$ sciendo

Proceedings on Privacy Enhancing Technologies ;

2021 (1):145-166

Leonardo Babun*, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk Uluagac
Real-time Analysis of Privacy-(un)aware loT

Applications

Abstract: Users trust IoT apps to control and automate
their smart devices. These apps necessarily have access
to sensitive data to implement their functionality. How-
ever, users lack visibility into how their sensitive data
is used, and often blindly trust the app developers. In
this paper, we present [OTWATCH, a dynamic analysis
tool that uncovers the privacy risks of IoT apps in real-
time. We have designed and built IoTWATCH through
a comprehensive IoT privacy survey addressing the pri-
vacy needs of users. IoOTWATCH operates in four phases:
(a) it provides users with an interface to specify their
privacy preferences at app install time, (b) it adds ex-
tra logic to an app’s source code to collect both ToT
data and their recipients at runtime, (c) it uses Natural
Language Processing (NLP) techniques to construct a
model that classifies IoT app data into intuitive privacy
labels, and (d) it informs the users when their prefer-
ences do not match the privacy labels, exposing sen-
sitive data leaks to users. We implemented and evalu-
ated IOTWATCH on real IoT applications. Specifically,
we analyzed 540 IoT apps to train the NLP model and
evaluate its effectiveness. IOTWATCH yields an average
94.25% accuracy in classifying IoT app data into pri-
vacy labels with only 105 ms additional latency to an
app’s execution.

Keywords: Internet of Things, privacy, security, NLP.

DOI 10.2478/popets-2021-0009
Received 2020-05-31; revised 2020-09-15; accepted 2020-09-16.

1 Introduction

Users install IoT apps to manage and control IoT de-
vices such as smart thermostats, door locks, and cam-
eras. These apps have access to sensitive data to im-

*Corresponding Author: Leonardo Babun: Florida In-
ternational University, E-mail: Ibabu002@fiu.edu

Z. Berkay Celik: Purdue University, E-mail: zce-
lik@purdue.edu

Patrick McDaniel: Pennsylvania State University, E-mail:
mcdaniel@cse.psu.edu

A. Selcuk Uluagac: Florida International University, E-mail:
suluagac@fiu.edu

plement their functionalities, communicate to external
servers, and send notifications to users [4, 11, 35, 44, 50].
Recent studies have shown that IoT apps leak sensitive
information to unauthorized parties [3, 10, 19, 41, 42,
71, 76-80], and many IoT apps transmit data to re-
mote servers for data visualization and profiling user
behaviors [1, 2, 69, 74, 75], such as energy usage of ap-
pliances. However, users have no knowledge and control
over what type of sensitive data the apps access or who
else see these data [15, 16, 68, 70-73].

Most attempts to date to address sensitive data
leaks focus on analyzing the app’s source code to ex-
tract permissions [29, 43, 53]. Others use static analysis
to identify sensitive data-flows [10], inter-rule vulner-
abilities in IoT deployments [54], and apply dynamic
analysis techniques to isolate sensitive data within sand-
boxes [19]. These approaches, albeit useful, have limita-
tions that lead to under- or over-approximating sensi-
tive data-leaks and lack notifying the users to help them
make informed decisions about the apps. More specifi-
cally, none of the earlier works (a) consider the privacy
preferences of users into their implementations, and (b)
address the sensitive data leaks through strings at taint-
sink contents; for instance, we found that, out of 540
analyzed IoT apps, 64% of them leaked sensitive data
through simple strings such as “the door is unlocked.”
While there exist privacy tools for other platforms such
as mobile phones [5, 17, 25, 37-39], these techniques can-
not be directly applied to IoT apps due to their unique
characteristics in terms of app structures, introducing
challenges in program analysis.

In this paper, we present IoOTWATCH, a dynamic
analysis tool that uncovers the privacy risks that IoT
apps pose to the privacy preferences of the users in
real-time. Indeed, IOTWATCH was designed based on
a comprehensive privacy survey with human subjects
that used various IoT devices. The study aimed at
understanding the privacy concerns and expectations
of the users when they installed IoT apps. At install-
time, JIOTWATCH first provides IoT app users with an
easy-to-use, intuitive interface that allows them to spec-
ify their privacy preferences (e.g., location and device
states). Then, it automatically adds extra code to the
apps’ source code to collect the data sent out of the

[@) ev-ne-no |

Real-time Analysis of Privacy-(un)aware loT Applications

IoT app at runtime. The collected data is used by I0T-

WAaATCH to classify the app information into user-defined

(also customizable) privacy labels through Natural Lan-

guage Processing (NLP) techniques. The privacy labels

provide the users with a more intuitive mechanism to
understand how IoT apps handle their private informa-
tion. Also, IOTWATCH analyzes the privacy preferences
of users to uncover sensitive data leaks. Finally, I0T-

WATCH notifies the users about the sensitive data-leaks

when they validate the users’ privacy preferences, al-

lowing the users to make informed decisions about their
privacy.

To evaluate IOTWATCH, we trained an NLP model
with taint-sink data strings extracted from 380 Smart-
Things market apps. The model was used to clas-
sify taint-sink content (e.g., “the door is locked”, and
“kitchen lights are turned off”) to user privacy prefer-
ences. Then, we analyzed 160 different Samsung Smart-
Things apps to evaluate the accuracy of ToTWarcH
at runtime. IOTWATCH successfully classified 146 IoT
strings to privacy preferences with an average accuracy
of 94.25% and a precision of 95%. Additionally, I0T-
WatcH identified 35 IoT apps that leaked sensitive data
to unauthorized recipients. IOTWATCH yielded minimal
overhead to the IoT apps execution, introducing on av-
erage of 105 ms additional instrumentation latency.
Summary of Contributions. The contributions of
this work are as follows:

— We conducted a comprehensive IoT privacy survey
with 123 ToT users through a set of structured ques-
tions.

— We developed IoOTWATCH, a dynamic privacy anal-
ysis tool for IoT apps. [OTWATCH provides users
with a privacy interface and collects app data at
runtime based on user preferences. Then, it ana-
lyzes the collected data and informs users when a
data leak matches the user’s privacy preferences.

— We collected data from 380 real IoT apps to train
an NLP model. We used the model to evaluate I0T-
WarcH’s performance on other 120 market and
40 malicious IoT apps. IOTWATCH classified 146
IoT taint-sink content into correct privacy labels
with 94.25% accuracy while imposing an additional
105ms latency to app execution on average. Ad-
ditionally, IoOTWATCH identified 62 sensitive data
leaks to unauthorized third parties in 35 IoT apps
(29 via messaging and 33 via Internet taint-sinks).

— We made IOTWATCH freely available to the com-
munity at https://iotwatch.appspot.com/.

— 146

Organization. In Section 2, we articulate the privacy
issues in IoT apps through a use case, and present the
definitions and threat model. In Section 3, we present
the results of the IoT privacy survey with 123 users. In
Sections 4 and 5, we give an overview of TOTWATCH,
and present IJOTWATCH’s architectural details. In Sec-
tion 6, we provide the implementation details. Then,
we evaluate IOTWATCH and show its effectiveness and
performance in Section 7. Finally, we discuss the related
work in Section 8, and conclude the paper in Section 9.

2 Background and Threat Model
2.1 Anatomy of an loT App

TIoT applications from different platforms may use dif-
ferent programming languages. For instance, Samsung
SmartThings apps are written in Groovy [31], while
OpenHAB [36] applications use Domain Specific Lan-
guage (DSL) developed in Java. In other examples, Ap-
ple Homekit [66] apps can be written in Swift or Objec-
tive C, while Windows IoT [67] use C#, C++, or even
Python. Despite this diversity, IoT applications share
a similar structure [10]. In general, IoT apps have a
description block that informs the users specifics of the
app itself (e.g., the app functionality, devices it controls,
etc.). We expect that developers use these description
blocks to also inform the users regarding the specific
types of sensitive information that the app will have ac-
cess to on the IoT systems and who this information will
be shared with. In that way, the users can take informed
decisions regarding their privacy before installing the
apps. The apps also include a permission block where
the user adds what she desires to control with the app
(e.g., smart thermostat). Also, the permission block is
used to define the information used to specify device
settings (e.g., min and max thermostat temperatures)
and app notification recipients (e.g., phone numbers for
push notifications). We study this permission block dur-
ing our analysis as it contains highly private information
from users and the IoT systems, including characteris-
tics of the smart devices and their settings. Also, we
correlate information defined by the user in these blocks
to verify that the sensitive information is being sent
to authorized recipients (e.g., user-defined phone num-
bers). The IoT apps also include an event subscription
block, where developers match the specific functions that
are triggered by different device states (e.g., the func-
tion fl is executed when the presence sensor triggers a
“present” state). Finally, the event handlers define these
functions and the app logic that is executed whenever

Real-time Analysis of Privacy-(un)aware loT Applications

// smart-lock-control app: “controls the smart lock”
// Permissions Block
Device: smart_lock sl, presence pr
User-defined inputs: phone
// Events Subscription
subscribe (pr, “present”, f£1)
subscribe (pr, “not present”, £2)
//Events Handler @)
9 £1() (..}
10: £2(){ sl.lock()
11: notifyUser (sl.state, phone)
12: leakInfo()}
13: | // sends notification to the user
14: notifyUser (state, number) {
15: sendSMS (“Your lock is: ”

© o e W

+ state, phone)

16: POST (“http://support.com”, sl.getLocation())
17: | // Leaks sensitive data to attacker @)

18: leakInfo () {

;3= sendSMS (“Nobody is Home”, 123-456-7890)}

Fig. 1. An example loT app leaking sensitive data to a hard-
coded phone number and implementing insecure HTTP calls.

they are called. In our work, we study the event han-
dlers as they define the way how sensitive information
is handled within IoT apps. Also, event handlers specify
the sink functions that send the sensitive data out of the
apps to external parties. As a summary, we target de-
scription blocks, permission blocks, event subscription
blocks, and event handlers as the most important app
constructs to investigate for any sensitive data leakage
from IoT apps.

2.2 Problem and Challenges

We use an example IoT app source code derived from
a smart-lock-control app (Figure 1) to illustrate the
privacy concerns in IoT apps. The expected behavior of
the app is to lock the door and notify to user-defined
contacts that the door is locked when the user leaves the
house. At install-time, the user grants permissions to the
smart lock, presence sensor, and enters a phone number
for messaging notifications (@). The app subscribes to
two event handlers f1 and f2 to implement the app
functionality. The event handlers are invoked based on
the presence sensor’s state (user-present and user-not-
present) (@). When the user leaves home, “not-present”
event handler (i.e., £2) locks the door, sends a message
notification, and transmits out the door lock state to a
remote server (i.e., http://support.com) (@). However,
the actual behavior of the app adds a piece of code that
invokes a function (i.e., leakinfo()) sending a string
that contains “Nobody is Home” to a hard-coded phone
number (@). This string is highly private and informs
an adversary that the house is empty.

Requirements for IoT Privacy Analysis. The di-
versity of information handled by IoT (e.g., location,
user behavior, user preferences) makes these systems
vulnerable to privacy risks, hence the need for a specific
privacy analysis tool for IoT. However, IoT platforms
do not provide the means for such an analysis. There
exist no security mechanisms or methodologies to an-
alyze and understand the specific types of information

— 147

that an IoT application handles and discloses to sup-
port their logic and functionalities. Previous works have
also noted that IoT systems do not explicitly inform the
users regarding their utilization of the sensitive informa-
tion, and researchers are trying to propose solutions to
these issues [45].

There exist systems to identify sensitive data-flows
in ToT apps. For instance, SAINT is a static tool that
uses taint analysis to identify sensitive data-flows in IoT
apps [10]. FlowFence, a dynamic system, uses quaran-
tined modules to enforce data-flow policies on the use
of sensitive data [19]. Albeit useful, these approaches
are limited in precision and the number of privacy poli-
cies enforced as they both focus on taint data. Hence,
SAINT and FlowFence are oblivious if an app leaks sensi-
tive data through implicit programming constructs (i.e.,
description blocks, event handlers) via developer- or
user-defined strings. For instance, the string “Nobody
is home” leaked through leakinfo()). Meanwhile, our
analysis of 540 IoT market apps showed that 64% of
apps potentially leaked sensitive data through strings
that did not include any tainted data, yet the string was
sensitive. Indeed, static systems like SAINT, iRuler [54],
and privacy tools for trigger-action platforms [27] fail
to detect sensitive data leaks through dynamic method
invocation [31]. Additionally, there are no approaches
that allow users to closely examine their sharing and
privacy preferences over individual IoT apps. For in-
stance, a user may desire to share her energy usage data
with a third party in a specific IoT app yet she wants
to restrict sharing all other sensitive information with
third-parties. This requires a personalized privacy set-
ting for each app that gives control to the users over
what to share. Finally, previous research [9, 10] have
demonstrated that app analysis tools that may be effec-
tive for other systems like Android cannot be directly
applied to IoT as they lead to substantial false posi-
tives due to important architectural and programming
differences between their apps.

