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IoT app at runtime. The collected data is used by IoT-

WatcH to classify the app information into user-defined

(also customizable) privacy labels through Natural Lan-

guage Processing (NLP) techniques. The privacy labels

provide the users with a more intuitive mechanism to

understand how IoT apps handle their private informa-

tion. Also, IoTWatcH analyzes the privacy preferences

of users to uncover sensitive data leaks. Finally, IoT-

WatcH notifies the users about the sensitive data-leaks

when they validate the users’ privacy preferences, al-

lowing the users to make informed decisions about their

privacy.

To evaluate IoTWatcH, we trained an NLP model

with taint-sink data strings extracted from 380 Smart-

Things market apps. The model was used to clas-

sify taint-sink content (e.g., “the door is locked”, and

“kitchen lights are turned off”) to user privacy prefer-

ences. Then, we analyzed 160 different Samsung Smart-

Things apps to evaluate the accuracy of IoTWatcH

at runtime. IoTWatcH successfully classified 146 IoT

strings to privacy preferences with an average accuracy

of 94.25% and a precision of 95%. Additionally, IoT-

WatcH identified 35 IoT apps that leaked sensitive data

to unauthorized recipients. IoTWatcH yielded minimal

overhead to the IoT apps execution, introducing on av-

erage of 105 ms additional instrumentation latency.

Summary of Contributions. The contributions of

this work are as follows:

– We conducted a comprehensive IoT privacy survey

with 123 IoT users through a set of structured ques-

tions.

– We developed IoTWatcH, a dynamic privacy anal-

ysis tool for IoT apps. IoTWatcH provides users

with a privacy interface and collects app data at

runtime based on user preferences. Then, it ana-

lyzes the collected data and informs users when a

data leak matches the user’s privacy preferences.

– We collected data from 380 real IoT apps to train

an NLP model. We used the model to evaluate IoT-

WatcH’s performance on other 120 market and

40 malicious IoT apps. IoTWatcH classified 146

IoT taint-sink content into correct privacy labels

with 94.25% accuracy while imposing an additional

105ms latency to app execution on average. Ad-

ditionally, IoTWatcH identified 62 sensitive data

leaks to unauthorized third parties in 35 IoT apps

(29 via messaging and 33 via Internet taint-sinks).

– We made IoTWatcH freely available to the com-

munity at https://iotwatch.appspot.com/.

Organization. In Section 2, we articulate the privacy

issues in IoT apps through a use case, and present the

definitions and threat model. In Section 3, we present

the results of the IoT privacy survey with 123 users. In

Sections 4 and 5, we give an overview of IoTWatcH,

and present IoTWatcH’s architectural details. In Sec-

tion 6, we provide the implementation details. Then,

we evaluate IoTWatcH and show its effectiveness and

performance in Section 7. Finally, we discuss the related

work in Section 8, and conclude the paper in Section 9.

2 Background and Threat Model

2.1 Anatomy of an IoT App

IoT applications from different platforms may use dif-

ferent programming languages. For instance, Samsung

SmartThings apps are written in Groovy [31], while

OpenHAB [36] applications use Domain Specific Lan-

guage (DSL) developed in Java. In other examples, Ap-

ple Homekit [66] apps can be written in Swift or Objec-

tive C, while Windows IoT [67] use C#, C++, or even

Python. Despite this diversity, IoT applications share

a similar structure [10]. In general, IoT apps have a

description block that informs the users specifics of the

app itself (e.g., the app functionality, devices it controls,

etc.). We expect that developers use these description

blocks to also inform the users regarding the specific

types of sensitive information that the app will have ac-

cess to on the IoT systems and who this information will

be shared with. In that way, the users can take informed

decisions regarding their privacy before installing the

apps. The apps also include a permission block where

the user adds what she desires to control with the app

(e.g., smart thermostat). Also, the permission block is

used to define the information used to specify device

settings (e.g., min and max thermostat temperatures)

and app notification recipients (e.g., phone numbers for

push notifications). We study this permission block dur-

ing our analysis as it contains highly private information

from users and the IoT systems, including characteris-

tics of the smart devices and their settings. Also, we

correlate information defined by the user in these blocks

to verify that the sensitive information is being sent

to authorized recipients (e.g., user-defined phone num-

bers). The IoT apps also include an event subscription

block, where developers match the specific functions that

are triggered by different device states (e.g., the func-

tion f1 is executed when the presence sensor triggers a

“present” state). Finally, the event handlers define these

functions and the app logic that is executed whenever
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// smart-lock-control app: “controls the smart lock”
// Permissions Block

Device: smart_lock sl, presence pr
User-defined inputs: phone

// Events Subscription
subscribe(pr, “present”, f1)
subscribe(pr, “not present”, f2)

//Events Handler
f1(){…}
f2(){ sl.lock()

notifyUser(sl.state, phone)
leakInfo()}

// Sends notification to the user
notifyUser(state, number){

sendSMS(“Your lock is: ” + state, phone)
POST(“http://support.com”, sl.getLocation())

// Leaks sensitive data to attacker
leakInfo(){

sendSMS(“Nobody is Home”, 123-456-7890)}

3

2

1

4

Fig. 1. An example IoT app leaking sensitive data to a hard-

coded phone number and implementing insecure HTTP calls.

they are called. In our work, we study the event han-

dlers as they define the way how sensitive information

is handled within IoT apps. Also, event handlers specify

the sink functions that send the sensitive data out of the

apps to external parties. As a summary, we target de-

scription blocks, permission blocks, event subscription

blocks, and event handlers as the most important app

constructs to investigate for any sensitive data leakage

from IoT apps.

2.2 Problem and Challenges

We use an example IoT app source code derived from

a smart-lock-control app (Figure 1) to illustrate the

privacy concerns in IoT apps. The expected behavior of

the app is to lock the door and notify to user-defined

contacts that the door is locked when the user leaves the

house. At install-time, the user grants permissions to the

smart lock, presence sensor, and enters a phone number

for messaging notifications ( 1 ). The app subscribes to

two event handlers f1 and f2 to implement the app

functionality. The event handlers are invoked based on

the presence sensor’s state (user-present and user-not-

present) ( 2 ). When the user leaves home, “not-present”

event handler (i.e., f2) locks the door, sends a message

notification, and transmits out the door lock state to a

remote server (i.e., http://support.com) ( 3 ). However,

the actual behavior of the app adds a piece of code that

invokes a function (i.e., leakinfo()) sending a string

that contains “Nobody is Home” to a hard-coded phone

number ( 4 ). This string is highly private and informs

an adversary that the house is empty.

Requirements for IoT Privacy Analysis. The di-

versity of information handled by IoT (e.g., location,

user behavior, user preferences) makes these systems

vulnerable to privacy risks, hence the need for a specific

privacy analysis tool for IoT. However, IoT platforms

do not provide the means for such an analysis. There

exist no security mechanisms or methodologies to an-

alyze and understand the specific types of information

that an IoT application handles and discloses to sup-

port their logic and functionalities. Previous works have

also noted that IoT systems do not explicitly inform the

users regarding their utilization of the sensitive informa-

tion, and researchers are trying to propose solutions to

these issues [45].

There exist systems to identify sensitive data-flows

in IoT apps. For instance, SainT is a static tool that

uses taint analysis to identify sensitive data-flows in IoT

apps [10]. FlowFence, a dynamic system, uses quaran-

tined modules to enforce data-flow policies on the use

of sensitive data [19]. Albeit useful, these approaches

are limited in precision and the number of privacy poli-

cies enforced as they both focus on taint data. Hence,

SainT and FlowFence are oblivious if an app leaks sensi-

tive data through implicit programming constructs (i.e.,

description blocks, event handlers) via developer- or

user-defined strings. For instance, the string “Nobody

is home” leaked through leakinfo()). Meanwhile, our

analysis of 540 IoT market apps showed that 64% of

apps potentially leaked sensitive data through strings

that did not include any tainted data, yet the string was

sensitive. Indeed, static systems like SainT, iRuler [54],

and privacy tools for trigger-action platforms [27] fail

to detect sensitive data leaks through dynamic method

invocation [31]. Additionally, there are no approaches

that allow users to closely examine their sharing and

privacy preferences over individual IoT apps. For in-

stance, a user may desire to share her energy usage data

with a third party in a specific IoT app yet she wants

to restrict sharing all other sensitive information with

third-parties. This requires a personalized privacy set-

ting for each app that gives control to the users over

what to share. Finally, previous research [9, 10] have

demonstrated that app analysis tools that may be effec-

tive for other systems like Android cannot be directly

applied to IoT as they lead to substantial false posi-

tives due to important architectural and programming

differences between their apps.

