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Abstract— Supervisory control of a humanoid robot in a
manipulation task requires coordination of remote percep-
tion with robot action, which becomes more demanding with
multiple moving cameras available for task supervision. We
explore the use of autonomous camera control and selection
to reduce operator workload and improve task performance
in a supervisory control task. We design a novel approach to
autonomous camera selection and control, and evaluate the
approach in a user study which revealed that autonomous
camera control does improve task performance and operator
experience, but autonomous camera selection requires further
investigation to benefit the operator’s confidence and maintain
trust in the robot autonomy.

I. INTRODUCTION

Nursing is a critical role in society, including assisting
the elderly and supporting patient recovery after disease or
surgery. Globally, demand is soon expected to exceed the
supply of healthcare professionals. Nursing robots present
an opportunity to supplement the nurse workforce for both
quarantine and routine patient care [1]. The teaming of human
and (semi-) autonomous robots is a practical solution until
autonomous robots can reliably perform a wide variety of
tasks in cluttered human environments [2]. While direct
teleoperation of high-DOF robot systems is complex and
challenging [3], supervisory control of autonomous robots [4],
[5] improves task performance [6], reduces workload [7], and
allows a single human operator to supervise tasks among
multiple robots [1], [8]. In order to supervise robot autonomy
that is unreliable due to perception limitations or task
uncertainty, appropriate active telepresence control is critical
to maintaining operator situational awareness. For instance,
an operator may need to select and control appropriate
telepresence cameras to observe objects being manipulated
from different viewpoints. Our prior study found that, with
multiple cameras available, camera selection and manual
camera control imposed a significant cognitive workload,
particularly for novice operators [9].

Remote perception is a significant and challenging com-
ponent of robot teleoperation [10]. Specifically, the limited
field of view, unfamiliar frame of reference, multiple camera
perspectives, and lack of depth perception make it difficult
to perceive and understand the remote environment. An-
other challenging aspect of remote perception is dynamic
coordination of perception and action [11]. Contemporary
designs that support remote perception have mostly focused
on autonomous control of a single telepresence camera, which

1Robotics Engineering Program, Worcester Polytechnic Institute, Worces-
ter, MA 01609, USA {arvaliton, hbaez, ntharrison,
jaroy, zlill}Qwpi.edu

may avoid visual occlusion by the robot itself [12], the
environment [13], or a third party [14].

This work explores the impact of autonomous camera
control and selection on supervisory task performance in
a multi-camera system. Specifically, we aim to answer the
following questions:

« What level of camera control and selection autonomy is
most effective for a supervisory control task?

e Why is a particular mode more or less effective in
supervisory control?

« What design considerations do we recommend for per-
ception autonomy in teleoperation platforms based on
qualitative and quantitative participant responses?

We conducted a user study (N = 14) in which a
humanoid nursing robot autonomously completed a sorting
task under supervisory control. The two telepresence cameras
available for the participants were a fixed camera on the
robot head and an actuated camera attached to the robot
hand not performing manipulation. Different levels of robot
autonomy were provided to the participants, including manual
camera selection and control (Mode 1), manual camera
selection with autonomous camera control (Mode 2), and
autonomous camera selection and control (Mode 3). With
errors randomly introduced to the robot action sequence and
motions, we evaluated the participants’ task performance
in terms of accuracy and confidence in error detection. We
also compared the camera usage, workload (through NASA-
TLX and secondary task performance), and trust in the robot
autonomy for remote perception support.

Fig. 1: Robot performs workspace organizing task under supervisory control.
Participants are supposed to detect the errors in robot motion and actions.

Our study found that participants prefer to use the combi-
nation of a “head camera” with a large field of view and a
“hand camera” with a large and dexterous motion range. For
supervisory control, participants prefer to use the hand camera
to detect errors in task precision and use the head camera to
detect errors in large robot motions and action sequences. We
found that autonomous camera control has significant impacts
on task performance and workload, while autonomous camera
selection significantly decreased the participants’ confidence
in the accuracy of error detection, and participants’ trust in



the autonomy for active telepresence. We saw that both the
decision time for robot control and confidence in the accuracy
of error detection decreased as the level of autonomy for active
telepresence increased. This implies the level of autonomy for
active telepresence needs to be carefully selected depending
on whether the operator needs efficiency or accuracy in the
task. We also found that the participants have varying camera
selection preferences based on which part of the task they
are performing, implying that it is necessary to personalize
camera selection autonomy.