Challenges of an IoT Privacy Solution. In con-
trast to the previous approaches [9, 10, 19, 27, 54], IoT-
WAaATCH tracks runtime data-flows, and process the flow-
content to determine whether a data-flow constitutes a
privacy concern or not. Such a runtime analysis over-
comes the limitations of static tools [10] that do not
consider dynamically generated taint variables or hide
them via implicit constructs. Additionally, [loTWaTcH
provides a user with an interface that allows them to
configure their privacy settings for each app and informs
the users about its findings.

Real-time Analysis of Privacy-(un)aware loT Applications

We provide a detailed comparison of ToTWATCH
with other privacy tools for IoT and Android apps in
Section 8. However, to support its capabilities, I0T-
WATCH needs to overcome several technical challenges.
First, it needs to capable of analyzing the source code
of IoT apps and identifying privacy-relevant informa-
tion beyond taint data, which is a deeper investigation
than inflexible static approaches. Second, it needs to
implement mechanisms to be able to collect the privacy
information for further analysis. Static tools like SAINT
may be a good starting point for source code analysis
in IoTWATCH. However, such static tools require ex-
tensive modifications to identify non-taint privacy data
within apps. Similarly, SAINT or other static analysis
tools do not support app instrumentation, which is re-
quired for real time dynamic analysis. Also, [0OTWATCH
analysis requires the implementation of NLP models to
classify privacy data into simpler privacy labels that can
be easily understood by the users. This process requires
building specific IoT corpus for training purposes. Fi-
nally, as IOTWATCH implements real-time analysis and
notification systems for the user, it requires of specific
APIs to support and further secure the communications
between [oT apps and IoOTWATCH’s servers without im-
posing a considerable overhead.

2.3 Definitions

Taint-Sinks. IoT programming platforms define spe-
cific call-sites to transmit data [36, 51]. We focus on
two main call-site types; messaging and Internet. These
call-sites require two types of information: the recipient
and the content. The recipients define where the content
is being sent to, and the content defines the data sent
in the form of strings.

Privacy Labels. We define four different privacy labels
(i.e., date-time, device-info, location, and user-behavior)
to classify the content of the taint-sinks. These privacy
labels are selected based on users responses in our pri-
vacy survey detailed in Section 3.

Privacy Profile. The collection of privacy and notifi-
cation preferences identifies the users’ privacy profiles.
These profiles helps IoOTWATCH to selectively instru-
ments the apps to collect data for privacy analysis.
Privacy Leaks. We consider a privacy leakage happens
when data is sent to external parties, and it is neither
informed to nor acknowledged by the user. For instance,
if an app transmit location information and a user is not
informed, then it constitutes a privacy leak.

— 148

2.4 Threat Model

We consider IoT apps that access sensitive data without
user consent. Second, we consider data leaks, through
Internet and messaging taint-sinks, transmitted out of
an app to unauthorized recipients, and due to the care-
lessness of developers. Lastly, we consider app trans-
mitting sensitive data in clear-text (through HTTP) to
notify users.

We do not consider safety and security violations in
IoT apps as they were already studied before [12, 13].
Additionally, we do not track data-flows via push noti-
fications or taint-sinks that are authorized via OAuth
(e.g., a user authorizes a third-party service through
OAuth protocol to share the device states for data vi-
sualization) as they are considered a different external
capability that supports the IoT functionality. Finally,
we do not consider apps using obfuscation or encryp-
tion techniques to hide the content of the data flows;
yet, we discuss potential measure for these techniques
in Section 5.1.1). We note that we did not find one sin-
gle app out of 540 IoT apps we analyzed that encoded
the content of their messaging or Internet taint-sinks.

3 Privacy Survey

In this work, we first conducted a comprehensive sur-
vey to understand the privacy concerns of users when
they use various IoT devices and apps. The entire survey
was authorized by the institutional ethics review board
(IRB) and occurred between April 2019 and May 2019.
Survey Goals. With this survey, we aimed to answer
the following questions: (1) what are the privacy con-
cerns of IoT users?, (2) is there a need for privacy anal-
ysis tools designed for IoT?, and (3) what are the user
expectations, in terms of usability requirements, for pri-
vacy analysis tools? Specifically, we expected to under-
stand the types of privacy sensitive information that
is most relevant to the IoT users so that it can be re-
flected in the design of the privacy choices offered by
ToTWaATcH. Also, we expected to gain valuable under-
standing about the users’ desire to have a flexible design
that could be captured by the customizable privacy pro-
file offered by IoTWATCH at install time rather than en-
forced fixed privacy policies for all the data. In addition,
we wanted to understand the importance of prompt pri-
vacy feedback to the users so that we can incorporate
real-time analysis into our approach. Finally, the survey
would reveal the specific types of app communications
and potential leaks that most users would want to track
with our privacy tool. For all these, we created 26 dif-

Real-time Analysis of Privacy-(un)aware loT Applications

ferent questions organized into three categories (sample
questions in Appendix A). These categories align with
three specific privacy survey goals: (1) the characteri-
zation of the participants, (2) privacy concerns of IoT
users, and (3) the need for IoT privacy analysis tools and
their usability requirements. We present the profiles of
participants and our key findings below.

Survey Overview and Recruitment. We made the
survey available to participants for four weeks. The users
could access the survey and submit their responses via
an online questionnaire hosted on Google Forms [22].
The questionnaire included single choice questions (e.g.,
yes, no), multiple-choice questions, and free-form ques-
tions. We made all the questions required except for the
ones requesting an additional explanation from users in
the form of free-text input. Finally, we recruited the
participants via recruitment emails in our institutions.
The emails included a brief description of the survey
and a link to the online form. Finally, the survey was
designed so the participants would spend an average of
15 minutes from start to finish.

Participant Demographics. We recruited 123 par-
ticipants. In the group, 100 (81.3%) were male, and 23
(18.7%) were female. Also, 69 participants (56.1%) were
in the range of 18-25 and 37 (30.1%) were in the range of
26-35 years old. The remaining 17 (13.8%) participants
were 36 years or older. The majority of the participants
(110 (89%)) had at least completed some bachelor-level
courses, and 37 (30%) were enrolled in graduate-level
courses. Finally, 100 participants reported being part of
an educational institution. A total of 112 (91.05%) users
shared that they currently use or are planning to use
IoT devices in their homes. Finally, 19 (15.4%) partici-
pants knew how to develop their own IoT apps while 82
(66.7%) participants had previous experience installing
apps from an IoT market or via using the source code
of ToT apps available online.

Ethics and Analysis Approach. The IRB of our
institutions approved the privacy survey. The partici-
pants had to be over 18 years old, and the survey did
not collect any personal information from the partici-
pants other than an institutional email address that was
requested for compensation purposes. We did not al-
low participants to submit multiple responses, but they
had the chance to change their answers anytime be-
fore the survey closing date. No participants changed
their original replies. We processed and accepted all
the responses obtained from the participants. Further,
we directly quantified the responses from single- and
multiple-choice questions. Finally, we used two indepen-

— 149

dent researchers to analyze the free-from responses re-
move answers flagged as potential outliers.

3.1 Discussion of Survey Results

Privacy Concerns of Users. The participants were
concerned about their sensitive information being in-
advertently leaked to unauthorized parties. To detail,
65 (52.8%) participants felt uncomfortable about their
personal data (e.g., their password to login into edge de-
vices), their behavior and habits (e.g., when they go to
sleep), location (e.g., whether they are home or away),
device’s settings (e.g., heating value of a thermostat)
and time configuration (e.g., when kids leave home), and
device states (e.g., whether the door is locked or not)
being handled by IoT systems. Also, at least 89 (72.4%)
participants expressed that they are aware of IoT apps
collecting their sensitive information and sending it to
remote servers for data analytics such as profiling their
energy usage and for advertisement purposes [2]. Fi-
nally, 103 (83.7%) participants expressed privacy con-
cerns on the use of IoT systems, and 88 (71.5%) men-
tioned having heard about the privacy issues in [oT sys-
tems from the news or other media.

The Need for Real-time Privacy Tools. A total of
112 (91.1%) participants raised broad concerns about
the lack of an existing tool that informs the users regard-
ing the potential privacy risks of IoT systems in real-
time. Also, 119 (96.74%) participants found the idea
of using a tool to uncover privacy risks in IoT highly
desired and expected. Our participants were happy to
use automatic tools that instruments IoT apps to enable
prompt privacy analysis and results. Out of the 123 par-
ticipants, 119 (96.74%) expressed their support for this
option if the tool is verified by the IoT platform.
Users’ Expectations. To understand the characteris-
tics of an easy-to-use privacy tool, we asked participants
to identify their preferences on different types of sensi-
tive information they desire to be informed. The partic-
ipants noted four different privacy labels, which we later
use them in our design and analysis of ITOTWATCH. The
“Device-info” was approved by 109 (88.6%) participants
to define device information (e.g., device states or device
type). The “User-behavior” received 103 (83.7%) posi-
tive responses to identify information related to user
options and activities (e.g., what the user does, how the
user configure his/her IoT system). The “Location” was
approved by 110 (89.4%) participants to identify the lo-
cation of devices and users (e.g., user is at home, the
kitchen switch is turned on). Lastly, the“Date-time” was

Real-time Analysis of Privacy-(un)aware loT Applications

Expectations of survey's participants % Agreement

Real-time privacy analysis 91.6%
Configurable privacy preferences 87.5%
Control over unauthorized data disclosure 86.6%
On-demand privacy controls 81.6%
Timely privacy notifications 85.3%
Inter-rater Reliability 86.5%

Table 1. Participant responses when asked about their expecta-
tions from a privacy analysis tool, which influenced IOTWATCH's
design. The percentage of agreement among the survey's partici-
pants showed a strong inter-rater reliability.

approved in 100 (81.3%) responses to identify timing-
related information (e.g., the time a door is locked).

3.2 Survey Takeaways

Our findings shed light on the need for better and flex-
ible privacy management practices between users and
IoT markets, which mitigate the privacy risks of IoT
apps based on user privacy preferences. Table 1 presents
the needs of the users that align with their control over
their privacy preferences. We obtained strong inter-rater
reliability of 86.5%. Next, we summarize the design fea-
tures that influenced the development of ToTWATCH
based on participant responses.

Real-time Privacy Analysis. The participants re-
flected their opinions about being aware of what infor-
mation leaves an IoT system and where it is transmitted
to in real time. Additionally, they reported that they
expect to have minimal configurations when new de-
vices are dynamically plugged into their IoT systems
and new IoT apps are installed. Further, to support the
real-time analysis in [JOTWATCH, we use machine learn-
ing and implement effective communication between the
IoT applications and our privacy analysis server via a
specific API.

Configurable Privacy Preferences. The partici-
pants noted their concerns about the lack of privacy
preference controls, which limit their willingness to use
IoT devices. For instance, they prefer to have intuitive
categories that show the information-type leaving the
IoT system such as “the door is locked” associated with
a specific privacy label. For this, we offer the user a pri-
vacy interface from with which they can configure and
control their privacy expectations on the IoT systems.
We used the survey responses to design a friendly and
functional interface that incorporates the privacy needs
of users.

Unauthorized Data Disclosure. The participants
liked having better control over the disclosure of any
private information. For instance, they prefer to be no-
tified when IoT systems share their data with other

— 150

led smart-lock-control app
ontrols the smart lock”
Block
mart_lock sl, presence pr
User-defined inputs: phone
// Event Subscription
subscribe (pr, “present”, £1)
subscribe (pr, “not present”, £2)
//Event Handler
£10 (..}
£2() { sl.lock()
notifyUser(sl.state, phone)
leakInfo()}
/ Send notification to the user
notifyUser (state, number) {
sendSMS (“You: is: ” + state, phone) @

sendPush (“Ap, ata of type:” ®
class n) }

19:| // Leak sensitive data to attacker

20: leakInfo () {

21: sendSMS (“Nobody is Home”, 123-456-7890)

22: sendPush (“Privacy Risk of type:” context ®
23: “with data of type:” classification)}

Fig. 2. An example of an loT app instrumented by IoTWATCH
to support the notification interface.

parties. Additionally, participants desired mechanisms
that notify hard-coded messaging recipients, which mit-
igates the consequences of privacy violations. For this,
we implemented a privacy analysis tool that uses NLP
to track sensitive information leaving the IoT apps with-
out the user authorization or knowledge. The analysis
also checks if the information recipients have been pre-
viously disclosed to the user.

On-demand Privacy Analysis. The majority of the
participants acknowledged the effectiveness of config-
urable privacy preferences over the IoT apps. They
noted these configurations would help them have a bet-
ter experience with a few numbers of notifications and
minimal runtime delay. In IOTWATCH, at install-time,
users configure their privacy profiles which guides IoT-
WATCH’s real-time analysis. The profiles also define the
amount of feedback and notifications the users receive
from IOTWATCH. Finally, to improve usability, we en-
able the users to update their privacy profiles anytime
after the install-time.