Challenges of an IoT Privacy Solution. In con-

trast to the previous approaches [9, 10, 19, 27, 54], IoT-

WatcH tracks runtime data-flows, and process the flow-

content to determine whether a data-flow constitutes a

privacy concern or not. Such a runtime analysis over-

comes the limitations of static tools [10] that do not

consider dynamically generated taint variables or hide

them via implicit constructs. Additionally, IoTWatcH

provides a user with an interface that allows them to

configure their privacy settings for each app and informs

the users about its findings.
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We provide a detailed comparison of IoTWatcH

with other privacy tools for IoT and Android apps in

Section 8. However, to support its capabilities, IoT-

WatcH needs to overcome several technical challenges.

First, it needs to capable of analyzing the source code

of IoT apps and identifying privacy-relevant informa-

tion beyond taint data, which is a deeper investigation

than inflexible static approaches. Second, it needs to

implement mechanisms to be able to collect the privacy

information for further analysis. Static tools like SainT

may be a good starting point for source code analysis

in IoTWatcH. However, such static tools require ex-

tensive modifications to identify non-taint privacy data

within apps. Similarly, SainT or other static analysis

tools do not support app instrumentation, which is re-

quired for real time dynamic analysis. Also, IoTWatcH

analysis requires the implementation of NLP models to

classify privacy data into simpler privacy labels that can

be easily understood by the users. This process requires

building specific IoT corpus for training purposes. Fi-

nally, as IoTWatcH implements real-time analysis and

notification systems for the user, it requires of specific

APIs to support and further secure the communications

between IoT apps and IoTWatcH’s servers without im-

posing a considerable overhead.

2.3 Definitions

Taint-Sinks. IoT programming platforms define spe-

cific call-sites to transmit data [36, 51]. We focus on

two main call-site types; messaging and Internet. These

call-sites require two types of information: the recipient

and the content. The recipients define where the content

is being sent to, and the content defines the data sent

in the form of strings.

Privacy Labels. We define four different privacy labels

(i.e., date-time, device-info, location, and user-behavior)

to classify the content of the taint-sinks. These privacy

labels are selected based on users responses in our pri-

vacy survey detailed in Section 3.

Privacy Profile. The collection of privacy and notifi-

cation preferences identifies the users’ privacy profiles.

These profiles helps IoTWatcH to selectively instru-

ments the apps to collect data for privacy analysis.

Privacy Leaks. We consider a privacy leakage happens

when data is sent to external parties, and it is neither

informed to nor acknowledged by the user. For instance,

if an app transmit location information and a user is not

informed, then it constitutes a privacy leak.

2.4 Threat Model

We consider IoT apps that access sensitive data without

user consent. Second, we consider data leaks, through

Internet and messaging taint-sinks, transmitted out of

an app to unauthorized recipients, and due to the care-

lessness of developers. Lastly, we consider app trans-

mitting sensitive data in clear-text (through HTTP) to

notify users.

We do not consider safety and security violations in

IoT apps as they were already studied before [12, 13].

Additionally, we do not track data-flows via push noti-

fications or taint-sinks that are authorized via OAuth

(e.g., a user authorizes a third-party service through

OAuth protocol to share the device states for data vi-

sualization) as they are considered a different external

capability that supports the IoT functionality. Finally,

we do not consider apps using obfuscation or encryp-

tion techniques to hide the content of the data flows;

yet, we discuss potential measure for these techniques

in Section 5.1.1). We note that we did not find one sin-

gle app out of 540 IoT apps we analyzed that encoded

the content of their messaging or Internet taint-sinks.

3 Privacy Survey

In this work, we first conducted a comprehensive sur-

vey to understand the privacy concerns of users when

they use various IoT devices and apps. The entire survey

was authorized by the institutional ethics review board

(IRB) and occurred between April 2019 and May 2019.

Survey Goals. With this survey, we aimed to answer

the following questions: (1) what are the privacy con-

cerns of IoT users?, (2) is there a need for privacy anal-

ysis tools designed for IoT?, and (3) what are the user

expectations, in terms of usability requirements, for pri-

vacy analysis tools? Specifically, we expected to under-

stand the types of privacy sensitive information that

is most relevant to the IoT users so that it can be re-

flected in the design of the privacy choices offered by

IoTWatcH. Also, we expected to gain valuable under-

standing about the users’ desire to have a flexible design

that could be captured by the customizable privacy pro-

file offered by IoTWatcH at install time rather than en-

forced fixed privacy policies for all the data. In addition,

we wanted to understand the importance of prompt pri-

vacy feedback to the users so that we can incorporate

real-time analysis into our approach. Finally, the survey

would reveal the specific types of app communications

and potential leaks that most users would want to track

with our privacy tool. For all these, we created 26 dif-
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ferent questions organized into three categories (sample

questions in Appendix A). These categories align with

three specific privacy survey goals: (1) the characteri-

zation of the participants, (2) privacy concerns of IoT

users, and (3) the need for IoT privacy analysis tools and

their usability requirements. We present the profiles of

participants and our key findings below.

Survey Overview and Recruitment. We made the

survey available to participants for four weeks. The users

could access the survey and submit their responses via

an online questionnaire hosted on Google Forms [22].

The questionnaire included single choice questions (e.g.,

yes, no), multiple-choice questions, and free-form ques-

tions. We made all the questions required except for the

ones requesting an additional explanation from users in

the form of free-text input. Finally, we recruited the

participants via recruitment emails in our institutions.

The emails included a brief description of the survey

and a link to the online form. Finally, the survey was

designed so the participants would spend an average of

15 minutes from start to finish.

Participant Demographics. We recruited 123 par-

ticipants. In the group, 100 (81.3%) were male, and 23

(18.7%) were female. Also, 69 participants (56.1%) were

in the range of 18-25 and 37 (30.1%) were in the range of

26-35 years old. The remaining 17 (13.8%) participants

were 36 years or older. The majority of the participants

(110 (89%)) had at least completed some bachelor-level

courses, and 37 (30%) were enrolled in graduate-level

courses. Finally, 100 participants reported being part of

an educational institution. A total of 112 (91.05%) users

shared that they currently use or are planning to use

IoT devices in their homes. Finally, 19 (15.4%) partici-

pants knew how to develop their own IoT apps while 82

(66.7%) participants had previous experience installing

apps from an IoT market or via using the source code

of IoT apps available online.

Ethics and Analysis Approach. The IRB of our

institutions approved the privacy survey. The partici-

pants had to be over 18 years old, and the survey did

not collect any personal information from the partici-

pants other than an institutional email address that was

requested for compensation purposes. We did not al-

low participants to submit multiple responses, but they

had the chance to change their answers anytime be-

fore the survey closing date. No participants changed

their original replies. We processed and accepted all

the responses obtained from the participants. Further,

we directly quantified the responses from single- and

multiple-choice questions. Finally, we used two indepen-

dent researchers to analyze the free-from responses re-

move answers flagged as potential outliers.

3.1 Discussion of Survey Results

Privacy Concerns of Users. The participants were

concerned about their sensitive information being in-

advertently leaked to unauthorized parties. To detail,

65 (52.8%) participants felt uncomfortable about their

personal data (e.g., their password to login into edge de-

vices), their behavior and habits (e.g., when they go to

sleep), location (e.g., whether they are home or away),

device’s settings (e.g., heating value of a thermostat)

and time configuration (e.g., when kids leave home), and

device states (e.g., whether the door is locked or not)

being handled by IoT systems. Also, at least 89 (72.4%)

participants expressed that they are aware of IoT apps

collecting their sensitive information and sending it to

remote servers for data analytics such as profiling their

energy usage and for advertisement purposes [2]. Fi-

nally, 103 (83.7%) participants expressed privacy con-

cerns on the use of IoT systems, and 88 (71.5%) men-

tioned having heard about the privacy issues in IoT sys-

tems from the news or other media.

