the robot arm and mobile base simultaneously eliminating the
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complexity of mode switches that resulted in lower total subjective workload (23+4.7) than gamepad (29+3.8)
and stylus (40+6.2).

4.5.2 Task Performance. Figure 13(a) compares the performance in the evaluation tasks among all the in-
terfaces, using the following objective metrics: 1) the completion time of evaluation task, and 2) the response
time for each math question (i.e., the secondary task). The dotted line indicated the mean of the maximum and
minimum value from all participants for both cognitive workload and performance. For nursing students, the
task completion time using the Mocap interface was less (404+50 sec) than the gamepad (745+176 sec) and stylus
(1367+165 sec). ANOVA analysis shows the significant differences in completion time between Mocap and stylus
(F(2,21)=11.667, p<0.001) and between gamepad and stylus device (F(2,21)=11.667, p=0.015). The results also
indicates that the subjects took lesser time to solve the arithmetic questions while using the Mocap interface
(12.8+1.6) than the gamepad (16+1.5) and stylus device (20.3+2.9).
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Fig. 13. (a) Completion time vs Cognitive workload based on the time per question answered for nursing students. (b)
Number of interactions and type of errors for nursing students.

Figure 13(b) further compares the interfaces by the number of errors and mode switches for the evaluating
task. The nursing students have fewer total operation errors using Mocap interfaces (3.1+0.6), compared to using
the gamepad (8.6+1.7) and stylus (6.6+1.7). The ANOVA analysis indicated significant differences between the
Mocap interface and gamepad (F(2,21)=3.513, p<0.05). The breaking-down of error types shows that the Mocap
and gamepad interfaces tend to cause more inappropriate grasps. Our post-study interviews show that this is due
to the lack of depth perception in the visual feedback. Additionally, the stylus interface requires significantly
more mode switches during operation than gamepad because the user has only one button to cycle between the
hand, arm and base control. The Mocap interface does not need any mode switching as all robot components can
be controlled simultaneously via whole-body motion mapping.

4.5.3 Subjective Operation Workload. As seen in Figure 14(a), the total workload while teleoperating the
robot using the Mocap interface was lower (37.4+4.2) than the gamepad (45.8+4.1) and stylus device (56.1+5.8)
among nursing students. The ANOVA analysis on the user-reported feedback regarding mental demand shows
that the Mocap interface demands significantly lower mental effort than the gamepad (F(2,21)=9.828, p<0.05) and
stylus (F(2,21)=9.828, p<0.001).
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Total Workload (NASA-TLX) Gamepad  Stylus Mocap  (a) ||7 (b)
80 Mental Demand ~ 64446.9  75.6+6.9 362454 6
60 Physical Demand ~ 17.5+2.8 269+7.1 43.8+7.8 i
Temporal Demand 344484 32548 23.1+5.9 3
40 Performance 40+9.4 419459 32.5+4 2
20 Effort 53.146.6  68.1%8.7 38.1%5.2 1 H H ﬂ
0 Frustration 47.5+6.3 55475 28.8+6.1 0 GSMGSMGSMGSMG S M
Gamepad ~ Stylus Mocap  Weighted Workload 45.8+4.1 56.1+5.8 37.4+4.2 Ml M2 M3 M4 M5

Fig. 14. (a) Subjective workload (NASA-TLX) for nursing students. (b) Users’ preference rating for the gamepad (G), stylus
device (S) and motion mapping interface (M) based on controllability (M1), efficiency (M2), accuracy (M3), mental demand
(M4) and physical demand (M5).

4.5.4 Users’ Preference. The survey feedback from the customized questionnaire is shown in Figure 14(b). All
nursing students chose the human motion mapping interface as the easiest one to learn and preferred using it as
the robot teleoperation interface for future use. Moreover, they reported that the motion mapping interface had
better controllability, efficiency, accuracy, and lower mental demand but required greater physical effort.

Learning Effort

Completion Time (s) Errors Mode Switch Overall NASA-TLX
Nurses  Practice Time (s) Before Practice  After Practice  Before Practice  After Practice  Before Practice  After Practice  Before Practice  After Practice
Gamepad
1 900 157 177 2 4 8 14 88 55
2 900 372 201 8 4 14 10 43 31
3 900 231 414 2 11 1 12 42 47
Stylus Devices
1 900 915 213 10 2 33 6 100 80
2 900 259 212 1 1 9 12 38 34
3 900 356 153 0 0 12 7 37 22
Motion Mapping

1 420 54 64 0 0 0 0 12 21
2 292 76 35 0 0 0 0 44 29
3 472 63 44 1 1 0 0 28 26

Table 4. Learning effort and outcome of registered nurses.