4 loTWatcH llustrated

We use the smart-lock-control app in Figure 1 to il-
lustrate the logical steps of TOTWATCH in Figure 2.
First, the code-instrumentor adds extra code to the
app’s source code to implement a user interface (UI).
The UI allows a user to select a set of privacy-labels (lo-
cation, user-behavior, device-info, and date-time) and
taint-sink types (messaging and Internet) at install
time to track at run-time. These privacy settings de-
fine the user’s privacy profile and are used to notify
the user when her sensitive data is transmitted out of
an app. Additionally, the code instrumentor adds extra
logic to send app data to IOTWATCH server at run-
time. The data includes user-defined input variables
(i.e., phone) (@) and the content and recipients of
the functions used to send data out of the app. The
smart-lock-control app includes two messaging taint-

Real-time Analysis of Privacy-(un)aware loT Applications

Instrumentation Time Runtime

TOTWATCH Analyzer @
(NLP-based loT String Classification,
String Recipient Analysis)

¥

classification results | §
Tassificati i ||
J

e | A7 [T

1 v
Runtime App Privacy
Execution Notifications

f | wer-deined info
H
.

User Privacy
Preferences

Fig. 3. Overview of IoOTWATCH's architecture. We instrument
loT apps to enable IOT'WATCH. Then, the user selects their pri-
vacy preference, and IOTWATCH collects and analyzes loT app
data to uncover data leaks in real time.

sinks (@ and @) IoTWaATCH instruments data-flow
of both messaging taint-sinks to collects content (i.e.,
“Your lock is: ” + state, and “Nobody is Home”) and
their recipients (i.e., phone and 123-456-7890). Lastly,
the collected data is processed and the instrumentor in-
serts extra code to notify users with IOTWATCH’s re-
sults (@ and @)

The user installs the instrumented app, which trans-
mits its data to the IoOTWATCH server once a speci-
fied data-flow is flagged. This information permits IoT-
WATCH to identify the type of sensitive information an
IoT app uses, and combines this information with the
app data such as its description block to uncover sensi-
tive data leaks.

We verify whether the sensitive data is transmitted
to recipients previously authorized or acknowledge by
the user via matching the user-defined inputs to the re-
cipients of the sensitive information. For instance, the
data is sent to a user-defined phone number (@) for
the first potential leakage (@), and the data is sent
to a hard-coded phone number for the second possible
leakage (@), which indicates a potential privacy vi-
olation to the user. Furthermore, IOTWATCH verifies
that the app uses sensitive information regarding the
devices (i.e., “Your lock is:”) and location (i.e., “No-
body is Home”) by analyzing the leaked content with
NLP-based techniques.

Lastly, IoOTWATCH informs the user of its findings
to make informed decisions. For the first potential leak,
IoTWATCH sends a push notification with the privacy-
labels of the information included in the message (@)
For the second potential leak, IOTWATCH informs the
privacy content of the message and alerts the user about
potential privacy violations (@)

5 loTWatcH Architecture
5.1 Source Code Analysis

Figure 3 details IoTWATCH’s architecture. IoT-

WATCH’s code instrumentor constructs an intermediate

— 151

representation (IR) from the source code of an original
TIoT app. Specifically, the instrumentor uses the IR to
obtain the Abstract Syntax Tree (AST) of the app. As
noted in Section 2.1, we found that the apps from the
major IoT platforms (e.g., Samsung Smartthings, open-
HAB, Apple’s Home Kit) share a similar structure, as
also detailed in previous works [10]. While the Smart-
Thing apps are explicitly using the four programming
blocks (i.e., description, permission, event subscription,
and event handler), other platforms follow a similar ap-
proach. That is, they all follow the event-driven pro-
gramming structure of the sensor-computation-actuator
model. The IR builds a representation of this computa-
tional model [10, 12], and enables the design of broader
solutions that can be implemented for different IoT pro-
gramming platforms. This is the main reason why we
built an IR of the apps on which IoOTWATCH operates.
Further, the IR would allow the IOTWATCH’s analy-
sis to be extended to other programming platforms by
other researchers as it supports a generic analysis tool
that converts their source code to the IR. Once the IR
is obtained, IOTWATCH implements custom node visi-
tors algorithm to build the app’s Inter-procedural Con-
trol Graph (ICFG). The ICFG is used for two purposes.
First, it enables us to identify user-defined inputs in the
app’s permission block, and the taint-sink recipient and
content. Second, it is used to add extra code to collect
and transmits this data to the IoOTWATCH’s server and
to implement real-time push notifications to inform the
users about IOTWATCH’s analysis results.
IoTWATCH’s instrumentor derives from Saint tool.
However, we had to extensively modify this tool to en-
able the privacy component of IOTWATCH. The instru-
mentor uses flow-sensitive analysis and flags nodes (1)
executing functions that generate or modify sensitive
information (e.g., “user-defined input: phone”) and (2)
send sensitive information out of the apps via sink func-
tions (e.g., “sendSMS("The house is empty", phone)”.
In addition, the instrumentor insert logs to capture and
send that data to IOTWATCH'’s server and implements
a novel privacy UI so the user can create her privacy
profile, something that is currently missing from IoT
platforms. The code instrumentor groups apps collected
data into two categories: (1) app information, and (2)
sink-call information. We detail each of them as follows:

App Information. The code instrumentor visits the
permission block in IoT apps and extracts information
defined by the user (see Figure 2). Specifically, it collects
user-defined inputs that may be used as parameters in
taint-sinks (e.g., a phone number for notifications). As

Real-time Analysis of Privacy-(un)aware loT Applications

12:01 12:01 T3

<Back smart-lock-control

<Back smart-lock-control Save

Privacy Profile Tutorial
I0TWATCH Privacy Labels: o flvacy frote futona
Date-time Information [@))

Device Information O

Location Information O

User Behavior [@D)

e 2]

Notify Leaks via Messaging [@))

Notify Leaks via Internet O

(a) (b)

Fig. 4. (a) IoTWATCH enables users to define their privacy pref-
erences, and (b) sample tutorial to help users understand the
meaning of the privacy profile’'s components.

we detail later in Section 5.2, this data is matched with
the information extracted from sink-calls (i.e., recipi-
ents) to identify, for instance, whether the data sent to
unauthorized recipients (i.e., not defined by the user),

which may lead to potential privacy issues for the user.

Taint-Sink Information. It includes the content and
recipients of messaging and Internet call sites. Turning
to app source code depicted in Figure 2, [oOTWATCH ob-
tains the content “Your lock is: 4+ state” from the first
messaging function in Line 16, and the content “Nobody
is Home” from the second messaging function in Line 21.
As per the recipients, it extracts the recipient’s value
contained in the variable phone from the first messag-
ing method (Line 16) and the hard-coded phone num-
ber “123-456-7890” from the second messaging function
(Line 21). IoTWATCH uses taint-sink contents to inform
a user of the sensitive data type.

Purpose of Collected Data. We implement an NLP-
based model to analyze the content of taint sinks
and classify them into four privacy labels. Further-
more, IOTWATCH matches the recipient information
extracted from messaging and Internet taint-sinks with
app information to uncover sensitive data leaks. The
app information is either entered by the user, or in-
formed by the developer via the app’s description block
and approved by the user. In cases where the sink-call
(i.e., messaging or Internet) is executed using unautho-
rized recipients, a leak is flagged and the user is in-
formed. Additionally, we check whether Internet taint-
sinks send data in clear-text, confirming sensitive data
is not accessed by potential eavesdroppers.

5.1.1 Selective Code Instrumentation

IoTWATCH performs a selective code instrumentation
to implement privacy analysis on the sensitive data that

— 152

is of interest to the user, which also reduces the number
of real-time notifications. Also, selective instrumenta-
tion permits the analysis of encrypted IoT strings.
Privacy User Interface. The instrumentor adds ad-
ditional code to implement a Ul and create a privacy
profile of the user. Figure 4(a) shows the privacy user
interface presented to the user during install-time, which
illustrates the selective code instrumentation options of
the ToTWATCH-enabled app. IoOTWATCH’s instrumen-
tor does not impact the Ul experience of the IoT app at
runtime, but offers new privacy features at install-time
not available in the original app. The instrumented app
offers the user the possibility to create a privacy pro-
file and receive notifications regarding specific privacy
labels that are of interest to the user (@). Also, it al-
lows for selecting which privacy concerns (e.g., option
to notify leaks from messaging or Internet taint-sinks)
must be analyzed and informed by IoTWATCH (@).
Such a design supports the expectations of the IoT app
users with (1) configurable privacy preferences, (2) on-
demand privacy controls, and (3) timely privacy notifi-
cations (Table 1) as were summarized in Section 3. The
user interface also includes a link to a tutorial that ex-
plains the different settings of the privacy profile. The
justification behind this design rationale is to to facil-
itate the user experience regarding the setup and use
of the privacy profiles, their components and meanings,
and how they can be included into IOTWATCH’s analy-
sis, as shown in Figure 4(b). The tutorial can be easily
accessed from the privacy user interface anytime. Also,
as we target open-source IoT platforms, the use of selec-
tive instrumentation does not change or impact the orig-
inal user interface of the app which may be considered
as intellectual property. For closed-source platforms, we
envision developers using the features offered in I0T-
WATCH to evaluate and improve the protection of sensi-
tive information and the privacy of users. Lastly, we note
that users can update their privacy profiles through the
settings provided in instrumented IoT app. We follow a
similar principle that a user can update the app settings
such as when a new device is added. The updated pri-
vacy profiles then are sent to IOTWATCH’s server and
the new user notifications are automatically enabled.
Evading IoTWatcH Analysis. The use of encryp-
tion and obfuscation techniques to hide the sink-call
content limits the effectiveness of NLP techniques. For
instance, NLP models that use plain-text data would
fail to classify encrypted/obfuscated strings. However,
selective instrumentation may facilitate the analysis of
IoT apps that codify or encrypt the data that is sent

Real-time Analysis of Privacy-(un)aware loT Applications

//Encryption to obfuscate sink-call content
def crypto = new Crypter ()
def plainText = “Let’s leak this message"
def secret = “123456789"
//Selective T on before
collect (plaintext)
def encryptedText = crypto.encrypt(plainText, secret) @)
leakInfo (encryptedText)
// Send notification to the user
notifyUser (state, number) {
sendSMS (“Your lock is: ” + state, phone)
sendPush (“App is using data of type:”
classification) }
// Leak sensitive data to attacker

yption

yptedText, 123-456-7890)) @
sendPush (“Privacy Risk of type:” context
18: “with data of type:” classification)}

Fig. 5. Sample loT app that encrypts the sensitive data to be
leaked in an attempt to bypass the NLP analysis of IoTWATCH.
The selective instrumentation capabilities of IOTWATCH permits
the analysis of the data before it is encrypted.

out to hide their intent. We note that IoT programming
platforms often provide developers with a limited num-
ber of white-listed libraries [46], which do not include a
class that implements encryption. For instance, we an-
alyzed 540 open-source SmartThings IoT apps and did
not find a single case of an app using encryption or ob-
fuscation to hide leaked content. It is also important
to note that IoT platforms often do not vet obfuscated
apps when developers submit them for approval to mar-
kets. While IoOTWATCH is designed for apps that do
not use any encryption and obfuscation techniques, it
inserts a code block before encryption function to col-
lect data. However, this requires prior knowledge of en-
cryption functions. Figure 5 shows an example IoT app
that encrypts a sensitive string before it transmits it
out of an app. If the function crypto.encrypt is known
to IOTWATCH, IoTWATCH’s selective instrumentation
extracts the call graph of the app and detects the
crypto.encrypt function (@) which uses plainText
string. The result of the encryption is stored in a new
taint variable encryptedText, which is later leaked via
messaging (@). To solve this challenge, the instrumen-
tor is able to track the control flow of the encrypted
variable and inserts extra code to collect its content be-
fore it is encrypted (@).

5.2 loTWatcH Analyzer

An instrumented code sends its data to JOTWATCH An-
alyzer, which is composed of three analysis steps includ-
ing: (1) classification of sink-call content through NLP
techniques, (2) analysis of sensitive data recipients, and
(3) implementation of a user privacy notification inter-
face to inform the user about IOTWATCH’s findings. We
next detail each.

5.2.1 Classification of Sink-Call Content

The content of messaging and Internet taint-sinks in
IoT apps may include sensitive information from taint

— 153

variables or might be just string messages that includes
privacy sensitive information. IOTWATCH learns a su-
pervised model using the contents of messaging and In-
ternet taint-sinks as input at training and assigns it to
privacy labels at inference. For instance, if the sink-call
contains the string message “the door is unlocked”, the
model is able to classify it as “Device-info”. The conver-
sion of IoT strings into privacy labels using NLP helps
users understand how IoT apps use sensitive informa-
tion so that they can make informed privacy decisions
about the IoT apps. Below, we begin by constructing a
training set from a corpus of IoT apps.

Constructing Privacy Labels. IoOTWATCH classifies
TIoT app sink-call contents into a set of privacy labels.
The use of privacy labels provides three main advan-
tages. First, they allow users to understand what type
of data the apps leak. For instance, a string that con-
tains “The mode has been changed to Home” can be
presented to users as leaking their preferences. Second,
the privacy labels permit users to have control over their
privacy preferences at install time. For instance, a user
may desire to allow an app to transmit energy usage of
a thermostat to a remote server, yet she restricts other
types of data transmissions. Third, the privacy labels
enable an on-demand notification system that guaran-
tees an improved user experience with less disruptive
and more intuitive notifications, and minimal runtime
delay added to each app’s execution.