The Need for Real-time Privacy Tools. A total of

112 (91.1%) participants raised broad concerns about

the lack of an existing tool that informs the users regard-

ing the potential privacy risks of IoT systems in real-

time. Also, 119 (96.74%) participants found the idea

of using a tool to uncover privacy risks in IoT highly

desired and expected. Our participants were happy to

use automatic tools that instruments IoT apps to enable

prompt privacy analysis and results. Out of the 123 par-

ticipants, 119 (96.74%) expressed their support for this

option if the tool is verified by the IoT platform.

Users’ Expectations. To understand the characteris-

tics of an easy-to-use privacy tool, we asked participants

to identify their preferences on different types of sensi-

tive information they desire to be informed. The partic-

ipants noted four different privacy labels, which we later

use them in our design and analysis of IoTWatcH. The

“Device-info” was approved by 109 (88.6%) participants

to define device information (e.g., device states or device

type). The “User-behavior” received 103 (83.7%) posi-

tive responses to identify information related to user

options and activities (e.g., what the user does, how the

user configure his/her IoT system). The “Location” was

approved by 110 (89.4%) participants to identify the lo-

cation of devices and users (e.g., user is at home, the

kitchen switch is turned on). Lastly, the“Date-time” was
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the user in real time. 

Privacy Labels:

• Date-time Information: If selected, IoTWatch notifies the user 

anytime scheduling information of device and app activities (e.g., 

the time a door is schedule to automatically unlock) is shared.

• Device Information: If selected, IoTWatch notifies the user anytime 

information regarding device states (e.g., motion sensor active) or 

device information (e.g., device branch and model) is shared.

• Location Information: If selected, IoTWatch notifies the user 

anytime information regarding her or the device locations (e.g., 

user is not at home) is shared.

• User Behavior: If selected, IoTWatch notifies the user anytime 

information regarding user preferences within the IoT system (e.g., 

the user mode changed from home to away) is shared.

Leaking Mechanisms:

• Notify Leaks via Messaging: Informs the user whenever the 

previous types of information are leaked using messages. 

IoTWatcH also provides details regarding the recipient of the 

information.

• Notify Leaks via Internet: Informs the user whenever the previous 

types of information are leaked to external computing systems. 

IoTWatcH also provides details regarding the recipient of the 

information.

(b)

Fig. 4. (a) IoTWatcH enables users to define their privacy pref-

erences, and (b) sample tutorial to help users understand the

meaning of the privacy profile’s components.

we detail later in Section 5.2, this data is matched with

the information extracted from sink-calls (i.e., recipi-

ents) to identify, for instance, whether the data sent to

unauthorized recipients (i.e., not defined by the user),

which may lead to potential privacy issues for the user.

Taint-Sink Information. It includes the content and

recipients of messaging and Internet call sites. Turning

to app source code depicted in Figure 2, IoTWatcH ob-

tains the content “Your lock is: + state” from the first

messaging function in Line 16, and the content “Nobody

is Home” from the second messaging function in Line 21.

As per the recipients, it extracts the recipient’s value

contained in the variable phone from the first messag-

ing method (Line 16) and the hard-coded phone num-

ber “123-456-7890” from the second messaging function

(Line 21). IoTWatcH uses taint-sink contents to inform

a user of the sensitive data type.

Purpose of Collected Data. We implement an NLP-

based model to analyze the content of taint sinks

and classify them into four privacy labels. Further-

more, IoTWatcH matches the recipient information

extracted from messaging and Internet taint-sinks with

app information to uncover sensitive data leaks. The

app information is either entered by the user, or in-

formed by the developer via the app’s description block

and approved by the user. In cases where the sink-call

(i.e., messaging or Internet) is executed using unautho-

rized recipients, a leak is flagged and the user is in-

formed. Additionally, we check whether Internet taint-

sinks send data in clear-text, confirming sensitive data

is not accessed by potential eavesdroppers.

5.1.1 Selective Code Instrumentation

IoTWatcH performs a selective code instrumentation

to implement privacy analysis on the sensitive data that

is of interest to the user, which also reduces the number

of real-time notifications. Also, selective instrumenta-

tion permits the analysis of encrypted IoT strings.

Privacy User Interface. The instrumentor adds ad-

ditional code to implement a UI and create a privacy

profile of the user. Figure 4(a) shows the privacy user

interface presented to the user during install-time, which

illustrates the selective code instrumentation options of

the IoTWatcH-enabled app. IoTWatcH’s instrumen-

tor does not impact the UI experience of the IoT app at

runtime, but offers new privacy features at install-time

not available in the original app. The instrumented app

offers the user the possibility to create a privacy pro-

file and receive notifications regarding specific privacy

labels that are of interest to the user ( 1 ). Also, it al-

lows for selecting which privacy concerns (e.g., option

to notify leaks from messaging or Internet taint-sinks)

must be analyzed and informed by IoTWatcH ( 2 ).

Such a design supports the expectations of the IoT app

users with (1) configurable privacy preferences, (2) on-

demand privacy controls, and (3) timely privacy notifi-

cations (Table 1) as were summarized in Section 3. The

user interface also includes a link to a tutorial that ex-

plains the different settings of the privacy profile. The

justification behind this design rationale is to to facil-

itate the user experience regarding the setup and use

of the privacy profiles, their components and meanings,

and how they can be included into IoTWatcH’s analy-

sis, as shown in Figure 4(b). The tutorial can be easily

accessed from the privacy user interface anytime. Also,

as we target open-source IoT platforms, the use of selec-

tive instrumentation does not change or impact the orig-

inal user interface of the app which may be considered

as intellectual property. For closed-source platforms, we

envision developers using the features offered in IoT-

WatcH to evaluate and improve the protection of sensi-

tive information and the privacy of users. Lastly, we note

that users can update their privacy profiles through the

settings provided in instrumented IoT app. We follow a

similar principle that a user can update the app settings

such as when a new device is added. The updated pri-

vacy profiles then are sent to IoTWatcH’s server and

the new user notifications are automatically enabled.

Evading IoTWatcH Analysis. The use of encryp-

tion and obfuscation techniques to hide the sink-call

content limits the effectiveness of NLP techniques. For

instance, NLP models that use plain-text data would

fail to classify encrypted/obfuscated strings. However,

selective instrumentation may facilitate the analysis of

IoT apps that codify or encrypt the data that is sent
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App Sink-Call Content Assigned Privacy Labels

“Thermostat is turned on” device-info

“The door will remain open for another 5 minutes” device-info, date-time

“Door is closed since car was not at Home, 15 sec ago” device-info, location, date-time

“Sleep time set for you as requested” user-behavior

Table 2. Examples of leaked taint-sink contents from IoT apps

and their privacy labels. IoTWatcH assigns multiple privacy

labels to specific IoT strings to capture their complex semantics.

an app includes a string, “the user mode changed to

vacation from home”.

We note that taint-sink contents may require more

than one privacy label assigned to guarantee accurate

classification. For instance, the message string “The

door will remain open for another 5 minutes” is labeled

with multiple labels of types Device-info and Date-time.

Similarly, “Garage door is not opening since the car was

not present at Home, less than 15 sec ago”, is labeled as

Device-info (the door is not opening so it is still closed),

Location (the car was not present at Home), and Date-

time (15 sec ago). We present examples of IoT taint-

sink contents assigned to the various privacy labels in

Table 2. The use of multiple privacy labels to a single

text includes more complex semantics string structures

and in turn provide users with more accurate labels. As

we explain later in this section, we use NLP techniques

to achieve this goal.