II. RELATED WORK

a) Supervising Robots using Multi-Camera Telepresence:
Supervisory control relieves the teleoperator of the tedious
and difficult control of robot motions and allows them to focus
on high-level decision-making for the task. For patient care,
supervisory control permits the nurse to focus on professional
decisions and emotional care [8] instead of being distracted by
robot teleoperation. The challenges of a supervisory control
system arise when the operator trusts the robot system
too much, leading to decreased situational awareness and
increased operator error rates [7], [15]. The use of multiple
active telepresence cameras may improve the teleoperators’
situational awareness [10], yet supervisory robot control with
a multi-camera robot platform is not a trivial task [16]. This
is because switching between multiple camera views can
trigger a saliency effect, in which operators may not be able
to properly integrate information from multiple sources [8].
In addition, task performance will be lowered if the robot
supervisors have to divide their attention [8], [16], such as
if the participants have to manually select and control the
telepresence cameras while focusing on task supervision. Task
performance further suffers when operators are responsible
for more than one robot! [17].

b) Robot Autonomy for Assisting Active Telepresence:
Robot autonomy for active telepresence can provide effec-
tive cognitive assistance to the operator, because cognitive
workload can be decreased by reducing task demand [18].
Assistance for active telepresence can also improve partici-
pants’ situational awareness, such that they will have better
perception of features in the task workspace, comprehension
of their meaning, and projection of future task states [19].
Thus far, assistance for active telepresence has mostly focused
on autonomous control of a single telepresence camera. For
structured tasks, visual servoing is used to keep the task goal
in view [20]. For freeform tasks, optimal camera viewpoints
can be autonomously determined using a well-engineered
optimization function [12], [13], [21]. Prior research has
shown that teleoperators benefit from both an egocentric
and exocentric view of a remote workspace [8], which
motivates the design of multi-camera telepresence system.
The cognitive assistance for such systems has been limited to
fusing information from multiple sensors (e.g., two camera
views [22], point cloud and state estimation [23]) into one
display [15]. Autonomous camera control and selection has
been integrated to better utilize the complementary functions
of various active telepresence cameras.

III. PROPOSED DESIGN OF TELEPRESENCE ASSISTANCE

The proposed active telepresence assistance is based on our
prior human movement study on perception-motion coupling
in active telepresence [24]. The prior study analyzed how
people selected and controlled wearable cameras attached to
their head, clavicle, dominant and non-dominant hands to
perform different actions in a cup-stacking task.

From the prior study, we found that: 1) participants mostly
prefer a combination of a “head camera” with large field
of view, and a “hand camera” with large and dexterous
motion range; 2) participants prefer to use the head or
clavicle cameras to observe reaching to or moving objects,
and use the camera attached to one hand to observe the
precise manipulation performed using the other hand; and 3)
participants preferred not to view the wrist camera video feed
while it moved. These findings inform our design of robot
autonomy for camera selection and control for a humanoid
nursing robot equipped with head and hand cameras.

a) Robot Autonomy for Camera Selection: Overall, our
proposed robot autonomy uses the robot head camera (Cgr) to
observe large robot motions and spatial relationships that need
a global workspace view and uses the robot right hand camera
(CR) to observe precise motions and local task features
(e.g., alignment of gripper and object). Consider a task of
supervising a nursing robot to clean and organize a counter
workspace: the robot needs to pick and place discarded objects
into a bin and stack other objects at a designated location
in a pre-defined order. For such a task, low-level errors
(shown in Fig. 1) include misalignments between the gripper
and the objects (grasp errors), and misalignments between
the object in the robot’s grasp and the location to stack
or place (placement errors). The high-level errors include
manipulating the objects in the wrong order (order errors)
or sorting an object incorrectly (action errors). Beyond the
example task above, the types of errors we consider are
generally applicable to manipulation tasks in many domains.
Although the detailed list of high-level and low-level tasks
may be different depending on the application, in general our
proposed camera selection uses head and hand cameras
to detect high-level and low-level errors, respectively.