4.5.5 Registered Nurses’ Performance and Feedback. Table 4 shows the practice time, learning effort
(testing task completion time, number of error and mode switches) and subjective workload for three registered
nurses across all interfaces. Due to the small population, we are not able to conclude anything significant.
However, the practice time and testing task completion time after practice indicates that: 1) registered nurses
require more effort to learn the interface, particularly for gamepad and stylus indicated by the greater usage of
the practice time; 2) for the gamepad interface, practicing the interface does not have as much an impact as it had
for the nursing students; 3) the motion mapping interface is still the easiest to learn among all the interfaces for
elder nursing workers as identified by the lower practice time, testing task completion time and errors during
teleoperation; (4) the overall weighted workload after practice tends to be lower while using motion mapping
interface.

For registered nurses, Figure 15(a) shows the performance in the evaluation tasks among all the interfaces
using the same metrics used for the nursing students as described in Section 4.5.2. The motion mapping interface
outperforms the gamepad and stylus devices in terms of faster task completion time, fewer errors and mode
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Task Performance (a)
Nurses Completion Time (s) Errors Mode Switch Secondary Task (s)
Gamepad
1 1150 7 36 46
2 579 5 20 17.5
3 1360 10 38 309
Stylus Devices
1 1903 2 55 50.1
2 1624 7 56 25.4
3 1474 7 64 32
Motion Mapping
1 400 1 0 14.8
2 325 3 0 15.5
3 377 4 0 17.1
; (b)
Total Workload (NASA-TLX) Registered Nurses
100 Gamepad  Stylus Mocap
80 Mental Demand 80+173.2 75118 40+177.3
- Physical Demand 4030 554229 5045
Temporal Demand 60120 50425 35+13.2
40 Performance 554173 70415 3010
20 Effort 60+21.7  80+20 35+13.2
0 Frustration 60+26.4 50425 25+8.6
Gamepad Stylus Mocap Weighted Workload 61+19 67+18.7 39+7.2

Fig. 15. (a) Task performance of registered nurses. (b) Subjective workload (NASA-TLX) for registered nurses.

switches. The secondary task results also demonstrate that the nurses can solve the arithmetic questions faster
while using the motion mapping interface than the gamepad and stylus devices. The total workload while
teleoperating the robot using the motion mapping interface was lower than the gamepad and stylus device
(Figure 15(b)) and the motion mapping interface demands lower mental effort than the gamepad and stylus device
interfaces based on the user-reported feedback. All registered nurses chose the motion mapping interface as the
most intuitive and easiest to learn. They also preferred using it for nursing assistive robot teleoperation on a daily
basis to help them with routine tasks. Furthermore, they also reported that the motion mapping interface had
better controllability, efficiency, accuracy and lower cognitive workload but were concerned about the heavier
physical demand, especially for extended usage.

5 USER STUDY II: PHYSICAL WORKLOAD ANALYSIS

The results from User Study I show that teleoperating the robot via human motion mapping interface outperforms
the handheld gamepad and stylus-based devices in terms of better task performance and lower learning effort as
well as cognitive workload. However, non-trivial physical fatigue may prevent such interfaces from being widely
used for robot teleoperation, particularly for a daily usage made of long work hours. In the second user study,
we propose the objective assessment of muscle effort and physical fatigue while teleoperating the robot using
surface EMG to investigate the fatigue-causing components. The work presented in this section is an extension
of our prior work in [104]. However unlike the work presented in [104] where the fatigue threshold was set
constant across all the muscle groups, in this analysis the fatigue threshold was determined based on the specific
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muscle group, helping us develop more muscle specific fatigue indices. This gave us different results as will be
highlighted in Section 5.5.2.

5.1 Experimental Setup

The experimental setup for this user study is illustrated in the left side of the Figure 7, where the participant
was asked to teleoperate the robot by standing in the center of the motion capture workspace (10 Vero cameras
coupled with the Nexus platform from VICON). The real-time visual feedback was projected in front of the
participant with the default view being the feed from the fisheye camera. The participant can also cycle through
two cameras places on the wrists of the robot arms to provide depth perception.

During the experiment, the Vicon motion capture system records human motion at 100 Hz and streams human
motion for robot control at 50 Hz. As shown in Figure 16, wireless sSEMG sensors (Trigno’™ from Delsys Inc.) are
used to record the EMG signals at 1,000 Hz of 14 individual muscles (Anterior, Lateral and Posterior Deltoids,
Biceps, Brachioradialis, Trapezius and Erector Spinae Muscles of the left and right sides of the body). These 14
muscle groups are most involved in controlling the motion of the upper body.

Right Side View Front View ‘ ‘ Back View ‘

Trapezius

Posterior Deltoid

Lateral Deltoid

Fig. 16. Surface EMG placement.