IoT Application Corpus. We study sink-call contents

of 540 IoT apps. These contents pose a few unique char-

acteristics compared to those of other domains. First,

the size of the texts extracted is usually three to four

shingles on average, yet it contains highly private data

(e.g., “the door is unlocked”). Second, their linguistic

structure is minimal regarding semantics (e.g., “mode

changed to away”), compared to other short docu-

ments extracted from popular general-knowledge cor-

pora [21, 33, 56]. Third, their meanings usually are

closely attached to the app’s context (e.g., “if the user

is not-present, turn off the light”). Based on our find-

ings, we build an NLP model that is effective at classi-

fying semantic-deficient, but information-rich texts. To

determine whether strings include sensitive information

and assign them a privacy label, we first implemented

a classification model using publicly available data cor-

pora [21, 33, 56]; however, due to the specific charac-

teristics of IoT strings, we obtained very low classifi-

cation accuracy (detailed in Appendix C). To improve

this, we constructed an IoT-specific corpus for classifi-

cation purposes that successfully considers and solves

these challenges. We first collected the content of mes-

saging and Internet calls from current IoT market apps.

We pre-processed the resulting dataset by filtering out

punctuation and stop words. Further, we manually la-

beled the IoT strings to the four privacy labels. Here, we

applied multi-labeling to contents that contained infor-

mation related to more than one privacy label. Overall,

the resulting dataset represents the semantics of taint-

sink contents found in IoT apps.

NLP Model Construction. We implement an NLP

model that uses a specific IoT corpus above for training.

We use the model to classify unknown sink-call contents

to privacy labels. To train the model, we propose a su-

pervised learning approach that requires labeled data as

input. We expect that the supervised approach yields

better results than other approaches such as keyword-

search. This is because the IoT string containing privacy

information often does not include sufficient informa-

tion to assign the labels through simple keyword-search-

based analysis. For instance, keyword-search would fail

to identify the user-behavior in a messaging taint-sink

that leaks a string “the kids left home”. The model

integrates doc2vec [8] to represent every n-gram IoT

string (i.e., IoT document) into a multi-dimensional

vector. Specifically, we choose the Paragraph Vector-

Distributed Memory (PV-DM) approach as strings ex-

tracted from IoT apps have limited semantic structures,

yet they include a substantial amount of information.

By using doc2vec helps IoTWatcH find the leaks that

are context-wise and semantically similar. Thus, we se-

lect PV-DM doc2vec over other known approaches like

bag-of-words (BoW) [30] as it has proven to be effective

against incomplete or semantically-limited strings. PV-

DM considers the entire structure of the text and infers

what is missing to perform syntax and context anal-

ysis (i.e., multi-word expression analysis) [32]. In this

way, we are able to extract the privacy content from

semantically-limited IoT strings. We then performed

topic classification of the IoT strings using an auto-

mated machine learning approach (i.e., autoML) [6]. We

note that autoML selects the best classification algo-

rithm by trying various classification algorithms; thus,

the best accuracy is always guaranteed. We provide de-

tails of the NLP model and IoT corpus in Section 6.

5.3 User Notifications

IoTWatcH implements two different privacy notifica-

tion options, as shown in Figure 3(a), Appendix C.

First, it allows a user to select specific privacy labels

(one or multiple) for an app to receive notifications. For

instance, if the user is only concerned about the location

information, she may select the location label so that

IoTWatcH informs if a sink-call transmits data defined
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through location-label. This means that the user would

not receive any other notifications of other privacy la-

bels. The second option allows the user to determine

the type of taint-sink to be notified, messaging, and In-

ternet, or both. The selective user-specific notifications

provide flexibility, reduces the IoTWatcH latency in in-

strumented apps, and enhances the user experience by

reducing the number of notifications at runtime. Lastly,

IoTWatcH also check the recipients of Internet taint-

sink and see whether it uses HTTP or HTTPS to trans-

mit sensitive data. This exposes the content of the Inter-

net message to passive observers (i.e., eavesdroppers). In

this case, IoTWatcH is able to notify users as well, as

shown in Figure 3(b), Appendix C.

We note that IoTWatcH enables all privacy labels

and taint-sink options by default. Tech-savvy users that

fully understand the privacy risks of IoT apps may cre-

ate their own privacy profiles by disabling install-time

options for better user experience. Users that do not en-

tirely understand the privacy labels in IoTWatcH may

rely on the default options.

6 Implementation Details

We implemented IoTWatcH for IoT applications de-

veloped for Samsung SmartThings, which is the IoT

platform that has the highest share of devices and appli-

cations in the current commodity IoT market [47, 52].

Samsung SmartThings apps are developed in Groovy,

a dynamic programming language that supports static

compilation. Static compilation permits for all methods

and classes in the apps to be annotated at compile time,

which makes this information fully available to the in-

strumentation portion of IoTWatcH.

Code Instrumentor. IoTWatcH traverses the Ab-

stract Syntax Tree (AST) of the IoT app’s In-

termediate Representation (IR) using the Groovy’s

ASTTransformation class [23]. This class, included in

the Apache Groovy project, offers several metaprogram-

ming utility methods to build and analyze the app’s

AST. We used the AST to perform our analysis as

we targeted open-source applications, and we could

take advantage of the specific programming classes that

Groovy offers for the compile-time analysis. Specifi-

cally, we use the class ASTNode to build an app’s Intra-

procedural Control Flow Graph (ICFG) [10]. From

there, we used the visit methods to inspect the dif-

ferent ICFG nodes and flag methods that implement

sink functions (e.g., sendSMS), handle sensitive pri-

vacy data (e.g., phone number), subscribe to events,

or define event handlers. IoTWatcH involves around

1700 lines of code written in Groovy to analyze the

app source code, construct the IR, generate the ICFG,

and perform the code instrumentation. We implemented

IoTWatcH’s instrumentor as a web application us-

ing Groovy programming language (detailed in Ap-

pendix B). We made the instrumentor available online

at https://iotwatch.appspot.com/.

App and IoT Data Collection Process. We col-

lected 540 Samsung SmartThings apps to implement

and evaluate IoTWatcH, which represented 100% of

the open-source SmartThings apps available at the time

of developing this project. These IoT apps are from six

different general categories: Convenience, Smart Home

Automation, Entertainment, Personal Care, Security &

Safety, and Smart Transportation. Out of the 540 apps,

380 SmartThings apps were used to build an IoT cor-

pus and train the NLP model, and 160 apps to evalu-

ate its performance (detailed in Section 7). For compre-

hensiveness, we included in our analysis SmartThings

market apps crawled from official Samsung reposito-

ries [48, 50] and malicious apps crawled from the IoT-

Bench repository [28], an IoT-specific test corpus used

to evaluate systems for IoT app security and privacy.

The IoTBench includes flawed apps that perform var-

ious malicious activities, including sensitive data leaks

via both messaging and Internet taint-sinks.

To collect the IoT strings from the crawled apps,

we analyzed and instrumented the total population of

apps using the IoTWatcH’s code instrumenter. IoT-

WatcH’s instrumentor adds on average 25% more lines

of code (LoC) to the apps, which translates into adding

65 LoC to an IoT app that has an average size of 265

LoC. We then executed the instrumented apps in the

SmartThings Simulator IDE [49], a propriety simula-

tion tool provided by Samsung. The IDE permits the

modeling of trigger-action scenarios in which an instru-

mented app sends messaging- and Internet-based taint

sinks that contain the IoT strings to the IoTWatcH

server. The IoT strings are individually labeled through

app and string ID, and taint sink in the form {ID:

app_ID, taint_sink, string}.

Data Split and Model Training. We first organized

the strings collected from the 540 IoT apps into the six

different app categories. Then, for proper data balance,

we randomly selected the strings collected from 70% of

the apps from each category until reaching 380 training

apps. The remaining strings from the other 160 apps

were used later for evaluating IoTWatcH. From the

selected apps for training, we extracted a total of 2014

different IoT strings. We then labeled these strings ac-

cording to the four privacy labels. Specifically, 46.8%
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of the strings contained information related to the IoT

devices, while 20.8% contained relevant information re-

lated to Date-time. The remaining 19.2% and 13.2% of

the IoT strings shared information related to location

and user-behavior, respectively. We allowed up to 75%

of inter-labeling assignment to the strings, meaning, up

to three different privacy labels can be assigned to a sin-

gle string. In total, we applied multi-labeling to 72% of

the privacy strings in the IoT corpus. Finally, we applied

k-fold cross validation on the labeled data to train and

validate the NLP model. We randomly selected 75% of

the total corpus to train the classifier for approximately

15 hours. Then, we validated the obtained model with

the remaining 25% of the data, which is a practice fol-

lowed by modern autoML [7]. Initial testing results on

the NLP model showed an average precision of 94.3%

and recall of 89.6%.