Camera height

Fig. 2: Objectives for the autonomous camera control.

b) Robot Autonomy for Camera Control: Our proposed
autonomous camera control adopts an autonomous dynamic
camera control framework [12], [13], [25] which selects the
optimal robot arm configuration based on a weighted sum
of objectives (minimizing joint and end-effector velocity,
acceleration, and jerk; avoiding joint limits; avoiding self-
collision). Within this optimization framework, we intro-



duced additional camera positioning objectives based on
our prior study on the vision-motion coupling in active
telepresence [24]. These additional objectives determine
the dynamic camera motions:

1) Hand-Tracking: Minimizing the distance between the
manipulator (left) hand and the camera z-axis, which
intends to center the manipulator in the camera view.

2) Camera Roll: minimizing the dot product between the
camera frame x-axis and the world frame z-axis, which
intends to align the camera view with gravity-direction.

3) Camera Height: maintaining the hand camera position
to be close to the head camera position in the gravity-
direction.

4) Viewing distance: maintaining the distance from the
hand camera to the manipulation hand to be close to
the viewing distance empirically determined in our pilot
study.

5) Side View: minimizing the dot product between the
camera frame z-axis and the world frame y-axis, such
that the hand camera tends to view the robot’s sagittal
plane.

Fig. 2 illustrates these camera control objectives. The relative
weights of these objectives were selected by empirical
testing in the current implementation, yet the weights can
also be learned from expert demonstrations using inverse
reinforcement learning [26].

IV. EXPERIMENT

a) Robot Platform: Fig. 3 shows the robot platform
and its operator console. The robot platform consists of
a humanoid torso (Rethink Baxter) with a pair of two-
finger soft grippers (UBIROS GentleDuo). The available
telepresence cameras include: one 180° fisheye head camera,
(ELP-USBFHDO01M) fixed on the robot torso, and one Intel
RealSense D435 depth camera attached to the robot hand
not used for manipulation. The operator console enables
the participants to manually control the right hand camera
viewpoint using an HTC Vive controller and switch between
head and hand camera views using the trigger on the Vive
controller. It also allows the participants to switch camera
views by pressing the ‘S’ key on the keyboard.
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Fig. 3: Robot platform (left) and operator console (right).

b) Task: The participants were asked to supervise the
robot to perform a task similar to that described in Section III.
Specifically, the robot needs to pick up five cups in order
from A to E. The cups to stack and to place into the bin
were randomly decided for each trial. For each trial, we
intentionally introduced a random number of low-level and
high-level errors (ranging in total from 11 to 15) to the robot

actions. Low-level errors include grasp errors that misaligned
the gripper with respect to a cup when picking up and stack
or bin errors that misaligned the cup in hand with the stack
or the bin, respectively. High-level errors include order errors
when the robot picks up a cup out of order, and action errors
when the robot places a cup to be stacked into the bin, or
vice versa. Before the robot executes any pick, stack, or
place action, the participant needs to either confirm the robot
action by answering “yes” to the action confirmation question
displayed in the operator console terminal or reject the robot
action by answering “no” if they notice any errors that may
lead to failure of the robot action. The participant also needs
to indicate the level of confidence in their judgement using a
1-5 Likert scale, with 1 for “I have no idea if this position
is correct or not” and 5 for “I am completely sure that
this position is correct or incorrect”. Note that the robot will
correct the errors when executing the actions, regardless of the
participant’s response. This is because the performance of the
supervisory task is evaluated by whether the participants can
accurately detect the errors with a high level of confidence.

c) Secondary Task: Along with the robot supervisory
task, the participants also needed to continuously answer
simple math questions verbally in addition to the action
confirmation questions in the supervisory control task. This
secondary task served as a relative measure of cognitive
workload between modes; participants experiencing a high
cognitive workload will generally answer fewer math ques-
tions correctly than when experiencing a low cognitive
workload. The participants need to answer each math question
within 10 sec, or the question was considered skipped.

d) Experiment Procedure: We recruited N = 14 healthy
participants (7 females and 7 males, age = 20.7+1.5) who are
mostly engineering students. The participants took a verbal
math test (24 questions, single- and double-digit addition
and subtraction) before the experiment. We recorded the
total time for them to answer all questions correctly to
provide a baseline of their performance for the secondary
task. Participants were then introduced to the task and
watched a demonstration of the robot performing the task to
be supervised. Participants were encouraged to switch the
camera view between the cameras with the ‘S’ key during the
demonstration to familiarize themselves with the interface and
the camera control autonomy. After the demonstration and
practice, the participants were asked to report their current
level of trust in the autonomy for autonomous camera control
on a 1-5 Likert scale. The participants were then taught to
use the Vive interface to control the robot’s right hand and
switch cameras using the Vive controller. Participants moved
to the evaluation phase if they were able to demonstrate their
understanding of the Vive interface controls by aiming the
camera at specific points in the workspace and identifying
the letters on the cups.