We define four privacy labels through the analysis
of the semantics of strings extracted from messaging
and Internet taint-sinks (although adding more privacy
labels later is a straightforward task). The privacy labels
are based on user feedback that we acquired via our
privacy survey in Section 3. We present the details of
four privacy labels to label taint sink content:

Date-time defines the time or date information. For in-
stance, a string “The door is unlocked at 5:00 pm” con-
tains the time that the door would be unlocked.

Device-info identifies the text that contains the devices
states (e.g., a string “energy usage” to transmit the
power state of a thermostat) and device information
(i.e., device type, model, manufacturer).

Location identifies the data that reveal geo-location or
geographical location of users and devices. For instance,
a string “kitchen switch” contains geo-location informa-
tion of kitchen, and the zip-code for sunset settings con-
tains geographical location.

User-behavior defines the text that provides information
about user preferences defined in apps. For instance,

Real-time Analysis of Privacy-(un)aware loT Applications

App Sink-Call Content Assigned Privacy Labels

“Thermostat is turned on” device-info

“The door will remain open for another 5 minutes” device-info, date-time
“Door is closed since car was not at Home, 15 sec ago”

“Sleep time set for you as requested”

device-info, location, date-time

user-behavior

Table 2. Examples of leaked taint-sink contents from loT apps
and their privacy labels. IoTWATCH assigns multiple privacy
labels to specific loT strings to capture their complex semantics.

an app includes a string, “the user mode changed to
vacation from home”.

We note that taint-sink contents may require more
than one privacy label assigned to guarantee accurate
classification. For instance, the message string “The
door will remain open for another 5 minutes” is labeled
with multiple labels of types Device-info and Date-time.
Similarly, “Garage door is not opening since the car was
not present at Home, less than 15 sec ago”, is labeled as
Device-info (the door is not opening so it is still closed),
Location (the car was not present at Home), and Date-
time (15 sec ago). We present examples of IoT taint-
sink contents assigned to the various privacy labels in
Table 2. The use of multiple privacy labels to a single
text includes more complex semantics string structures
and in turn provide users with more accurate labels. As
we explain later in this section, we use NLP techniques
to achieve this goal.

IoT Application Corpus. We study sink-call contents
of 540 IoT apps. These contents pose a few unique char-
acteristics compared to those of other domains. First,
the size of the texts extracted is usually three to four
shingles on average, yet it contains highly private data
(e.g., “the door is unlocked”). Second, their linguistic
structure is minimal regarding semantics (e.g., “mode
changed to away”), compared to other short docu-
ments extracted from popular general-knowledge cor-
pora [21, 33, 56]. Third, their meanings usually are
closely attached to the app’s context (e.g., “if the user
is not-present, turn off the light”). Based on our find-
ings, we build an NLP model that is effective at classi-
fying semantic-deficient, but information-rich texts. To
determine whether strings include sensitive information
and assign them a privacy label, we first implemented
a classification model using publicly available data cor-
pora [21, 33, 56]; however, due to the specific charac-
teristics of IoT strings, we obtained very low classifi-
cation accuracy (detailed in Appendix C). To improve
this, we constructed an IoT-specific corpus for classifi-
cation purposes that successfully considers and solves
these challenges. We first collected the content of mes-
saging and Internet calls from current IoT market apps.
We pre-processed the resulting dataset by filtering out

— 154

punctuation and stop words. Further, we manually la-
beled the IoT strings to the four privacy labels. Here, we
applied multi-labeling to contents that contained infor-
mation related to more than one privacy label. Overall,
the resulting dataset represents the semantics of taint-
sink contents found in IoT apps.

NLP Model Construction. We implement an NLP
model that uses a specific IoT corpus above for training.
We use the model to classify unknown sink-call contents
to privacy labels. To train the model, we propose a su-
pervised learning approach that requires labeled data as
input. We expect that the supervised approach yields
better results than other approaches such as keyword-
search. This is because the IoT string containing privacy
information often does not include sufficient informa-
tion to assign the labels through simple keyword-search-
based analysis. For instance, keyword-search would fail
to identify the user-behavior in a messaging taint-sink
that leaks a string “the kids left home”. The model
integrates doc2vec [8] to represent every n-gram IoT
string (i.e., IoT document) into a multi-dimensional
vector. Specifically, we choose the Paragraph Vector-
Distributed Memory (PV-DM) approach as strings ex-
tracted from IoT apps have limited semantic structures,
yet they include a substantial amount of information.
By using doc2vec helps IoOTWATCH find the leaks that
are context-wise and semantically similar. Thus, we se-
lect PV-DM doc2vec over other known approaches like
bag-of-words (BoW) [30] as it has proven to be effective
against incomplete or semantically-limited strings. PV-
DM considers the entire structure of the text and infers
what is missing to perform syntax and context anal-
ysis (i.e., multi-word expression analysis) [32]. In this
way, we are able to extract the privacy content from
semantically-limited IoT strings. We then performed
topic classification of the IoT strings using an auto-
mated machine learning approach (i.e., autoML) [6]. We
note that autoML selects the best classification algo-
rithm by trying various classification algorithms; thus,
the best accuracy is always guaranteed. We provide de-
tails of the NLP model and IoT corpus in Section 6.

5.3 User Notifications

IoTWaTcH implements two different privacy notifica-
tion options, as shown in Figure 3(a), Appendix C.
First, it allows a user to select specific privacy labels
(one or multiple) for an app to receive notifications. For
instance, if the user is only concerned about the location
information, she may select the location label so that
ToTWATCH informs if a sink-call transmits data defined

Real-time Analysis of Privacy-(un)aware loT Applications

through location-label. This means that the user would
not receive any other notifications of other privacy la-
bels. The second option allows the user to determine
the type of taint-sink to be notified, messaging, and In-
ternet, or both. The selective user-specific notifications
provide flexibility, reduces the IoTWATCH latency in in-
strumented apps, and enhances the user experience by
reducing the number of notifications at runtime. Lastly,
IoTWATCH also check the recipients of Internet taint-
sink and see whether it uses HT'TP or HTTPS to trans-
mit sensitive data. This exposes the content of the Inter-
net message to passive observers (i.e., eavesdroppers). In
this case, IOTWATCH is able to notify users as well, as
shown in Figure 3(b), Appendix C.

We note that IToOTWATCH enables all privacy labels
and taint-sink options by default. Tech-savvy users that
fully understand the privacy risks of IoT apps may cre-
ate their own privacy profiles by disabling install-time
options for better user experience. Users that do not en-
tirely understand the privacy labels in IoOTWATCH may
rely on the default options.

6 Implementation Details

We implemented IOTWATCH for IoT applications de-
veloped for Samsung SMARTTHINGS, which is the IoT
platform that has the highest share of devices and appli-
cations in the current commodity IoT market [47, 52].
Samsung SMARTTHINGS apps are developed in Groovy,
a dynamic programming language that supports static
compilation. Static compilation permits for all methods
and classes in the apps to be annotated at compile time,
which makes this information fully available to the in-
strumentation portion of IoTWATCH.

Code Instrumentor. IOTWATCH traverses the Ab-
stract Syntax Tree (AST) of the IoT app’s In-
termediate Representation (IR) using the Groovy’s
ASTTransformation class [23]. This class, included in
the Apache Groovy project, offers several metaprogram-
ming utility methods to build and analyze the app’s
AST. We used the AST to perform our analysis as
we targeted open-source applications, and we could
take advantage of the specific programming classes that
Groovy offers for the compile-time analysis. Specifi-
cally, we use the class ASTNode to build an app’s Intra-
procedural Control Flow Graph (ICFG) [10]. From
there, we used the visit methods to inspect the dif-
ferent ICFG nodes and flag methods that implement
sink functions (e.g., sendSMS), handle sensitive pri-
vacy data (e.g., phone number), subscribe to events,
or define event handlers. IoTWATCH involves around

— 155

1700 lines of code written in Groovy to analyze the
app source code, construct the IR, generate the ICFG,
and perform the code instrumentation. We implemented
IoTWATCH’s instrumentor as a web application us-
ing Groovy programming language (detailed in Ap-
pendix B). We made the instrumentor available online
at https://iotwatch.appspot.com/.

App and IoT Data Collection Process. We col-
lected 540 Samsung SmartThings apps to implement
and evaluate IOTWATCH, which represented 100% of
the open-source SmartThings apps available at the time
of developing this project. These IoT apps are from six
different general categories: Convenience, Smart Home
Automation, Entertainment, Personal Care, Security &
Safety, and Smart Transportation. Out of the 540 apps,
380 SMARTTHINGS apps were used to build an IoT cor-
pus and train the NLP model, and 160 apps to evalu-
ate its performance (detailed in Section 7). For compre-
hensiveness, we included in our analysis SMARTTHINGS
market apps crawled from official Samsung reposito-
ries [48, 50] and malicious apps crawled from the I0T-
BENCH repository [28], an IoT-specific test corpus used
to evaluate systems for IoT app security and privacy.
The IOTBENCH includes flawed apps that perform var-
ious malicious activities, including sensitive data leaks
via both messaging and Internet taint-sinks.

To collect the IoT strings from the crawled apps,
we analyzed and instrumented the total population of
apps using the IOTWATCH’s code instrumenter. 10T-
WATCH’s instrumentor adds on average 25% more lines
of code (LoC) to the apps, which translates into adding
65 LoC to an IoT app that has an average size of 265
LoC. We then executed the instrumented apps in the
SMARTTHINGS Simulator IDE [49], a propriety simula-
tion tool provided by Samsung. The IDE permits the
modeling of trigger-action scenarios in which an instru-
mented app sends messaging- and Internet-based taint
sinks that contain the IoT strings to the IoTWaATcH
server. The IoT strings are individually labeled through
app and string ID, and taint sink in the form {ID:
app_ID, taint_ sink, string}.

Data Split and Model Training. We first organized
the strings collected from the 540 IoT apps into the six
different app categories. Then, for proper data balance,
we randomly selected the strings collected from 70% of
the apps from each category until reaching 380 training
apps. The remaining strings from the other 160 apps
were used later for evaluating IoOTWATCH. From the
selected apps for training, we extracted a total of 2014
different IoT strings. We then labeled these strings ac-
cording to the four privacy labels. Specifically, 46.8%

Real-time Analysis of Privacy-(un)aware loT Applications

of the strings contained information related to the IoT
devices, while 20.8% contained relevant information re-
lated to Date-time. The remaining 19.2% and 13.2% of
the IoT strings shared information related to location
and user-behavior, respectively. We allowed up to 75%
of inter-labeling assignment to the strings, meaning, up
to three different privacy labels can be assigned to a sin-
gle string. In total, we applied multi-labeling to 72% of
the privacy strings in the IoT corpus. Finally, we applied
k-fold cross validation on the labeled data to train and
validate the NLP model. We randomly selected 75% of
the total corpus to train the classifier for approximately
15 hours. Then, we validated the obtained model with
the remaining 25% of the data, which is a practice fol-
lowed by modern autoML [7]. Initial testing results on
the NLP model showed an average precision of 94.3%
and recall of 89.6%.

Classification of IoT Privacy Strings. We use Au-
tomatic Machine Learning (Auto-ML) tools offered by
Google App Engine [6] to perform privacy classifica-
tion of IoT strings. Among its benefits, modern auto-
ML approaches perform neural architecture search and
transfer learning, enable hyper-parameter optimization,
and utilize advanced model architectures to classify con-
tents to privacy labels with high accuracy. More par-
ticularly, we implemented a custom multi-class multi-
label model using the Natural Language API offered by
Google (Google-NL) [7]. Google-NL offers a suite of ML
algorithms that automatically optimize the algorithm
parameters based on the specific algorithm utilized and
the characteristics of the dataset to guarantee the high-
est accuracy. Our initial analysis of 2014 IoT strings
showed remarkable semantic similarities among them;
thus, the use of labeled data reduces the training time
considerably. Finally, we implemented our NLP solution
to classify strings written in English as only two (0.5%)
IoT strings analyzed were written in Spanish.

IoTWatcH API. We implemented a REST API to
enable effective and secure data exchange between the
instrumented IoT app and IToTWATCcH’s analyzer (Fig-
ure 3). From the app to the server, the API constructed
a JSON object with the user-defined recipients and the
taint-sink information. From the server to the app, an-
other JSON object was used to send the IoOTWATCH’s
analysis results. The API also handles IOTWATCH’s pri-
vacy notifications to the user. Once the privacy anal-
ysis is completed, IOTWATCH sends back to the user
another JSON object containing its findings. (aditional
details in Appendix C). Further, we protected the com-
munications between the apps and the IOTWATCH’s

— 156

server with the asynchttpvl class of Samsung Smart-
Things [51], which allows for asynchronous and en-
crypted HTTPS calls. Also, we guaranteed integrity of
the data being exchanged by digitally signing the API
requests with SmartThings x.509 certificates. Specifi-
cally, the API requests fetch the public keys for signa-
ture verification from https://key.smartthings.com
+ <aKeyId>. Then, the IoOTWATCH computed the va-
lidity of the signatures using the resolved key combined
with the HTTP headers provided on the API callback
request. Finally, we assumed the IOTWATCH servers
were secure so the actual NLP analysis as well as the
user notifications were not compromised by external at-
tackers. Note that attacks to the server or server-related
threats were not considered in this work.