Classification of IoT Privacy Strings. We use Au-

tomatic Machine Learning (Auto-ML) tools offered by

Google App Engine [6] to perform privacy classifica-

tion of IoT strings. Among its benefits, modern auto-

ML approaches perform neural architecture search and

transfer learning, enable hyper-parameter optimization,

and utilize advanced model architectures to classify con-

tents to privacy labels with high accuracy. More par-

ticularly, we implemented a custom multi-class multi-

label model using the Natural Language API offered by

Google (Google-NL) [7]. Google-NL offers a suite of ML

algorithms that automatically optimize the algorithm

parameters based on the specific algorithm utilized and

the characteristics of the dataset to guarantee the high-

est accuracy. Our initial analysis of 2014 IoT strings

showed remarkable semantic similarities among them;

thus, the use of labeled data reduces the training time

considerably. Finally, we implemented our NLP solution

to classify strings written in English as only two (0.5%)

IoT strings analyzed were written in Spanish.

IoTWatcH API. We implemented a REST API to

enable effective and secure data exchange between the

instrumented IoT app and IoTWatcH’s analyzer (Fig-

ure 3). From the app to the server, the API constructed

a JSON object with the user-defined recipients and the

taint-sink information. From the server to the app, an-

other JSON object was used to send the IoTWatcH’s

analysis results. The API also handles IoTWatcH’s pri-

vacy notifications to the user. Once the privacy anal-

ysis is completed, IoTWatcH sends back to the user

another JSON object containing its findings. (aditional

details in Appendix C). Further, we protected the com-

munications between the apps and the IoTWatcH’s

server with the asynchttpv1 class of Samsung Smart-

Things [51], which allows for asynchronous and en-

crypted HTTPS calls. Also, we guaranteed integrity of

the data being exchanged by digitally signing the API

requests with SmartThings x.509 certificates. Specifi-

cally, the API requests fetch the public keys for signa-

ture verification from https://key.smartthings.com

+ <aKeyId>. Then, the IoTWatcH computed the va-

lidity of the signatures using the resolved key combined

with the HTTP headers provided on the API callback

request. Finally, we assumed the IoTWatcH servers

were secure so the actual NLP analysis as well as the

user notifications were not compromised by external at-

tackers. Note that attacks to the server or server-related

threats were not considered in this work.

7 Performance Evaluation

We evaluated the performance and efficacy of IoT-

WatcH based on the three research questions (RQ).

RQ1 What is the effectiveness of IoTWatcH in cor-

rectly classifying the tain-sink contents into privacy la-

bels? (Section 7.1).

RQ2 What is the effectiveness of IoTWatcH in iden-

tifying data leaks that confirms privacy preferences of

users? (Section 7.2).

RQ3 What is the runtime overhead of IoTWatcH in

terms of latency and storage? (Section 7.3).

Evaluation Setup. We analyzed and extracted IoT

strings from a total of 160 Samsung SmartThings apps

to evaluate IoTWatcH’s performance. Specifically, we

included 120 market and 40 malicious apps in the eval-

uation. The apps were instrumented and executed in

the SmartThings IDE to extract the app communica-

tion content as explained in Section 6. Finally, the apps

sent their data to IoTWatcH’s analyzer at execution

which ran on a Python web server hosted on Google

App Engine [20].

Defining User Privacy Preferences. The ideal case

to define user preferences requires executing IoT apps

with the real users, where each of them installs an app.

However, this is time-consuming as we have hundreds of

apps, and each user needs to understand the function-

ality of each app before they define their preferences.

To address this, we assume users set their preferences

when the IoT data is transmitted out of an app without

their consent, which allows us to define privacy prefer-

ences of users in our experiments as a ground truth. A

user is able to give consent to IoT app recipients and

contents in two ways. First, a user defines the taint-sink
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Fig. 6. IoTWatcH classifier performance: (a) average value of

all performance metrics for the different threshold values and

(b) ROC curve and AUC that illustrate the performance of IoT-

WatcH’s classifier for all privacy labels.

recipient at app install-time, for instance, a cell-phone

number to receive a notification or a web page name

that the content is sent. We are able to automate this

process through sink-call recipient analysis. IoTWatcH

matches the taint-sink recipients with information de-

fined by the user at install-time. For instance, the user

defines an authorized recipient in the field phone. IoT-

WatcH extracts this information and checks it against

the taint-sink recipient. If they match, it means that the

user defines the recipient at install-time. This is because

IoTWatcH recognizes that the user previously autho-

rized this recipient, and the data transmitted to the

recipient do not violate the user’s privacy preference.

Defining Leaks. In cases where IoTWatcH sees dis-

crepancies between the recipient of a taint-sink and the

one that was defined by the user, it identifies it as a data

leak. Also, we considered a data leak any time an app

sends information to a third party without informing the

app user via the app description. As we consider that

the description block of an app should explicitly specify

the content transmitted out of an app and its recipients,

failing to do so makes it impossible for the user to ac-

knolewdge and confirm the app’s intent at install-time.

Thus, for instance, an Internet taint-sink that sends sen-

sitive data to a server that is not informed to the user

via an app description block is clearly a leak.

7.1 Taint-sink Content Classification

IoTWatcH’s analyzer classifies IoT app taint sink con-

tent (i.e., IoT strings) into four privacy labels. The clas-

sification results include the assigned label and the con-

fidence scores through a threshold th. If the classifica-

tion score is over the predefined threshold, the privacy

label is assigned to the string. For instance, the string

“the front door at home is unlocked” resulted in classi-

fication scores of device-info=0.94, user-behavior=0.03,

location=0.86, and date-time=0.3. By design, the clas-

sification scores are independent of each other, that is,

Label TP TN FP FN Accuracy Recall Precision Specificity

Device-info 958 232 11 84 0.9260 0.9214 0.9890 0.9547

Date-time 99 1161 18 36 0.9589 0.7333 0.8918 0.9847

User-behavior 508 684 26 95 0.9079 0.8425 0.9585 0.9633

Location 221 1061 10 22 0.9756 0.9095 0.9610 0.9907

Table 3. Performance of IoTWatcH in classifying IoT strings to

all the different privacy labels.

if th value is set to 0.7, IoTWatcH classifies the string

into privacy information of type device-info and loca-

tion. In total, IoTWatcH classified 146 IoT strings ex-

tracted from 95 different IoT apps. Out of these, 112

strings were extracted from messaging taint-sinks; 54

messages from 44 market IoT apps and 58 messages

from 30 malicious apps. The remaining 34 strings were

extracted from Internet taint-sink; 12 Internet calls ex-

tracted from 10 market IoT apps, and 22 extracted from

11 malicious IoT apps.

Performance by Threshold Values. We study how

IoTWatcH’s classifier performs for different threshold

values th. The goal of this analysis is to find the value

th that leads to the highest performance overall. Fig-

ure 6(a) summarizes the average metrics for different

values of th. Overall, IoTWatcH yields the best accu-

racy for threshold values between 0.1 to 0.5. We observe

that th = 0.4 yields the best classification results for

all metrics. Finally, IoTWatcH classifies IoT strings to

correct privacy labels with 94.25%, 85.17%, 95.01%, and

97.34% average accuracy, recall, precision, and speci-

ficity, respectively (additional details in Appendix D).