5.2 Participants and Preparation

Our experiment involved 6 male (25 + 3 years old) and 2 female participants (28—29 years old). Seven participants
had engineering-related background and one female participant had no experience in engineering or robot control.
All the participants had a normal skeletal muscle system in the upper extremities and normal trunk function. The
experimental protocol was approved by the Worcester Polytechnic Institute Institutional Review Board.

After the EMG sensor attachment, all the participants were asked to perform the set of subject-specific
maximum voluntary contraction test to record the maximum force generated by each targeted muscle. The MVC
test involved a series of single-joint motion to isolate the contraction from each muscle. The experimenter tries to
resist the subject’s single joint motion during the MVC test by applying a resisting force. The MVC movements
include: (1) shoulder front raise, (2) shoulder lateral raise, (3) shoulder reverse fly, (4) shoulder shrug, (5) biceps
curl, (6) wrist extension and (7) lower back extension. These MVC signals served as the baseline to normalize the
EMG signal recorded during the task performance.
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5.3 Tasks

As shown in Figure 17, the participants are instructed to perform three robot teleoperation tasks in the experiment,
namely: (1) Collecting: collect six scattered grocery items on a large table into a container; (2) Stacking: stack food
containers in the instructed order; (3) Laundry: collect towels and blankets (3 pieces of laundry) into a laundry
basket and take them out in a pre-defined sequence. Each participant performs each task for three times. For
each iteration of each task, the items were replaced in the same position to ensure that the tasks were executed
in largely the same manner. The first repetition of each task was used to analyze the muscle usage during the
robot teleoperation.

Fig. 17. Robot teleoperation tasks: (a) collecting, (b) stacking and (c) laundry.

5.4 Experimental Procedure

At the start of the user study, each participant was briefed about the capabilities of the robot platform, the way
to use the motion mapping interface and the objectives of the experiment. Each participant was attached with
surface EMG sensors on the muscle groups as mentioned in Section 5.1 and reflective markers for tracking
human motion. Then, we performed a MVC test for each participant to normalize the EMG signal as described in
Section 5.2.

Before the experiment, participants could become familiar with the TRINA system through a training session.
Participants first performed a quick practice session that lets them use the functions listed in Table 3. The training
tasks were similar to the performance tasks described in Section 5.3 but with fewer items. They could practice in
this training session until they felt confident and comfortable using the motion mapping interface independently
to teleoperate the robot to accomplish the tasks.

The order of the tasks was randomized, and participants took a minute’s break after finishing each task iteration.
They moved on to the next task only if they felt completely rested and they felt no fatigue in any area of their body.
After accomplishing the experiment, each participant answered a custom questionnaire. The task completion
time for each task was also monitored.

5.5 Data Analysis and Results

5.5.1 Muscle Effort Analysis. The muscle effort is analysed using the methodology described in Section 3.5.1.
Figure 18 highlights how long the different muscle groups were contracted as a percentage of task completion
time while performing different trials of the Collecting, Stacking and Laundry tasks averaged across all the
participants. The lateral and anterior deltoid muscles, bicep muscles, trapezius muscles and forearm muscles
showed considerable activity during the execution of the teleoperation tasks.
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As seen in Figure 19, the subjects were separated into two groups. P1-P3 were users who were familiar with
the teleoperation interface while P4-P8 were users who were relative novices to teleoperation. The results
show that familiarity with the teleoperation interface reduces task completion time. The effect of familiarity
with teleoperation on task performance requires further investigation with greater number of subjects, but the
preliminary results show that it has a positive effect on task completion times.
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Fig. 18. The muscle effort across all muscle groups averaged across all the participants for the three trials and three tasks.
Muscle effort is identified as the percentage of task completion time that the muscle is contracted.
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Fig. 19. The task completion time across usage groups and tasks.

5.5.2 Physical Fatigue Analysis. We compared the physical fatigue level for all the muscle groups using the
methodology described in Section 3.5.2. As shown in Figure 20 for novice and expert representative participant,
the area in red in the figure indicates the time when the fatigue index is above the fatigue threshold for the
particular muscle identified using the technique described in Section 3.5.3. It must be noted that in our previous
work [104] the fatigue threshold was set constant across all the muscle groups whereas in this analysis the fatigue
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threshold was determined based on the specific muscle group. As a result the Anterior and Lateral Deltoids were
found to have been muscle groups susceptible to physical fatigue in addition to the Biceps and Trapezius. The
novice and experts groups were created based on the subject’s familiarity with teleoperation as described in
Section 5.5.1. This user study shows that physical fatigue developed in the users is lesser if the familiarity with
teleoperation is more. In Figure 21, it is clear that the novice users incur greater fatigue across the Anterior and
Lateral Deltoids, Biceps, Trapezius and Forearms while the expert users show considerably less fatigue across
these same muscle groups. The users might become more efficient with their motions with increased familiarity.
Similar to identifying how task completion time is related to interface familiarity, further testing is required to
identify how physical fatigue of the muscles reduces with interface familiarity.
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Fig. 20. Representative participant result of physical fatigue across tasks and muscle groups of the (a) left anterior deltoid,
(b) right anterior deltoid, (c) left lateral deltoid, (d) right lateral deltoid, (e) left posterior deltoid, (f) right posterior deltoid, (g)
left biceps, (h) right biceps; (i) left trapezius, (j) right trapezius, (k) left lower back, (I) right lower back, (m) left forearm and
(n) right forearm.
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Fig. 21. The duration of muscle fatigue across all three trials as a percentage of the total task performance time.