7 Performance Evaluation

We evaluated the performance and efficacy of IoT-
WAaTCH based on the three research questions (RQ).

RQ1 What is the effectiveness of ToTWATCH in cor-
rectly classifying the tain-sink contents into privacy la-
bels? (Section 7.1).

RQ2 What is the effectiveness of IOTWATCH in iden-
tifying data leaks that confirms privacy preferences of
users? (Section 7.2).

RQ3 What is the runtime overhead of IOTWATCH in
terms of latency and storage? (Section 7.3).
Evaluation Setup. We analyzed and extracted IoT
strings from a total of 160 Samsung SmartThings apps
to evaluate IoOTWATCH’s performance. Specifically, we
included 120 market and 40 malicious apps in the eval-
uation. The apps were instrumented and executed in
the SmartThings IDE to extract the app communica-
tion content as explained in Section 6. Finally, the apps
sent their data to IOTWATCH’s analyzer at execution
which ran on a Python web server hosted on Google
App Engine [20].

Defining User Privacy Preferences. The ideal case
to define user preferences requires executing IoT apps
with the real users, where each of them installs an app.
However, this is time-consuming as we have hundreds of
apps, and each user needs to understand the function-
ality of each app before they define their preferences.
To address this, we assume users set their preferences
when the IoT data is transmitted out of an app without
their consent, which allows us to define privacy prefer-
ences of users in our experiments as a ground truth. A
user is able to give consent to IoT app recipients and
contents in two ways. First, a user defines the taint-sink

Real-time Analysis of Privacy-(un)aware loT Applications

J$. NI PRV SN
=ma=—2 13‘)'&-;;\
Eno‘-lﬁoA“. 3 N, 0--*0\

o ~.
\.\
o

Optimal “o

Threshold

Value (th = 0.4) \
°

Sensitivity

=

06 '8

0

0.5
01 02 03 05 06 07 08 09
Classification Threshold

I - Specificity

(a) Classification Metrics

(b) ROC, AUC

Fig. 6. IOTWATCH classifier performance: (a) average value of
all performance metrics for the different threshold values and
(b) ROC curve and AUC that illustrate the performance of I0T-
WarcH's classifier for all privacy labels.

recipient at app install-time, for instance, a cell-phone
number to receive a notification or a web page name
that the content is sent. We are able to automate this
process through sink-call recipient analysis. [0TWATCH
matches the taint-sink recipients with information de-
fined by the user at install-time. For instance, the user
defines an authorized recipient in the field phone. I0T-
WATCH extracts this information and checks it against
the taint-sink recipient. If they match, it means that the
user defines the recipient at install-time. This is because
IoTWATCH recognizes that the user previously autho-
rized this recipient, and the data transmitted to the
recipient do not violate the user’s privacy preference.
Defining Leaks. In cases where IOT'WATCH sees dis-
crepancies between the recipient of a taint-sink and the
one that was defined by the user, it identifies it as a data
leak. Also, we considered a data leak any time an app
sends information to a third party without informing the
app user via the app description. As we consider that
the description block of an app should explicitly specify
the content transmitted out of an app and its recipients,
failing to do so makes it impossible for the user to ac-
knolewdge and confirm the app’s intent at install-time.
Thus, for instance, an Internet taint-sink that sends sen-
sitive data to a server that is not informed to the user
via an app description block is clearly a leak.

7.1 Taint-sink Content Classification

IoTWATCH’s analyzer classifies IoT app taint sink con-
tent (i.e., IoT strings) into four privacy labels. The clas-
sification results include the assigned label and the con-
fidence scores through a threshold th. If the classifica-
tion score is over the predefined threshold, the privacy
label is assigned to the string. For instance, the string
“the front door at home is unlocked” resulted in classi-
fication scores of device-info=0.94, user-behavior=0.03,
location=0.86, and date-time=0.3. By design, the clas-
sification scores are independent of each other, that is,

— 157

Label TP TN FP FN Accuracy Recall Precision Specificity
Device-inffo 958 232 11 84 0.9260 0.9214 0.9890 0.9547
Date-time 99 1161 18 36 0.9589 0.7333 0.8918 0.9847
User-behavior 508 684 26 95 0.9079 0.8425 0.9585 0.9633
Location 221 1061 10 22 0.9756 0.9095 0.9610 0.9907

Table 3. Performance of IOTWATCH in classifying loT strings to
all the different privacy labels.

if th value is set to 0.7, IoOTWATCH classifies the string
into privacy information of type device-info and loca-
tion. In total, IOTWATCH classified 146 IoT strings ex-
tracted from 95 different IoT apps. Out of these, 112
strings were extracted from messaging taint-sinks; 54
messages from 44 market IoT apps and 58 messages
from 30 malicious apps. The remaining 34 strings were
extracted from Internet taint-sink; 12 Internet calls ex-
tracted from 10 market IoT apps, and 22 extracted from
11 malicious IoT apps.

Performance by Threshold Values. We study how
ToTWATcH’s classifier performs for different threshold
values th. The goal of this analysis is to find the value
th that leads to the highest performance overall. Fig-
ure 6(a) summarizes the average metrics for different
values of th. Overall, IOTWATCH yields the best accu-
racy for threshold values between 0.1 to 0.5. We observe
that th = 0.4 yields the best classification results for
all metrics. Finally, IoT'WATCH classifies [oT strings to
correct privacy labels with 94.25%, 85.17%, 95.01%, and
97.34% average accuracy, recall, precision, and speci-
ficity, respectively (additional details in Appendix D).
Performance by Privacy Label. We further study
the sensitivity of IoOTWATCH’s classifier to each pri-
vacy label. The goal is to determine the effectiveness of
ToTWATCH in classifying strings to the different pri-
vacy labels. Table 3 shows the performance of T0T-
WaTcH in classifying IoT strings to different privacy
labels. IOTWATCH achieves the highest accuracy for
privacy labels of type location and date-time. This is
because date, time, and location can be easily inferred
from semantically-simple strings. Also, it is very com-
mon to find information related to these privacy labels
embedded in the same string (e.g., “he arrived home
5 minutes ago”). In contrast, IoOTWATCH obtained the
lower accuracy results for privacy labels of type user-
behavior. This is because user-behavior information is
harder to infer from simple strings. In spite of these
results, JTOTWATCH achieved the lowest accuracy of
90.79% for user-behavior labels, which is comparable
with the best classification results of other similar tools
in the market [37]. In summary, our observation is that
the classification errors of IoT strings into privacy la-

Real-time Analysis of Privacy-(un)aware loT Applications

bels are due to the highly-limited structure of the IoT
strings. In most cases, developers try to exfiltrate more
information using short messages lacking proper seman-
tics (e.g., “front door was unlocked 5 min ago”). In this
case, we note that a straightforward classification ap-
proach does not yield successful results when extract-
ing complete privacy information related to the device
(e.g., door unlocked), date-time (e.g., 5 min ago), and
location (e.g., front of the house) and, hence, would not
be instrumental in uncovering all the privacy risks. Fi-
nally, we present the Receiver Operating Characteris-
tic (ROC) curve and the corresponding Area Under the
Curve (AUC) in Figure 6(b). These metrics summarize
the overall performance of the IoOTWATCH’s classifier
for all privacy labels. The AUC fully supports the clas-
sification metrics detailed in Figure 6(a) and reflects the
high prediction quality of the proposed NLP classifier.
Our observation is that the classification errors are
due to the highly-limited structure of the IoT strings.
In most cases, developers try to exfiltrate more informa-
tion using short messages lacking proper semantics (e.g.,
“front door was unlocked 5 min ago”). In this case, we
note that a straightforward classification approach does
not yield successful results when extracting complete
privacy information related to the device (e.g., door un-
locked), date-time (e.g., 5 min ago), and location (e.g.,
front of the house) and, hence, would not be instru-
mental in uncovering all the privacy risks. To overcome
these issues and improve the classifier’s performance
in ToTWatch, we followed different and more fruitful
design strategies, as stated in Section 5.2.1. First, we
used a rich IoT corpus to train the model. Second, we
represented every IoT string with a multi-dimensional
vector via paragraph vector-distributed memory-based
(PV-DM) doc2vec. With this approach, the IToTWatch
classifier could predict the missing words from the
structurally-limited strings and improve the classifica-
tion results significantly. We will clarify this in the final
version of the paper.
Findings on Privacy Analysis of IoT Strings. [0T-
WatcH classifies IoT strings to privacy labels with an
average accuracy of 94.25%. Out of 160 apps, 10T-
WaTtcH identified 50 (31.25%) apps that transmit data
related to device information via messaging, and 20
(12.5%) apps that do the same via Internet taint-sinks.
Also, 11 (6.9%) apps handled data related to date and
time in messages and only one transmit similar informa-
tion using the Internet. IOTWATCH also identified 38
(23.75%) apps transmitting information related to the
user behavior in their messages and nine (5.6%) includ-

— 158

App Type No. of Apps Mess. Leaks CI-T. Effec.
Market 120 54 0 - -
Malicious 40 58 29 - 100%

Total 160 112 29 - 100%

Mess. - Messaging taint-sinks Analyzed
Leaks - No. of Data Leaks Found

CI-T. - No. of Clear-text Leaks Found
Effec. - IoTWarcH Effectiveness

Table 4. Effectiveness of IOTWATCH in detecting sensitive data
leaks via messaging.

App Type No. of Apps Int. Leaks CI-T. Effec.
Market 120 12 11 3 100%
Malicious 40 22 22 3 100%
Total 160 34 33 6 100%

Int. - Internet taint-sinks Analyzed

Table 5. Effectiveness of IOTWATCH in detecting sensitive data
leaks via Internet taint-sinks.

ing similar type of information in Internet taint-sinks.
Further, 20 (12.5%) apps sent information related to lo-
cation via messaging, while six (3.7%) apps did the same
via Internet calls. Finally, we evaluated how the privacy
analysis of IoT strings benefited from the use of NLP.
TIoTWaTcCH assigned multiple privacy labels to classify
more semantically-complex IoT strings, which guaran-
teed completeness in the privacy analysis. Out of 146
strings analyzed, IOTWATCH applied multi-labeling to
68 (46.5%). Specifically, 54 IoT strings (36.9%) received
two privacy labels and 14 (9.6%) strings received three
privacy labels.

7.2 Data Leakage Analysis

Findings on Data Leaks via Messaging. Table 4
shows IOTWATCH’s findings after analyzing messaging
recipients. [OTWATCH extracted 54 recipients in mes-
sages from market apps and 58 from malicious apps.
We found no data leaks via messaging in market apps,
meaning, all recipients were defined (or authorized) by
the user at install-time. We believe this is due the strict
review process enforced by SMARTTHINGS [oT market.
Further, we found 29 leaks from 14 different malicious
apps [28], meaning, all these recipients were hard-coded
by a developer and their intent were not defined in the
app’s description block. For instance, the User Event
app [28] leaks privacy labels of type device-info, loca-
tion, and user-behavior (“Everyone is away and hub ID
is #”) to a hard-coded phone number. We manually re-
viewed the app source codes and verified that all IoT-
WaTrcH’s findings were correct. Also, we verified that
all data leaks via messaging were properly flagged.

Findings on Data Leaks via Internet. Table 5 de-
tails the effectiveness of IoTWATCH’s analyzer in find-

Real-time Analysis of Privacy-(un)aware loT Applications

ing data leaks via Internet taint-sinks. IOTWATCH an-
alyzed 34 recipients from Internet taint-sinks, 12 from
market and 22 from malicious apps. Our tool flagged 11
Internet taint-sinks from seven market apps that leak
privacy data without user consent. That is, the user
is neither informed about the recipient of the data in
the app description block nor enters the URL or do-
main name herself. For instance, the ThingSpeak Log-
ger app [48] transmits a device ID to a remote server
through an HTTP call, which is identified through
a device-info privacy label. For malicious apps, 10T-
WaTcH flagged 22 Internet taint-sinks from 14 different
malicious apps as leaks. We verified that 100% of data
leaks via Internet were properly flagged.

Clear-Text Data Leaks. IoTWATCH is also able to
verify whether an IoT app sends a clear-text through
HTTP. IoTWaATcH flagged three clear-text leaks from
three different market apps out of twelve Internet taint
sinks. We found that one of these calls was authorized
by the user at install-time through the app description
block. Lastly, [OTWATCH flagged three Internet taint-
sinks that uses HTTP to leak sensitive data from mali-
cious apps.

7.3 Overhead Analysis

We show the performance of IOTWATCH in terms of
runtime and storage overhead.

Runtime Overhead. Latency refers to the time
elapsed from the moment that the app’s data is collected
to the moment that the user receives IOTWATCH’s no-
tifications. Latency overhead is calculated as the av-
erage difference in the execution time of the origi-
nal and instrumented apps. On the one hand, I0T-
WaTtcH required on average 75 ms to classify the sink-
call contents. On the other hand, the communication
latency between the IoT app and the IoTWATCH’s
server was 30 ms on average. We used the Groovy
class asynchttp_vl to implement asynchronous HTTPS
requests to reduce communication latency. We found
that the total latency introduced by IoTWATCH is on
average 105 ms.