Performance by Privacy Label. We further study

the sensitivity of IoTWatcH’s classifier to each pri-

vacy label. The goal is to determine the effectiveness of

IoTWatcH in classifying strings to the different pri-

vacy labels. Table 3 shows the performance of IoT-

WatcH in classifying IoT strings to different privacy

labels. IoTWatcH achieves the highest accuracy for

privacy labels of type location and date-time. This is

because date, time, and location can be easily inferred

from semantically-simple strings. Also, it is very com-

mon to find information related to these privacy labels

embedded in the same string (e.g., “he arrived home

5 minutes ago”). In contrast, IoTWatcH obtained the

lower accuracy results for privacy labels of type user-

behavior. This is because user-behavior information is

harder to infer from simple strings. In spite of these

results, IoTWatcH achieved the lowest accuracy of

90.79% for user-behavior labels, which is comparable

with the best classification results of other similar tools

in the market [37]. In summary, our observation is that

the classification errors of IoT strings into privacy la-



Real-time Analysis of Privacy-(un)aware IoT Applications 158

bels are due to the highly-limited structure of the IoT

strings. In most cases, developers try to exfiltrate more

information using short messages lacking proper seman-

tics (e.g., “front door was unlocked 5 min ago”). In this

case, we note that a straightforward classification ap-

proach does not yield successful results when extract-

ing complete privacy information related to the device

(e.g., door unlocked), date-time (e.g., 5 min ago), and

location (e.g., front of the house) and, hence, would not

be instrumental in uncovering all the privacy risks. Fi-

nally, we present the Receiver Operating Characteris-

tic (ROC) curve and the corresponding Area Under the

Curve (AUC) in Figure 6(b). These metrics summarize

the overall performance of the IoTWatcH’s classifier

for all privacy labels. The AUC fully supports the clas-

sification metrics detailed in Figure 6(a) and reflects the

high prediction quality of the proposed NLP classifier.

Our observation is that the classification errors are

due to the highly-limited structure of the IoT strings.

In most cases, developers try to exfiltrate more informa-

tion using short messages lacking proper semantics (e.g.,

“front door was unlocked 5 min ago”). In this case, we

note that a straightforward classification approach does

not yield successful results when extracting complete

privacy information related to the device (e.g., door un-

locked), date-time (e.g., 5 min ago), and location (e.g.,

front of the house) and, hence, would not be instru-

mental in uncovering all the privacy risks. To overcome

these issues and improve the classifier’s performance

in IoTWatch, we followed different and more fruitful

design strategies, as stated in Section 5.2.1. First, we

used a rich IoT corpus to train the model. Second, we

represented every IoT string with a multi-dimensional

vector via paragraph vector-distributed memory-based

(PV-DM) doc2vec. With this approach, the IoTWatch

classifier could predict the missing words from the

structurally-limited strings and improve the classifica-

tion results significantly. We will clarify this in the final

version of the paper.

Findings on Privacy Analysis of IoT Strings. IoT-

WatcH classifies IoT strings to privacy labels with an

average accuracy of 94.25%. Out of 160 apps, IoT-

WatcH identified 50 (31.25%) apps that transmit data

related to device information via messaging, and 20

(12.5%) apps that do the same via Internet taint-sinks.

Also, 11 (6.9%) apps handled data related to date and

time in messages and only one transmit similar informa-

tion using the Internet. IoTWatcH also identified 38

(23.75%) apps transmitting information related to the

user behavior in their messages and nine (5.6%) includ-

App Type No. of Apps Mess. Leaks Cl-T. Effec.

Market 120 54 0 – –

Malicious 40 58 29 – 100%

Total 160 112 29 – 100%

Mess. - Messaging taint-sinks Analyzed
Leaks - No. of Data Leaks Found
Cl-T. - No. of Clear-text Leaks Found
Effec. - IoTWatcH Effectiveness

Table 4. Effectiveness of IoTWatcH in detecting sensitive data

leaks via messaging.

App Type No. of Apps Int. Leaks Cl-T. Effec.

Market 120 12 11 3 100%

Malicious 40 22 22 3 100%

Total 160 34 33 6 100%

Int. - Internet taint-sinks Analyzed

Table 5. Effectiveness of IoTWatcH in detecting sensitive data

leaks via Internet taint-sinks.

ing similar type of information in Internet taint-sinks.

Further, 20 (12.5%) apps sent information related to lo-

cation via messaging, while six (3.7%) apps did the same

via Internet calls. Finally, we evaluated how the privacy

analysis of IoT strings benefited from the use of NLP.

IoTWatcH assigned multiple privacy labels to classify

more semantically-complex IoT strings, which guaran-

teed completeness in the privacy analysis. Out of 146

strings analyzed, IoTWatcH applied multi-labeling to

68 (46.5%). Specifically, 54 IoT strings (36.9%) received

two privacy labels and 14 (9.6%) strings received three

privacy labels.

7.2 Data Leakage Analysis

Findings on Data Leaks via Messaging. Table 4

shows IoTWatcH’s findings after analyzing messaging

recipients. IoTWatcH extracted 54 recipients in mes-

sages from market apps and 58 from malicious apps.

We found no data leaks via messaging in market apps,

meaning, all recipients were defined (or authorized) by

the user at install-time. We believe this is due the strict

review process enforced by SmartThings IoT market.

Further, we found 29 leaks from 14 different malicious

apps [28], meaning, all these recipients were hard-coded

by a developer and their intent were not defined in the

app’s description block. For instance, the User Event

app [28] leaks privacy labels of type device-info, loca-

tion, and user-behavior (“Everyone is away and hub ID

is #”) to a hard-coded phone number. We manually re-

viewed the app source codes and verified that all IoT-

WatcH’s findings were correct. Also, we verified that

all data leaks via messaging were properly flagged.

Findings on Data Leaks via Internet. Table 5 de-

tails the effectiveness of IoTWatcH’s analyzer in find-
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ing data leaks via Internet taint-sinks. IoTWatcH an-

alyzed 34 recipients from Internet taint-sinks, 12 from

market and 22 from malicious apps. Our tool flagged 11

Internet taint-sinks from seven market apps that leak

privacy data without user consent. That is, the user

is neither informed about the recipient of the data in

the app description block nor enters the URL or do-

main name herself. For instance, the ThingSpeak Log-

ger app [48] transmits a device ID to a remote server

through an HTTP call, which is identified through

a device-info privacy label. For malicious apps, IoT-

WatcH flagged 22 Internet taint-sinks from 14 different

malicious apps as leaks. We verified that 100% of data

leaks via Internet were properly flagged.

Clear-Text Data Leaks. IoTWatcH is also able to

verify whether an IoT app sends a clear-text through

HTTP. IoTWatcH flagged three clear-text leaks from

three different market apps out of twelve Internet taint

sinks. We found that one of these calls was authorized

by the user at install-time through the app description

block. Lastly, IoTWatcH flagged three Internet taint-

sinks that uses HTTP to leak sensitive data from mali-

cious apps.

7.3 Overhead Analysis

We show the performance of IoTWatcH in terms of

runtime and storage overhead.

Runtime Overhead. Latency refers to the time

elapsed from the moment that the app’s data is collected

to the moment that the user receives IoTWatcH’s no-

tifications. Latency overhead is calculated as the av-

erage difference in the execution time of the origi-

nal and instrumented apps. On the one hand, IoT-

WatcH required on average 75 ms to classify the sink-

call contents. On the other hand, the communication

latency between the IoT app and the IoTWatcH’s

server was 30 ms on average. We used the Groovy

class asynchttp_v1 to implement asynchronous HTTPS

requests to reduce communication latency. We found

that the total latency introduced by IoTWatcH is on

average 105 ms.

Storage Overhead. We measured the storage over-

head imposed by IoTWatcH. Our tool does not store

app information after the analysis is completed; thus,

the storage cost is determined by the total storage size

of the JSON object used to exchange information be-

tween the IoT apps and IoTWatcH’s analyzer (Sec-

tion 6). We evaluated the storage overhead imposed by

the analysis of 160 IoT apps. On average, IoTWatcH

imposes a negligible 1 KB of storage overhead.

7.4 Discussion and Future Work

IoTWatcH is the first dynamic tool that performs NLP-

based real-time privacy analysis in IoT apps to (1)

classify IoT strings into privacy labels that are easy

to understand by the user, and to (2) flag IoT apps

that represent privacy concerns for the user. We im-

plemented IoTWatcH for SmartThings IoT platform,

and we plan to extend our analysis to other IoT plat-

forms. Additionally, we analyzed 380 IoT apps and con-

structed a dataset to study how these apps use privacy-

sensitive information. While our corpus included IoT

strings extracted from SmartThings market apps, we

plan to investigate other IoT platforms to construct sim-

ilar datasets.