5.5.3 Survey Results. We surveyed the level of physical demand for each task, and the impact of several
possible fatigue-causing factors. The reported physical demand of the three tasks is ordered as: Stacking >
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Collecting > Laundry, corresponding to the amount of precise manipulation and active perception each task
requires. The teleoperation actions that cause most fatigue (above a 3 rating out of 5 in the survey) include: (a)
holding a steady pose of the wrist camera for observation, (b) aligning objects, (c) raising arm up for a long time
during teleoperation, (d) grasping small objects, and (e) adjusting camera view for the best perspective. The less
fatigue-causing actions (below 3 in rating out of 5) include: (f) picking objects from the top, (g) grasping large
objects, (h) picking up objects from the side, (i) placing objects, (j) carrying grasped objects, and (k) lifting leg to
change camera. The results confirm the fatigue-causing task characteristics and teleoperation actions, implied in
the muscle effort and fatigue analysis.

6 USER STUDY IIl: SHARED AUTONOMY EVALUATION

The results from User Study II identify the actions that cause the most physical fatigue, namely steady arm
postures for wrist camera control and precise manipulation for grasping objects. This physical fatigue as previously
mentioned will deter future adoption of teleoperation techniques and needs to be addressed. In this study, an
interface was developed that automated the robotic grasping of objects. This will eliminate the need for depth
perception through wrist camera control and reduce the teleoperator’s effort for manipulation. In our prior
work [105], we identified the impact of automation through reduced muscle activity. In this paper, we further
investigate the physical fatigue developed across all the muscle groups in the dominant and non-dominant arms
while teleoperating with and without teleoperation assistance (shared autonomy) which can be used to objectively
validate the effectiveness of interface design.

6.1 Experimental Setup

The experimental setup in this user study is similar to the previous one (see Section 5.1), where the participant
teleoperated the robot by standing in the motion capture workspace, with the real-time fisheye camera feed
of the workspace projected in front of them (see the left half of Figure 7). In addition to visual feedback, we
also provided the camera feed from the Kinect which provides the detected objects and the location of the
teleoperation assistance zone for the users (described in Section 3.3). Audio cues are also played when the robot
end-effector is within the TAZ.

Wireless SEMG sensors are used to monitor muscle activity during the experiments to evaluate the physical
effort. We focused on 10 individual muscles, namely the Anterior and Lateral fibers of the Deltoid, the Biceps, the
Brachioradialis (Forearm) and the Trapezius of the left and right sides of the body (see Figure 16). Comparing
muscle activity with and without teleoperation helps us understand the impact of teleoperation assistance on the
teleoperation experience.

6.2 Participants and Preparations

Our experiment included 6 male (ranging from 22 to 25 years old) and 2 female participants (29 and 31 years old).
The Six male participants had engineering-related background and both female participants had no experience in
engineering or robot control. All the participants had a normal skeletal muscle system in the upper extremities
and normal trunk function. The experimental protocol was approved by the Worcester Polytechnic Institute
Institutional Review Board. Out of the 8 participants in this experiment, 1 male and 1 female participants had also
participated in the User Study II mentioned in Section 5. Prior to the start of each experiment, all participants
also went through a training stage where they were allowed to become familiar with the interface and thus the
past experiences of some participants did not inherently make them better than the participants without prior
experiences.
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After the EMG sensor attachment, all the participants were asked to perform the subject-specific maximum
voluntary contraction test to record the maximum force generated by each targeted muscle. The MVC test was
conducted similar to the exercise done in Section 5.4.

6.3 Tasks

As shown in Figure 22, the participants performed the following tasks: (a) reaching to grasp an individual object,
and (b) grasping multiple objects (bottles and cups) in a cluttered workspace. User Study II has indicated that
precise manipulation is one of the most fatigue-causing factors in teleoperation. We choose these tasks because
precise orientation control in reaching-to-grasp is challenging for the operators during teleoperation and requires
careful design of teleoperation interface assistance (e.g., [88]).

Fig. 22. Teleoperation tasks: (a) reaching-to-grasp an individual object; (b) collecting multiple objects in a cluttered counter
workspace.