Storage Overhead. We measured the storage over-
head imposed by IoTWATCH. Our tool does not store
app information after the analysis is completed; thus,
the storage cost is determined by the total storage size
of the JSON object used to exchange information be-
tween the IoT apps and IoTWATCH’s analyzer (Sec-
tion 6). We evaluated the storage overhead imposed by
the analysis of 160 IoT apps. On average, IOTWATCH
imposes a negligible 1 KB of storage overhead.

— 159

7.4 Discussion and Future Work

IoTWarcH is the first dynamic tool that performs NLP-
based real-time privacy analysis in IoT apps to (1)
classify IoT strings into privacy labels that are easy
to understand by the user, and to (2) flag IoT apps
that represent privacy concerns for the user. We im-
plemented ToTWarcH for SmartThings IoT platform,
and we plan to extend our analysis to other IoT plat-
forms. Additionally, we analyzed 380 IoT apps and con-
structed a dataset to study how these apps use privacy-
sensitive information. While our corpus included IoT
strings extracted from SmartThings market apps, we
plan to investigate other IoT platforms to construct sim-
ilar datasets.

We designed and built ToTWarcH by first under-
standing the privacy needs of IoT users. We plan to con-
duct an additional study to evaluate the usability of ToT-
WarcH which is outside the scope of the current work.
Also, IToTWaTcH’s analysis would benefit from mapping
the app descriptions to privacy labels. However, this is
challenging as the description block of an IoT app does
not explicitly state the app’s privacy behavior but its
functionality. We plan to use more advanced NLP tech-
niques to address this challenge. Finally, loTWarcH’s ex-
ecution requires the collection and analysis of privacy-
sensitive information. We use secure HTTPS communica-
tions to protect the communication between IoT apps
and IoTWarcH’s server. In addition, IoTWarcH does not
keep record of any collected information nor share this
information with any third party. As a future work, a
complete privacy assessment of loTWarcH may be con-
ducted to guarantee that user’s privacy is completely
preserved.

8 Related Work

Data Flow Analysis. Previous works have focused on
flow data analysis to research the security and privacy
of the mobile phone [5, 14, 17, 24, 26, 57] and the IoT
apps [9, 10, 18, 40]. Tools for mobile apps cannot be
directly applied to the IoT as applications from both
ecosystems pose different architectural challenges. For
instance, FlowCog [37] establishes data flow dependen-
cies based on Android app view context, which cannot
be extracted from IoT apps due to specific architectural
differences. On the other hand, previous solutions for
ToT mostly consider security risks from data flows with
tainted variables or via inter-rule or cross-app vulnera-
bilities. For instance, SanT [10] does not consider data
leaks at runtime or via IoT strings, while FlowFence [19]
often over-approximates the data leaks, which leads to

Real-time Analysis of Privacy-(un)aware loT Applications

— 160

Tool Name Domain Code Analysis Dynamic Analysis Semantics Analysis Privacy Analysis NLP/ML Analysis User Awareness Overhead Evaluation Freely Available
TaintDroid [17] Android ° . o ° o . ° .
FlowDroid [5] Android . o o ° o o o .
FlowCog [37] Android . L] ° o L] . o .
FlowFence [19] loT ° . o o o o ° .
ContextloT [29] loT ° . o o o . ° o
Saint [10] loT ° o o o o . o .
ProvThings [55] loT ° . o o o o . o
iRuler [54] loT ° o ° o . o o o
SmartAuth [53] loT ° o ° o . . o o
IoTWarcH loT ° [} ° ° [} o ° [}

Table 6. Comparison between IOTWATCH and other data flow analysis tools for Android and loT apps.

failure when dependency between taint variables and
leaks cannot be established. The authors in [18] pro-
posed the use of static analysis to reveal permission-
based security flaws. Also, the authors in [40] enforced
data flow control by applying opacified computation.
Lastly, ProvThings [55] uses static and dynamic anal-
ysis to collect data provenance and identify the root
cause of attacks in IoT apps. However, this work is lim-
ited to analyze dependencies between events and data
states and does not offer any built-in privacy analysis.
iRuler [54] applies NLP techniques to uncover inter-rule
vulnerabilities parsed not from IoT apps, but IoT ser-
vices. The SmartAuth tool [53] also uses NLP, this time
to generate and enforce security policies in IoT apps.
Similarly, the authors in [27] analyze privacy risks in
TIoT online recipes. Table 6 compares IOTWATCH with
other the existing data flow analysis tools.

IoT Privacy. Information exposure in IoT rises con-
cerns among users and researchers. The authors in [58]
perform a qualitative analysis of the type of sensitive in-
formation IoT devices expose. Also, the authors in [59]
study IoT privacy focusing on the user’s perception.
A novel work proposes the use of blockchain [60] or
attribute-based encryption [63] to provide enhanced se-
curity and privacy to smart home systems. Meanwhile,
other authors propose the use of unified systems as the
solution to provide enhanced privacy in IoT [61]. Fi-
nally, some works focus on protecting the privacy of IoT
communications via novel protocols [64].

Comparison to Existing Works. Different from
SaINT [10] and ProvThings [55], IOTWATCH uncovers
privacy risks of IoT apps not only from taint data but
also from simple IoT strings. Also, IOTWATCH analy-
sis focuses on privacy concerns from IoT apps, some-
thing that is missing in other analysis tool for IoT like
iRuler [54], SmartAuth [53], and ContextloT [29]. I0T-
WATCH uses user feedback to performs qualitative anal-
ysis on the information handled by IoT applications.
Such a capability is missing in all other tools included
in Table 6. Specifically, IoTWATCH collects app data in
real time and converts the data into specific privacy la-

bels that the user can understand and customize. Thus,
ToTWATCH not only studies the cause and flow of the
sensitive information, but its meaning to the user and
the systems. There are some other features that are
unique to IoTWATCH. Specifically, IoTWATCH repre-
sents the first security tool that exposes the recipients of
the sensitive information in real time. Finally, since the
proposed privacy tool is user-centered, it guides its anal-
ysis with customizables privacy profiles that the users
create at install time and change anytime after. That
way, JoOTWATCH minimizes the numbers of notifications
and focuses its analysis on privacy features that are of
interest of every user individually.

9 Conclusion

ToT apps access sensitive data that, if leaked, may com-
promise the privacy of the users. IoT platforms do
not offer real-time privacy analysis that informs users
about how the IoT apps handle sensitive information.
To adress these concerns, in this paper, we introduced
IoTWaTcH, a dynamic analysis tool that uncovers the
privacy risks of IoT apps in real-time. We developed
ToTWATCcH based on a study of the privacy needs of
123 users. IOTWATCH enables users to select their pri-
vacy preferences, and uses NLP techniques to classify
ToT strings into user-friendly privacy labels. This allows
users to make informed decisions about their privacy
and reject apps. We analyzed 540 IoT apps to train the
NLP model and evaluate its effectiveness. [oOTWATCcH
classifies IoT strings to correct privacy labels with an
average accuracy of 94.25% and flags 35 apps that leak
sensitive data. Finally, IoTWATCH yields a minimal
overhead to an IoT app’s execution, on average 105 ms
additional latency.

10 Acknowledgments

This material is based upon work partially supported by
the U.S. National Science Foundation under award num-
bers NSF-CAREER-CNS-1453647 and NSF-1663051.

Real-time Analysis of Privacy-(un)aware loT Applications

References

(1]

(4]

(5]

(7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

ACAR, A., FEREIDOONI, H., ABERA, T., SIKDER, A. K.,
MIETTINEN, M., Aksu, H., CoNTI, M., SADEGHI, A.-R.,
AND ULUAGAC, A. S. Peek-a-boo: | see your smart home
activities, even encrypted! WiSec (2020).

Axsu, H., BaBuN, L., ConTI, M., TOLOMEI, G., AND
ULUAGAC, A. S. Advertising in the iot era: Vision and chal-
lenges. IEEE Communications Magazine 56, 11 (November
2018), 138-144.

Z. B. CELIK AND P. McDANIEL AND G. TAN AND L.
BABUN AND A. S. ULUAGAC Verifying Internet of Things
Safety and Security in Physical Spaces. IEEE Security Pri-
vacy, 17 (September 2019), 30-37.

APPLE’S HOME KIT SECURITY AND PRIVACY ON 10S.
https://www.apple.com /business/docs/iOS_Security__
Guide.pdf. [Online; accessed 9-January-2020].

ARzT, S., RASTHOFER, S., FriTZ, C., BODDEN, E., BAR-
TEL, A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND
McDANIEL, P. FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for An-
droid Apps. ACM SIGPLAN Notices (2014).

AUTOML. https://www.ml4aad.org/automl/. [Online;
accessed 10-February-2019].

AUuTOML NATURAL LANGUAGE GOOGLE. https://cloud.
google.com/natural-language/automl/docs/. google[Online;
accessed 10-February-2019].

AYYADEVARA, V. K. Word2vec. Apress, Berkeley, CA,
2018, pp. 167-178.

BABUN, L., SIKDER, A. K., ACAR, A., AND ULUAGAC,

A. S. lotdots: A digital forensics framework for smart envi-
ronments, 2018.

CELIK, Z. B., BABUN, L., SIKDER, A. K., Aksu, H., TAN,
G., McDANIEL, P., AND ULUAGAC, A. S. Sensitive In-
formation Tracking in Commodity loT. In 27th USENIX
Security Symposium (2018).

CELIK, Z. B., FERNANDES, E., PAULEY, E., TAN, G., AND
McDANIEL, P. Program Analysis of Commodity loT Appli-
cations for Security and Privacy: Challenges and Opportuni-
ties. ACM Computing Surveys (CSUR) (2019).

CELIK, Z. B., MCDANIEL, P., AND TAN, G. Soteria: Auto-
mated loT safety and security analysis. In USENIX Annual
Technical Conference (USENIX ATC) (2018).

CELIK, Z. B., TAN, G., AND McDANIEL, P. loTGuard:
Dynamic enforcement of security and safety policy in com-
modity loT. In Network and Distributed System Security
Symposium (NDSS) (2019).

CLAUSE, J., ET AL. Dytan: a Generic Dynamic Taint Anal-
ysis Framework. In ACM Software Testing and Analysis
(2007).

DENNEY, K., BABUN, L. AND ULuAGAC, A. S. USB-
Watch: a Generalized Hardware-Assisted Insider Threat De-
tection Framework. In in Journal of Hardware and Systems
Security (2020).

DENNEY K., ERDIN E., BABUN L., VAT M., AND ULUAGAC
A. S. USB-Watch: A Dynamic Hardware-Assisted USB
Threat Detection Framework. In Security and Privacy in
Communication Networks (SecureComm). (2019).

ENcK, W., GILBERT, P., HAN, S., TENDULKAR, V.,

[18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
28]

[29]

30]

(31]

(32]

33]

34]

(35]

(36]

— 161

CHUN, B.-G., Cox, L. P., Jung, J., McDANIEL, P., AND
SHETH, A. N. TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones.
ACM Transaction on Computer Systems (2014).
FERNANDES, E., JUNG, J., AND PRAKASH, A. Security
Analysis of Emerging Smart Home Applications. In IEEE
Security and Privacy (SP) (2016).

FERNANDES, E., PAUPORE, J., RAHMATI, A., SIMIONATO,
D., ConTi, M., AND PrRAKASH, A. FlowFence: Practical
Data Protection for Emerging loT Application Frameworks.
In USENIX Security (2016).

GOOGLE APp ENGINE. https://cloud.google.com/
appengine/. [Online; accessed 26-August-2020].

GOOGLE BoOKs NGRAMS.
datasets/google-books-ngrams/.
August-2020].

GOOGLE FORMS. https://www.google.com/forms/about/.
[Online; accessed 26-August-2020].

THE APACHE GROOVY. https://groovy-lang.org/
metaprogramming.html#_abstractasttransformation. [On-
line; accessed 26-August-2020].

GorDON, M. I.; Kim, D., PERkINs, J. H., GILHAM, L.,
NGUYEN, N., AND RINARD, M. C. Information Flow Analy-
sis of Android Applications in DroidSafe. In NDSS (2015).
GORLA, A., TAVECCHIA, 1., GROSS, F., AND ZELLER, A.
Checking App Behavior Against App Descriptions. In Pro-

https://aws.amazon.com/
[Online; accessed 10-

ceedings of the 36th International Conference on Software
Engineering (2014), ICSE 2014, ACM.

Gu, B., L1, X., L1, G., CHAMPION, A. C., CHEN, Z., QIN,
F., AND XuaN, D. D2Taint: Differentiated and Dynamic
Information Flow Tracking on Smartphones for Numerous
Data Sources. In INFOCOM (2013).

IFTTT (IF THIS, THEN THAT). https://ifttt.com/, 2017.
[Online; accessed 26-August-2020].

IOTBENCH. https://github.com/loTBench, 2017. [Online;
accessed 26-August-2020].

Jia, Y. J., CHEN, Q. A., WANG, S., RAHMATI, A., FER-
NANDES, E., MAO, Z. M., PRAKASH, A., AND UNVIERSITY,
S. J. ContexloT: Towards Providing Contextual Integrity to
Appified loT Platforms. In NDSS (2017).