We designed and built IoTWatcH by first under-

standing the privacy needs of IoT users. We plan to con-

duct an additional study to evaluate the usability of IoT-

WatcH which is outside the scope of the current work.

Also, IoTWatcH’s analysis would benefit from mapping

the app descriptions to privacy labels. However, this is

challenging as the description block of an IoT app does

not explicitly state the app’s privacy behavior but its

functionality. We plan to use more advanced NLP tech-

niques to address this challenge. Finally, IoTWatcH’s ex-

ecution requires the collection and analysis of privacy-

sensitive information. We use secure HTTPS communica-

tions to protect the communication between IoT apps

and IoTWatcH’s server. In addition, IoTWatcH does not

keep record of any collected information nor share this

information with any third party. As a future work, a

complete privacy assessment of IoTWatcH may be con-

ducted to guarantee that user’s privacy is completely

preserved.

8 Related Work

Data Flow Analysis. Previous works have focused on

flow data analysis to research the security and privacy

of the mobile phone [5, 14, 17, 24, 26, 57] and the IoT

apps [9, 10, 18, 40]. Tools for mobile apps cannot be

directly applied to the IoT as applications from both

ecosystems pose different architectural challenges. For

instance, FlowCog [37] establishes data flow dependen-

cies based on Android app view context, which cannot

be extracted from IoT apps due to specific architectural

differences. On the other hand, previous solutions for

IoT mostly consider security risks from data flows with

tainted variables or via inter-rule or cross-app vulnera-

bilities. For instance, SainT [10] does not consider data

leaks at runtime or via IoT strings, while FlowFence [19]

often over-approximates the data leaks, which leads to
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Tool Name Domain Code Analysis Dynamic Analysis Semantics Analysis Privacy Analysis NLP/ML Analysis User Awareness Overhead Evaluation Freely Available

TaintDroid [17] Android

FlowDroid [5] Android

FlowCog [37] Android

FlowFence [19] IoT

ContextIoT [29] IoT

Saint [10] IoT

ProvThings [55] IoT

iRuler [54] IoT

SmartAuth [53] IoT

IoTWatcH IoT

Table 6. Comparison between IoTWatcH and other data flow analysis tools for Android and IoT apps.

failure when dependency between taint variables and

leaks cannot be established. The authors in [18] pro-

posed the use of static analysis to reveal permission-

based security flaws. Also, the authors in [40] enforced

data flow control by applying opacified computation.

Lastly, ProvThings [55] uses static and dynamic anal-

ysis to collect data provenance and identify the root

cause of attacks in IoT apps. However, this work is lim-

ited to analyze dependencies between events and data

states and does not offer any built-in privacy analysis.

iRuler [54] applies NLP techniques to uncover inter-rule

vulnerabilities parsed not from IoT apps, but IoT ser-

vices. The SmartAuth tool [53] also uses NLP, this time

to generate and enforce security policies in IoT apps.

Similarly, the authors in [27] analyze privacy risks in

IoT online recipes. Table 6 compares IoTWatcH with

other the existing data flow analysis tools.

IoT Privacy. Information exposure in IoT rises con-

cerns among users and researchers. The authors in [58]

perform a qualitative analysis of the type of sensitive in-

formation IoT devices expose. Also, the authors in [59]

study IoT privacy focusing on the user’s perception.

A novel work proposes the use of blockchain [60] or

attribute-based encryption [63] to provide enhanced se-

curity and privacy to smart home systems. Meanwhile,

other authors propose the use of unified systems as the

solution to provide enhanced privacy in IoT [61]. Fi-

nally, some works focus on protecting the privacy of IoT

communications via novel protocols [64].

Comparison to Existing Works. Different from

SaINT [10] and ProvThings [55], IoTWatcH uncovers

privacy risks of IoT apps not only from taint data but

also from simple IoT strings. Also, IoTWatcH analy-

sis focuses on privacy concerns from IoT apps, some-

thing that is missing in other analysis tool for IoT like

iRuler [54], SmartAuth [53], and ContextIoT [29]. IoT-

WatcH uses user feedback to performs qualitative anal-

ysis on the information handled by IoT applications.

Such a capability is missing in all other tools included

in Table 6. Specifically, IoTWatcH collects app data in

real time and converts the data into specific privacy la-

bels that the user can understand and customize. Thus,

IoTWatcH not only studies the cause and flow of the

sensitive information, but its meaning to the user and

the systems. There are some other features that are

unique to IoTWatcH. Specifically, IoTWatcH repre-

sents the first security tool that exposes the recipients of

the sensitive information in real time. Finally, since the

proposed privacy tool is user-centered, it guides its anal-

ysis with customizables privacy profiles that the users

create at install time and change anytime after. That

way, IoTWatcH minimizes the numbers of notifications

and focuses its analysis on privacy features that are of

interest of every user individually.

9 Conclusion

IoT apps access sensitive data that, if leaked, may com-

promise the privacy of the users. IoT platforms do

not offer real-time privacy analysis that informs users

about how the IoT apps handle sensitive information.

To adress these concerns, in this paper, we introduced

IoTWatcH, a dynamic analysis tool that uncovers the

privacy risks of IoT apps in real-time. We developed

IoTWatcH based on a study of the privacy needs of

123 users. IoTWatcH enables users to select their pri-

vacy preferences, and uses NLP techniques to classify

IoT strings into user-friendly privacy labels. This allows

users to make informed decisions about their privacy

and reject apps. We analyzed 540 IoT apps to train the

NLP model and evaluate its effectiveness. IoTWatcH

classifies IoT strings to correct privacy labels with an

average accuracy of 94.25% and flags 35 apps that leak

sensitive data. Finally, IoTWatcH yields a minimal

overhead to an IoT app’s execution, on average 105 ms

additional latency.
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A Sample Survey Questions

We present a list of representative IoT privacy sur-

vey questions from all the categories due to space

constraints. The entire user study is available at

https://anonymous.com.

A.1 User Characterization

1. Do you use, have used, or are you planning to use

any IoT device?

( ) Yes

( ) No

( ) Maybe

2. What is your technical experience with IoT apps?

( ) I can build, implement, code my own IoT app

( ) Installed/can install/configure an IoT app using

the source code available online

( ) Installed/can install/configure an IoT app’s mar-

ketplace (Google Play, App Store, etc.)

( ) I just know how to press the buttons

( ) I have no idea how to deal with IoT apps

A.2 Security and Privacy Concerns in
Smart Apps

1. What information would you consider sensitive if

used in IoT apps/devices? Please check all that

apply.

( ) My personal data (e.g., email address, phone

number, residential address, etc.) ( ) Whatever I

do, my behavior (e.g., when I arrive home, when I

leave home, I go to sleep, etc.)

( ) My (or my devices’) location (e.g., my location

while using the apps, etc.)

( ) My device settings/the way I configure the de-

vices (e.g., Time of the day the lights turn On/Off,

my thermostat temperature settings, etc.)

( ) My (or my devices’) timing (e.g., the time passed

since I left home, the time passed since I went to

sleep, etc.)

( ) Information from my devices (e.g., device type,

manufacturer, device IDs, etc.)

( ) Data from my devices (e.g., door state open or

close, light on or off, etc.)

( ) Other

If you selected "Other", please explain:

2. Have you heard or personally have privacy concerns

on the use of the IoT devices and systems?

( ) Big concerns ( ) Some concerns
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Listing 1. An example of a JSON object sent from an IoT app to

IoTWatcH for further analysis.

1 /∗ An example of a JSON object sent to Daint analytics tool ∗/
2
3 data "{
4 ’exfiltration’:{
5 ’texttype’:’PLAIN_TEXT’,
6 ’calltype’:’Messaging’,
7 ’phone’:’111-111-1111’,
8 ’content’:’The door was opened for 10 min’
9 ’userrecipients’:’123-456-7890’,

10 }
11 }" "https://iotwatchanalyticstool.com/classifytext/"

Listing 2. An example IoTWatcH response as a JSON object

received by an IoT app.