During the evaluation phase, the participants completed
three trials of supervisory control tasks with different levels
of active telepresence assistance: Mode 1: Manual camera
selection and control, Mode 2: Manual camera selection
and autonomous camera control, and Mode 3: Autonomous
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Fig. 4: Task performance compared between telepresence assistance modes and participant groups of different genders and video Game Experience.
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Factor Duration Task Accuracy
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Gender p =0.0000 = 0.0002

Fig. 5: Task performance ANOVA statistics

camera selection and control. The combination of autonomous
camera selection with manual camera control was not tested;
determining ideal camera selection based on a user’s manual
camera control is outside of the scope of this work. The
modes of active telepresence assistance were randomized for
each participant; the distribution of mode order was balanced.
Before each trial, the experimenter reviewed the task instruc-
tions and camera controls for the selected mode, informed the
participant which cups were assigned to the bin, and reminded
the participant that the cups should be handled in alphabetical
order. After each trial, the participant completed a NASA-
TLX survey and customized questionnaire to report more
details about their task performance and preference of the
design features of the selected telepresence assistance mode.
The participants also completed a customized questionnaire
to compare the three modes and to indicate their preference
and reasons.

e) Evaluation Metrics and Data Collection: Our eval-
uation considers the performance of both the primary and
secondary tasks. For the supervisory (primary) task, we use
the decision time to either confirm or reject as well as
error detection accuracy as objective performance metrics. To
compute these metrics, we recorded the time stamps for every
camera switch, the participant’s decision time to confirm or
reject each robot action, and the active camera view when
they responded to each action confirmation question. We
also recorded the robot action sequence, the participant’s
answers (i.e., their judgement of the actions), and their self-
assessed confidence level (1-5 Likert scale) in their answers.
For the math (secondary) task, we counted the number of
math questions asked, answered, and answered correctly. Our
collected data also included the participant’s responses to the
NASA-TLX and customized questionnaires.

V. RESULTS

a) Task Performance: Our evaluation shows that the
proposed telepresence assistance 1) can improve supervi-
sory task performance by reducing decision time for error
judgement, and 2) does not have a significant impact on
the task accuracy, i.e., the correctness of error detection.

The ANOVA analysis results in Fig. 4 and Fig. 5 show that
participants generally have better performance in Modes 2
and 3 than in Mode 1, though there is no significant difference
between performance of Modes 2 and 3. We also compared
task performance between participant groups with higher and
lower video game experience. We found that the proposed
telepresence assistance has significant effects on mitigating
the impacts of gender and video game experience factors.
Shown in Fig. 4, participants who considered themselves to
be “Proficient” or “Experienced” in video games (labeled
“Hi”) have significantly shorter decision times than those
who considered themselves to have less game experience
(labeled as “Lo”). However, a significant difference does not
exist when these participants are provided with telepresence
assistance in both Modes 2 and 3. A similar significant
difference in performance exists between male and female
participants without telepresence assistance (Mode 1), but
doesn’t exist between the groups in Modes 2 and 3. Among
our participants, video game experience was significantly
correlated with gender (R = .85).

b) Camera Usage: We analyzed which camera partic-
ipants used for observing large robot motions (when there
was sufficient time for deliberate camera switching) and for
identifying the different kinds of errors. A diverse camera
usage across participants implies that it is necessary to
personalize the autonomy for camera selection. Our analysis
assessed camera usage in Modes 1 and 2, in which manual
camera selection is available. We focused on which camera is
selected when the robot is moving the cup large distances or
when participants answer action confirmation questions with
an error present (see error type definitions in Section IV).

We determined camera usage in two ways: the active
camera at answer time (shown in Fig. 6 (right)) and camera
selection behavior. We calculated camera usage behavior by
computing the proportion of time (decision time or periods
between questions when TRINA is moving large distances)
using the head camera (Crr). We classified the camera usage
into different ‘Types’. Type 1 usage means the participant
uses C'y very little (<20% of the time), while Type 5 usage
means the participant uses Cy a lot (>80% of the time).
The thresholds for Types 2, 3 and 4 are evenly distributed
between 20% and 80%.