6.4 Experimental Procedure

Training. Each participant undergoes a training session to get familiar with the teleoperation interface, the
autonomous grasping function and the robot. The training task is to pick up a bottle on the counter and place it
in a basket. The participants can practice in this training session until they feel confident and comfortable to use
the teleoperation interface and assistive function.

Session 1 — Object Grasping. In this session, a participant was instructed to reach and grab a bottle placed on
the counter (Figure 22(a)). The participants were asked to grab the object for five repetitions each, under the
following conditions: (a) using their dominant and non-dominant arms; (b) with and without the teleoperation
assistance (Total number of trials = 5 repetitions X 2 arms X 2 modes). The order of arms and the availability
of assistance was randomized. All the repetitions of the object grasping task had the same initial robot arm
configuration, initial and final location of the object. The participants were required to pick up and place the
object in a stable manner. During each trial, we record the time for completing the task, the number of times the
object was knocked down and the EMG signal of the muscle groups for physical workload analysis (described in
Section 3.5). The participants also answered survey questions about their teleoperation experience, in the NASA
Task Load Index (NASA-TLX) format.
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Session 2 — Cleaning the Workspace. In this session, the user has to pick up three cylindrical objects in a
cluttered workspace and place it in a basket (see Figure 22(b)). This task was to simulate a real-world scenario
in which a nursing robot needs to clean and organize a workspace with medical supplies, patient room debris
and laundry (based on the tasks identified in [103]). The participant could choose between picking up the object
manually or using teleoperation assistance. If the object was dropped, they are allowed to pick it up unless the
object falls off the counter. We counted the number of times that the user uses teleoperation assistance. We also
scored the participant’s task performance in the following way: (1) +10 points for picking up each object and
placing it in the basket; (2) -20 points for knocking an object down or dropping an object when moving it to the
basket. The scoring system helps compare quantitatively the performance of the participants who use assistance
and don’t use assistance by comparing the scores they were able to achieve.

6.5 Data Analysis and Results

Our analysis of the sSEMG data aims to evaluate physical workload (muscle effort and fatigue) during teleoperation
using motion mapping with and without the assistance feature. Figure 7 illustrates our data analysis process
where we have determined individual muscle contraction duration and individual physical fatigue level.

We compared the physical efforts, task completion time and numbers of errorsin Session 1 (object grasping task),
to objectively and quantitatively assess the teleoperators’ physical workload reduction when using teleoperation
assistance. We further use the results from the NASA-TLX survey and customized questionnaires in Session 1
and 2 to assess their perception of workload, preference for teleoperation assistance and their change in attitude
toward teleoperated robot technologies.

6.5.1 Performance and Efforts of the Object Grasping Task.

Objective Indices. We analyzed the recorded data to evaluate the teleoperator’s efficiency, accuracy and effort
to perform the object grasping task in Experiment Session 1. For Efficiency (T) and Accuracy (A), we averaged
task completion time and the number of errors across all five repetitions in the four discrete conditions (with
and without assistance, and for both the dominant and non-dominant hands). The Effort (E) is measured by
the average contraction duration for all the muscle groups. For each participant, these three indices were then
normalized to range between 0 and 1, with respect to the difference between maximum and minimum values
across all the conditions. Figure 23 compares the performance Radar Charts across participants. Overall, the
teleoperation assistance improves the task Efficiency and Accuracy for all the participants and for teleoperation
using both the non-dominant and dominant arms. The reduction of Effort is more prominent and consistent for
the non-dominant arm across the teleoperators.

Our ANOVA analysis further reveals the improvement in task Efficiency and Accuracy when using teleoperation
assistance for the object grasping task. This can be seen by the recorded task completion times (non-dominant
arm: F(1,12)= 33.87,P< 0.01; dominant arm: F(1,12)= 52.35, P< 0.01), number of errors (non-dominant arm: F(1,12)=
6.02, P< 0.05; dominant arm: F(1,12)= 9.85, P< 0.01) and duration of muscle contraction (non-dominant arm:
F(1,12)= 5.93, P< 0.05; dominant arm: F(1,12)= 7.93, P< 0.05). Overall, grasping without teleoperation assistance
took 13.3 seconds longer for the non-dominant arm and 11.9 seconds longer for the dominant arm on average.
This is mostly because the teleoperation assistance reduced the risk of knocking down the object during grasping
and the effort for precise manipulation.

We further compared the muscle efforts and physical fatigue between teleoperation with and without the
assistance across all muscle groups for each participant. The different levels of muscle effort was calculated
using the Kullback-Leibler (KL) divergence measurement based on muscle contraction duration and all the
results were normalized by the maximum value. As shown in Figure 24, most of the muscles had a significant
reduction in physical effort (marked as green) with a higher level of relaxation for the deltoids and biceps of the
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Fig. 23. Performance evaluation procedure and summary for object grasping across all subjects.

dominant/non-dominant hand. It is noted that the trapezius muscle however has reduced reduction (marked as
white) or increased physical effort as shown by the red marks for 2 participants. Overall, the assistance function
performed equally effectively on both arms for all participants.
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Fig. 24. Comparison of physical effort across all muscles with dominant (D) and non-dominant (ND) hand.