1 /∗ An example of a JSON object as response from our analytics tool
∗/

2
3 data "{
4 ’exfiltration’:{
5 ’texttype’:’PLAIN_TEXT’,
6 ’classification’:[’device-info’, ’date-time’]’,
7 ’risklevel’: ’data leakage’
8 }
9 }"

Sample API Objects Listing 1 illustrates a sam-

ple JSON object used to send data from an IoT apps

to IoTWatcH analyzer. Here, information regarding a

messaging content and its recipients is collected. The

findings are then sent back to the user via another JSON

object similar to the one depicted in Listing 2.

LC MwoLoPC IwoLoPC MoLoPC IwLoPC Total % Total

Device-info 47 12 43 17 119 52.3

Date-time 7 1 7 0 15 6.6

User-behavior 21 2 34 10 67 29.3

Location 8 0 14 5 27 11.8

Total 83 15 98 32 228 100

LC - Privacy Label Category
MwoLoPC - Messaging without Leaks or Privacy Concerns
IwoLoPC - Internet Calls without Leaks or Privacy Concerns
MwLoPC - Messaging with Leaks or Privacy Concerns
IwLoPC - Internet Calls with Leaks or Privacy Concerns

Table 2. Distribution of privacy labels

Privacy Labels Table 2 summarizes the distribution

of the privacy labels during evaluation. One can notice

that, out of 228 different labels assigned, 52.3% cor-

responds to device-info, followed by a 29.3% of user-

behavior information. We also show in Table 2 the num-

ber of labels assigned to the different call types (i.e.,

messaging and Internet). For instance, 83 labels were

assigned to strings extracted from messaging that do

not leak information, while 98 labels were assigned to

strings extracted from messaging that leaked informa-

tion. On the other hand, Internet communications with-

out privacy concerns received 15 privacy labels while

32 were assigned to Internet communications that leak

smart-lock-control

12:01

< Back Save

IOTWATCH Data Flow Labels:

Notification Options:

Date-time Information

Device Information

Location Information

User Behavior

Notify Leaks via Messaging

Notify Leaks via Internet

IOTWATCH has detected data sent 

containing information related to 

your Location.

(a)

smart-lock-control

12:01

< Back Save

IOTWATCH Data Flow Labels:

Notification Options:

Date-time Information

Device Information

Location Information

User Behavior

Notify Leaks via Messaging

Notify Leaks via Internet

Information related to your Device 

was sent to www.support.com in 

clear-text format. 

(b)

Fig. 3. IoTWatcH’s findings are informed to the users through

push notifications. The findings include (a) the privacy labels

assigned to the taint-sink content, and (b) the clear-text trans-

mitted out of an IoT app.

data. With this distribution, one can notice that the

majority of labels were assigned to leaked data. These

results reflect on the fact that privacy leakage constitute

a serious problem in IoT.

IoTWatcH Notification System We illustrate the

notification system implemented by IoTWatch to in-

form its findings to the user. In Figure 3(a), the privacy

tool instruments a push notification to inform the user

that an IoT string related to the user’s location was

sent out of the app. In Figure 3(b), the tool informs

that sensitive information was transmitted in clear-text,

potentially making the data available to passive eaves-

droppers.

D Additional Evaluation Results

Table 1 details average metric values in classifying IoT

strings to privacy labels for every different th. Also, we

present the average metric values after combining re-

sults from all considered privacy labels and thresholds.

One can verify that IoTWatcH obtains the best per-

formance for threshold values of 0.4, which supports the

results showed in Section 7, Figure 6(a). For th values

higher than 0.5, the accuracy decreases for the privacy

labels of device-info and user-behavior. This is mainly

because the evaluation of semantically-limited strings

related to these two privacy labels requires more sophis-

ticated analysis. For instance, user-behavior achieved in-

correct or lower classification scores as the string “IoT

switched to sleep mode” cannot be easily related to user

activities. We obtained similar results for recall metrics;

however, recall values of date-time are lower compared

to other labels. We found that date-time information

could be easily missed from short strings, which makes
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Evaluation Metric
Classification Thresholds

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average

Accuracy 0.9537 0.9623 0.9692 0.9743 0.9623 0.9469 0.9296 0.9092 0.8750 0.9425

Recall 0.9754 0.9400 0.9379 09341 0.8821 0.8419 0.7919 0.7359 0.6263 0.8517

Precision 0.8470 0.8776 0.9163 0.9587 0.9803 0.9833 0.9929 0.9975 0.9835 0.9501

Specificity 0.9283 0.9498 0.9682 0.9772 0.9823 0.9855 0.9876 0.9907 0.9907 0.9734

Table 1. Evaluation results in classifying IoT strings for all classification thresholds. The rightmost column is the average values.

Type* App Name Leak Type** Recipient Content Behavior Privacy Labels

1

Squeeze Box Controller [48] I http://$ip:$port “Open box” Device-info

StatHat Quick Start [48] I http://api.stathat.com/ez “Thermostat1:thermostat” Device-info

ThingSpeak Logger [48] I http://api.thingspeak.com “DeviceID:333:Key:123” Device-info

User Lock Manager [48] M defined by user “User no longer has access to the door” Device-info, User-behavior

Smart Lock [48] M defined by user “SmartLock disabled. Door unlocked indefinitely” Device-info, User-behavior

2

Fire Alarm [28] I http://stmalware/maliciousServer.php – –

Ransomware [28] I http://stmalware/maliciousServer.php – –

Remote Command [28] I http://stmalware/maliciousServer.php – –

Spyware [28] M 123 − 456 − 7890 “Doors locked after everyone departed” Device-info, User-behavior

User Event [28] M 123 − 456 − 7890 “Everyone is away and Hub ID is 123” Device-info, Location, User-behavior

* 1 is for Market IoT apps and 2 is for Malicious IoT apps (Handcrafted)

** I is for Internet and M is for Messaging. is for Privacy Risk and is for Privacy Preference of a user.

Table 3. Examples of privacy risks and the use of sensitive information in market and malicious IoT apps.

the label specially vulnerable to false negative events.

The precision and specificity improves with th for all

the labels, which denotes a remarkable confidence of

the model for those results with the highest classifica-

tion scores.

Results from Real-life Apps. Table 3 presents IoT-

WatcH’s results and findings after analyzing real mar-

ket and handcrafted apps. As can be seen, IoTWatcH

was able to identify leaks happening due to both mes-

saging and Internet communications. In all the cases,

it reported back to the user the type of sensitive infor-

mation leaked (based on the four privacy labels) and

its recipients (phone number in case of messaging and

server URL in case of Internet calls). In some specific

cases (“User Lock Manager” and ”Smart Lock” apps),

no leak was detected as IoTWatcH found the recipients

were defined by the user at install time, yet IoTWatcH

informed the user the type of information handled by

the apps accordingly. Finally, we note that privacy leaks

were flagged in all the cases as the apps did not report

handling these types of information nor their recipients

to the user via app’s description blocks.

E Evaluation Metrics

The performance metrics used during IoTWatcH’s

evaluation:

– True Positive (TP) represents the number of times

a privacy label is correctly applied to an IoT string

for certain threshold th.

– True negative (TN) represents the number of times

a privacy label is correctly discriminated for certain

threshold th.

– False Positive (FP) is the number of times a privacy

label is incorrectly assigned to certain IoT string for

certain threshold th.

– False Negative (FN) is the number of times a pri-

vacy label is incorrectly discriminated for certain

threshold th.

– Accuracy is the overall ability of IoTWatcH to cor-

rectly apply privacy labels to the IoT string for ev-

ery different th.

– Recall is the ability of the classifier to correctly as-

sign the privacy labels to a specific IoT string after

considering both the correctly classified and the in-

correctly ignored privacy labels for every value of

th.

– Precision is the ability of our classifier to correctly

apply the privacy labels to a specific IoT string af-

ter considering both the correct and the incorrectly

applied privacy labels for every value of th.

– Specificity is the ability of our tool to discriminate

the privacy labels for every different th.
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