LE, Q., AND MikoLov, T. Distributed Representations

of Sentences and Documents. In Proceedings of the 31st
International Conference on International Conference on
Machine Learning - Volume 32 (2014), ICML’14.
METAPROGRAMMING. http://docs.groovy-lang.org/docs/
next/html/documentation/core-metaprogramming.html.
[Online; accessed 26-August-2020].

Mikorov, T., CHEN, K., CORRADO, G. S., AND DEAN, J.
Efficient estimation of word representations in vector space.
CoRR abs/1301.3781 (2013).

N. IDERHOFF, "NLP-DATASETS". https://github.com/
niderhoff/nlp-datasets/blob/master/README.md. [On-
line; accessed 26-August-2020].

OPENHAB I0T App MARKET (ECLIPSE MARKET PLACE).
http://docs.openhab.org/eclipseiotmarket. [Online; accessed
26-August-2020].

OPENHAB I0T App SUBMISSION GUIDELINE. https:

/ /marketplace.eclipse.org/content/eclipse-marketplace-
publishing-guidelines. [Online; accessed 26-August-2020].
OPENHAB: OPEN SOURCE AUTOMATION SOFTWARE FOR

37]

(38]

(39]

40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

Real-time Analysis of Privacy-(un)aware loT Applications

HOME. https://www.openhab.org/. [Online; accessed 26-
August-2020].

Pan, X., Cao, Y., Du, X., HE, B., Fang, G., SHAO, R.,
AND CHEN, Y. FlowCog: Context-aware Semantics Ex-
traction and Analysis of Information Flow Leaks in Android
Apps. In 27th USENIX Security Symposium (Baltimore,
MD, 2018).

PANDITA, R., X1A0, X., YANG, W., ENCK, W., AND XIE,
T. WHYPER: Towards Automating Risk Assessment of Mo-
bile Applications. In Presented as part of the 22nd USENIX
Security Symposium (Washington, D.C., 2013), USENIX.
Qu, Z., Rastoct, V., ZHANG, X., CHEN, Y., ZHU, T.,
AND CHEN, Z. AutoCog: Measuring the Description-to-
permission Fidelity in Android Applications. In Proceedings
of the ACM Conference on Computer and Communications
Security (New York, NY, USA, 2014), CCS '14, ACM.
RAHMATI, A., FERNANDES, E., AND PRAKASH, A. Apply-
ing the Opacified Computation Model to Enforce Informa-
tion Flow Policies in loT Applications. In IEEE Cybersecurity
Development (SecDev) (2016).

SIKDER, A. K., AKsu, H., AND ULUAGAC, A. S. 6thsense:
A context-aware sensor-based attack detector for smart de-
vices. In 26th {USENIX} Security Symposium ({USENIX}
Security 17) (2017), pp. 397-414.

SIKDER, A. K., Aksu, H., AND UrLuaGac, A. S. A
context-aware framework for detecting sensor-based threats
on smart devices. |EEE Transactions on Mobile Computing
(2019).

SIKDER, A. K., BABUN, L., AKsu, H., AND ULUAGAC,

A. S. Aegis: A context-aware security framework for smart
home systems. ACSAC (2019).

SIKDER, A. K., PETRACCA, G., AKSU, H., JAEGER, T.,
AND ULUAGAC, A. S. A survey on sensor-based threats

to internet-of-things (iot) devices and applications. arXiv
preprint arXiv:1802.02041 (2018).

PARDIS E. AND YUVRAJ A. AND LORRIE F. C. AND
HANAN H. Ask the Experts: What Should Be on an loT
Privacy and Security Label? arXiv preprint arXiv:2002.04631
(2020).

SMARTTHINGS CLASSIC DOCUMENTATION: CLASSES AND
JARS. https://docs.smartthings.com/en/latest/getting-
started /groovy-for-smartthings.html#tallowed-classes. [On-
line; accessed 26-August-2020].

SMARTTHINGS CODE REVIEW GUIDELINES AND BEST
PRACTICES. http://docs.smartthings.com/en/latest/code-
review-guidelines.html. [Online; accessed 26-August-2020].
SMARTTHINGS COMMUNITY FORUM FOR THIRD-PARTY
APPs. https://community.smartthings.com/. [Online;
accessed 26-August-2020].

SMARTTHINGS GROOVY IDE. https://graph.api.
smartthings.com/. [Online; accessed 26-August-2020].
SMARTTHINGS OFFICIAL APP REPOSITORY. https://github.
com/SmartThingsCommunity. [Online; accessed 26-August-
2020].

SMARTTHINGS OFFICIAL DEVELOPER DOCUMENTATION.
http://docs.smartthings.com. [Online; accessed 26-August-
2020].

SMARTTHINGS SUPPORTED I0T ProDUCTS (DEVICES).
https://www.smartthings.com/products. [Online; accessed
26-August-2020].

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

— 162

TiAN, Y., ZHANG, N., LiN, Y.-H., WaNG, X., URr, B,
Guo, X., AND TAGUE, P. SmartAuth: User-Centered Au-
thorization for the Internet of Things. In 26th USENIX
Security Symposium (Vancouver, BC, 2017).

WaNG, Q., DaTTA, P., YANG, W., Liu, S., BATES, A.,
AND GUNTER, C. A. Charting the Atack Surface of Trigger-
Action loT Platforms. In Proceedings of 26th ACM Confer-
ence on Computer and Communications Security (2019).
WANG, Q., HAassan, W. U., BATES, A. J., AND GUNTER,
C. Fear and logging in the internet of things. In Network
and Distributed Systems Symposium (NDSS) (Feb 2018).
WIKIPEDIA. https://dumps.wikimedia.org/wikidatawiki/
entities/. [Online; accessed 26-August-2020].

Zuu, D. Y., Jung, J., Song, D., Kouno, T., AND
WETHERALL, D. TaintEraser: Protecting Sensitive Data
Leaks Using Application-level Taint Tracking. SIGOPS Op-
erating Systems Review (2011).

REN, J. AND DuBo1s, D. J. AND CHOFFNES, D. AND MAN-
DALARI, A. M. AND KOLCUN, R. AND HADDADI, H. Infor-
mation Exposure From Consumer loT Devices: A Multidi-
mensional, Network-Informed Measurement Approach. Proc.
of the Internet Measurement Conf. (2019).

A. DORRI AND S. S. KANHERE AND R. JURDAK AND P.
GAURAVARAM User Perceptions of Smart Home loT Privacy.
Proc. ACM Hum.-Comput. Interact. (2018).

ZHENG, S. AND APTHORPE, N. AND CHETTY, M. AND
FEAMSTER, N. Blockchain for loT Security and Privacy:
The case study of a smart home. |IEEE PerCom Workshops
(2017).

R. CHOW The Last Mile for loT Privacy. IEEE Security
Privacy (2017).

GOOGLE AutoML Natural Language Google Training. https:
//cloud.google.com/natural-language/automl/docs/prepare.
Online; accessed 26-August-2020.

T. SoNG AND R. L1 AND B. MEI AND J. YU AND X. XING
AND X. CHENG A Privacy Preserving Communication Pro-
tocol for loT Applications in Smart Homes. IEEE Internet of
Things Journal (2017).

X. WANG AND J. ZHANG AND E. M. SCHOOLER AND M.
IoN Performance evaluation of Attribute-Based Encryption:
Toward data privacy in the loT. 2014 IEEE International
Conference on Communications (ICC) (2014).

OpenHAB Community, Openhab documentation,
http://docs.openhab.org/index.html (2017). [Online; ac-
cessed 26-August-2020].

Apple, Apple homekit documentation,
https://developer.apple.com/homekit/ (2017). [Online;
accessed 26-August-2020].

Microsoft, Windows loT core documenta-

tion, https://developer.microsoft.com/en-

us/windows/loT /explore/loTcore (2017). [Online; accessed
26-August-2020].

AKM I. NEwAz AND A. K. SIKDER AND A. M. RAHMAN
AND A. S. ULUAGAC Healthguard: A Machine Learning-
based Security Framework for Smart Healthcare Systems.
2019 Sixth International Conference on Social Networks
Analysis, Management and Security (SNAMS).

AKM I. NEwAz AND A. K. SIKDER AND A. M. RAHMAN
AND A. S. ULUAGAC A Survey on Security and Privacy
Issues in Modern Healthcare Systems: Attacks and Defenses.

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

vey

Real-time Analysis of Privacy-(un)aware loT Applications

arXiv preprint arXiv:2005.07359.

AKM I. NEwAz AND A. K. SIKDER AND L. BABUN AND
A. S. ULvacac HEKA: A Novel Intrusion Detection System
for Attacks to Personal Medical Devices. 2020 IEEE Confer-
ence on Communications and Network Security (CNS).

A. K. SIKDER AND L. BABUN AND Z. B. CELIK AND A.
ACAR AND H. AKSU AND P. MCDANIEL AND E. KIRDA
AND A. S. ULUAGAC Kratos: Multi-User Multi-Device-
Aware Access Control System for the Smart Home. 13th
ACM Conference on Security and Privacy in Wireless and
Mobile Networks, 2020.

L. BABUN AND H. AKSU AND L. RYAN AND K. AKKAYA
AND E. S. BENTLEY AND A. S. ULUAGAC Z-loT: Pas-

sive Device-class Fingerprinting of ZigBee and Z-Wave loT
Devices. 2020 IEEE International Conference on Communi-
cations (ICC)

J. MYERS AND L. BABUN AND E. YAO AND S. HELBLE
AND P. ALLEN MAD-loT: Memory Anomaly Detection for
the Internet of Things. 2019 IEEE Globecom Workshops
(GC Wkshps)

L. RONDON AND L. BABUN AND K. AKKAYA AND A. S
Uruacac HDMI-Walk: Attacking HDMI Distribution Net-
works via Consumer Electronic Control Protocol. ACSAC
2019

L. RONDON AND L. BABUN AND K. AKKAYA AND A. S
ULuaGAac HDMI-Watch: Smart Intrusion Detection System
Against HDMI Attacks.
Science and Engineering, 2020

L. Babun, H. Aksu, A. S. Uluagac, Identifying Counterfeit
Smart Grid Devices: A Lightweight System Level Framework,

IEEE Transactions on Network

in: 2017 IEEE International Conference on Communications
(1CC), 2017, pp. 1-6 (May 2017). doi:10.1109/ICC.2017.
7996877.

L. Babun, H. Aksu, A. S. Uluagac, A System-level Be-
havioral Detection Framework for Compromised CPS
Devices: Smart-Grid, in: ACM Transactions on Cyber-
Physical Systems, 2019, pp. 1-28 (Nov 2019). http:
//doi.acm.org/10.1145/3355300.

Babun, Leonardo (Miami, FL, US), Aksu, Hidayet (Miami,
FL, US), Uluagac, Selcuk A. (Miami, FL, US). 2018. De-
tection of Counterfeit and Compromised Devices Using Sys-
tem and Function Call Tracing Techniques. (July 2018).
https://www.osti.gov/biblio/1463864

Babun, Leonardo (Miami, FL, US), Aksu, Hidayet (Mi-
ami, FL, US), Uluagac, Selcuk A. (Miami, FL, US). 2019.
Method of Resource-limited Device and Device Class Iden-
tification Using System and Function Call Tracing Tech-
niques, Performance, and Statistical Analysis. (March 2019).
https://patents.google.com/patent/US10242193B1 /en

L. RONDON AND L. BABUN AND A. ARIS AND K. AKKAYA
AND A. S UrLuAacAac Poisonlvy: (In)secure Practices of
Enterprise loT Systems in Smart Buildings. accepted at
BuildSys '20, 2020

Sample Survey Questions

present a list of representative IoT privacy sur-
questions from all the categories due to space

constraints.

— 163

The entire user study is available at

https://anonymous.com.

A.1 User Characterization

1.

Do you use, have used, or are you planning to use
any IoT device?

() Yes

() No

() Maybe

What is your technical experience with IoT apps?
() I can build, implement, code my own IoT app
() Installed/can install/configure an IoT app using
the source code available online

() Installed/can install/configure an IoT app’s mar-
ketplace (Google Play, App Store, etc.)

() I just know how to press the buttons

() I have no idea how to deal with IoT apps

A.2 Security and Privacy Concerns in

Smart Apps

What information would you consider sensitive if
used in IoT apps/devices? Please check all that
apply.

() My personal data (e.g., email address, phone
number, residential address, etc.) () Whatever I
do, my behavior (e.g., when I arrive home, when 1
leave home, I go to sleep, etc.)

() My (or my devices’) location (e.g., my location
while using the apps, etc.)

() My device settings/the way I configure the de-
vices (e.g., Time of the day the lights turn On/Off,
my thermostat temperature settings, etc.)

() My (or my devices’) timing (e.g., the time passed
since I left home, the time passed since I went to
sleep, etc.)

() Information from my devices (e.g., device type,
manufacturer, device 1Ds, etc.)

() Data from my devices (e.g., door state open or
close, light on or off, etc.)