The level of physical fatigue was computed using the fatigue index (described in Section 3.5.2) for all repetitions.
Figure 25 presents the physical fatigue developed across all the muscle groups for a representative participant.
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The magnitude of the fatigue index was lower while using the teleoperation assistance for most of the repetitions
for the both dominant and non-dominant arms. The duration for each repetition of the task was relatively small
and hence the fatigue index did not pass the fatigue threshold. However, these results can be used to predict the
potential physical fatigue developed due to extended teleoperation duration and is a part of our planned future
work. The area under the curve represents the total accumulated fatigue. As shown in Figure 26(a), most of the
muscles had significantly less accumulated fatigue (non-dominant arm: anterior and lateral Deltoid, Trapezius
and Forearm, P< 0.01; dominant arm: anterior and lateral Deltoid and Forearm, P< 0.01) while using teleoperation
assistance.
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Fig. 25. Representative participant result of physical fatigue across all muscles with dominant (D) and non-dominant (ND)
hand.
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Fig. 26. (a) Comparison of accumulated fatigue across all muscles in the dominant (D) and non-dominant (ND) hands. (b)
Subjective workload from weighted NASA-TLX scores.

Subjective Indices. We also used the weighted NASA-TLX scores to evaluate the teleoperators’ perception
of task performance and workload. The weighting coefficients were selected as follows: mental demand=4,
physical demand=5, temporal demand=0, performance=2, effort=3, frustration=1. Shown in Figure 26(b), the
teleoperators have answered the survey in support of the usability of the assistance function. Participants reported
the significant lower workload while using the teleoperation assistance for the non-dominant (P< 0.01) and
dominant (P< 0.05) hands. The lower workload rating for the assistance function is understandable as there was
no errors during operation and the need to manually execute the precise manipulation to perform grasping is
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eliminated. Additionally, as the assistance function reduces the duration of muscle contraction the mental fatigue
incurred due to teleoperation also reduces. As a result, the operation times are reduced as there are no errors and
user motion are more efficient. The users may have reported reduced physical workload in their surveys because
of these advantages.

6.5.2 Preference for the Teleoperation Assistance. In Experiment Session 2, participants could choose
whether or not to use the teleoperation assistance to pick and place objects. As shown in Figure 27, we found
that (1) more participants prefer to use teleoperation assistance (16 times out of 24), (2) participants who used
assistance more (more than two times out of three, P4-P8) had higher scores than the participants who performed
the tasks more manually (P1-P3), (3) participants who completed the tasks more manually (55.3+7.4) reported
higher subjective workload than using assistance (24.6+6.8).
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Fig. 27. Performance of score system for collecting three objects.

After Experiment Session 2, participants rated in hindsight their preference for teleoperation assistance and
manual control during robot teleoperation on a 1-7 Likert scale with 1 being the least and 7 being the most in
terms of agreement. As there was a greater preference for the assistive function (6.6+0.6) than purely manual
control (3.6+0.7), the users were questioned on what factors made them favor teleoperation assistance more. They
point out that the teleoperation assistance can (1) increase the success rate; (2) reduce the task completion time;
(3) reduce the cognitive workload; and (4) reduce the physical workload. The results highlight the participant’s
belief that teleoperation assistance improves performance.

7 DISCUSSION

The paper fits our prior work on the assessment of physical fatigue for nursing robot teleoperation via motion
mapping [104] into a complete framework that integrates interface evaluation and evolution in a closed-loop and
potentially iterative process. Beyond the work presented in [104], we compared the motion mapping interface
with several widely used tele-medical robot interface modalities. To the best of our knowledge, this is the first
user study that evaluates nursing robot interfaces with nursing students and practitioners. We also design and
evaluate robot autonomy for reducing the physical fatigue in robot teleoperation [105], as physical fatigue is
a non-trivial problem when human motion tracking interfaces becomes more widely used for teleoperating
co-robots in the near future. In this paper, we further investigate the physical fatigue developed across all the
muscle groups in the dominant and non-dominant hand while teleoperating with and without teleoperation
assistance (shared autonomy) which can be used to objectively validate the effectiveness of interface design. In
the novel framework presented in this paper, we present a novel way of integrating the identification of the ideal
teleoperation interface for healthcare/nursing duties through user studies and interviews, using EMG signals to
identify the sources of physical discomfort and designing teleoperation assistance based on the findings from
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the EMG signals. In this section, we will further discuss the desirable characteristics of the three teleoperation
interfaces based on participant interviews and our experience with these interfaces, the impact of assistance
designed to reduce physical workload on the teleoperation experience and suitability of our evaluation metrics
for designing teleoperation interfaces for nursing applications.