Fig. 7 compares the distributions of camera usage Types
in Modes 1 and 2. For each kind of error, as well as periods
where the cup is being moved large distances, it shows the
mean and standard deviations of the participants’ likelihood
to employ each camera usage Type. We noticed that for
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some low-level (grasp, stack) errors, participants dominantly
prefer to use the Cr (Type 1 usage), which is to some extent
consistent with the findings in our prior work [24]. However,
we also noticed diverse camera usage for observing TRINA
moving a cup or identifying high-level (order or action) errors.

During the experiment, we noticed that some participants
needed to switch back and forth between the cameras several
times to detect some of the errors. A traditional solution
to such behavior is to provide multiple telepresence camera
views side-by-side [9]. However, multiple camera views run
the risk of increasing the participant’s cognitive workload
and distraction [15]. Our observations from the user study
lead to the hypothesis that, if an operator is using a system
with multiple active telepresence cameras and autonomous
camera switching, it may be helpful to allow manual camera
selection override capability.

c) Results from Survey: We used the Wilcoxon rank-
sum test to analyze the survey responses, shown on the left
of Fig. 6. Across the three telepresence assistance Modes,
we compared the participants’ perception of the task, trust in
the autonomy for telepresence assistance, and confidence in
the accuracy of their error detection. We found that:

1) Mode 3 has the most significant reduction in the
participants’ frust in autonomy before and after using
this mode (medians={3.5,4}, z = —2.18, p = 0.0291)

2) Confidence in accuracy of error detection was signifi-
cantly lower in Mode 3 than in Mode 1 (medians={5, 5},
z = —3.86, p = 0.0001) and Mode 2 (medians={5, 5},
z = —2.99, p = 0.0028)

3) Mental demand, physical demand, and effort are signifi-
cantly higher in Mode 1 than in Modes 2 or 3 (Mental
demand: medians={4, 3,3}, z1,2 = 2.34, p1p2 =
0.0189, z1,3 = 2.97, p1y,3 = 0.003; Physical demand:
medians={2, 1, 1}, 21,2 = 3.07, p1y2 = 0.0021, 21,53 =
3.5, p1y3 = 0.005; Effort: medians={4, 3,3}, z1,2 =
2.30, p1y2 = 0.0212, 21,3 = 2.42, p1,3 = 0.0157)

4) There were no significant differences between Modes in
terms of time demand, task success, or frustration.
Note that we use p < 0.05 as the threshold for significance.

Our survey results included participants’ preference for

telepresence assistance mode, choice of cameras for detecting
different kinds of errors, and the reasons for their preference.
Fig. 6 shows the preferred cameras for observing each kind
of action/error. Mode 2 was ranked most preferred by the
majority of participants (/N = 10). We found that the camera
selection preference does not correspond to the demonstrated
camera usage in Fig. 7. We hypothesize that improved
autonomous camera selection may help operators match their
camera selection to their preference.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a novel robot autonomy design to provide
cognitive assistance to active telepresence based on our
prior human movement study of vision-motion coupling in
active telepresence [24]. In particular, we found that au-
tonomous camera control significantly improved supervisory
task performance and reduced workload, but the autonomous
camera selection policy presented here decreased operator
awareness of the task status and trust in the autonomy.
The physical and mental effort of controlling a camera to
supervise task execution was a significant burden to operators;
offloading that burden to an effective autonomous camera
controller significantly improved task performance. However,
the autonomous camera controller sometimes presented a less-
than-ideal view of the workspace, which made autonomous
camera switching unhelpful and detrimental to the operator’s
confidence in their response to the confirmation question. The
operator’s ability to recover from errors in autonomous camera
control (by switching to a better view) improved their trust in
the autonomy. In future work, we plan to systematically define
camera control objectives by learning objective weights from
human demonstration and preference, and let users customize
behavior within the UL

Based on this study, we present the following design
guidelines for supervisory control system design:

o 2-3 cameras are recommended to provide the operator with
a sufficient view of the task space without overwhelming
novice users.

o Cameras that can be manipulated to change the perspective
should be automated to reduce the operator’s workload.

o If the active camera view is switched automatically, the
operator should be able to override the action easily.

Our user study found that our design for the autonomous
camera control is generally preferred, though the design of the
autonomous camera selection needs to be improved in future
work, according to the diverse camera selection behaviors
revealed in this study.
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