() Other

If you selected "Other", please explain:
Have you heard or personally have privacy concerns

on the use of the IoT devices and systems?
() Big concerns () Some concerns

Real-time Analysis of Privacy-(un)aware loT Applications

— 164

< Cc O

O A ANa onsole
£2() { sl.lock()
notifyUser(sl.state, phone)
leakInfo() }

iotwatch.appspot.com

// Send notification to the user
notifyUser (state, number) {

sendSMS (“Your lock is: ”
// Leak sensitive data to attacker
lLleakInfo () {

sendSMS (“Nobody is Home”, 123-456-7890)}

+ state, phone)

Analysis Result Stacktrace

// Send notification to the user
notifyUser (state, number) {
sendSMS (“Your lock is: ” + state, phone)
sendPush ("App is using data of type:” classification)}
// Leak sensitive data to attacker
leakInfo () {
sendSMS (“Nobody is Home”, 123-456-7890)
sendPush (“Privacy Behavior using:” classification)}

Actions

> Analyze loT Appl Reset Console I Publish This App I View Recent Apps I

Fig. 1. The left console is the analysis area where the user inputs the original loT app. The right console returns the output of the

instrumentation process. We made IOT'WATCH's instrumentor freely available to the community at https://IoTWatcH.appspot.com/.

() I do not, but I know someone that does
() Never thought about it, until now
() I do not care

A.3 Privacy Analysis Tools and Features

1. Do you think there is a need for a tool to check for
security privacy risks from the smart apps?
() Yes
() No
() Maybe

2. Would you be willing to use available automatic
tools that analyze and modify smart apps to en-
able security and privacy analysis in real-time?

() Yes
() No
() Maybe

B Online App Instrumentor

We made the
https://IoTWatcH.appspot.com/. Figure 1 depicts de-

instrumentor available online at:
tails of the online version of ITOTWATCH’s instrumentor.
At the left console, the user inputs the IoT app source
code that needs to be modified to enable IoOTWATCH,
and at the right console, the tool automatically returns
the JoOTWATCH-instrumented app. Below, we detail the
implementation steps of IToTWATCH.

C loTWatcH Analyzer

Model Construction. Our search for an adequate cor-
pus that characterizes IoT app’s data-flows faced par-
ticular challenges. First, we could not find any exist-
ing IoT corpus. Second, most of the datasets available

1000 - 942 (46.8 %)

800 -

600

418 (20.8 %) 387 (192 %)
400

267 (13.2 %)

Number of Sink-call Content Strings

200

Date-time Device-info Location User-Behavior

Fig. 2. Distribution of privacy labels within the loT corpus used
to train IOTWATCH's NLP model. We assigned 2014 privacy
labels to strings extracted from messaging and Internet communi-
cations in 380 market loT apps.

online contain raw unlabeled data that would require
a considerable amount of pre-processing time and re-
sources. Third, the privacy labels considered by I0T-
WATCH could not be inferred from n-gram shingles ex-
tracted from a single corpus only. Thus, we combined
different knowledge-based datasets to create a larger
corpus. We combined the natural language datasets
from Google Books N-grams [21] and Wikidata [56],
which contain strings related to geographic (location),
economic (devices, user’s goods), climate (location), and
encyclopedic (general knowledge) datasets. We struc-
tured, cleaned, and manually labeled the crawled data.
First, we divided the corpora into single shingles (i.e.,
n-grams of n=1). Then, for cleaning purposes, we fil-
tered out punctuation and stop words. We tested the
first NLP model with 61 IoT strings extracted from 45
market IoT apps [48, 50]. An average value of 72% ac-
curacy proved that the first considered model could not
accurately represent information extracted from IoT en-
vironments. Based on these results, we decided to train
the NLP model using specific IoT corpora only. Finally,
in Figure 2 we detail the distribution of IoT strings per
privacy label used in our NLP model.

Real-time Analysis of Privacy-(un)aware loT Applications

Listing 1. An example of a JSON object sent from an loT app to
TIoTWATCH for further analysis.

/* An example of a JSON object sent to Daint analytics tool */

1
2
3 data "{

4 Jexfiltration’:{

5 texttype’ : ’PLAIN_TEXT’,

6 ’calltype’: ’Nessa%in 7,

7 ’phone”:’111-111-T11

8 ’content’:’The door was opened for 10 min’
9 ’userrecipients’:’123-456-7890",

1

¥
}" "https://iotwatchanalyticstool.com/classifytext/"

Listing 2. An example IoOTWATCH response as a JSON object
received by an loT app.

/* An example of a JSON object as response from our analytics tool
*/

data "{

’exfiltration’:{
’texttype’:’PLAIN_TEXT’,
>classification’: [’device-info’,
’risklevel’: ’data leakage’

}

}H

’date-time’]’,

QOO UHRWN =

Sample API Objects Listing 1 illustrates a sam-
ple JSON object used to send data from an IoT apps
to IoTWATCH analyzer. Here, information regarding a
messaging content and its recipients is collected. The
findings are then sent back to the user via another JSON
object similar to the one depicted in Listing 2.

LC MwoLoPC IwoLoPC MoLoPC IwLoPC Total % Total
Device-info 47 12 43 17 119 52.3
Date-time 7 1 7 0 15 6.6

User-behavior 21 2 34 10 67 20.3
Location 8 0 14 5 27 11.8
Total 83 15 98 32 228 100

LC - Privacy Label Category

MwoLoPC - Messaging without Leaks or Privacy Concerns
IwoLoPC - Internet Calls without Leaks or Privacy Concerns
MwLoPC - Messaging with Leaks or Privacy Concerns
IwLoPC - Internet Calls with Leaks or Privacy Concerns

Table 2. Distribution of privacy labels

Privacy Labels Table 2 summarizes the distribution
of the privacy labels during evaluation. One can notice
that, out of 228 different labels assigned, 52.3% cor-
responds to device-info, followed by a 29.3% of user-
behavior information. We also show in Table 2 the num-
ber of labels assigned to the different call types (i.e.,
messaging and Internet). For instance, 83 labels were
assigned to strings extracted from messaging that do
not leak information, while 98 labels were assigned to
strings extracted from messaging that leaked informa-
tion. On the other hand, Internet communications with-
out privacy concerns received 15 privacy labels while
32 were assigned to Internet communications that leak

— 165

loTWATCH has detected data sent Information related to your Device
was sent to www.support.com in

clear-text format.

containing information related to
your Location.

Date-time Information Date-time Information

Device Information Device Information

Location Information Location Information

0|6]6/9
0|6/6/0

User Behavior User Behavior

Notification Options: Notification Options:

Notify Leaks via Messaging Notify Leaks via Messaging

80
80

Notify Leaks via Internet Notify Leaks via Internet

(a) (b)
Fig. 3. IoOTWATCH's findings are informed to the users through
push notifications. The findings include (a) the privacy labels
assigned to the taint-sink content, and (b) the clear-text trans-
mitted out of an loT app.

data. With this distribution, one can notice that the
majority of labels were assigned to leaked data. These
results reflect on the fact that privacy leakage constitute
a serious problem in ToT.

IoTWatcH Notification System We illustrate the
notification system implemented by IOT'WATCH to in-
form its findings to the user. In Figure 3(a), the privacy
tool instruments a push notification to inform the user
that an IoT string related to the user’s location was
sent out of the app. In Figure 3(b), the tool informs
that sensitive information was transmitted in clear-text,
potentially making the data available to passive eaves-
droppers.

D Additional Evaluation Results

Table 1 details average metric values in classifying IoT
strings to privacy labels for every different th. Also, we
present the average metric values after combining re-
sults from all considered privacy labels and thresholds.
One can verify that IJOTWATCH obtains the best per-
formance for threshold values of 0.4, which supports the
results showed in Section 7, Figure 6(a). For th values
higher than 0.5, the accuracy decreases for the privacy
labels of device-info and user-behavior. This is mainly
because the evaluation of semantically-limited strings
related to these two privacy labels requires more sophis-
ticated analysis. For instance, user-behavior achieved in-
correct or lower classification scores as the string “IoT
switched to sleep mode” cannot be easily related to user
activities. We obtained similar results for recall metrics;
however, recall values of date-time are lower compared
to other labels. We found that date-time information
could be easily missed from short strings, which makes

Real-time Analysis of Privacy-(un)aware loT Applications

— 166

Classification Thresholds

Evaluation Metric

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average

Accuracy 0.9537 0.9623 0.9692 0.9743 0.9623 0.9469 0.9296 0.9092 0.8750 0.9425
Recall 0.9754 0.9400 0.9379 09341 0.8821 0.8419 0.7919 0.7359 0.6263 0.8517
Precision 0.8470 0.8776 0.9163 0.9587 0.9803 0.9833 0.9929 0.9975 0.9835 0.9501
Specificity 0.9283 0.9498 0.9682 0.9772 0.9823 0.9855 0.9876 0.9907 0.9907 0.9734

Table 1. Evaluation results in classifying loT strings for all classification thresholds. The rightmost column is the average values.

5

Type® App Name Leak Type® Recipient Content Behavior Privacy Labels
Squeeze Box Controller [48] I http://$ip:$port “Open box” ° Device-info
StatHat Quick Start [48] I http://api.stathat.com/ez “Thermostatl:thermostat” ° Device-info
(1) ThingSpeak Logger [48] I http://api.thingspeak.com “DevicelD:333:Key:123" ° Device-info
User Lock Manager [48] M defined by user “User no longer has access to the door"] Device-info, User-behavior
Smart Lock [48] M defined by user “SmartLock disabled. Door unlocked indefinitely” o Device-info, User-behavior
Fire Alarm [28] I http://stmalware/maliciousServer.php - ° -
Ransomware [28] I http://stmalware/maliciousServer.php - ° -
[2) Remote Command [28] | http://stmalware/maliciousServer.php - ° -
Spyware [28] M 123 — 456 — 7890 “Doors locked after everyone departed” [] Device-info, User-behavior
User Event [28] M 123 — 456 — 7890 “Everyone is away and Hub ID is 123" ° Device-info, Location, User-behavior

* @ is for Market IoT apps and @ is for Malicious IoT apps (Handcrafted)

** T is for Internet and M is for Messaging. ® is for Privacy Risk and o is for Privacy Preference of a user.

Table 3. Examples of privacy risks and the use of sensitive information in market and malicious loT apps.

the label specially vulnerable to false negative events.
The precision and specificity improves with th for all
the labels, which denotes a remarkable confidence of
the model for those results with the highest classifica-
tion scores.

Results from Real-life Apps. Table 3 presents [0T-
WatcH’s results and findings after analyzing real mar-
ket and handcrafted apps. As can be seen, IoTWaTcH
was able to identify leaks happening due to both mes-
saging and Internet communications. In all the cases,
it reported back to the user the type of sensitive infor-
mation leaked (based on the four privacy labels) and
its recipients (phone number in case of messaging and
server URL in case of Internet calls). In some specific
cases (“User Lock Manager” and ”Smart Lock” apps),
no leak was detected as IOTWATCH found the recipients
were defined by the user at install time, yet IoTWaTcH
informed the user the type of information handled by
the apps accordingly. Finally, we note that privacy leaks
were flagged in all the cases as the apps did not report
handling these types of information nor their recipients
to the user via app’s description blocks.

E Evaluation Metrics

The performance metrics used during IOTWATCH’s

evaluation:

— True Positive (TP) represents the number of times
a privacy label is correctly applied to an IoT string
for certain threshold th.

— True negative (TN) represents the number of times
a privacy label is correctly discriminated for certain
threshold th.

— False Positive (FP) is the number of times a privacy
label is incorrectly assigned to certain IoT string for
certain threshold th.

— False Negative (FN) is the number of times a pri-
vacy label is incorrectly discriminated for certain
threshold th.

— Accuracy is the overall ability of IoOTWATCH to cor-
rectly apply privacy labels to the IoT string for ev-
ery different th.

— Recall is the ability of the classifier to correctly as-
sign the privacy labels to a specific IoT string after
considering both the correctly classified and the in-
correctly ignored privacy labels for every value of
th.

— Precision is the ability of our classifier to correctly
apply the privacy labels to a specific IoT string af-
ter considering both the correct and the incorrectly
applied privacy labels for every value of th.

— Specificity is the ability of our tool to discriminate
the privacy labels for every different th.

	Real-time Analysis of Privacy-(un)aware IoT Applications
	1 Introduction
	2 Background and Threat Model
	2.1 Anatomy of an IoT App
	2.2 Problem and Challenges
	2.3 Definitions
	2.4 Threat Model

	3 Privacy Survey
	3.1 Discussion of Survey Results
	3.2 Survey Takeaways

	4 IoTWatcH Illustrated
	5 IoTWatcH Architecture
	5.1 Source Code Analysis
	5.1.1 Selective Code Instrumentation

	5.2 IoTWatcH Analyzer
	5.2.1 Classification of Sink-Call Content

	5.3 User Notifications

	6 Implementation Details
	7 Performance Evaluation
	7.1 Taint-sink Content Classification
	7.2 Data Leakage Analysis
	7.3 Overhead Analysis
	7.4 Discussion and Future Work

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	A Sample Survey Questions
	A.1 User Characterization
	A.2 Security and Privacy Concerns in Smart Apps
	A.3 Privacy Analysis Tools and Features

	B Online App Instrumentor
	C IoTWatcH Analyzer
	D Additional Evaluation Results
	E Evaluation Metrics