7.1 Desirable Characteristics of Tele-nursing Robot Interface

Tele-nursing robots should preferably be efficient and accurate while being intuitive with bi-directional com-
munication. These components will increase the nursing workers’ preference for using such robots as their
proxy to perform repetitive daily tasks so that the risks of disease infection, physical strain and injuries are
reduced. However, the increased functionality also increases the complexity of the tele-nursing robot hard-
ware and software. It is important to implement a suitable control interface for nursing workers who usually
have limited experience with robot control or limited engineering expertise. Right now, the current and fu-
ture population of nursing workers is pre-dominantly made of women and the female to male ratio is about
9:1 [141, 156]. The average age of the current nursing population is around 49 years [123]. About 50% of full-
time nursing faculty are 50 years or older [24]. Research has consistently shown that women and elders tend
to perform worse in tasks that require spatial skill [106, 116], which is used to estimate robot teleoperation
skills [47, 85, 130, 167, 169]. Elders also tend to have less experience with newer technology [41, 54] and are less
willing to adopt them [29, 40, 51, 63, 64, 84, 111, 118]. Gender stereotypes are often perpetuated because women
may not be included in the design process or test populations [26, 76, 165]. The lack of transparent and intuitive
interfaces leads to not only low task performance of nursing tasks, but also creates intimidating cognitive and
physical efforts for the users. The negative experience with traditional and contemporary robot interfaces may
further reinforce the age and gender biases that discourage the current and future nursing workers to envision
the future of human-robot teaming in a nursing workplace, and integration of robots into nursing education.
We showed the advantage of using human motion mapping as the tele-nursing robot control interface by
comparing it with a handheld gamepad and stylus-based device (User Study I). The lower learning effort among
nursing workers new to robot operation and the intuitive freeform motion control could also make the teleop-
eration experience more immersive. Interestingly, from the post-study interview, the participants stated that
they felt the operational effort was reduced because they were able to simultaneously control manipulation and
navigation when using the motion mapping interface. The interviews also mentioned that participants appreciated
being able to control the robot arms to perform complex orientations with ease. It is understandable that in a
realistic patient-caring scenario, the nursing workers often need to take care of multiple tasks simultaneously.
Nevertheless, we noticed that the control interface using a gamepad is suitable for more structured tasks since it
can precisely and slowly control each motion for each degree of freedom. Interviews of the participants indicated
that the ability to use different buttons to control different functions of the robot made teleoperation simpler.
They felt this would prevent unintended motions of the arms or the base. The participants also stated that the
ability to move the robot in small discrete increments via the joystick input gave them more confidence while
performing delicate operations like picking up objects. This is unlike the motion control observed with the Vicon
interface and the stylus-based interface where precise control is harder to achieve. On the other hand, when
the workspace of the task is limited to a certain area, the stylus device will be a good fit to control the robot to
perform tasks with small movements. Additionally, the buttons on the stylus hardware helps integrate discretized
base and arm control while also enabling teleoperation through intuitive motion mapping of the stylus. Compared
to the gamepad interface the motion mapping of the stylus interface was reported as being more intuitive to use
according to some participant surveys. However, for nursing tasks that involve unstructured and large range of
movement (e.g. laundry in the cluttered environment), freeform control (human motion mapping) is preferred.

ACM Trans. Hum.-Robot Interact.



Intuitive, Efficient and Ergonomic Tele-Nursing Robot Interfaces: Design Evaluation and Evolution « 33

Our future work will explore other wearable/portable interfaces for whole-body motion mapping. Although
the motion capture systems are accurate for human motion tracking, the cost of hardware and effort required
to setup makes them less desirable. We also noticed that the teleoperation performance and nursing workers’
preference might be affected by lots of factors (e.g. age, gender, gaming experiences, spatial skills, etc.). We will
further investigate the impact of each identified factor to further the development of desirable teleoperation
interfaces. A user study will also be devised to study how immersive each teleoperation interface will be as
immersion will play a great role in improving the situational awareness of the operator while teleoperating.
Through the three user studies presented in this paper we have verified the usability of our interface design and
evaluation framework. To quantitatively evaluate the usability of the different interfaces, we will also work on
developing a user study where the performance of these teleoperation interfaces for a diverse array of tasks will
be analyzed.

7.2 Teleoperation Assistance for Reducing Physical Workload

Motion mapping as a teleoperation interface proves to be the most intuitive and preferred means of teleoperation.
However, the physical fatigue developed because of using this interface cannot be ignored and it can result
in the rejection of this interface as a means of everyday sustained use. As identified in this paper (User Study
II), physical fatigue is developed primarily in the Anterior Deltoid, Trapezius and Biceps muscle groups due to
teleoperation actions like steady arm postures for camera control and small-object manipulation. The squatting
action was performed only when the operator had to pause teleoperation which only occurred at the start and end
of the trials. Thus, the EMG signals of the leg muscles were not monitored for analyzing the physical workload.
However, since standing for extended durations might be a possible source of fatigue, monitoring the EMG
signals to verify this aspect of teleoperation can be an interesting direction of future research.

We used a shared autonomous control interface to tackle the issue of physical fatigue. Nursing tasks require a
lot of decision-making skills and occur in an unstructured environment. As a result, the entire task cannot be
automated as current automation techniques do not capture the nuances of operator controlled teleoperation. In
this paper (User Study III), we have proposed how automating reach-to-grasp reduces physical effort and fatigue
in the operator and improves their perception towards teleoperation. Aspects of teleoperation like locomotion
and gross manipulation is left to the operator while the finer manipulation involved with object grasping is
automated and can be triggered on and off base on the operator’s needs.

We have demonstrated that augmenting the direct, freeform interfaces for robot control with a little bit of
robot autonomy will lead to flexible and reliable robot control for complex tasks. Our proposed robot autonomy
effectively reduced the operator’s physical workload in the control of reaching-to-grasp motions. Our future
work will further develop a variety of robot autonomy to other fine motor skills necessary for quarantine patient
care (see the fine manipulation tasks listed in [72]). We will also explore how to design robot autonomy to be
fatigue-adaptive, such as triggering the autonomous function based on task context, inferred user intents, and
estimated physical fatigue level.

7.3 Evaluation Metrics for Nursing Workers and Tasks

The general framework (in User Study I) of the current human-robot teaming evaluation system we used in
this paper evaluates the robot task performance and human workload. The different levels of controllability,
efficiency, accuracy, intuitiveness, and effort will affect the users’ preference and attitude toward using tele-nursing
technologies. Among the nursing workers, the weight of each teleoperation factor may change depending on the
usage. For instance, most of the registered nurses from the post-study interview reported that the operational
workload is their highest priority since they work in a tense environment where they handle multiple inputs and
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outputs in a nurse-patient interaction. In this paper, we demonstrated the effectiveness of using evaluation-in-
the-loop in the evolution of teleoperation interface design. We focused on the teleoperation interface with lower
mental workload (human motion mapping) and tried to learn more about its limitations by evaluating physical
fatigue through the use of SEMG sensors.

The use of SEMG sensors helps us monitor the physical workload objectively. In this paper, we showed the
potential for SEMG as an offline analysis tool that can evaluate physical workload. It helped us to identify the
fatigue-causing factors (User Study II) and helped us generate a novel objective index to evaluate physical fatigue.
These results helped us identify the direction in which the shared autonomy must be designed (as seen in User
Study III). Our work is similar to [135] in that we prioritize reducing muscle efforts in human-robot collaborative
tasks. However, we focus on the tasks that involve more complex motor skills and dynamic muscle contractions.

Our future work will incorporate more advanced methods for the accurate estimation of physical fatigue.
Traditionally, physical fatigue is measured using amplitude-based parameters and time-frequency distributions
of non-linear parameters. These metrics are suitable for evaluating isometric fatigue. We will consider the
novel approaches which are more suitable for assessing dynamic muscle fatigue. These approaches may utilize
dynamic muscle fatigue model, differential equations, mechanomyography [180], inertial measurement unit
(IMU) measurements [62], power spectral indices and kinetics and kinematics [14] from motion data.

8 CONCLUSION

In this paper, we discussed a framework of evaluation procedures used for continuously improving robot
teleoperation interfaces. We initially identify through a user study comparing three different representative
teleoperation interfaces that motion mapping is the most intuitive form of teleoperation for nursing tasks. This
lets us determine that the best means of input for a teleoperation interface for nursing workers (subjects of the
user study) is mapped human motion.

Motion mapping as a means of teleoperation results in non-trivial physical fatigue in the operator. This reduces
the feasibility of extended use of teleoperation on a daily basis. In the second level of our evaluation methodology,
using EMG measurements and a novel fatigue index, we found that actions like steady arm postures and fine
manipulation cause physical fatigue in different muscles groups of the operator.

Finally, we created an autonomous assistance function into this interface that automates the reach to grasp
function in the robot teleoperation eliminating the fatigue causing actions (steady arm postures and fine ma-
nipulation for object grasping) identified in the previous user study. A user study confirms the benefits of this
autonomous interface as it improve the efficiency and accuracy of the motion mapping interface while reducing
physical fatigue. We also identified that these automation features improves the operators preference for future
use of the teleoperation interface. In this manner, we have developed a robust and competent motion mapping
interface to control a humanoid robot for nursing tasks.
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